
Spherical Single-Roll Dynamos at Large Magnetic Reynolds

Numbers

David Ivers and Henrik Latter

14 October, 2007

Abstract

The asymptotic theory of Gilbert & Ponty (2000) for axisymmetric spherical single roll flow dynamos
at large magnetic Reynolds Rm numbers is compared to the numerical eigen-solutions of the exact
dynamo problem for two flows in a spherical electrically conducting fluid with insulating exterior. The
flows are the s0

1t
0
1 of Dudley & James (1989) and an s0

1t
0
1t

0
3 modification of it. The numerical method

uses a compact vector spherical harmonic technique in angle and fourth-order finite-differences in radius.
Excellent agreement is obtained in the asymptotic regime Rm > 10, 000 for both the growth rate and the
angular frequency, and good agreement for the magnetic field in Rm > 100, 000. The asymptotic theory
is extended to O(R−1

m ) for the growth rate and angular frequency, and to O(R
−1/2
m ) for the magnetic

field.

1 Introduction

We consider a class of self-exciting kinematic dynamos in which the magnetic field B is generated by the
steady helical motion v of a homogeneous, incompressible, electrically conducting fluid. The magnetic field
in the fluid is governed by the non-dimensionalised magnetic induction equation,

∂τB = ∇2B+Rm∇× (v ×B) (1.1)

where the magnetic Reynolds number Rm := VL/η is defined in terms of a typical velocity V and length
L, and the uniform magnetic diffusivity η. The time τ is scaled on the magnetic diffusion time L2/η. The
magnetic field B is solenoidal everywhere,

∇ ·B = 0 , (1.2)

and, since the fluid is incompressible, ∇ · v = 0.
The simplest helical flow dynamo is the Ponomarenko (1973) dynamo, which consists of a rigid electrically-

conducting cylinder of finite radius rotating with constant angular velocity Ω and moving with a constant
axial velocity V , surrounded by a rigid electrical conductor at rest. In cylindrical polar coordinates (s, φ, z)
the velocity of the cylinder is

v = sΩ1φ + V 1z (1.3)

Dynamo action in this case arises from the reciprocal generation of azimuthal magnetic field from radial
magnetic field by the discontinuity in the rotation, and radial field from azimuthal field by magnetic diffusion.
The additional longitudinal shearing component in the helical flow is crucial for field growth as it draws apart
oppositely directed field lines and prevents flux expulsion. Ponomarenko (1973) determined the magnetic
field in this case analytically, showing that the field is concentrated at the velocity discontinuity on the
cylinder boundary. Cylindrical helical flow dynamos with non-uniform V and Ω, such as in an electrically
conducting fluid, are more difficult to solve. Nevertheless, Lortz (1968) showed that a suitable ansatz for
both the magnetic field B and the flow v gives exact analytic steady solutions for such helical flows. An
explicit steady solution was subsequently given by Chen and Milovich (1984). Lortz (1972) has also given a
stationary asymptotic solution for a toroidal helical dynamo with circular meridional cross section of large
aspect ratio, i.e. as the torus approaches a circular loop.
For helical flows in spherical geometries, however, numerical techniques are generally required to solve

(1.1). If the flow is steady the magnetic field can be expressed as a linear combination of time-separable
solutions of the form

B(r, τ) = B(r)eλτ . (1.4)
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This leads to an eigenvalue problem for the (complex) growth rate λ and the associated eigenfunction, which
can be approximated numerically by a large-scale algebraic eigenvalue problem. For a given flow v, the
growth rate λ is a function of the magnetic Reynolds number Rm. The flow acts as a dynamo, i.e. the non-
magnetic state B = 0 is unstable to magnetic perturbations, if Reλ > 0 for sufficiently large Rm. Dudley &
James (1989) have given examples of single and double helical roll flows in an electrically conducting sphere
with an insulating exterior, which act as self-exciting dynamos for Rm & 100. In this case, in addition to the
magnetic induction equation (1.1) and the solenoidal condition (1.2), the magnetic field B is governed by

[B]Σ = 0 , ∇×B = 0 in V̂ , B→ 0 as r →∞, (1.5)

where Σ is the surface of the sphere. In spherical polar coordinates (r, θ, φ), the Dudley & James (1989)
single roll flow has the toroidal-poloidal representation,

v = ∇× tr+∇×∇× sr , (1.6)

with potentials t = sinπr cos θ and s = σ sinπr cos θ. The parameter σ is a constant and r is the radius
vector. Flows with this angular dependence may be the simplest spherical flows capable of supporting dynamo
action. Similar roll flows with values of the critical magnetic Reynolds number Rcm even smaller than those
computed by Dudley & James (1989) are possible: e.g. Forest et al (2002) achieve Rcm ≈ 72 compared
to Rcm ≈ 150 for the flow (1.6). This shows additionally that helical dynamos are efficient generators of
magnetic field, in the sense that Rcm is relatively small, which is why they are favoured by experimentalists
(see Gailitis & Freiburg 1980, Forest et al 2002, for example).
Asymptotic estimates at large Rm have been given by Ruzmaikin, Sokoloff, & Shukurov (1988) for

cylindrical helical flow dynamos (1.3) with non-uniform V and Ω. They show that the importance of

diffusion in magnetic self-excitation means the dynamo is slow with Reλ = O(R1/2m ). Also, since the typical
diffusion scale shrinks as Rm becomes large, a growing magnetic mode must possess a radial gradient on

sufficiently short length scales, of order R
−1/4
m , so that diffusion of helical magnetic field may effectively

replenish radial magnetic field. This small-scale magnetic structure spatially localises on a ‘resonant’ stream
surface at which diffusion is optimal. In the Ponomarenko dynamo the resonant stream surface is the surface
of velocity discontinuity. In addition, for a field of the form B = [Bs(s)1s+Bφ(s)1φ+Bz(s)1z]e

imφ+ikz+λτ ,
there exists the following scaling,

Reλ = O(R1/2m ) , R1/2m Bs ∼ Bφ ∼ Bz , m, k = O(1). (1.7)

Thus the field is spatially localized about the resonant stream surface to a region of width O(R−1/4m ) . Gilbert
(1988) has presented an alternative scaling,

Reλ = O(R2/3m ) , m, k = O(R1/3m ) , (1.8)

where the magnetic field is localised to a region of width O(R−1/3m ) about the resonant stream surface. He
argues that these estimates capture the fastest growing modes at large Rm.
Gilbert & Ponty (2000) generalised these asymptotic solutions to helical dynamos in cylinders of general

cross-section and in spherical geometries. In spherical dynamos the helical flow is axisymmetric and may be
represented by

v = vm +W (r, θ)r sin θ1φ , (1.9)

where vm is the meridional velocity and W is the local azimuthal angular velocity. The meridional flow vm
is given in terms of a stream function ψ by

vm = −
∂θψ

r2 sin θ
1r +

∂rψ

r sin θ
1θ = ∇φ×∇ψ = −∇×

ψ

r sin θ
1φ . (1.10)

The streamlines of vm in a meridional plane are the level contours of ψ and circle a local minimum (maximum)
of ψ in the clockwise (counter-clockwise) direction. A spherical single-roll helical dynamo can be pictured as
a cylindrical helical flow bent into a torus and then deformed to fill the spherical shape. The representations
(1.6) and (1.9) are related by ψ = r sin θ ∂θs and ∂θt = −Wr sin θ. The Gilbert & Ponty (2000) theory
predicts that the dominant mechanism of field generation is of Ponomarenko type and the scalings (2.17)
coincide with those of the circular cylindrical case (1.8). The predicted eigenfunction and growth rate to
dominant order are given below in (2.60), (2.62) and (2.63).

