On the idempotents of Hecke algebras

A.P. Isaev ${ }^{a}$, A.I. Molev b and A.F. Os ${ }^{\prime}{ }^{\text {kin }}{ }^{a}$
${ }^{a}$ Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
E-mail: isaevap@theor.jinr.ru, oskinandrej@gmail.com
${ }^{b}$ School of Mathematics and Statistics
University of Sydney, NSW 2006, Australia
E-mail: alexm@maths.usyd.edu.au

Abstract

We give a new construction of primitive idempotents of the Hecke algebras associated with the symmetric groups. The idempotents are found as evaluated products of certain rational functions thus providing a new version of the fusion procedure for the Hecke algebras. We show that the normalization factors which occur in the procedure are related to the Ocneanu-Markov trace of the idempotents.

1 Introduction

It was observed by Jucys [8] that the primitive idempotents of the symmetric group \mathfrak{S}_{n} can be obtained by taking certain limit values of the rational function

$$
\begin{equation*}
\Phi\left(u_{1}, \ldots, u_{n}\right)=\prod_{1 \leqslant i<j \leqslant n}\left(1-\frac{(i j)}{u_{i}-u_{j}}\right) \tag{1}
\end{equation*}
$$

where u_{1}, \ldots, u_{n} are complex variables and the product is calculated in the group algebra $\mathbb{C}\left[\mathfrak{S}_{n}\right]$ in the lexicographical order on the pairs (i, j). A similar construction, now commonly referred to as the fusion procedure, was developed by Cherednik [1], while complete proofs were given by Nazarov [13]. A simple version of the fusion procedure establishing its equivalence with the Jucys-Murphy construction was recently found by one of us in [10]; see also [11, Ch. 6] for applications to the Yangian representation theory and more references. In more detail, let \mathcal{T} be a standard tableau associated with a partition λ of n and let $c_{k}=j-i$, if the element k occupies the cell of the tableau in row i and column j. Then the consecutive evaluations

$$
\left.\left.\left.\Phi\left(u_{1}, \ldots, u_{n}\right)\right|_{u_{1}=c_{1}}\right|_{u_{2}=c_{2}} \ldots\right|_{u_{n}=c_{n}}
$$

are well-defined and this value yields the corresponding primitive idempotent $E_{\mathcal{T}}^{\lambda}$ multiplied by the product of the hooks of the diagram of λ. The left ideal $\mathbb{C}\left[\mathfrak{S}_{n}\right] E_{\mathcal{T}}^{\lambda}$ is the
irreducible representation of \mathfrak{S}_{n} associated with λ, and the \mathfrak{S}_{n}-module $\mathbb{C}\left[\mathfrak{S}_{n}\right]$ is the direct sum of the left ideals over all partitions λ and all λ-tableaux \mathcal{T}.

Our aim in this paper is to derive an analogous version of the fusion procedure for the Hecke algebra $\mathcal{H}_{n}=\mathcal{H}_{n}(q)$ associated with \mathfrak{S}_{n}. The procedure goes back to Cherednik [2], while detailed proofs relying on q-versions of the Young symmetrizers were given by Nazarov [14]; see also Grime [4] for its hook version. We use a different approach based on the formulas for the primitive idempotents of \mathcal{H}_{n} in terms of the Jucys-Murphy elements. These formulas derived by Dipper and James 3] generalize the results of Jucys 9] and Murphy [12] for \mathfrak{S}_{n}.

The main result of this paper is an explicit formula for the orthogonal primitive idempotents of \mathcal{H}_{n}. The idempotents are obtained as a result of consecutive evaluations of a rational function similar to (1). The normalization factors in the expressions for the Hecke algebra idempotents turn out to be related to the Ocneanu-Markov trace of the idempotents.

2 Idempotents of \mathcal{H}_{n} and Jucys-Murphy elements

Let q be a formal variable. The Hecke algebra \mathcal{H}_{n} over the field $\mathbb{C}(q)$ is generated by the elements T_{1}, \ldots, T_{n-1} subject to the defining relations

$$
\begin{aligned}
T_{i} T_{i+1} T_{i} & =T_{i+1} T_{i} T_{i+1}, \\
T_{i} T_{j} & =T_{j} T_{i} \text { for }|i-j|>1, \\
T_{i}^{2} & =1+\left(q-q^{-1}\right) T_{i} .
\end{aligned}
$$

Given a reduced decomposition $w=s_{i_{1}} \ldots s_{i_{l}}$ of an element $w \in \mathfrak{S}_{n}$ in terms of the generators $s_{i}=(i, i+1)$, set $T_{w}=T_{i_{1}} \ldots T_{i_{l}}$. Then T_{w} does not depend on the reduced decomposition, and the set $\left\{T_{w} \mid w \in \mathfrak{S}_{n}\right\}$ is a basis of \mathcal{H}_{n} over $\mathbb{C}(q)$.

