EMBEDDING 3-MANIFOLDS WITH CIRCLE ACTIONS IN 4-SPACE

JONATHAN A. HILLMAN

Abstract

We give constraints on the Seifert invariants of orientable 3-manifolds which admit fixed-point free circle actions and embed in \mathbb{R}^{4}. In particular, the generalized Euler invariant ε of the orbit fibration is determined up to sign by the base orbifold B unless $H_{1}(M ; \mathbb{Z})$ is torsion free, in which case it can take at most one nonzero value (up to sign). No such manifold with base $B=S^{2}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ with r odd and $\varepsilon=0$ embeds in \mathbb{R}^{4}.

The question of which closed 3 -manifolds M embed in \mathbb{R}^{4} has received surprisingly little attention. (The relevant papers known to us are [1-7].) In particular, it is not yet known which Seifert fibred 3 -manifolds embed, although in many other respects this is a wellunderstood class of spaces, with natural parametrizations in terms of Seifert data. It was shown early that if M embeds in \mathbb{R}^{4} it must be orientable, and the torsion subgroup $T(M)$ of $H_{1}(M ; \mathbb{Z})$ must be a direct double: $T(M) \cong U \oplus U$ for some finite abelian group U [5]. Moreover, the linking pairing ℓ_{M} on $T(M)$ must be hyperbolic [7]. Most of the work to date has focused on smooth embeddings, but these conditions must also hold if M embeds as a TOP locally flat submanifold.

In $\S 2$ we shall observe that $T(M)$ being a direct double imposes strong constraints on the Seifert data of orientable 3-manifolds which admit fixed point free S^{1}-actions and which embed in \mathbb{R}^{4}. The present simple argument does not work for Seifert fibred 3-manifolds with nonorientable base orbifold; in [1] we use the $Z / 2 Z$-Index Theorem to constrain the Euler invariants in the latter case. In $\S 3$ and $\S 4$ we describe the linking pairing and the Blanchfield pairing (for infinite cyclic covers).

When the Seifert data is "skew-symmetric", i.e., is a set of complementary pairs the corresponding Seifert manifold embeds smoothly [1]. (Such manifolds have Euler invariant $\varepsilon=0$ and an even number of exceptional fibres.) In $\S 5$ we show that no Seifert manifold with base

[^0]$B=S^{2}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ with r odd and $\varepsilon=0$ embeds in \mathbb{R}^{4}. Here we use a result of [6] on the Alexander polynomial associated to the canonical infinite cyclic cover of 3 -manifolds M with $\beta_{1}(M)=1$ and which embed in \mathbb{R}^{4}. It is not known whether skew-symmetry of the Seifert data is a necessary condition. In the final sections we consider further the cases with $r=4$ or $\varepsilon \neq 0$ and $r=3$.

1. Notation and some remarks on embeddings

An orientable 3-manifold admits a fixed-point free S^{1}-action if and only if it is Seifert fibred over an orientable base orbifold. Let T_{g} be the orientable surface of genus g. We shall assume henceforth that $M=M(g ; S)$ is an orientable 3-manifold which is the total space of a Seifert bundle over the orbifold $B=T_{g}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$, with Seifert invariants $S=\left\{\left(\alpha_{i}, \beta_{i}\right) \mid 1 \leq i \leq r\right\}$, where $1<\alpha_{i}$ and $\left(\alpha_{i}, \beta_{i}\right)=1$, for all $i \leq r$. (We do not assume that $0<\beta_{i}<\alpha_{i}$). If $r=1$ we allow also the possibility $\alpha_{1}=1$. Let $\varepsilon=-\sum_{i=1}^{i=r}\left(\beta_{i} / \alpha_{i}\right)$ be the generalized Euler invariant of the Seifert bundle, and let $\Pi=\prod_{i=1}^{i=r} \alpha_{i}$. (Replacing each β_{i} by $\eta \beta_{i}+c_{i} \alpha_{i}$ where $\eta= \pm 1$ and $\Sigma c_{i}=0$ gives a homeomorphic manifold.)

As B is the connected sum of T_{g} and $S^{2}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ we have $M=$ $M(0 ; S) \sharp_{f} M(g ; \emptyset)=M(0 ; S) \sharp_{f}\left(T_{g} \times S^{1}\right)$, where \sharp_{f} denotes fibre sum. In particular, if M embeds in \mathbb{R}^{4} then so does $M \sharp_{f}\left(T_{g} \times S^{1}\right)$, by Lemma 3.2 of [1]. In some of our arguments we shall need to assume that $g=0$. Thus it would be very convenient to have a converse to this stabilization result. (The analogous implication in the case of nonorientable base orbifolds is not reversible. See [1]).

Let $L=L_{+} \amalg L_{-}$be a link which is partitioned into two disjoint slice links. If we attach 2-handles along L_{+}to the unit ball D^{4} in \mathbb{R}^{4} and delete 2-handles embedded in D^{4} along L_{-}the boundary of the resulting region of \mathbb{R}^{4} is the result of 0 -framed surgery on L. Thus 3manifolds with such surgery descriptions embed smoothly in \mathbb{R}^{4}. It is easy to see that any Seifert manifold $M(0 ; S)$ may be obtained by Dehn surgery on a link whose components are fibres of the Hopf fibration, and with framings $\neq 1$. Are there natural surgery presentations for Seifert manifolds in terms of 0-framed surgery on links?

2. The torsion subgroup

In this section we shall describe the torsion subgroup of $H_{1}(M ; \mathbb{Z})$ in terms of the Seifert invariants of M.