2



We test the asymptotic formulas (2.60), (2.62) and (2.63) on two single roll flows in a sphere,

v1 = σVm + r
2 sinπr sin3 θ 1φ , v2 = σVm + sinπr sin θ 1φ . (1.11)

The meridional parts contain an adjustable parameter σ, which fixes the meridional speed relative to the
azimuthal speed and is used below as a tuning parameter. Thus vm = σVm and ψ = σΨ, where the
meridional stream function Ψ is given by

Ψ(r, θ) = −r sinπr sin2 θ . (1.12)

The flows differ significantly only in their azimuthal components, which are of the restricted formW =W (ψ)
and the general form W = W (r, θ), respectively. The restricted form of the local angular velocity simplifies
the asymptotic theory substantially and facilitates the asymptotic calculations.
The local angular velocity of the flow v1 is W = −Ψ. In terms of the fields, tmn := ∇ × (tmn Y mn r) and

smn := ∇ × ∇ × (smn Y mn r), where the spherical harmonic Y mn is defined by (4.2) below, this flow has the
poloidal-toroidal spectral form, v1 = σ s01 + t01 + t03, in which the radial functions are

s01 =
sinπr√
3

, t01 = −
4

5
√
3
r2 sinπr , t03 =

2

15
√
7
r2 sinπr , (1.13)

and the spherical harmonics are Y 01 =
√
3 cos θ and Y 03 =

1
2

√
7 cos θ(5 cos2 θ − 3).

The second flow v2 is the single roll flow of Dudley & James (1989). Our results extend their work to
the large Rm regime. This flow has the poloidal-toroidal spectral form, v2 = σ s01 + t01, where

s01 =
sinπr√
3

, t01 = sinπr . (1.14)

The local angular velocity of v2 is W = (sinπr)/r, which is of general form. Note that although v1 has the
simpler restricted form of the local angular velocity, its spherical harmonic representation is actually more
complicated.

In section 2 the asymptotic theory is briefly described for the growth rate to O(R−1/2m ) and the magnetic
field to leading order. The numerical evaluation of the asymptotic formulas for the growth rate and the
magnetic field is described in section 3. The numerical solution of the exact spherical dynamo eigenproblem
is presented in section 4. The results of the asymptotic formulas are compared with the numerical solution
of the dynamo problem in section 5. In section 6 the asymptotic theory for the growth rate is completed to

O(R−1m ) and the magnetic field to O(R
−1/2
m ). Concluding remarks are given in section 7.

2 Asymptotic Theory

The asymptotic theory of Gilbert & Ponty (2000) for Rm À 1 is described and extended in this section.

Expressions for the real and imaginary parts of the growth rate are given to O(R−1/2m ) in terms of geometric
properties of the spherical single-roll flow. In addition, we derive expressions describing the spatial structure

of the magnetic field modes fully to leading order and up to functions of ψ at O(R−1/2m ). We also verify that
the asymptotic formula for the magnetic field is solenoidal to leading order. The results here are needed
to extend the asymptotic theory for the growth rate to O(R−1m ) and to complete the determination of the
magnetic field to O(R−1/2m ) in Section 6.

2.1 Toroidal Co-ordinates for Axisymmetric Helical Flows

The structure of the flow (1.9), i.e. the topology of its streamlines and its differential rotation, can be
exploited by a toroidal coordinate system to simplify the advection operator. The first two coordinates
are determined by the meridional flow. The stream function ψ is one coordinate. The second is an angle
coordinate ϑ defined as follows: if T is the period for a fluid particle to traverse the closed vm-streamline
ψ = ψo once, then T = T (ψ) and

dϑ =
2π

T
dt = Ω

d`

q
= Ω

vm · dr
q2

= Ω
rdθ

vθ
= Ω

dr

vr
, (2.1)
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where Ω = 2π/T is the angular frequency, d` is the element of arc-length travelled in a time dt, q = |vm|
and there is no stagnation point on the streamline. Thus dϑ/dt = Ω is constant on streamlines. For the two
flows we consider we fix ϑ = 0 on the s-axis (θ = π/2), since the stagnation points of their meridional parts
occur there. Clearly ϑ changes by 2π in one full traversal of the closed streamline. The azimuthal angle φ
is replaced by the third coordinate ζ defined by

ζ(ψ, ϑ, φ) := φ− Z(ψ, ϑ) , Z :=
1

Ω(ψ)

∫ ϑ

0

W̃ (ψ, ϑ∗) dϑ∗ . (2.2)

The level surfaces of ζ are distorted azimuthal planes
The asymptotic theory is developed herein for the general case W = W (ψ, ϑ), in which the azimuthal

velocity W depends on both ψ and ϑ. The substantial simplifications, which occur if W = W (ψ), i.e. W is
independent of ϑ, are indicated later. An overbar or pair of angle brackets denotes the average around the
vm-streamline ψ = ψo, defined by

f ≡ 〈f〉 := 1

2π

∮

ψ=ψo

fdϑ ,

where f is a function of the meridional coordinates and the integration is around the streamline ψ = ψo.
Clearly, the mean component of W is independent of ϑ, i.e. W = W (ψ), and we can define the fluctuating

component of W by W̃ (ψ, ϑ) :=W (ψ, ϑ)−W .
The coordinate system (ψ, ϑ, ζ) naturally gives rise to the two right-handed vector bases, (∇ψ,∇ϑ,∇ζ)

and (fψ, fϑ, fζ), where fψ := ∂r/∂ψ, fϑ := ∂r/∂ϑ, fζ := ∂r/∂ζ and r is the position vector. It is a useful
shorthand to also denote the coordinates by ψi with indices i = 1, 2, 3, and the two bases by ∇ψi and fi.
The bases are reciprocal, fi · ∇ψj = δji , and related by

fψ = J∇ϑ×∇ζ , fϑ = J∇ζ ×∇ψ , fζ = J∇ψ ×∇ϑ , (2.3)

where the Jacobian J of the transformation to (ψ, ϑ, ζ) is given by

J := fψ × fϑ · fζ = (∇ψ ×∇ϑ · ∇ζ)−1 = Ω−1. (2.4)

Using the properties of the flux function, equations (2.4) may be simplified to

fψ = Ω
−1∇ϑ×∇φ+ fζ∂ψZ , fϑ = Ω

−1∇φ×∇ψ + fζ∂ϑZ , fζ = r sin θ1φ . (2.5)

Using the properties of reciprocal bases the velocity and the magnetic field may be written as

v = Ω(ψ)fϑ +W (ψ)fζ , B = Bψfψ +Bϑfϑ +Bζfζ . (2.6)

The advection operator can hence be written as

Dt = ∂t +Ω(ψ)∂ϑ +W (ψ)∂ζ . (2.7)

Its dependence only on ψ is essential in what follows.
Using the summation convention the magnetic field can be written as B = Bifi, the gradient operator

as ∇ = (∇ψi)∂i, where ∂i := ∂ψi , and the diffusion term in the magnetic induction equation as ∇2B =
(∇2Bj)fj + 2∇Bj · ∇fj +B

j∇2fj . Thus, since ∇Bj = (∂kBj)∇ψk,

∇ψi · ∇2B = (∇2Bi) + 2(∂kBj)∇ψk · ∇fj · ∇ψi +Bj∇ψi · ∇2fj .