The Jucys-Murphy elements y_{1}, \ldots, y_{n} of \mathcal{H}_{n} are defined inductively by

$$
\begin{equation*}
y_{1}=1, \quad y_{k+1}=T_{k} y_{k} T_{k} \quad \text { for } \quad k=1, \ldots, n-1 \tag{2}
\end{equation*}
$$

These elements satisfy

$$
y_{k} T_{m}=T_{m} y_{k}, \quad m \neq k, k-1 .
$$

In particular, y_{1}, \ldots, y_{n} generate a commutative subalgebra of \mathcal{H}_{n}. The elements y_{k} can be written in terms of the elements $T_{(i j)} \in \mathcal{H}_{n}$, associated with the transpositions $(i j) \in \mathfrak{S}_{n}$ as follows:

$$
y_{k}=1+\left(q-q^{-1}\right)\left(T_{(1 k)}+T_{(2 k)}+\cdots+T_{(k-1 k)}\right) .
$$

Hence, the normalized elements $\left(y_{k}-1\right) /\left(q-q^{-1}\right)$ specialize to the Jucys-Murphy elements for \mathfrak{S}_{n} as $q \rightarrow 1$; see [9], [12], [3].

For any $k=1, \ldots, n$ we let w_{k} denote the unique longest element of the symmetric group \mathfrak{S}_{k} which is regarded as the natural subgroup of \mathfrak{S}_{n}. The corresponding elements $T_{w_{k}} \in \mathcal{H}_{n}$ are then given by $T_{w_{1}}=1$ and

$$
\begin{align*}
T_{w_{k}} & =T_{1}\left(T_{2} T_{1}\right) \cdots\left(T_{k-2} \ldots T_{1}\right)\left(T_{k-1} T_{k-2} \ldots T_{1}\right) \tag{3}\\
& =\left(T_{1} \ldots T_{k-2} T_{k-1}\right)\left(T_{1} \ldots T_{k-2}\right) \cdots\left(T_{1} T_{2}\right) T_{1}, \quad k=2, \ldots, n . \tag{4}
\end{align*}
$$

We point out the following properties of the elements $T_{w_{k}}$ which are easily verified by induction with the use of (3) and (4):

$$
\begin{array}{rlrl}
T_{w_{k}} T_{j} & =T_{k-j} T_{w_{k}}, & & 1 \leqslant j<k \leqslant n, \tag{5}\\
T_{w_{k}}^{2} & =y_{1} y_{2} \cdots y_{k}, & k=1, \ldots, n .
\end{array}
$$

Following [14, for each $i=1, \ldots, n-1$ set

$$
\begin{equation*}
T_{i}(x, y)=\frac{T_{i} y-T_{i}^{-1} x}{y-x}=T_{i}+\frac{q-q^{-1}}{x^{-1} y-1} \tag{6}
\end{equation*}
$$

where x and y are complex variables. We will regard the $T_{i}(x, y)$ as rational functions in x and y with values in \mathcal{H}_{n}. It is well-known that they satisfy the relations

$$
\begin{equation*}
T_{i}(x, y) T_{i+1}(x, z) T_{i}(y, z)=T_{i+1}(y, z) T_{i}(x, z) T_{i+1}(x, y) \tag{7}
\end{equation*}
$$

(the Yang-Baxter equation), and

$$
\begin{equation*}
T_{i}(x, y) T_{i}(y, x)=\frac{\left(x-q^{2} y\right)\left(x-q^{-2} y\right)}{(x-y)^{2}} \tag{8}
\end{equation*}
$$

Lemma 2.1. We have the identities

$$
\begin{equation*}
T_{w_{k}} T_{j}(x, y)=T_{k-j}(x, y) T_{w_{k}}, \quad 1 \leqslant j<k \leqslant n \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{w_{k+1}} T_{2}\left(u, \sigma_{k-1}\right) \ldots T_{k}\left(u, \sigma_{1}\right) T_{w_{k}}^{-1}=T_{w_{k}} T_{1}\left(u, \sigma_{k-1}\right) \ldots T_{k-1}\left(u, \sigma_{1}\right) T_{w_{k-1}}^{-1} T_{k} \tag{10}
\end{equation*}
$$

where $1 \leqslant k<n$ and $u, \sigma_{1}, \ldots, \sigma_{k-1}$ are complex parameters.
Proof. Relation (9) is immediate from (5), while (10) is deduced from

$$
\left(T_{k} \ldots T_{2} T_{1}\right) T_{j}(x, y)=T_{j-1}(x, y)\left(T_{k} \ldots T_{2} T_{1}\right), \quad 2 \leqslant j \leqslant k
$$

by taking into account the identity

$$
T_{w_{k}}^{-1} T_{w_{k+1}}=T_{w_{k-1}}^{-1} T_{k} T_{w_{k}}=T_{k} \ldots T_{2} T_{1}
$$

implied by (3) and (4).
Now we recall the construction of the orthogonal primitive idempotents for the Hecke algebra from [3]. We will identify a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$ of n with its diagram which is a left-justified array of rows of cells such that the top row contains λ_{1} cells, the next row contains λ_{2} cells, etc. A cell outside λ is called addable to λ if the union of λ and the cell is a diagram. A tableau \mathcal{T} of shape λ (or a λ-tableau \mathcal{T}) is obtained by filling in the cells of the diagram bijectively with the numbers $1, \ldots, n$. A tableau \mathcal{T} is called standard if its entries increase along the rows and down the columns. If a cell occurs in row i and column j, its q-content will be defined as $q^{2(j-i)}$.