Theorem 1. Let $M=M(g ; S)$ be an orientable 3-manifold which is Seifert fibred over an orientable base orbifold $B=T_{g}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$.

Then $H_{1}(M ; \mathbb{Z}) \cong Z^{2 g} \oplus\left(\bigoplus_{i>0}\left(Z / \lambda_{i} Z\right)\right)$, where λ_{i} is determined by $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ and is nonzero, for all $i>0$, while $|\varepsilon| \Pi=\lambda_{0} \Pi_{j \geq 1} \lambda_{j}$.
Proof. The fundamental group $\pi_{1}(M)$ has a presentation

$$
\left.\left\langle a_{1}, \ldots b_{g}, q_{1}, \ldots, q_{r}, h\right|\left(\Pi\left[a_{i}, b_{i}\right]\right)\left(\Pi q_{j}\right)=1, q_{i}^{\alpha_{i}} h^{\beta_{i}}=1, h \text { central }\right\rangle
$$

Hence $H_{1}(M ; \mathbb{Z}) \cong Z^{2 g} \oplus \operatorname{Cok}(A)$, where A is the matrix

$$
A=\left(\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
\beta_{1} & \alpha_{1} & \ldots & 0 \\
\vdots & 0 & \ddots & \vdots \\
\beta_{r} & 0 & \ldots & \alpha_{r}
\end{array}\right)
$$

Let $E_{i}(A)$ be the ideal generated by the $(r+1-i) \times(r+1-i)$ subdeterminants of A, and let Δ_{i} be the positive generator of $E_{i}(A)$. Then $\Delta_{0}=|\operatorname{det}(A)|=|\varepsilon| \Pi$, while as the elements of each row are relatively prime Δ_{i} is the highest common factor of the ($r-i-1$)-fold products of distinct $\alpha_{j} \mathrm{~s}$, if $0<i<r$, and $\Delta_{i}=1$ if $i \geq \max \{r-1,1\}$. (In particular, if $r>2$ then $\Delta_{r-2}=\operatorname{hcf}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$). Thus Δ_{i} depends only on $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ and is nonzero, for all $i>0$. If we set $\lambda_{i}=$ $\Delta_{i} / \Delta_{i+1}$, for $i \geq 0$, then $\operatorname{Cok}(A) \cong \bigoplus_{i \geq 0}\left(Z / \lambda_{i} Z\right)$, by the Elementary Divisor Theorem. In particular, $|\varepsilon| \Pi=\lambda_{0} \Pi_{j \geq 1} \lambda_{j}$.

Note that $T(M) \cong T(M(0 ; S))$ and $h \in T(M)$ if and only if $\varepsilon \neq 0$.
Corollary. If $\Delta_{1}=1$ then $T(M)$ is cyclic, and $T(M)=0$ if and only if $\varepsilon=0$ or $\pm 1 / \Pi$. If $\Delta_{1}>1$ then $T(M) \neq 0$. Given $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ such that $\Delta_{1}>1$, there is at most one value of $|\varepsilon|$ for which the group $T(M)$ is a direct double.

Proof. As $\Delta_{1}=\Pi_{i \geq 1} \lambda_{i}$ divides the order of $T(M)$, this group is nonzero unless $\Delta_{1}=1$. If $\varepsilon=0$ then $T(M) \cong \bigoplus_{i \geq 1}\left(Z / \lambda_{i} Z\right)$, and so is a direct double if and only if $\lambda_{2 i-1}=\lambda_{2 i}$ for all $i>0$. If $\varepsilon \neq 0$ then $T(M) \cong$ $\bigoplus_{i \geq 0}\left(Z / \lambda_{i} Z\right)$, and so is a direct double if and only if $\lambda_{2 i}=\lambda_{2 i+1}$ for all $i \geq 0$. In particular, $\varepsilon=\left(\Delta_{1}\right)^{2} / \Pi \Delta_{2}$. Clearly these two systems of equations can both be satisfied only if $\lambda_{i}=1$ for all $i>0$ and $\lambda_{0}=0$ or 1 , in which case $T(M)=0$.

The elementary divisors λ_{i} may be determined more explicitly by localization. If p is a prime, an integer α has p-adic valuation v if $\alpha=p^{v} q$, where p does not divide q_{i}.

Corollary. Let p be a prime and let $v_{i} \geq 0$ be the p-adic valuation of α_{i}. Assume that the indexing is such that $v_{i} \geq v_{i+1}$ for all i. If $\varepsilon=0$ and $T(M)$ is a direct double then $v_{2 j-1}=v_{2 j}$ for all $j \geq 1$.

Proof. The condition $v_{1}=v_{2}$ follows immediately from the fact that $p^{v_{2}} \varepsilon$ is an integer. The p-adic valuation of λ_{j} is v_{j+2}, for all $j \geq 1$, and so $v_{2 j-1}=v_{2 j}$ for all $j \geq 2$, if $\bigoplus_{i \geq 1}\left(Z / \lambda_{i} Z\right)$ is a direct double.

If $S=\{(2,1),(3,-1),(6,-1)\}$ or $S=\{(2,1),(2,1),(2,-1),(3,-1)$, $(6,-1)\}$ then $T(M(0 ; S))=0$ or $(Z / 2 Z)^{2}$, respectively, and so the hypotheses do not imply that r must be even. However in Theorem 2 we shall show that this must be so if $\varepsilon=0$ and $M(0 ; S)$ embeds in \mathbb{R}^{4}.

Although the β_{i} s only contribute to the structure of $T(M)$ via ε, they play a more substantial role in the linking pairing. (See $\S 4$ below).