Four of the 27 terms ∇ψk · ∇fj · ∇ψi and three of the 9 terms ∇ψi · ∇2fj vanish identically. Since ∇fζ =
1s1φ − 1φ1s, a · (∇fζ) · b = 0 for any meridional vectors a, b, and hence

∇ψ · (∇ψ · ∇fζ) = ∇ψ · (∇ϑ · ∇fζ) = ∇ϑ · (∇ψ · ∇fζ) = ∇ϑ · (∇ϑ · ∇fζ) = 0 .

Also ∇2fζ = 0 implies ∇ψ · ∇2fζ = ∇ϑ · ∇2fζ = ∇ζ · ∇2fζ = 0.
Keeping only terms which appear later in the asymptotic analysis and suppressing the others with dots,

the relevant diffusion terms are

∇ψ · ∇2B = (∇2 + 2µi∂ψ + 2µj∂ϑ + 2µk∂ζ + µl)Bψ + (2µa∂ψ + 2µb∂ϑ + 2µc∂ζ + µd)Bϑ + 2µg∂ζBζ (2.8)

∇ϑ · ∇2B = (∇2 + 2λa∂ψ + 2λb∂ϑ + 2λc∂ζ + λd)Bϑ + 2λg∂ζBζ + . . . (2.9)
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∇ζ · ∇2B = 2ρa∂ψBϑ + (∇2 + 2ρb∂ψ)Bζ + . . . , (2.10)

where the coefficients are defined by

µa := ∇ψ · (∇ψ · ∇fϑ) µb := ∇ψ · (∇ϑ · ∇fϑ) µc := ∇ψ · (∇ζ · ∇fϑ) µd := ∇ψ · ∇2fϑ
µg := ∇ψ · (∇ζ · ∇fζ) µi := ∇ψ · (∇ψ · ∇fψ) µj := ∇ψ · (∇ϑ · ∇fψ) µk := ∇ψ · (∇ζ · ∇fψ)

µl := ∇ψ · ∇2fψ λa := ∇ϑ · (∇ψ · ∇fϑ) λb := ∇ϑ · (∇ϑ · ∇fϑ) λc := ∇ϑ · (∇ζ · ∇fϑ)

λd := ∇ϑ · ∇2fϑ λg := ∇ϑ · (∇ζ · ∇fζ) ρa := ∇ζ · (∇ψ · ∇fϑ) ρb := ∇ζ · (∇ψ · ∇fζ) .

Apart from µd, µl, λd these are Christoffel symbols. The scalar Laplacian is ∇2 = ∇ · (∇ψi)∂i = (∇ψi ·
∇ψj)∂i∂j + (∇2ψi)∂i, i.e.

∇2 = (∇ψ)2∂2ψ + 2(∇ψ · ∇ϑ)∂ψ∂ϑ + (∇ϑ)2∂2ϑ + 2(∇ϑ · ∇ζ)∂ϑ∂ζ
+ (∇ζ)2∂2ζ + 2(∇ζ · ∇ψ)∂ζ∂ψ + (∇2ψ)∂ψ + (∇2ϑ)∂ϑ + (∇2ζ)∂ζ .

The following further simplifications can be established using standard vector identities, the divergence
theorem and Stokes’ theorem (see Gilbert & Ponty 2000),

µa = µd = µg = µl = λb = ρb = 0 . (2.11)

2.2 Asymptotic Expansion of the Magnetic Induction Equation

We employ the coordinate system described above in the asymptotic analysis of the magnetic induction
equation for a single-roll flow in spherical geometry. In this section we follow Gilbert & Ponty (2000) and
scale time t on the turn-over timescale a/V, where a is the spherical radius and V is a typical flow speed.
The times scaled on the turn-over and diffusion times are related by t = τRm. The non-dimensionalised
magnetic induction equation in this case is

∂tB = ∇× (v ×B) + ε4∇2B , (2.12)

where ε = R
−1/4
m and Rm := aV/η is the magnetic Reynold’s number. We are interested in the asymptotic

behaviour of solutions for large Rm, i.e. as ε→ 0.
The contravariant components of (2.12) are

DtBψ = ε4∇ψ · ∇2B (2.13)

DtBϑ − Ω′(ψ)Bψ = ε4∇ϑ · ∇2B (2.14)

DtBζ −W
′
(ψ)Bψ = ε4∇ζ · ∇2B . (2.15)

The primes indicate derivatives with respect ψ. As noted above, regeneration of the magnetic field component
Bψ is solely due to diffusion, but regeneration of Bϑ and Bζ is partly due to distortion of Bψ by meridional
and azimuthal differential rotation, respectively.
Solutions of equation (2.12) or, equivalently equations (2.13)–(2.15), do not necessarily satisfy the

solenoidal condition (1.2) on the magnetic field. The condition is satisfied identically by time separable
solutions if the diffusion term is in the form −ε4∇ × ∇ × B, but this form complicates the asymptotic
analysis. Since ∇ · (fi/J) = 0, the coordinate form of (1.2) is

Ω∂ψ(Bψ/Ω) + ∂ϑBϑ + ∂ζBζ = 0 . (2.16)

This equation is independent of (2.13)–(2.15).
We assume that the magnetic field solutions obey the scaling of Ruzmaikin et al. (1988) for small ε,

ε2Bψ ∼ Bϑ ∼ Bζ , p = O(ε2) , m, k = O(1) . (2.17)

and that they can be separated into modes of the form Bψ, Bϑ, Bζ ∝ eimζ+(p+iω)t. Thus p+iω = λ/Rm. The
constant m must be an integer for solutions single-valued in ζ. These modes localise upon a stream surface
ψ = ψo in a layer of thickness O(ε). Thus ϑ- and ζ-derivatives are O(1) but ψ-derivatives are O(ε−1). We
therefore define a new variable Υ by

ψ = ψo + εΥ . (2.18)
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so that Υ -derivatives are O(1). The ψ-derivative and gradient operators become

∂ψ = ε−1∂Υ , ∇ = ε−1∇ψ ∂Υ +∇ϑ∂ϑ +∇ζ ∂ζ , (2.19)

and the magnetic field components take the functional forms,

Bψ = ε2bψ(Υ, ϑ)e
imζ+iωt+pt , Bϑ = bϑ(Υ, ϑ)e

imζ+iωt+pt , Bζ = bζ(Υ, ϑ)e
imζ+iωt+pt . (2.20)

Equations (2.13)–(2.15) become, using (2.8)–(2.10),

Dtbψ = ε2µa∂Υ bϑ + ε
2{(∇ψ)2∂2Υ bψ + (2µb∂ϑ + 2imµc + µd)bϑ + 2imµgbζ}
+ ε3{2µi + 2(∇ψ · ∇ϑ)∂ϑ + 2im∇ζ · ∇ψ +∇2ψ}∂Υ bψ