In accordance to [3], a set of orthogonal primitive idempotents $\left\{E_{\mathcal{T}}^{\lambda}\right\}$ of \mathcal{H}_{n}, parameterized by partitions λ of n and standard λ-tableaux \mathcal{T} can be constructed inductively by the following rule. Set $E_{\mathcal{T}}^{\lambda}=1$ if $n=1$, whereas for $n \geqslant 2$,

$$
\begin{equation*}
E_{\mathcal{T}}^{\lambda}=E_{\mathcal{U}}^{\mu} \frac{\left(y_{n}-\rho_{1}\right) \ldots\left(y_{n}-\rho_{k}\right)}{\left(\sigma-\rho_{1}\right) \ldots\left(\sigma-\rho_{k}\right)}, \tag{11}
\end{equation*}
$$

where \mathcal{U} is the tableau obtained from \mathcal{T} by removing the cell α occupied by n, μ is the shape of \mathcal{U}, and $\rho_{1}, \ldots, \rho_{k}$ are the q-contents of all addable cells of μ except for α, while σ is the q-content of the latter. In particular, if λ and λ^{\prime} are partitions of n, then

$$
E_{\mathcal{T}}^{\lambda} E_{\mathcal{T}^{\prime}}^{\lambda^{\prime}}=\delta_{\lambda \lambda^{\prime}} \delta_{\mathcal{T} \mathcal{T}^{\prime}} E_{\mathcal{T}}^{\lambda}
$$

for arbitrary standard tableaux \mathcal{T} and \mathcal{T}^{\prime} of shapes λ and λ^{\prime}, respectively. Moreover,

$$
\sum_{\lambda} \sum_{\mathcal{T}} E_{\mathcal{T}}^{\lambda}=1,
$$

summed over all partitions λ of n and all standard λ-tableaux \mathcal{T}.
In what follows we will omit the superscript λ and write simply $E_{\mathcal{T}}$ instead of $E_{\mathcal{T}}^{\lambda}$. Given a standard λ-tableau \mathcal{T} and $k \in\{1, \ldots, n\}$, we set $\sigma_{k}=q^{2(j-i)}$ if the element k of \mathcal{T} occupies the cell in row i and column j. Then

$$
\begin{equation*}
y_{k} E_{\mathcal{T}}=E_{\mathcal{T}} y_{k}=\sigma_{k} E_{\mathcal{T}} . \tag{12}
\end{equation*}
$$

Furthermore, given a standard tableau \mathcal{U} with $n-1$ cells, the corresponding idempotent $E_{\mathcal{U}}$ can be written as

$$
\begin{equation*}
E_{\mathcal{U}}=\sum_{\mathcal{T}} E_{\mathcal{T}} \tag{13}
\end{equation*}
$$

summed over all standard tableaux \mathcal{T} obtained from \mathcal{U} by adding one cell with entry n. Exactly as in the case of the symmetric group \mathfrak{S}_{n} (see [10]), this relation can be used to derive the following alternative form of (11). Consider the rational function

$$
\begin{equation*}
E_{\mathcal{T}}(u)=E_{\mathcal{U}} \frac{u-\sigma_{n}}{u-y_{n}} \tag{14}
\end{equation*}
$$

in a complex variable u with values in \mathcal{H}_{n}. Then this function is regular at $u=\sigma_{n}$ and the corresponding value coincides with $E_{\mathcal{T}}$:

$$
\begin{equation*}
E_{\mathcal{T}}=\left.E_{\mathcal{U}} \frac{u-\sigma_{n}}{u-y_{n}}\right|_{u=\sigma_{n}} . \tag{15}
\end{equation*}
$$

3 Fusion formulas for primitive idempotents

For $k=1, \ldots, n-1$ introduce the elements of \mathcal{H}_{n} by

$$
\begin{equation*}
Y_{k}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k} ; u\right)=T_{w_{k}} T_{k}\left(\sigma_{1}, u\right) T_{k-1}\left(\sigma_{2}, u\right) \ldots T_{1}\left(\sigma_{k}, u\right) T_{w_{k+1}}^{-1}, \tag{16}
\end{equation*}
$$

where $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$ and u are complex parameters.

Lemma 3.1. Let \mathcal{U} be a standard tableau with k cells and the q-contents $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$. Then

$$
\begin{align*}
& E_{\mathcal{U}} Y_{k}\left(\sigma_{1}, \ldots, \sigma_{k} ; u\right)= \\
& =\left(u-\sigma_{1}\right)\left(\prod_{j=1}^{k} \frac{\left(u-q^{2} \sigma_{j}\right)\left(u-q^{-2} \sigma_{j}\right)}{\left(u-\sigma_{j}\right)^{2}}\right) E_{\mathcal{U}}\left(u-y_{k+1}\right)^{-1} . \tag{17}
\end{align*}
$$