It follows immediately that $M(g ; S)$ is an homology 3 -sphere if and only if $g=0$ and $\varepsilon \Pi= \pm 1$. In particular, $\operatorname{hcf}\left\{\alpha_{i}, \alpha_{j}\right\}=1$ for all $i<j \leq r$. If $M(0 ; S)$ is a \mathbb{Z}-homology sphere it embeds as a TOP locally flat submanifold of \mathbb{R}^{4} [2]. Hence $M(g ; S)$ embeds also.

Similarly, $M(g ; S)$ is an homology $S^{2} \times S^{1}$ if and only if $g=0$, $\varepsilon=0$ and $\operatorname{hcf}\left\{\alpha_{i}, \alpha_{j}, \alpha_{k}\right\}=1$ for all $i<j<k \leq r$. If M is an homology $S^{2} \times S^{1}$ there is an (essentially unique) degree-1 map f : $M \rightarrow S^{2} \times S^{1}$. If, moreover, f induces an isomorphism on homology with local coefficients then M embeds in \mathbb{R}^{4} [4]. However, this is not a necessary condition for embedding, and it shall follow from Theorem 2 below that if $r \geq 3$ no such map with domain $M(0 ; S)$ is ever a $\mathbb{Z}[Z]$ homology equivalence. It is not known in general which (Seifert fibred) homology $S^{2} \times S^{1}$ s embed.

When M is Seifert fibred over a nonorientable base orbifold $T(M)$ is again largely determined by the set $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$, but ε is not constrained at all by the condition that $T(M)$ be a direct double [1].

3. Bilinear pairings

A linking pairing on a finite abelian group N is a symmetric bilinear function $\ell: N \times N \rightarrow \mathbb{Q} / \mathbb{Z}$ which is nonsingular in the sense that $\tilde{\ell}: n \mapsto \ell(-, n)$ defines an isomorphism from N to $\operatorname{Hom}(N, \mathbb{Q} / \mathbb{Z})$. If L is a subgroup of N then $\tilde{\ell}$ induces an isomorphism $L^{\perp}=\{t \in$ $\left.N \mid \ell_{M}(t, l)=0 \forall l \in L\right\} \cong N / L$. Such a pairing splits uniquely as the orthogonal sum (over primes p) of its restrictions to the p-primary subgroups of N. It is metabolic if there is a subgroup P with $P=P^{\perp}$, split [7] if also P is a direct summand and hyperbolic if N is the direct sum of two such subgroups. If ℓ is split N is a direct double.

If M is a closed oriented 3-manifold Poincaré duality determines a linking pairing $\ell_{M}: T(M) \times T(M) \rightarrow \mathbb{Q} / \mathbb{Z}$, which may be described as follows. Let w, z be disjoint 1 -cycles representing elements of $T(M)$ and suppose that $m z=\partial C$ for some 2-chain C which is transverse to w and some nonzero $m \in \mathbb{Z}$. Then $\ell_{M}(w, z)=(w . C) / m \in \mathbb{Q} / \mathbb{Z}$. It
follows easily from the Mayer-Vietoris theorem and duality that if M embeds in \mathbb{R}^{4} then ℓ_{M} is hyperbolic. (If X and Y are the closures of the components of $\mathbb{R}^{4}-M$ and T_{X} and T_{Y} are the kernels of the induced homomorphisms from $T(M)$ to $H_{1}(X ; \mathbb{Z})$ and $H_{1}(Y ; \mathbb{Z})$ (respectively) then $T(M) \cong T_{X} \oplus T_{Y}$ and the restriction of ℓ_{M} to each of these summands is trivial [7]).

There are analogous pairings on covering spaces of M. In particular, if $\phi: \pi_{1}(M) \rightarrow Z$ is an epimorphism with associated covering space M_{ϕ} the homology modules $H_{*}\left(M_{\phi} ; R\right)$ are $R \Lambda$ modules, where $\Lambda=\mathbb{Z}[Z]=\mathbb{Z}\left[t, t^{-1}\right]$ and $R \Lambda=R \otimes \Lambda=R\left[t, t^{-1}\right]$, for any coefficient ring R. There is a Blanchfield pairing on the $\mathbb{Q} \Lambda$-torsion submodule of $H_{1}\left(M_{\phi} ; \mathbb{Q}\right)$ with values in $\mathbb{Q}(t) / \mathbb{Q} \Lambda$ which is nonsingular and hermitean with respect to the involution sending t to t^{-1}. Such a pairing is neutral (or null-cobordant [6]) if the underlying $\mathbb{Q} \Lambda$-torsion module has a submodule which is its own annihilator, and is hyperbolic if the underlying module is the direct sum of two such self-annihilating submodules. If M embeds in \mathbb{R}^{4} then $H^{1}(M ; \mathbb{Z}) \cong H^{1}(X ; \mathbb{Z}) \oplus H^{1}(Y ; \mathbb{Z})$. Thus if also $\beta_{1}(M)=1$ the epimorphism ϕ is unique up to sign, and extends to an epimorphism on one of the complementary regions. The Blanchfield pairing of M is then neutral, by Theorem 4.2 of [6]. In particular, the characteristic polynomial of the automorphism t of the torsion submodule of $H_{1}\left(M_{\phi} ; \mathbb{Q}\right)$ is a product $g(t) g\left(t^{-1}\right)$ for some $g \in \mathbb{Q} \Lambda-\{0\}$.