+ ε4{(∇ϑ)2∂2ϑ + (2im∇ϑ · ∇ζ +∇2ϑ+ 2µj)∂ϑ −m2(∇ζ)2 + im∇2ζ + 2imµk + µl}bψ ,

Dtbϑ − ε2Ω′bψ = ε2(∇ψ)2∂2Υ bϑ + ε3{2λa + 2(∇ψ · ∇ϑ)∂ϑ + 2im∇ζ · ∇ψ +∇2ψ}∂Υ bϑ
+ ε4{[(∇ϑ)2∂2ϑ+(2λb+2im∇ϑ · ∇ζ +∇2ϑ)∂ϑ−m2(∇ζ)2+ im∇2ζ +2imλc+λd]bϑ+2imλgbζ}+O(ε5) ,

Dtbζ − ε2W
′
bψ = ε2(∇ψ)2∂2Υ bζ

+ ε3{[2ρb + 2(∇ψ · ∇ϑ)∂ϑ + 2im∇ζ · ∇ψ +∇2ψ]∂Υ bζ + 2ρa∂Υ bϑ}+O(ε4) ,

since

ε4∇2 = ε2(∇ψ)2∂2Υ + ε3{2(∇ψ · ∇ϑ)∂ϑ + 2im∇ζ · ∇ψ +∇2ψ}∂Υ
+ ε4{(∇ϑ)2∂2ϑ + (2im∇ϑ · ∇ζ +∇2ϑ)∂ϑ −m2(∇ζ)2 + im∇2ζ} .

The solenoidal condition (2.16) becomes

ε∂Υ bψ −
Ω′

Ω
ε2bψ + ∂ϑbϑ + imbζ = 0 . (2.21)

We now expand ω and p in powers of ε with the ordering (2.17),

ω = ω0 + εω1 + ε
2ω2 + ε

3ω3 + ε
4ω5 + . . . , p = ε2p2 + ε

3p3 + ε
4p4 + . . . , (2.22)

and expand W (ψ) and Ω(ψ) in Taylor series about the streamline ψ = ψo,

Ω(ψo + εΥ ) = Ωo +Ω
′
oεΥ +

1
2Ω
′′
oε
2Υ 2 + . . . (2.23)

W (ψo + εΥ ) =W o +W
′
oεΥ +

1
2W

′′
oε
2Υ 2 + . . . , (2.24)

in which Ωo = Ω(ψo), Ω
′
o = Ω

′(ψo), etc. Assuming the functional dependencies of (2.20) and substituting
the expansions (2.22)–(2.24) into the advection operator (2.7) gives

Dt = d0 + εd1 + ε
2d2 + ε

3d3 + ε
4d4 + . . . , (2.25)

where

dn = pn + iωn +
Υn

n!

(
Ω(n)o ∂ϑ + imW

(n)

o

)
, p0 = p1 = 0 . (2.26)

We also expand (∇ψ)2 in the diffusion term in a Taylor series,

(∇ψ)2 = γ0 + εΥγ1 + ε
2Υ 2γ2 + ε

3Υ 3γ3 + ε
4Υ 4γ4 + . . . . (2.27)

Finally we expand the magnetic field components,

bψ = bψ0 + εbψ1 + . . . , bϑ = bϑ0 + εbϑ1 + . . . , bζ = bζ0 + εbζ1 + . . . . (2.28)

We are now ready to derive the asymptotic equations at the various orders.
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2.3 The ε0, ε1 and ε2 Equations

In this section we describe the asymptotics to order ε2. For a fuller account see Gilbert & Ponty (2000).
We substitute expansions (2.22)–(2.25), (2.27) and (2.28) into the component equations (2.13)–(2.15), divide
(2.13) by ε2, and collect terms of like order.
The ε0-equations are

d0bψ0 = 0 , d0bϑ0 = 0 , d0bζ0 = 0 , (2.29)

which have the solution,

bψ0 = Fψ0(Υ )e
ikϑ , bϑ0 = Fϑ0(Υ )e

ikϑ , bζ0 = Fζ0(Υ )e
ikϑ , (2.30)

where the functions Fψ0, Fϑ0, Fζ0 are determined at order ε
2 and must vanish as |Υ | → ∞. The constant k

is an integer since B is single-valued. Solvability of (2.29) fixes the angular frequency ω to leading order for
given m and k,

ω0 = −Πo , (2.31)

where we have introduced the frequency function Π(ψ) := kΩ+mW . The operator d0 becomes Ωo(∂ϑ− ik),
and hence annihilates any term with the ϑ-dependence eikϑ. The solenoidal ε0-condition from (2.16) is

∂ϑbϑ0 + imbζ0 = 0 . (2.32)

Thus
kFϑ0 +mFζ0 = 0 . (2.33)

The ε1-equations are

d0bψ1 + d1bψ0 = 2µa,o∂Υ bϑ0 , d0bϑ1 + d1bϑ0 = 0 , d0bζ1 + d1bζ0 = 0 . (2.34)

Their solvability requires

ω1 = 0 , Π′o = kΩ′o +mW
′
o = 0 . (2.35)

The last condition fixes the resonant streamline ψ = ψo, upon which the magnetic field is localised for given
m and k. At this streamline the function Π(ψ) possesses a critical point, and a maximum if Π′′o < 0, which
is the case for the simple roll flows we examine. The larger gradients in Bϑ and Bζ on this surface encourage
diffusion of these fields and hence replenishment of Bψ. The operator d1 becomes d1 = ΥΩ

′
o(∂ϑ − ik) and

hence also annihilates any term with ϑ-dependence eikϑ.
The last two equations in (2.34) can be solved similarly to (2.29). The first equation reduces to,

d0bψ1 = 2µa,o∂Υ bϑ0 = 2µa,oF
′
ϑ0(Υ )e

ikϑ ,

which is solvable, since µa = 0 and the right side then possesses no term with the ϑ-dependence e
ikϑ. Thus

the magnetic field at order ε1 is

bψ1 = Fψ1(Υ )e
ikϑ +Gψ1(Υ, ϑ)e

ikϑ , bϑ1 = Fϑ1(Υ )e
ikϑ , bζ1 = Fζ1(Υ )e

ikϑ , (2.36)

where the functions Fψ1, Fϑ1, Fζ1 are determined at order ε
3 and the particular integral for equation (2.34)(a)

is

Gψ1 =
2F ′ϑ0
Ωo

µ̂a,o , Gψ1 = 0 . (2.37)

Here we have introduced the operator ̂ defined by

∂ϑf̂ = f − f , f̂ = 0 ,

which implies

f̂ =

∫ ϑ

0

(f − f) dϑ−
∫ ϑ

0

(f − f) dϑ .