Proof. We start with representing (17) in the form

$$
\begin{equation*}
\left(u-\sigma_{1}\right)^{-1} E_{\mathcal{U}}\left(u-y_{k+1}\right)=E_{\mathcal{U}} T_{w_{k+1}} T_{1}\left(u, \sigma_{k}\right) \ldots T_{k}\left(u, \sigma_{1}\right) T_{w_{k}}^{-1} \tag{18}
\end{equation*}
$$

where we have used (8) and taken into account the fact that $E_{\mathcal{U}}$ commutes with y_{k+1}. Now we prove (18) by induction. For $k=1$ we have

$$
\left(u-\sigma_{1}\right)^{-1}\left(u-T_{1}^{2}\right)=T_{1} \cdot T_{1}\left(u, \sigma_{1}\right),
$$

which is true, as $\sigma_{1}=1$. Due to (9) and (10), the right hand side of (18) can be written in the form

$$
\begin{aligned}
E_{\mathcal{U}} T_{k}\left(u, \sigma_{k}\right) T_{w_{k+1}} T_{2}\left(u, \sigma_{k-1}\right) \ldots & T_{k}\left(u, \sigma_{1}\right) T_{w_{k}}^{-1}= \\
& =E_{\mathcal{U}} T_{k}\left(u, \sigma_{k}\right) T_{w_{k}} T_{1}\left(u, \sigma_{k-1}\right) \ldots T_{k-1}\left(u, \sigma_{1}\right) T_{w_{k-1}}^{-1} T_{k} .
\end{aligned}
$$

Using (13), we can write $E_{\mathcal{U}}=E_{\mathcal{U}} E_{\mathcal{V}}$, where \mathcal{V} is the tableau obtained from \mathcal{U} by removing the cell occupied by k. Hence, the right hand side of (18) becomes

$$
\begin{aligned}
& E_{\mathcal{U}} E_{\mathcal{V}} T_{k}\left(u, \sigma_{k}\right) T_{w_{k}} T_{1}\left(u, \sigma_{k-1}\right) \ldots T_{k-1}\left(u, \sigma_{1}\right) T_{w_{k-1}}^{-1} T_{k}= \\
& =E_{\mathcal{U}} T_{k}\left(u, \sigma_{k}\right)\left(E_{\mathcal{V}} T_{w_{k}} T_{1}\left(u, \sigma_{k-1}\right) \ldots T_{k-1}\left(u, \sigma_{1}\right) T_{w_{k-1}}^{-1}\right) T_{k}= \\
& \\
& =\left(u-\sigma_{1}\right)^{-1} E_{\mathcal{U}} T_{k}\left(u, \sigma_{k}\right)\left(u-y_{k}\right) T_{k} .
\end{aligned}
$$

The last equality holds by the induction hypothesis. Now we represent $T_{k}\left(u, \sigma_{k}\right)$ in the form

$$
T_{k}\left(u, \sigma_{k}\right)=\frac{T_{k} \sigma_{k}-T_{k}^{-1} u}{\sigma_{k}-u}=T_{k}+\frac{\left(q-q^{-1}\right) u}{\sigma_{k}-u} .
$$

This gives

$$
\begin{aligned}
E_{\mathcal{U}} T_{k}\left(u, \sigma_{k}\right)\left(u-y_{k}\right) T_{k}=E_{\mathcal{U}} & \left(T_{k}+\frac{\left(q-q^{-1}\right) u}{\sigma_{k}-u}\right)\left(u-y_{k}\right) T_{k}= \\
& =E_{\mathcal{U}}\left(-u\left(q-q^{-1}\right) T_{k}+u T_{k}^{2}-y_{k+1}\right)=E_{\mathcal{U}}\left(u-y_{k+1}\right)
\end{aligned}
$$

thus completing the proof.
Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$ be a partition of n. We will use the conjugate partition $\lambda^{\prime}=$ $\left(\lambda_{1}^{\prime}, \ldots, \lambda_{m}^{\prime}\right)$ so that λ_{j}^{\prime} is the number of cells in the j-th column of λ. If $\alpha=(i, j)$ is a cell of λ, then the corresponding hook is defined as $h_{\alpha}=\lambda_{i}+\lambda_{j}^{\prime}-i-j+1$ and the content is $c_{\alpha}=j-i$. Set

$$
\begin{equation*}
f(\lambda)=\prod_{\alpha \in \lambda} \frac{q^{c_{\alpha}}}{\left[h_{\alpha}\right]_{q}} \tag{19}
\end{equation*}
$$

where we have used the notation

$$
[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}}
$$

Suppose that \mathcal{T} is a standard λ-tableau. As before, for each $k \in\{1, \ldots, n\}$ we let σ_{k} denote the q-content $q^{2(j-i)}$ of the cell (i, j) occupied by k in \mathcal{T}. Consider the rational function

$$
F_{n}(u)=\frac{u-\sigma_{n}}{u-\sigma_{1}} \prod_{k=1}^{n-1} \frac{\left(u-\sigma_{k}\right)^{2}}{\left(u-q^{2} \sigma_{k}\right)\left(u-q^{-2} \sigma_{k}\right)}
$$

Lemma 3.2. The rational function $F_{n}(u)$ is regular at $u=\sigma_{n}$ and

$$
F_{n}\left(\sigma_{n}\right)=f(\mu)^{-1} f(\lambda)
$$

where μ denotes the shape of the standard tableau obtained from \mathcal{T} by removing the cell occupied by n.