4. Pairings on Seifert manifolds

Assume now that $M=M(g ; S)$. Then $T(M)$ is a subgroup of the group generated by the images of h and $q_{1}, \ldots q_{r}$. (We shall use the same symbols to denote homology classes and representative cycles.) The Seifert structure gives natural 2-chains relating these 1-cycles. For let N_{i} be a torus neighborhood of the $i^{t h}$ singular fibre, with meridianal disc D_{i}, and let B_{o} be a section of the restriction of the Seifert fibration to $M-\cup_{i \geq 1} N_{i}$. Then $\partial D_{i}=\alpha_{i} q_{i}+\beta_{i} h$ and $\partial B_{o}=\Sigma q_{i}$. Moreover $h . B_{o}=1, h . D_{i}=0=q_{j} . B_{o}, q_{i} . D_{i}=\beta_{i}$ and $q_{i} . D_{j}=0$ if $i \neq j$, for all $1 \leq i, j, \leq r$. As these intersection numbers are independent of g, it is clear that $\ell_{M} \cong \ell_{M(0 ; S)}$.

If $g=0$ and $\varepsilon=0$ there is an essentially unique epimorphism ϕ : $\pi \rightarrow Z$, and $h \notin T(M)$. The manifold M is the mapping torus $F \times_{\theta} S^{1}$ of a periodic self homeomorphism θ of a closed orientable surface F, and ϕ is the homorphism induced by the bundle projection. Then $M_{\phi} \cong F \times R$, and so $H_{1}\left(M_{\phi} ; \mathbb{Q}\right) \cong H_{1}(F ; \mathbb{Q})$ as a vector space. Hence it is a torsion $\mathbb{Q} \Lambda$-module. The Blanchfield pairing is determined by the intersection form I_{F} on $H_{1}(F ; \mathbb{Q})$ and the isometry $\theta_{*}=H_{1}(\theta)$
[9]. In particular, it is neutral if and only if $H_{1}(F ; \mathbb{Q})=A \oplus B$ where $\beta_{1}(F)=2 \operatorname{dim}_{\mathbb{Q}} A, \theta_{*}(A)=A$ and $I_{F}(A, A)=0$.

For small values of r we can compute ℓ_{M} explicitly. If $r=1$ and $\varepsilon=0$ then $T(M)=0$, while if $\varepsilon \neq 0$ then $T(M)=(Z / \varepsilon \alpha Z) h$ and $\ell_{M}(h, h)=-\alpha / \beta$. If $r=2$ let x, y be such that $x \alpha_{1}-y \beta_{1}=1$, and let $k=y q_{1}+x h$ and $k^{\prime}=\alpha_{1} q_{1}+\beta_{1} h=\partial D_{1}$. Then $q_{1}=-\beta_{1} k+x k^{\prime}$ and $h=\alpha_{1} k-y k^{\prime}$, and $\varepsilon \alpha_{1} \alpha_{2} k=\partial\left(\alpha_{2} B_{o}-\left(x \alpha_{2}+y \beta_{2}\right) D_{1}-D_{2}\right)$. If $\varepsilon=0$ then $T(M)=0$, while if $\varepsilon \neq 0$ then $T(M)=\left(Z / \varepsilon \alpha_{1} \alpha_{2} Z\right) k$ and $\ell_{M}(k, k)=\left(x \alpha_{2}+y \beta_{2}\right) / \varepsilon \alpha_{1} \alpha_{2}$.

In particular, if $r \leq 2$ and $T(M)$ is a direct double $\varepsilon \Pi=0$ or ± 1, and so $M(0 ; S) \cong S^{3}$ or $S^{2} \times S^{1}$. (This also follows immediately from Theorem 1.) More generally, if $r \leq 2$ then $M=M(g ; S)$ embeds in \mathbb{R}^{4} if and only if $T(M)=0$, in which case M is a circle bundle over T_{g} with Euler invariant 0 or ± 1.

$$
\text { 5. } \mathbb{H}^{2} \times \mathbb{E}^{1} \text {-MANIFOLDS WITH } g=0 \text { AND } r \text { ODD }
$$

If $S=\left\{\left(\alpha_{i}, \beta_{i}\right),\left(\alpha_{i},-\beta_{i}\right) \mid 1 \leq i \leq t\right\}$ (so that the Seifert data occurs in opposite pairs) a fibre sum construction shows that $M(0 ; S)$ embeds smoothly in \mathbb{R}^{4}, by Lemma 3.1 of [1]. In this case $\varepsilon=0$ and $r=2 t$ is even. In this section we shall show that when $\varepsilon=0$ and r is odd $M(0: S)$ does not embed. It remains an open question whether "skew-symmetry" of the Seifert data is also necessary for embedding when $\varepsilon=0$. Our argument uses the fact that if $\varepsilon=0$ then $M(0 ; S)$ has an essentially unique infinite cyclic cover, and does not appear to extend easily to the case $g>0$.

If $r \geq 3$ and $\varepsilon=0$ then $M(g ; S)$ is an $\mathbb{H}^{2} \times \mathbb{E}^{1}$-manifold, with three exceptions: $M(0 ;(2,1),(4,-1),(4,-1)), M(0 ;(2,1),(3,-1),(6,-1))$ and $M(0 ;(2,1),(2,1),(2,-1),(2,-1))$ are flat manifolds.

Theorem 2. Let $M=M(0 ; S)$, where $S=\left\{\left(\alpha_{i}, \beta_{i}\right) \mid 1 \leq i \leq r\right\}$ is such that $\varepsilon=-\sum_{i=1}^{i=r}\left(\beta_{i} / \alpha_{i}\right)=0$. If M embeds in \mathbb{R}^{4} then r is even.