The properties

f̂g = −fĝ , f f̂ = 0 (2.38)

are easily established.
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The order ε1 solenoidal condition is

∂Υ bψ0 + ∂ϑbϑ1 + imbζ1 = 0 , (2.39)

which becomes, on substituting (2.30) and (2.36),

∂ΥFψ0 + ikFϑ1 + imFζ1 = 0 , (2.40)

The ε2-equations are

d0bψ2 + d1bψ1 + (d2 − γ0∂2Υ )bψ0 = 2µa,o∂Υ bϑ1 + 2µ′a,oΥ∂Υ bϑ0
+ (2µb,o∂ϑ + 2imµc,o + µd,o)bϑ0 + 2imµg,obζ0 (2.41)

d0bϑ2 + d1bϑ1 + (d2 − γ0∂2Υ )bϑ0 = Ω′obψ0 (2.42)

d0bζ2 + d1bζ1 + (d2 − γ0∂2Υ )bζ0 =W
′
obψ0 . (2.43)

Gilbert & Ponty (2000) included subdominant terms from the Laplacian at this order arguing that these are
comparable when employing the scalings of Gilbert (1988). However, they neglect to include the coordinate
Laplacians, ∇2ψ, ∇2ϑ, ∇2ζ which are of the same order. In the present analysis all these terms appear at
the correct (higher) orders.
Equations (2.41)–(2.43) are solvable for the field components bψ2, bϑ2 and bζ2, if the ϑ-dependence of the

other terms is not eikϑ. This is true for the terms, d1bψ1, d1bϑ1 and d1bζ1, since the operator d1 annihilates
eikϑ. It is also satisfied by the terms, 2µa,o∂Υ bϑ1, 2µd,obϑ0 and 2imµg,obζ0, since the coefficients µa,o, µd,o,
µg,o average to zero by (2.11). The sum of the remaining terms must average to zero after multiplication by
e−ikϑ. Consequently we may write the solvability condition for (2.41)–(2.43) as

L



Fψ0
Fϑ0
Fζ0


 = 0 , L :=



Ξ 2iαo 0
Ω′o Ξ 0

W
′
o 0 Ξ


 , (2.44)

where
Ξ := γ0∂

2
Υ − 1

2 iΠ
′′
oΥ

2 − p2 − iω2 , α := kµb +mµc , Π′′o = kΩ′′o +mW
′′
o , (2.45)

with γ0 =< |∇ψ|2o >. These equations determine the functions Fψ0, Fϑ0, Fζ0 and hence the magnetic field
to leading order. The solutions are of the form



Fψ0
Fϑ0
Fζ0


 = yn(Υ )a , yn(Υ ) = Dn (Υ/κ) , κ := (γ0/2iΠ

′′
o )
1/4. (2.46)

Here a is a constant vector to be determined and Dn(z) is the parabolic cylinder function of degree n,

Dn(z) = 2
−n/2e−z

2/4Hn(z/
√
2) , n ≥ 0 ,

where Hn(z) is the Hermite polynomial of degree n. It is a solution of the equation

d2Dn(z)

dz2
+ (n+ 1

2 − 1
4z
2)Dn(z) = 0 .

In order for this solution to satisfy the boundary conditions, i.e. Fψ0, Fϑ0, Fζ0 → 0 as |Υ | → ∞, we choose
κ−2 with positive real part,

κ−2 =
√
|Π′′o |/γ0 (1 + i sgnΠ′′o ) ,

noting that γ0 > 0. The two eigenfunctions which arise from the ambiguous sign of κ differ only if n is odd
and then only in sign. Thus

κ−1 = 4
√
2|Π′′o |/γ0 eiπ(sgnΠ

′′
o )/8 = 4

√
|Π′′o |/γ0

(√√
2+1
2 + i

√√
2−1
2 sgnΠ′′o

)
.

The yn are eigenfunctions of Ξ with eigenvalue ξn,

Ξyn = ξnyn , ξn := −(n+ 1
2 )
√
|Π′′o |γ0 (1 + i sgnΠ′′o )− (p2 + iω2) .
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Substitution of the ansatz (2.46) into (2.44) gives

Lna = 0 , Ln :=



ξn 2iαo 0
Ω′o ξn 0

W
′
o 0 ξn


 , (2.47)

which has non-trivial solutions if detLn = 0. This yields ξn = 0 or ξ2n = 2iαoΩ
′
o, i.e. ξn = ±(1 +

i sgnαoΩ
′
o)
√
|αoΩ′o|, and determines p2 and ω2. We shall ignore the solution for ξn = 0, since its growth

rate has a negative real part and only its ζ component is non-zero. The other two solutions give for the nth
mode

p2 = ∓
√
|αoΩ′o| − (n+ 1

2 )
√
|Π′′o |γ0 (2.48)

ω2 = ∓
√
|αoΩ′o| sgn(αoΩ′o)− (n+ 1

2 )
√
|Π′′o |γ0 sgnΠ′′o (2.49)

a = [−ξn,Ω′o,W
′
o]
T . (2.50)

The real and imaginary parts of the growth rate in (2.48) and (2.49) agree with Gilbert & Ponty (2000) to
order ε2. The vector a is determined up to a constant factor. From (2.46) and (2.50) the order ε0 solenoidal
condition (2.33) is a consequence of the resonance condition (2.35)(b).
Equations (2.41)–(2.43) have solutions of the form,

bψ2 = Fψ2(Υ )e
ikϑ +Gψ2(Υ, ϑ)e

ikϑ , Gψ2 = 0 (2.51)

bϑ2 = Fϑ2(Υ )e
ikϑ +Gϑ2(Υ, ϑ)e

ikϑ , Gϑ2 = 0 (2.52)

bζ2 = Fζ2(Υ )e
ikϑ +Gζ2(Υ, ϑ)e

ikϑ , Gζ2 = 0 . (2.53)

The particular integrals Gψ2, Gϑ2 and Gζ2 can be determined at this order by subtracting from (2.41)–(2.43)
their projections on eikϑ and integrating with respect to ϑ. The results are

ΩoGψ2 = −
2Ω′o
Ωo

µ̂a,oΥF
′
ϑ0 + γ̂0F

′′
ψ0 + 2µ̂a,oF

′
ϑ1 + 2µ̂

′
a,oΥF

′
ϑ0 + (2iα̂o + µ̂d,o)Fϑ0 + 2imµ̂g,oFζ0 . (2.54)

ΩoGϑ2 = γ̂0F
′′
ϑ0 . (2.55)

ΩoGζ2 = γ̂0F
′′
ζ0 . (2.56)

The order ε2 solenoidal condition is

∂Υ bψ1 −
Ω′

Ω
bψ0 + ∂ϑbϑ2 + imbζ2 = 0 , (2.57)

which becomes, on substituting (2.30), (2.36) and (2.51)–(2.53),

∂Υ (Fψ1 +Gψ1)−
Ω′

Ω
Fψ0 + ∂ϑGϑ2 + ik(Fϑ2 +Gϑ2) + im(Fζ2 +Gζ2) = 0 .

Averaging this equation with respect to ϑ yields

∂ΥFψ1 −
Ω′

Ω
Fψ0 + ikFϑ2 + imFζ2 = 0 , (2.58)

leaving
∂ΥGψ1 + ∂ϑGϑ2 + ikGϑ2 + imGζ2 = 0 . (2.59)

In section 6 following the numerical results we outline the method of solution at higher orders. In
particular, we show there that p3 = ω3 = 0, and give the full expressions for p4 and ω4.