Proof. It is clear that $F_{n}(u)$ depends only on the shape μ and does not depend on the standard tableau \mathcal{U} obtained from \mathcal{T} by removing the cell occupied by n. Therefore, we may assume that \mathcal{U} is the row tableau obtained by writing the elements $1, \ldots, n-1$ into the cells of μ consecutively by rows starting with the top row. Suppose that the rows of μ are

$$
\mu_{1}=\cdots=\mu_{p_{1}}>\mu_{p_{1}+1}=\cdots=\mu_{p_{2}}>\cdots>\mu_{p_{s-1}+1}=\cdots=\mu_{p_{s}}
$$

for some integers p_{1}, \ldots, p_{s} such that $1 \leqslant p_{1}<p_{2}<\cdots<p_{s}$ and some $s \geqslant 1$. With this notation, $F_{n}(u)$ can be written in the form

$$
F_{n}(u)=\left(u-\sigma_{n}\right) \prod_{i=1}^{s}\left(u-q^{2 \mu_{p_{i}}-2 p_{i}}\right) \prod_{i=0}^{s}\left(u-q^{2 \mu_{p_{i}+1}-2 p_{i}}\right)^{-1},
$$

where we set $p_{0}=0$ and $\mu_{p_{s}+1}=0$. Possible values of the q-content σ_{n} are $\sigma_{n}=q^{2 \mu_{p_{j}+1}-2 p_{j}}$ for $j=0,1, \ldots, s$. Hence, for a fixed value of j the factor $u-\sigma_{n}$ cancels, and so $F_{n}\left(\sigma_{n}\right)$ is well-defined and can be expressed in the form

$$
\begin{equation*}
F_{n}\left(\sigma_{n}\right)=\left(q^{2 \mu_{p_{j}+1}}-q^{2 \mu_{p_{j}+1}+2}\right) \prod_{\alpha \in \mu}\left(1-q^{2 h_{\alpha}}\right) \prod_{\alpha \in \lambda}\left(1-q^{2 h_{\alpha}}\right)^{-1} \tag{20}
\end{equation*}
$$

which is verified by a simple calculation. On the other hand, $f(\lambda)$ can be represented as

$$
f(\lambda)=q^{b(\lambda)}\left(1-q^{2}\right)^{n} \prod_{\alpha \in \lambda}\left(1-q^{2 h_{\alpha}}\right)^{-1}, \quad b(\lambda)=\sum_{i \geqslant 1} \lambda_{i}\left(\lambda_{i}-1\right) .
$$

Therefore, the expression in (20) equals $f(\mu)^{-1} f(\lambda)$, as required.
Introduce the rational function $\Psi\left(u_{1}, \ldots, u_{n}\right)$ in complex variables u_{1}, \ldots, u_{n} with values in \mathcal{H}_{n} by the formula

$$
\Psi\left(u_{1}, \ldots, u_{n}\right)=\underset{k=1, \ldots, n-1}{\overrightarrow{ }}\left(T_{k}\left(u_{1}, u_{k+1}\right) T_{k-1}\left(u_{2}, u_{k+1}\right) \ldots T_{1}\left(u_{k}, u_{k+1}\right)\right) \cdot T_{w_{n}}^{-1}
$$

As before, we let λ be a partition of n and let \mathcal{T} be a standard λ-tableau.

Theorem 3.3. The idempotent $E_{\mathcal{T}}$ can be obtained by the consecutive evaluations

$$
\begin{equation*}
E_{\mathcal{T}}=\left.\left.\left.f(\lambda) \cdot \Psi\left(u_{1}, \ldots, u_{n}\right)\right|_{u_{1}=\sigma_{1}}\right|_{u_{2}=\sigma_{2}} \ldots\right|_{u_{n}=\sigma_{n}} \tag{21}
\end{equation*}
$$

where the rational functions are regular at the evaluation points at each step.
Proof. We argue by induction on n. For $n \geqslant 2$ we let \mathcal{U} denote the standard tableau obtained from \mathcal{T} by removing the cell occupied by n and let μ be the shape of \mathcal{U}. Applying Lemma 3.2 and the induction hypothesis, we can write the right hand side of (21) in the form

$$
\left.F_{n}\left(\sigma_{n}\right) E_{\mathcal{U}} Y_{n-1}\left(\sigma_{1}, \ldots, \sigma_{n-1} ; u_{n}\right)\right|_{u_{n}=\sigma_{n}}
$$

where the elements $Y_{n-1}\left(\sigma_{1}, \ldots, \sigma_{n-1} ; u_{n}\right)$ are defined in (16). The proof is completed by the application of Lemma 3.1 and relation (15).