Proof. We may assume that $r>2$, and hence that $\alpha_{i}>1$ for all $i \leq r$. The group $\pi=\pi_{1}(M)$ has a presentation

$$
\left.\left\langle q_{1}, \ldots, q_{r}, h\right| q_{1} \ldots q_{r}=1, q_{i}^{\alpha_{i}} h^{\beta_{i}}=1, h \text { central }\right\rangle,
$$

and $H_{1}(M ; \mathbb{Z}) / T(M) \cong Z$, by Theorem 1 , since $g=0$ and $\varepsilon=0$. Hence there is an essentially unique epimorphism $\phi: \pi \rightarrow Z$. Let $n_{i}=\phi\left(q_{i}\right)$, for $i \leq r$, and $\mu=\phi(h)$. Choose $t \in \pi$ such that $\phi(t)=1$. Then $t=w h^{e}$ for some exponent e and some word w in the $q_{i} \mathrm{~s}$. After modifying our choice of t, if necessary, we may assume that $w=\Pi_{i<r} q_{i}{ }^{f_{i}}$ for some exponents f_{i}. Let $r_{i}=q_{i} t^{-n_{i}}$, for $i \leq r$ and $s=h t^{-\mu}$. Then
$\phi\left(r_{i}\right)=\phi(s)=0$ and π has an equivalent presentation

$$
\begin{gathered}
\left\langle r_{1}, \ldots, r_{r}, s, t\right| \Pi_{i \leq r} r_{i} t^{n_{i}}=1, s^{e}\left(\Pi_{i<r}\left(r_{i} t^{n_{i}}\right)^{f_{i}}\right) t^{e \mu-1}=1, \\
\left.\left(r_{i} t^{n_{i}}\right)^{\alpha_{i}}\left(s t^{\mu}\right)^{\beta_{i}}=1, s t^{\mu} r_{i}=r_{i} s t^{\mu}, t s=s t\right\rangle .
\end{gathered}
$$

On applying the homomorphism ϕ we see that
(1) $\Sigma_{i \leq r} n_{i}=0$;
(2) $e \mu+\Sigma_{i<r} n_{i} f_{i}=1$;
(3) $n_{i} \alpha_{i}+\mu \beta_{i}=0$ for $i \leq r$.

Hence $\operatorname{hcf}\left(n_{i} f_{i}, \mu\right)<\mu$ for some $i<r, \operatorname{hcf}\left(n_{i}, \mu\right)<\mu$ for all $i \leq r$ and $\mu=\operatorname{lcm}\left\{\alpha_{1} \ldots, \alpha_{r}\right\}$. Let $m_{i}=\mu / \alpha_{i}$, for $i \leq r$. We see also that $T(M)$ is generated by the images of the r_{i} and s, and $\Sigma r_{i}=0, \alpha_{i} r_{i}+\beta_{i} s=0$ and es $+\Sigma f_{i} r_{i}=0$. (We may choose e and the f_{i} subject only to the condition (2). In particular, we may assume that $0 \leq f_{i}<\alpha_{i}$ for $i<r$. The f_{i} cannot all be 0 , since $\mu>1$. On the other hand, if $\mu=\alpha_{1}$, say, then we may assume $f_{i}=0$ for $i>1$.)

We may use the free differential calculus to find a $(2 r+3) \times(r+1)$ presentation matrix for the Λ-module $H_{1}\left(M_{\phi} ; \mathbb{Z}\right)$. Let $\nu_{0}(y)=0$ and $\nu_{k}(y)=\left(y^{k}-1\right) /(y-1)$ for $k>0$. Then $H_{1}\left(M_{\phi} ; \mathbb{Z}\right)=\operatorname{Cok}(P)$, where

$$
P=\left(\begin{array}{ccccc}
1 & t^{n_{1}} & \ldots & t^{\Sigma_{k<r} n_{k}} & 0 \\
\nu_{f_{1}}\left(t^{n_{1}}\right) & t^{n_{1} f_{1}} \nu_{f_{2}}\left(t^{n_{2}}\right) & \ldots & 0 & e \\
\nu_{\alpha_{1}}\left(t^{n_{1}}\right) & 0 & \ldots & 0 & t^{n_{1} \alpha_{1}} \nu_{\beta_{1}}\left(t^{\mu}\right) \\
\vdots & \ddots & 0 & \vdots & \vdots \\
0 & 0 & \ldots & \nu_{\alpha_{r}}\left(t^{n_{r}}\right) & t^{n_{r} \alpha_{r}} \nu_{\beta_{r}}\left(t^{\mu}\right) \\
t^{\mu}-1 & 0 & \ldots & 0 & 0 \\
\vdots & \ddots & 0 & \vdots & \vdots \\
0 & 0 & \ldots & t^{\mu}-1 & 0 \\
0 & 0 & \ldots & 0 & t-1
\end{array}\right) .
$$

(Here the columns correspond to the generators r_{1}, \ldots, r_{r}, s and the rows to the relations. This can be simplified by row operations, corresponding to Tietze moves on the presentation).