2.4 The Asymptotic Magnetic Field Solution

The quantities bϑ, bζ , ϑ, µc, µj , µl, ρa, λb, λd, λg are explicitly independent of the weight factor σ. The
explicit dependencies of other quantities on σ are given by

Υ = σΥ ∗ bψ = σb∗ψ Ω = σΩ∗ µa = σ2µ∗a µb = σµ∗b
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µd = σµ∗d µg = σµ∗g µi = σµ∗i µk = σ−1µ∗k λa = σλ∗a

λc = σ−1λ∗c Z = σ−1Z∗ ,

where an asterisk indicates a quantity independent of σ. In this section we make the parameter σ explicit,
use the asterisked quantities and suppress the asterisks.
Combining (2.5), (2.6) and (2.20) the magnetic field becomes

B = {ε2bψΩ−1∇ϑ×∇φ+ bϑΩ−1Vm + (ε
2bψσ

−1∂ψZ + bϑσ
−1∂ϑZ + bζ)r sin θ 1φ}eimζ+iωt+pt .

To dominant order spatially,

B = {ε2Fψ0Ω−1∇ϑ×∇φ+Fϑ0Ω−1Vm+(ε
2Fψ0σ

−1∂ψZ+Fϑ0σ
−1∂ϑZ+Fζ0)r sin θ 1φ}eikϑ+imζ+iωt+pt+O(ε)

or
B = {Ω′oΩ−1Vm + σ

−1(Ω′oΩ
−1W̃ +W

′
o)r sin θ1φ}Dn(Υ/κ)e

ikϑ+imζ+iωt+pt +O(ε) ,
where

Dn(Υ/κ) = 2
−n/2 exp

(
− 1
4R

1/2
m (Ψ−Ψo)2

√
|Π′′o/γ0| (1 + i sgnΠ′′o )

)
Hn(Υ/

√
2κ)

with

Υ/κ = R1/4m (Ψ−Ψo) 4
√
|Π′′o |/γ0

(√√
2+1
2 + i

√√
2−1
2 sgnΠ′′o

)
.

The first four Hermite polynomials are H0(x) = 1, H1(x) = 2x, H2(x) = 4x
2 − 2, H3(x) = 8x3 − 12x. As

expected for large Rm the moduli of the eigenfunctions exhibit a Gaussian-like structure about the resonant
curve, with spatial oscillations of rapidly diminishing amplitude as distance Υ from the curve increases.
Higher n modes display more complex spatially varying behaviour within the envelope of the stream surface
localization.
The magnetic field can be graphically represented by plotting the spherical polar components of ReCB0

and ImCB0 in the meridional plane, where

B0 = [Ω
−1Vm + (σ

−1Ω−1W̃ − k/m)r sin θ 1φ]Dn(Υ/κ)e
i(kϑ−mσ−1Z) , (2.60)

i.e. the ε0-field obtained from B by removing the factor eimφ+iωt+pt, and choosing the complex normalisation
constant C to minimise

∫
V
|CB0 −B|2 dV , where B is the magnetic field obtained by solving the dynamo

eigen-problem,

C =

∫
V

B∗0 ·B dV∫
V
|B0|2 dV

. (2.61)

The real parts of the growth rates are

p = ±ε2
√
|σkµb +mµc||Ω′o| − (n+ 1

2 )ε
2

√
|σkΩ′′o +mW

′′
o |γ0 +O(ε4) (2.62)

and the angular frequencies are

ω = −σkΩo −mW o ± ε2
√
|σkµb +mµc||Ω′o| sgn [(σkµb +mµc)Ω′o]

− (n+ 1
2 )ε

2

√
|σkΩ′′o +mW

′′
o |γ0 sgn

(
σkΩ′′o +mW

′′
o

)
+O(ε4) , (2.63)

where the quantities appearing are evaluated upon the resonant stream surface ψ = ψo. The n = 0 mode
is the fastest growing magnetic field mode to dominant order for any m and k. The additional term,
−ε4

(
k2βk +m

2βm + 2mkβmk
)
, must be added to the real part of the growth rate (2.62) to obtain Gilbert

& Ponty’s (2000) formula. The β’s, which are independent of σ, are given by

βk := |∇ϑ|2 − γ−10 (∇ψ · ∇ϑ)2 (2.64)

βm := |∇ζ|2 − γ−10 (∇ψ · ∇ζ)2 (2.65)

βmk := ∇ϑ · ∇ζ − γ−10 (∇ψ · ∇ϑ)(∇ψ · ∇ζ) , (2.66)

These are not the complete contribution at order ε4 but, as Gilbert (1989) argues, they should be the most
important terms at that order for the fastest growing modes.
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Finally, the streamline on which the field is localised is determined from the conditions,

kσΩ′o +mW
′
o = 0 , σ2Π′′o = kσΩ′′o +mW

′′
o 6= 0 . (2.67)

In general, we find that Π′′o < 0, which indicates that the resonant streamline corresponds to the maximal
helical gradient of the magnetic mode. Equation (2.67)(a) is also the condition for the closure of the magnetic
field lines on the surface ψ = ψo to leading order. Since dr = fψdψ+fϑdϑ+fζdζ, the equation for the magnetic
field lines, B× dr = 0, reduces to

Bψdϑ−Bϑdψ = 0
Bψdζ −Bζdψ + (∂ϑZ)(Bψdϑ−Bϑdψ) = 0
Bϑdζ −Bζdϑ− (∂ψZ)(Bψdϑ−Bϑdψ) = 0 ,

or simply
dψ

Bψ
=
dϑ

Bϑ
=
dζ

Bζ
.

For the magnetic field (2.53)–(2.55) the field lines to leading order are

Ψ = Ψo , ϑ− ϑo =
W
′
o

σΩ′o
(ζ − ζo) ,

where (Ψo, ϑo, ζo) is a given point on the field line. The magnetic field line is closed if there are integers k, m
such that ϑ−ϑo = −2πk and ζ−ζo = 2πm, which give the resonance condition (2.56)(a). So, unsurprisingly,
a resonant surface also corresponds to the spatial localisation for which a magnetic mode reinforces itself.
The resonance condition also ensures the ε0-magnetic field is solenoidal, as noted following (2.50).
We could in principal find the resonant streamline Ψ = Ψo for given values of (m, k, σ). However, we

make the choices of the resonant streamline Ψ = Ψo and the particular (m, k)-mode arbitrary by adjusting
the parameter σ, and hence the flow, to satisfy the resonance condition (2.56)(a), i.e.

σ = −mW ′
o/kΩ

′
o = σ(m, k,Ψo) . (2.68)

We thus use σ as a tuning parameter to tune the flow to the chosen streamline and magnetic modes.

3 Numerical Evaluation of the Asymptotic Expressions

In general the asymptotic approximations (2.51), (2.52), (2.53) to the growth rates and the eigenfunctions
must be evaluated numerically. In this section we describe the method of computation.