Example 3.4. Using (21), for $n=3$ and $\lambda=(2,1)$ we get

$$
\begin{equation*}
E_{\mathcal{T}}=\frac{1}{[3]_{q}} T_{1}\left(\sigma_{1}, \sigma_{2}\right) T_{2}\left(\sigma_{1}, \sigma_{3}\right) T_{1}\left(\sigma_{2}, \sigma_{3}\right)\left(T_{1} T_{2} T_{1}\right)^{-1} \tag{22}
\end{equation*}
$$

In particular,

$$
\sigma_{1}=1, \quad \sigma_{2}=q^{2}, \quad \sigma_{3}=q^{-2} \quad \text { for } \quad \mathcal{T}=\begin{array}{|l|}
\hline 12 \\
\hline 3
\end{array}
$$

and

$$
\sigma_{1}=1, \quad \sigma_{2}=q^{-2}, \quad \sigma_{3}=q^{2} \quad \text { for } \quad \mathcal{T}=\begin{array}{|l}
1 \\
2
\end{array} .
$$

Note that (22) can be reduced to the fusion formulas contained in [5, p. 106].
Example 3.5. For $n=4$ and $\lambda=\left(2^{2}\right)$ the idempotent $E_{\mathcal{T}}$ is obtained by evaluating the rational function

$$
\begin{equation*}
\frac{1}{[3]_{q}[2]_{q}^{2}} T_{1}\left(u_{1}, u_{2}\right) T_{2}\left(u_{1}, u_{3}\right) T_{1}\left(u_{2}, u_{3}\right) T_{3}\left(u_{1}, u_{4}\right) T_{2}\left(u_{2}, u_{4}\right) T_{1}\left(u_{3}, u_{4}\right) T_{w_{4}}^{-1} \tag{23}
\end{equation*}
$$

consecutively at $u_{1}=\sigma_{1}, u_{2}=\sigma_{2}, u_{3}=\sigma_{3}$, and $u_{4}=\sigma_{4}$. We have

$$
\sigma_{1}=1, \quad \sigma_{2}=q^{2}, \quad \sigma_{3}=q^{-2}, \quad \sigma_{4}=1 \quad \text { for } \quad \mathcal{T}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array}
$$

and

$$
\sigma_{1}=1, \quad \sigma_{2}=q^{-2}, \quad \sigma_{3}=q^{2}, \quad \sigma_{4}=1 \quad \text { for } \quad \mathcal{T}=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & 4 \\
\hline
\end{array} .
$$

Note that for both tableaux the expression (23) contains the factor $T_{3}\left(u_{1}, u_{4}\right)$ which is not defined for $u_{1}=\sigma_{1}$ and $u_{4}=\sigma_{4}$. Nevertheless, the whole expression (23) is regular under the consecutive evaluations due to Theorem [3.3. We will use this example to illustrate the relationship with the approach of [14]. Using the relation (77) one can rewrite (23) as

$$
\frac{1}{[3]_{q}[2]_{q}^{2}} T_{2}\left(u_{2}, u_{3}\right) T_{1}\left(u_{1}, u_{3}\right) T_{2}\left(u_{1}, u_{2}\right) T_{3}\left(u_{1}, u_{4}\right) T_{2}\left(u_{2}, u_{4}\right) T_{1}\left(u_{3}, u_{4}\right) T_{w_{4}}^{-1}
$$

By [14, Lemma 2.1], the product $T_{2}\left(u_{1}, u_{2}\right) T_{3}\left(u_{1}, u_{4}\right) T_{2}\left(u_{2}, u_{4}\right)$ is equal to

$$
\begin{array}{r}
\frac{\left(\left(T_{2} u_{2}-T_{2}^{-1} u_{1}\right) T_{3}\left(T_{2} u_{4}-T_{2}^{-1} u_{2}\right)+\left(q-q^{-1}\right) u_{1}\left(\left(q-q^{-1}\right) u_{2} T_{2}+u_{2}-u_{1}\right)\right)}{\left(u_{2}-u_{1}\right)\left(u_{4}-u_{2}\right)} \\
-\frac{\left(q-q^{-1}\right) u_{1}\left(u_{1}-q^{2} u_{2}\right)\left(u_{1}-q^{-2} u_{2}\right)}{\left(u_{2}-u_{1}\right)\left(u_{4}-u_{1}\right)\left(u_{4}-u_{2}\right)}
\end{array}
$$

and it is regular for $u_{1}=q^{ \pm 2} u_{2}$ at $u_{1}=u_{4}$. It was shown in [14] that such considerations can be extended to the general expression (21) to prove that it is regular in the limits $u_{i} \rightarrow \sigma_{i}$.

We conclude this section by showing that taking an appropriate limit in Theorem 3.3 as $q \rightarrow 1$ we can recover the respective formulas of [10] for the primitive idempotents of the symmetric group \mathfrak{S}_{n}.

Take the parameters x and y in (6) in the form $x=q^{2 u}$ and $y=q^{2 v}$. Since $T_{i} \underset{q \rightarrow 1}{\longrightarrow} s_{i}$, for the limit value of $T_{i}(x, y)$ we have

$$
\begin{equation*}
T_{i}(x, y)=T_{i}+\frac{q^{u-v}}{[v-u]_{q}} \underset{q \rightarrow 1}{\longrightarrow} s_{i} \varphi_{i, i+1}(u, v), \tag{24}
\end{equation*}
$$

where

$$
\varphi_{i, j}(u, v)=1-\frac{(i j)}{u-v}
$$

Using (24) we can calculate the corresponding limit for the element (16) to get

$$
\begin{equation*}
Y_{k}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k} ; u\right) \underset{q \rightarrow 1}{\longrightarrow} \varphi_{1, k+1}\left(c_{1}, u\right) \varphi_{2, k+1}\left(c_{2}, u\right) \ldots \varphi_{k, k+1}\left(c_{k}, u\right) \tag{25}
\end{equation*}
$$

where $\sigma_{m}=q^{2 c_{m}}$. Clearly, the normalization factor $f(\lambda)$ specializes to the inverse of the product of the hooks of λ, and so the substitution of (25) into (21) leads to the main result of [10].