This matrix clearly has maximal rank, and so $H_{1}\left(M_{\phi} ; \mathbb{Z}\right)$ is a torsion Λ-module. We may tensor over Λ with $\mathbb{Q}\left[\zeta_{\mu}\right]=\mathbb{Q}\left[t, t^{-1}\right] /\left(\phi_{\mu}(t)\right)$, the field of $\mu^{\text {th }}$ roots of unity, via the homomorphism sending $t \in \Lambda$ to the primitive root ζ_{μ}. The powers $\zeta_{\mu}^{n_{i}}$ are $\alpha_{i}^{\text {th }}$ roots of unity, and are not 1 , since $\operatorname{hcf}\left(n_{i}, \mu\right)=m_{i}<\mu$. Therefore $\nu_{\alpha_{i}}\left(\zeta_{\mu}^{n_{i}}\right)=0$ for all i. On the other hand, if $\operatorname{hcf}\left(n_{i} f_{i}, \mu\right)<\mu$ then $\nu_{f_{i}}\left(\zeta_{\mu}^{n_{i}}\right) \neq 0$. The resulting matrix has rank 3 , and so $\mathbb{Q}\left(\zeta_{\mu}\right) \otimes_{\Lambda} H_{1}\left(M_{\phi} ; \mathbb{Q}\right)$ has dimension $r-2$ over the field $\mathbb{Q}\left(\zeta_{\mu}\right)$. Thus if r is odd the characteristic polynomial of the automorphism t of $H_{1}\left(M_{\phi} ; \mathbb{Q}\right)$ is not a product $g(t) g\left(t^{-1}\right)$ for any $g \in \mathbb{Q} \Lambda-\{0\}$, and so no such manifold can embed in \mathbb{R}^{4}.

If M, ϕ, h, s, t, μ are as in the theorem then $\phi^{-1}(\mu Z) \cong \operatorname{Ker}(\phi) \times Z$, since $h=s t^{\mu}$ is central. Therefore the μ-fold covering space associated to the subgroup $\phi^{-1}(\mu Z)$ is a product $F \times S^{1}$, where F is a closed surface, and $M_{\phi} \cong F \times \mathbb{R}$. Moreover, $M \cong F \times_{\theta} S^{1}$, where θ has order μ, and so the base orbifold $B=S^{2}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ is the quotient of F by an effective action of $Z / \mu Z$. Hence $\chi(F)=\mu \chi^{o r b}(B)=(2-r) \mu+\Sigma_{i \leq r} m_{i}$.

In particular, $H_{1}\left(M_{\phi} ; \mathbb{Z}\right)$ is never 0 , if $r \geq 3$. (This is also clear from the proof of Theorem 2.) Hence there are no $\mathbb{Z}[Z]$-homology equivalences $f: M(0 ; S) \rightarrow S^{2} \times S^{1}$.

$$
\text { 6. } \mathbb{H}^{2} \times \mathbb{E}^{1} \text {-MANIFOLDS WITH } g=0 \text { AND } r=4
$$

If $M=M(0 ; S)$ with r even and $\varepsilon=0$, and M embeds in \mathbb{R}^{4}, must the Seifert invariants occur in complementary pairs? In this section we shall examine the simplest nontrivial case, when $r=4$. Let $\delta=\Delta_{2}=$ $\operatorname{hcf}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ and let $\alpha_{i}^{\prime}=\alpha_{i} / \delta$, for $i \leq r$. Since ε is an integer it follows that each α_{i}^{\prime} divides the product of the other three. We assume henceforth that $T(M)$ is a direct double. Then $\lambda_{1}=\lambda_{2}=\delta$, since $\Delta_{i}=1$ for $i>2$. Hence $T(M) \cong(Z / \delta)^{2}$ and $\Delta_{1}=\delta^{2}$. It follows that no three of the α_{i}^{\prime} s have a common factor >1. Hence $\alpha_{i}=\delta \Pi_{j \neq i} a_{i j}$, where $a_{i j}=a_{j i}=\operatorname{hcf}\left(\alpha_{i}^{\prime}, \alpha_{j}^{\prime}\right)$, and the $a_{i j}$ are otherwise pairwise relatively prime.

The second corollary of Theorem 1 implies that if $\alpha_{1}=\alpha_{2}$ then $\alpha_{3}=\alpha_{4}$. If moreover $\beta_{1}=-\beta_{2}$ then $\beta_{3}=-\beta_{4}$, since $\varepsilon=0$. This is the case if $\alpha_{1}=\alpha_{2}$ and $\delta=1$ (i.e., $\operatorname{hcf}\left(\alpha_{1}, \alpha_{3}\right)=1$) or if $\alpha_{1}=\alpha_{2}=2$ or if the $\alpha_{i} \mathrm{~s}$ are all 3 or 6 . To go further we need to consider invariants beyond the group $T(M)$.

The easiest case to consider first is when $\alpha_{i}=\delta$ for all i. Here we may assume that $e \delta-f_{1} \beta_{1}=1$ and $f_{2}=f_{3}=0$. Then

$$
r_{1}=q_{1}\left(q_{1}^{f_{1}} h^{e}\right)^{\beta_{1}}=q_{1}^{1+f_{1} \beta_{1}} h^{e \beta_{1}}=\left(q_{1}^{\delta} h^{\beta_{1}}\right)^{e}=1 .
$$

It follows that $s^{e}=1$ and $s^{\beta_{1}}=1$, and so $s=1$. Hence the presentation for $\pi_{1}(M)$ used in Theorem 2 simplifies to

$$
\begin{gathered}
\left\langle r_{2}, r_{3}, t\right| t^{\delta} r_{2}=r_{2} t^{\delta}, t^{\delta} r_{3}=r_{3} t^{\delta}, t^{\beta_{2} \delta}=\left(t^{\beta_{2}} r_{2}^{-1}\right)^{\delta}, t^{\beta_{3} \delta}=\left(t^{\beta_{3}} r_{3}^{-1}\right)^{\delta}, \\
\left.t^{\beta_{4} \delta}=\left(t^{-\beta_{1}} r_{2} t^{-\beta_{2}} r_{3} t^{-\beta_{3}}\right)^{\delta}\right\rangle .
\end{gathered}
$$

The torsion group $T(M)$ is generated by the images of r_{2} and r_{3}. If D_{i} is the meridianal disc for a regular neighbourhood of the $i^{\text {th }}$ exceptional fibre (as in $\S 4$) then $\delta r_{i}=\partial\left(D_{i}+\beta_{i} f_{1} D_{1}\right)$ for $i=2,3$. Hence the matrix of ℓ_{M} with respect to these generators is

$$
\delta^{-1}\left(\begin{array}{cc}
\beta_{2}-\beta_{2}^{2} f_{1} & -\beta_{2} \beta_{3} f_{1} \\
-\beta_{2} \beta_{3} f_{1} & \beta_{3}-\beta_{3}^{2} f_{1}
\end{array}\right) .
$$

The first case not already settled has $S=\{(4,1),(4,1),(4,1),(4,-3)\}$ and $\delta=4$. In this case ℓ_{M} has matrix $\frac{1}{4}\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$, and is not hyperbolic.