The formula for the growth rate requires the evaluation of Ω, Ω′, Ω′′, W , W
′
, W

′′
, µb, µc, βk, βm, βmk

and γ0 on the resonant streamline ψ = ψo. Each of these quantities may be evaluated by line integrals along
the streamline. Moreover a number of their constituent parts (such as∇ϑ and∇ζ) may also be determined by
line integrals. The integrals are usually too difficult to evaluate analytically and were evaluated numerically
using the compound trapezoidal rule. The eigenfunctions require the evaluation of these quantities, except
the β’s, on a (ϑ, ψ)-grid, which must subsequently be interpolated onto the (s, z) coordinate system. A
simple linear interpolation was sufficient.
We obtain Ω by integrating (2.1) and W by averaging. Their ψ derivatives may be procured as line

integrals using the following technique. The average of a function F (ψ, ϑ) over the curve Cψ given by
constant ψ can be expressed, using (2.1), as

F (ψ) =
Ω

2π

∮

Cψ

F vm

q2
· dr = Ω

2π

∮

∂Sψ

F vm

q2
· dr+ Ω

2π

∮

C0

F vm

q2
· dr (3.1)

=
Ω

2π

∮

Sψ

∇×
(
F

q2
vm

)
· 1φ r dr dθ +ΩK , (3.2)

where Sψ is the annular region in the meridional plane bounded by Cψ and a smaller fixed ψ-curve C0, which
encloses the stagnation point. The quantityK is independent of ψ. Now by (2.4), rdr dθ = (Ω r sin θ)−1dψ dϑ,
and thus

F

Ω
=
1

2π

∮

Sψ

∇×
(
F

q2
vm

)
· 1φ

Ωr sin θ
dϑ dψ +K . (3.3)

11



Differentiation gives
d

dψ

(
F

Ω

)
=
1

2π

∮

Cψ

∇×
(
F

q2
vm

)
· 1φ

Ωr sin θ
dϑ =

F1
Ω
, (3.4)

where F1 := ∇× (Fvm/q
2) · 1φ/r sin θ. Iteration yields

dn(F/Ω)/dψn = Fn/Ω (3.5)

where Fn is defined inductively for integer n > 1 by

Fn := ∇× (Fn−1vm/q2) · 1φ/r sin θ = −∇ ·
(
Fn−1∇ψ
(∇ψ)2

)
. (3.6)

Setting F = 1 gives integral expressions for Ω′, Ω′′, etc. For azimuthal flows of the form W (ϑ, ψ), F =W

gives expressions for W , W
′
, W

′′
, etc. Let Q := (∇ψ)2. Then

F1 = −∇ · (FQ∇ψ) = −(∇Q · ∇ψ +Q∇2ψ)F −Q∇ψ · ∇F
F2 = −∇ · (F1Q∇ψ) = −(∇Q · ∇ψ +Q∇2ψ)F1 −Q∇ψ · ∇F1 .

If R := ∇Q · ∇ψ +Q∇2ψ, then

F2 = (R
2 +Q∇ψ · ∇R)F + (2RQ+Q∇Q · ∇ψ)∇ψ · ∇F + 1

2Q
2∇Q · ∇F +Q2∇ψ · ∇∇F · ∇ψ .

As can be seen the integrands rapidly become very complicated with n. The motivation for persisting with
these complicated expressions is that the numerical integration of smooth periodic functions over a period
using the compound trapezoidal rule is spectrally accurate. Results were checked with a simpler but less
accurate method of fitting a spline curve to the ψ-curve.
It soon becomes apparent that a number of the integrands are singular in spherical polar coordinates. If

Vm = Vr 1r + Vθ 1θ, we can write dϑ = Ωrdθ/Vθ = Ωdr/Vr. The spherical polar components of Vm vanish
at two points on a Vm-streamline, which can cause singular integrals, specifically those which evaluate ∇ϑ.
To avoid this problem we transform to the toroidal coordinate system (R,Θ) shown in figure 1. The point
P0(r0, θ0) is a stagnation point of the meridional flow.

s

z

P0

P

Θ

R

θ0
r0

θ r

Figure 1: Toroidal coordinates (R,Θ).

Basic trigonometry gives a number of relationships between (r, θ) and (R,Θ), the most important of
which are

r =
√
r20 +R

2 + 2r0R sin(θ0 +Θ) (3.7)

θ = θ0 + tan
−1

∣∣∣∣
R cos(θ0 +Θ)

r0 +R sin(θ0 +Θ)

∣∣∣∣ , (3.8)

The (R,Θ, φ) system is orthogonal but left-handed. For the flows we examine, we take (r0, θ0) to be the
stagnation point at the centre of the concentric ψ curves. The radius r0 can be evaluated using the Newton-
Raphson method. We distinguish between different ψ curves by their largest s-intercept rs. Each ψ curve
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K 100 200 400 800
µb 4.63875 4.63936 4.63951 4.63955
µc −0.20886 −0.20782 −0.20756 −0.20750
βk 8.961 8.964 8.965 8.965

βm (v1) 4.58627 4.58627 4.58627 4.58627
βm (v2) 4.6719 4.6718 4.6718 4.6718
βmk 0.2256 0.2278 0.2284 0.2285

Table 1: The quantities required by the asymptotic theory which converge more slowly with K. Here
rs = 0.93.

is thus described by an equation ψ(r, θ) = ψ(rs, π/2). To determine the quadrature nodes we divide [0, 2π],
corresponding to one period of Θ, into n equal sub-intervals using the nodes Θi = 2πi/n, i = 0, 1, . . . , n. To
calculate the corresponding values of Ri we use the Newton-Raphson method to solve

ψ(r(Ri,Θi), θ(Ri,Θi))− ψ(rs, π/2) = 0

for Ri given Θi.
The integrands µb, µc, βk, βm, βmk and γ0 are expressed in terms of: Ω, W ; the R and Θ derivatives of

ψ, ϑ, VΘ, VR; and the ψ and ϑ derivatives of Z; where Vm = VR 1R + VΘ 1Θ. The derivatives of ψ, and VR,
VΘ can be found analytically. The quantities ∂Rϑ, ∂Θϑ and ∂ψZ must be determined. The angle ϑ is given
by

ϑ =

∫ ϑ

0

dϑ∗ = −Ω
∫ Θ

0

R∗
(r0 sin θ0 +R

∗ cosΘ∗)

∂R∗ψ∗
dΘ∗ , (3.9)

where an asterisk denotes evaluation upon the ψ = ψ∗ curve. The two sets of variables (R,Θ) and (R∗,Θ∗)
should not be confused: the asterisked pair are dependent on each other while the other pair are independent.
With this in mind we differentiate the integral in (3.9). Using Leibniz’s theorem we obtain

∂R

(
ϑ

Ω

)
= −

∫ Θ

0

∂R∗

(
R∗(r0 sin θ0 +R

∗ cosΘ∗)

∂R∗ψ∗

)
∂Rψ

∂R∗ψ∗
dΘ∗ , (3.10)

and

∂Θ

(
ϑ

Ω

)
= −

∫ Θ

0

∂R∗

(
R∗(r0 sin θ0 +R

∗ cosΘ∗)

∂R∗ψ∗

)
∂Θψ

∂R∗ψ∗
dΘ∗ − R(r0 sin θ0 +R cosΘ)

∂Rψ
. (3.11)

Lastly, ∂ψZ and ∂ϑZ are required for ∇ζ. Only the former issues a challenge. From the definition of W̃ ,

∂ψ(ΩZ) =

∫ ϑ

0

∂ψW̃
∗dϑ∗ =

∫ ϑ

0

∂ψW
∗dϑ∗ −W ′

ϑ . (3.12)

Thus from (2.2),

∂ψZ =
1

Ω

∫ ϑ

0

(∂ψW
∗ − Ω

′

Ω
W ∗)dϑ∗ +

ϑ

Ω

(
Ω′

Ω
W −W ′

)
. (3.13)

This is expression is evaluated by converting the ϑ integral to an integral over Θ and using the formula

∂ψW = J−1(∂Θϑ∂RW − ∂Rϑ∂ΘW ) , J =
∂(ψ, ϑ)

∂(R,Θ)
. (3.14)

Note that as the these integrals are not over closed curves, the trapezoidal rule does not give exponential
accuracy for them. The µ’s and β’s also require further averaging so their convergence is not as fast, as
shown in table 1.
The asymptotic estimates were computed in MATLAB. The convergence of quantities required by the

asymptotic theory is shown in table 1 for different numbersK of numerical integration nodes along the chosen
streamline, Ψ0. Those quantities that issue from a single integration around the closed streamline converge
very rapidly, typically for K = 30. These include Ω0 and its ψ derivatives, W and its ψ derivatives, and γ0.