4 The Ocneanu-Markov trace of the idempotents

The purpose of this section is to calculate the Ocneanu-Markov trace of the idempotents $E_{\mathcal{T}}$ which turns out to be related to the normalization factor $f(\lambda)$ defined in (19).

Definition 4.1. For any given standard tableau \mathcal{T} with n cells, its quantum dimension is defined as

$$
\begin{equation*}
\operatorname{qdim} \mathcal{T}=\mathcal{T} r^{n}\left(E_{\mathcal{T}}\right) \tag{26}
\end{equation*}
$$

where $\mathcal{T} r^{n}: \mathcal{H}_{n} \rightarrow \mathbb{C}$ is the Ocneanu-Markov trace; see e.g. [7].
The Ocneanu-Markov trace $\mathcal{T} r^{n}$ can be defined as the composition of the maps

$$
\mathcal{T} r^{n}=\operatorname{Tr}_{1} \operatorname{Tr}_{2} \ldots \operatorname{Tr}_{\mathrm{n}}
$$

The linear maps $\operatorname{Tr}_{\mathrm{m}+1}: \mathcal{H}_{m+1} \rightarrow \mathcal{H}_{m}$ from the Hecke algebra \mathcal{H}_{m+1} to its natural subalgebra \mathcal{H}_{m} are determined by the following properties, where $Q \in \mathbb{C}$ is a fixed parameter, while $X, Y \in \mathcal{H}_{m}$ and $Z \in \mathcal{H}_{m+1}$:

$$
\begin{align*}
& \operatorname{Tr}_{\mathrm{m}+1}(X Z Y)=X \operatorname{Tr}_{\mathrm{m}+1}(Z) Y, \quad \operatorname{Tr}_{\mathrm{m}+1}(X)=Q X, \\
& \operatorname{Tr}_{\mathrm{m}+1}\left(T_{m}^{ \pm 1} X T_{m}^{\mp 1}\right)=\operatorname{Tr}_{\mathrm{m}}(X), \quad \operatorname{Tr}_{\mathrm{m}+1}\left(T_{m}\right)=1, \tag{27}\\
& \operatorname{Tr}_{\mathrm{m}} \operatorname{Tr}_{\mathrm{m}+1}\left(T_{m} Z\right)=\operatorname{Tr}_{\mathrm{m}} \operatorname{Tr}_{\mathrm{m}+1}\left(Z T_{m}\right) .
\end{align*}
$$

Our calculation of (26) is based on the approach of [6]. The following statement can be found in that paper.

Proposition 4.2. Consider the rational function in u with values in the Hecke algebra \mathcal{H}_{m} which is defined by

$$
Z_{m+1}(u)=\operatorname{Tr}_{\mathrm{m}+1}\left(u-y_{m+1}\right)^{-1}, \quad y_{m+1} \in \mathcal{H}_{m+1}
$$

where \mathcal{H}_{m} is regarded as a subalgebra of \mathcal{H}_{m+1}. Then,

$$
\begin{equation*}
Z_{m+1}(u)=\frac{l Q+u-1}{t u(u-1)}\left(\prod_{k=1}^{m} \frac{\left(u-y_{k}\right)^{2}}{\left(u-q^{2} y_{k}\right)\left(u-q^{-2} y_{k}\right)}-\frac{(1-l Q)(u-1)}{l Q+u-1}\right) \tag{28}
\end{equation*}
$$

where $l=q-q^{-1}$.
Proof. ¿From the definition of the Jucys-Murphy elements (2) we deduce the identity

$$
\begin{equation*}
\frac{1}{u-y_{m+1}}=T_{m} \frac{1}{u-y_{m}} T_{m}^{-1}+\frac{1}{u-y_{m}}\left(T_{m}^{-1}+\frac{l u}{\left(u-y_{m+1}\right)}\right) \frac{l y_{m}}{\left(u-y_{m}\right)} . \tag{29}
\end{equation*}
$$

Applying the map Tr_{m+1} to both sides of (29) and using (27) we get

$$
\frac{\left(u-q^{2} y_{m}\right)\left(u-q^{-2} y_{m}\right)}{\left(u-y_{m}\right)^{2}} Z_{m+1}(u)=Z_{m}(u)+\frac{l(1-Q l) y_{m}}{\left(u-y_{m}\right)^{2}} .
$$

For all $k=1, \ldots, m+1$ introduce the function $\bar{Z}_{k}(u)$ by

$$
Z_{k}(u)=\bar{Z}_{k}(u)+\left(Q-l^{-1}\right) u^{-1} .
$$

This gives the relation

$$
\bar{Z}_{m+1}(u)=\frac{\left(u-y_{m}\right)^{2}}{\left(u-q^{2} y_{m}\right)\left(u-q^{-2} y_{m}\right)} \bar{Z}_{m}(u)
$$

Solving this recurrence relation with the initial condition

$$
\bar{Z}_{1}(u)=\operatorname{Tr}_{1}\left(u-y_{1}\right)^{-1}-\left(Q-l^{-1}\right) u^{-1}=\frac{t Q+u-1}{t u(u-1)}
$$

we come to (28).
The normalization factor $f(\lambda)$ defined in (19) and the quantum dimension (26) turn out to be related as shown in the following proposition. As before, we let λ be a partition of n, and \mathcal{T} a standard λ-tableau.