If δ is an odd prime ℓ_{M} is hyperbolic if and only if the "discriminant"

$$
(\delta)^{2}\left(\ell_{M}\left(r_{2}, r_{3}\right)^{2}-\ell_{M}\left(r_{2}, r_{2}\right) \ell_{M}\left(r_{3}, r_{3}\right)\right)=\beta_{2} \beta_{3}\left(\left(\beta_{2}+\beta_{3}\right) f_{1}-1\right)
$$

is a square $\bmod (\delta)$. Since $e \delta-f_{1} \beta_{1}=1$ this reduces $\bmod (\delta)$ to $f_{1}^{2} \beta_{1} \beta_{2} \beta_{3} \beta_{4}$, and so $\beta_{1} \beta_{2} \beta_{3} \beta_{4}$ must be a square $\bmod (\delta)$. Although this a rather weak criterion, it is enough to confirm that if $\delta \leq 6, \alpha_{i}=\delta$ for all i and ℓ_{M} is hyperbolic then the Seifert data is skew-symmetric, and so $M(0 ; S)$ embeds smoothly.

The next invariant to consider is the homology of the infinite cyclic cover M_{ϕ}, considered as a Λ-module. The above presentation gives a 5×2 presentation matrix

$$
\left(\begin{array}{cc}
t^{\delta}-1 & 0 \\
0 & t^{\delta}-1 \\
\nu_{\delta}\left(t^{\beta_{2}}\right) & 0 \\
0 & \nu_{\delta}\left(t^{\beta_{3}}\right) \\
\nu_{\delta}\left(t^{\beta_{4}}\right) & \nu_{\delta}\left(t^{\beta_{4}}\right)
\end{array}\right) .
$$

It is easy to see that if $\operatorname{hcf}(\beta, \delta)=1$ then $\nu_{\delta}\left(X^{\beta}\right)-\nu_{\delta}(X)$ is divisible by $X^{\delta}-1$, while $X^{\delta}-1=(X-1) \nu_{\delta}(X)$. Thus we may further simplify this matrix, and we find that $H_{1}\left(M_{\phi} ; \mathbb{Z}\right) \cong\left(\Lambda /\left(\nu_{\delta}(t)\right)\right)^{2}$. In particular, $\chi\left(M_{\phi}\right)=4-2 \delta=4-2 \mu$, as observed after Theorem 2 .

How does the Blanchfield pairing depend on the β_{i} ?

7. $\widetilde{\text { SLL}}$-MANIFOLDS

The situation is less clear when $\varepsilon \neq 0$. The manifold $M=M(0 ; S)$ is then a \mathbb{Q}-homology 3 -sphere, and is a $\widetilde{\mathbb{S L}}$-manifold unless $\Sigma \frac{1}{\alpha_{i}} \geq r-2$, in which case $r \leq 4$. The group $T(M)=H_{1}(M ; \mathbb{Z})$ is generated by the images of $q_{1}, \ldots q_{r}$ and h. If $\varepsilon \Pi=1$ then M is an homology 3 -sphere and so $M(g ; S)$ embeds in \mathbb{R}^{4} for all $g \geq 0$. It is easy to find examples with $\varepsilon \Pi=1$ for any $r \geq 1$ and $g \geq 0$. Thus there is no reason to expect a parity constraint on r for embedding such manifolds. However, the question of which such homology spheres embed smoothly is still open. (For instance, the Poincaré homology 3 -sphere $S^{3} / I^{*}=$ $M(0 ;(2,1),(3,-1),(5,-1))$ does not. See Problem 4.2 of $[8])$.

Let $\delta=\operatorname{hcf}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ and let $\alpha_{i}^{\prime}=\alpha_{i} / \delta$, for $i \leq r$. Then

$$
\varepsilon \Pi \alpha_{i} q_{i}=\partial\left(\varepsilon \Pi D_{i}+\beta_{i}\left(\Sigma\left(\Pi / \alpha_{j}\right) D_{j}\right)-\beta_{i} \Pi B_{o}\right)
$$

and

$$
\varepsilon \Pi h=\partial\left(\Pi B_{o}-\Sigma\left(\Pi / \alpha_{i}\right) D_{i}\right),
$$

where D_{i} and B_{o} are the 2-cycles defined in $\S 4$. Hence

$$
\begin{gathered}
\ell_{M}\left(q_{i}, q_{i}\right)=\beta_{i}\left(\alpha_{i} \varepsilon \Pi+\beta_{i} \Pi\right) / \varepsilon \Pi \alpha_{i}^{2}, \\
\ell_{M}\left(q_{i}, q_{j}\right)=\beta_{i} \beta_{j} \Pi / \varepsilon \Pi \alpha_{i} \alpha_{j}, \quad \text { if } i \neq j, \\
\ell_{M}\left(h, q_{i}\right)=-\beta_{i} \Pi / \varepsilon \Pi \alpha_{i} \quad \text { and } \quad \ell_{M}(h, h)=\Pi / \varepsilon \Pi .
\end{gathered}
$$