Proposition 4.3. We have the relation

$$
f(\lambda)=\operatorname{qdim} \mathcal{T} \prod_{k=1}^{n} \sigma_{k}\left(Q+\frac{\sigma_{k}-1}{q-q^{-1}}\right)^{-1}
$$

Proof. Using (14) and (15) we get

$$
\operatorname{Tr}_{\mathrm{n}}\left(E_{\mathcal{T}}\right)=\left.\operatorname{Tr}_{\mathrm{n}} E_{\mathcal{T}}(u)\right|_{u=\sigma_{n}}=\left.E_{\mathcal{U}}\left(u-\sigma_{n}\right) \operatorname{Tr}_{\mathrm{n}}\left(u-y_{n}\right)^{-1}\right|_{u=\sigma_{n}} .
$$

Using equations (28) and taking into account (12) we obtain

$$
\begin{aligned}
\operatorname{Tr}_{\mathrm{n}}\left(E_{\mathcal{T}}\right) & =\frac{1}{\sigma_{n}}\left(Q+\frac{\sigma_{n}-1}{l}\right) E_{\mathcal{U}} \\
\times & \left.\frac{u-\sigma_{n}}{u-1}\left(\prod_{k=1}^{n-1} \frac{\left(u-\sigma_{k}\right)^{2}}{\left(u-q^{2} \sigma_{k}\right)\left(u-q^{-2} \sigma_{k}\right)}-(u-1) \frac{1-l Q}{l Q+u-1}\right)\right|_{u=\sigma_{n}}
\end{aligned} \quad=
$$

Applying the maps $\operatorname{Tr}_{\mathrm{k}}$ consequently, we finally obtain

$$
\operatorname{qdim} \mathcal{T}=\mathcal{T} r^{n}\left(E_{\mathcal{T}}\right)=\operatorname{Tr}_{1} \operatorname{Tr}_{2} \ldots \operatorname{Tr}_{\mathrm{n}}\left(E_{\mathcal{T}}\right)=\prod_{m=1}^{n} \frac{1}{\sigma_{m}}\left(Q+\frac{\sigma_{m}-1}{l}\right) F_{m}\left(\sigma_{m}\right)
$$

The statement now follows from Lemma 3.2.
The following corollary is immediate from Proposition 4.3.
Corollary 4.4. The Ocneanu-Markov trace $\mathcal{T} r^{n}\left(E_{\mathcal{T}}\right)$ of the idempotent $E_{\mathcal{T}}$ depends only on the shape λ of \mathcal{T} and does not depend on \mathcal{T}.

Acknowledgements

The work of the first author was partially supported by the RFBR grant No. 08-01-00392-a. The second author gratefully acknowledges the support of the Australian Research Council.

References

[1] I.V. Cherednik, On special bases of irreducible finite-dimensional representations of the degenerate affine Hecke algebra, Funct. Analysis Appl. 20 (1986), 87-89.
[2] I.V. Cherednik, A new interpretation of Gelfand-Tzetlin bases, Duke Math. J. 54 (1987), 563-577.
[3] R. Dipper and G. James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. 54 (1987), 57-82.
[4] J. Grime, The hook fusion procedure for Hecke algebras, J. Alg. 309 (2007), 744-759.
[5] A.P. Isaev, Quantum groups and Yang-Baxter equations, preprint MPIM (Bonn), MPI 2004-132 (2004), http://www.mpim-bonn.mpg.de/html/preprints/preprints.html.
[6] A.P. Isaev and O.V. Ogievetsky, On representations of Hecke algebras, Czechoslovak J. Phys. 55 (2005), 1433-1441.
[7] V.F.R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), 335-388.
[8] A. Jucys, On the Young operators of the symmetric group, Lietuvos Fizikos Rinkinys 6 (1966), 163-180.
[9] A. Jucys, Factorization of Young projection operators for the symmetric group, Lietuvos Fizikos Rinkinys 11 (1971), 5-10.
[10] A.I. Molev, On the fusion procedure for the symmetric group, Reports on Math. Phys. 61 (2008), to appear; arXiv:math/0612207.
[11] A. Molev, Yangians and classical Lie algebras, Mathematical Surveys and Monographs, 143. American Mathematical Society, Providence, RI, 2007.
[12] G.E. Murphy, The idempotents of the symmetric group and Nakayama's conjecture, J. Algebra 81 (1983), 258-265.
[13] M. Nazarov, Yangians and Capelli identities, in: "Kirillov's Seminar on Representation Theory" (G. I. Olshanski, Ed.), Amer. Math. Soc. Transl. 181, Amer. Math. Soc., Providence, RI, 1998, pp. 139-163.
[14] M. Nazarov, A mixed hook-length formula for affine Hecke algebras, European J. Combin. 25 (2004), 1345-1376.