Since ℓ_{M} is nonsingular $h=0$ if and only if $\varepsilon \Pi$ divides Π and each $\beta_{i} \Pi / \alpha_{i}$, i.e., $\varepsilon \Pi=\operatorname{hcf}\left(\Pi / \alpha_{1}, \ldots, \Pi / \alpha_{r}\right)$. In this case $T(M)$ is generated by any $r-1$ elements of $\left\{q_{1}, \ldots q_{r}\right\}$. In particular, $T(M) \cong(Z / \delta Z)^{r-1}$ if and only if $\varepsilon \Pi=\delta^{r-1}$. It may not always be so easy to find a minimal generating set for $T(M)$.

The simplest nontrivial case is when $r=3$. We then have $\Delta_{0}=|\varepsilon| \Pi$, $\Delta_{1}=\delta=\operatorname{hcf}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ and $\Delta_{j}=1$ for $j>1$. If $T(M)$ is a direct double then $T(M) \cong(Z / \delta Z)^{2}$ and $\varepsilon \Pi=\eta \delta^{2}$, where $\eta= \pm 1$. Therefore $\alpha_{1}^{\prime} \alpha_{2}^{\prime} \beta_{3}+\alpha_{1}^{\prime} \beta_{2} \alpha_{3}^{\prime}+\beta_{1} \alpha_{2}^{\prime} \alpha_{3}^{\prime}=-\eta$, and so the α_{i}^{\prime} s must be pairwise coprime. (That is, δ is also the highest common factor of any two of the $\left.\alpha_{i}^{\prime} \mathrm{s}\right)$. The discriminant of ℓ_{M} is $\eta \beta_{1} \beta_{2} \beta_{3}$. Thus if δ is an odd prime ℓ_{M} is hyperbolic if and only if $\varepsilon \Pi=\eta \delta^{2}$ and $\eta \beta_{1} \beta_{2} \beta_{3}$ is a square \bmod (δ).

If $\alpha_{i}=\delta$ for all i then $\beta_{1}+\beta_{2}+\beta_{3}= \pm 1$. When $\delta \leq 4$ or $\delta=6$ we have $\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}=\{1,-1\}$, and there are no further restrictions on embeddability. For $M(0 ;(\delta, 1),(\delta, 1),(\delta,-1))$ embeds smoothly in \mathbb{R}^{4}, since it may be obtained by 0 -framed surgery on the $(2,2 \delta)$-torus link. (See the Appendix to [1].) The cases $\delta=2$ and 3 give the quaternionic space $S^{3} / Q(8)$ and a $\mathbb{N} i l^{3}$-manifold, respectively. (If $\delta>3$ then M is an $\widetilde{\mathbb{S L}}$-manifold.) The one case with $\delta \leq 6$ not covered by this construction and not excluded by the discriminant condition is when $M=M(0 ;(5,1),(5,2),(5,-2))$. (Can Theorem 2.1 of [3] be applied here to show that M does not embed? On the other hand this manifold has a fairly simple Dehn surgery model, as in Fig. A2 of [1]. Is there a corresponding simple 0 -framed surgery model?)

If $r \geq 4$ then $M(g ; S)$ is an $\widetilde{\mathbb{S L}}$-manifold, unless $g=0, r=4$ and $\alpha_{i}=2$ for all i, in which case M is a $\mathbb{N} i l^{3}$-manifold and does not embed. (The only 3 -manifolds not already mentioned which are Seifert fibred over orientable bases, have virtually solvable fundamental group and embed in \mathbb{R}^{4} are the flat manifolds $M(0 ;(2,1),(2,1),(2,-1),(2,-1))$ and $M(1 ;(1,0))=S^{1} \times S^{1} \times S^{1}$, and the $N i l^{3}$-coset space $M(1 ;(1,1))$, which each embed smoothly [1].)
[This is a revision of the University of Sydney Research Report 98-10, of March 1998.]

References

[1] Crisp, J.S. and Hillman, J.A. Embedding Seifert fibred and $S o l^{3}$-manifolds in 4-space, Proc. London Math. Soc. 76 (1998), 685-710.
[2] Freedman, M.H. The topology of four-dimensional manifolds, J. Diff. Geom. 17 (1982), 357-453.
[3] Gilmer, P. and Livingston, C. On embedding 3-manifolds in 4-space, Topology 22 (1983), 241-252.
[4] Hillman, J.A. Embedding homology equivalent 3-manifolds in 4-space, Math. Z. 223 (1996), 473-481.
[5] Hantzsche, W. Einlagerung von Mannigfaltigkeiten in euklidische Räume, Math. Z. 43 (1937), 38-58.
[6] Kawauchi, A. On quadratic forms of 3-manifolds, Invent. Math. 43 (1977), 177-198.
[7] Kawauchi, A. and Kojima, S. Algebraic classification of linking pairings on 3-manifolds, Math. Ann. 253 (1980), 29-42.
[8] Kirby, R.C. Problems in low-dimensional topology, in Geometric Topology (ed. W.H.Kazez), Part 2 (1997), 35-473.
[9] Trotter, H.F. On S-equivalence of Seifert matrices, Invent. Math. 20 (1973), 173-207.

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

E-mail address: jonh@maths.usyd.edu.au

[^0]: 1991 Mathematics Subject Classification. 57N10; 57N13.
 Key words and phrases. embedding. Euler invariant. linking pairing. Seifert bundle.