Thus the quantities Ωo = 5.3919, Ω
′
o = 7.2807, Ω

′′
o = −16.662, W o = 0.93043, W

′
o = 1.4927, W

′′′
o = −2.7786

are accurate to the figures shown here for K = 100. However, quantities which are evaluated by line
integrals with variable limits converge more slowly, and settle down only for K = 800. The convergence of
these quantities is displayed in table 1.
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4 Numerical Solution of the Spherical Dynamo Eigenproblem

As indicated above, for steady flows the magnetic field is a linear combination of modes, which have the
time separable form (1.4). (We ignore the possibility of generalised eigenfunctions.) The kinematic dynamo
problem reduces to an eigenvalue problem for the growth rate λ and the spatial eigenfunction B(r). The
magnetic induction equation is usually scaled in these problems on the diffusive time-scale, as in (1.1). In
order to test the asymptotic theory outlined in sections 2 and 3 we must solve the eigen-problem numerically.
The solenoidal conditions on the magnetic field and the velocity are satisfied identically by the poloidal-
toroidal representation,

B = ∇× Tr+∇×∇× Sr , (4.1)

for the magnetic field and (1.6). The problem is then discretised using a spectral method in angle and fourth-
order finite-differences in radius, and techniques of linear algebra are used to solve discretised eigenproblem.

4.1 Spectral Equations in Angle

The numerical method uses a hybrid form of the spectral equations of James (1974). These are a compact
form of the poloidal-toroidal spectral equations derived by Bullard & Gellman (1954), apart from a factor
of r in the poloidal-toroidal representations and the normalisation of the spherical harmonics. The poloidal
and toroidal potentials of B are expanded in spherical harmonics,

Y mn (θ, φ) := (−)m
√
(2n+ 1)(n−m)!

(n+m)!
Pn,m(cos θ)e

imφ , (4.2)

where Pn,m is the the Neumann associated Legendre function defined by

Pn,m(z) := (−)n
(1− z2)m/2
2nn!

dm+n(1− z2)n
dzm+n

.

Y m∗n = (−)mY −mn (4.3)

Thus
S =

∑

n,m

Smn (r, t)Y
m
n (θ, φ) , T =

∑

n,m

Tmn (r, t)Y
m
n (θ, φ) . (4.4)

The summations are over n = 1, 2, . . . , m = −n :n.
The compact poloidal-toroidal spectral equations are derived by first expanding the magnetic field and

the velocity in vector spherical harmonics,

v =
∑

n,n1,m

vmn,n1
Ym
n,n1

, B =
∑

n,n1,m

Bmn,n1
Ym
n,n1

, (4.5)

where the vector spherical harmonics, which form a complete set, are defined by

Ym
n,n1

:= (−)n−m
√
2n+ 1

∑

m1,µ

(
n n1 1
m −m1 −µ

)
Y m1
n1

eµ . (4.6)

The complex unit vectors eµ are defined by e0 := 1z and e±1 := ∓(1x ± i1y)/
√
2. The summations in

equation (4.5) are over n = 0, 1, 2, . . . , n1 = n, n±1 ≥ 0, m = −n : n. The vector spherical harmonics are
orthonormal with respect to the inner product,

(F,G) :=
1

4π

∮
F ·G∗ dΩ ,

where dΩ = sin θ dθdφ. Substituting the expansions (4.5) of the magnetic field and the velocity into the
magnetic induction equation (4.1) and taking the inner product with Ym

n,n1
yields vector spherical harmonic

spectral equations.
However, the vector spherical harmonic coefficients of the magnetic field are given in terms of the spherical

harmonic coefficients of the magnetic potentials S and T by

Bmn,n−1 = (n+ 1)
√
n/(2n+ 1)∂n−1n Smn (4.7)
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Bmn,n = −i
√
n(n+ 1)Tmn (4.8)

Bmn,n+1 = n
√
(n+ 1)/(2n+ 1)∂n+1n Smn , (4.9)

where

∂n
′

n :=





∂

∂r
+
n+ 1

r
, if n′ = n− 1;

∂

∂r
− n

r
, if n′ = n+ 1.

Inversion of (4.7)–(4.9) gives

Smn =
Bmn,n−1

(n+ 1)
√
n(2n+ 1)

−
Bmn,n+1

n
√
(n+ 1)(2n+ 1)

, Tmn =
iBmn,n√
n(n+ 1)

. (4.10)

Spectral equations for Smn and T
m
n are derived by taking the combinations of the B

m
n,n1

-equations as indicated
by (4.10) and considering the time derivative. Thus

(∂t −Dn)S
m
n = Rm

∑

α,β

eB(n, n)(Y
mα
nα,n1α

×Y
mβ
nβ ,n1β ,Y

m
n,n)v

mα
nα,n1α

B
mβ
nβ ,n1β (4.11)

(∂t −Dn)T
m
n = Rm

∑

α,β,n1

(n1=n±1)

eB(n, n1)(Y
mα
nα,n1α

×Y
mβ
nβ ,n1β ,Y

m
n,n1

)∂nn1
(vmαnα,n1α

B
mβ
nβ ,n1β ) , (4.12)

where the operator Dn := r−2{∂r(r2∂r)− n(n+ 1)} and the factor

eB(n, n1) :=





−1/
√
n(2n+ 1), if n1 = n− 1;

i/
√
n(n+ 1), if n1 = n;

−1/
√
(n+ 1)(2n+ 1), if n1 = n+ 1.

The single coupling integral (Ymα
nα,n1α

× Y
mβ
nβ ,n1β ,Y

m
n,n) can be evaluated explicitly in terms of 3j- and

6j-symbols (James 1976). The hybrid spectral equations follow from (4.11) and (4.12) by replacing the
coefficients Bmn,n1

are throughout by Smn and Tmm using (4.7)–(4.9). The compact poloidal-toroidal spec-
tral equations of James (1974) follow by also replacing the velocity coefficients vmn,n1

throughout with the
coefficients smn and t

m
n of the velocity potentials using equations analogous to (4.7)–(4.9).

Equations (4.11)–(4.12) are solved subject to

Smn = O(rn) , Tmn = O(rn) as r → 0; (4.13)

∂Smn
∂r

+
n+ 1

r
Smn = 0 , Tmn = 0 , at r = 1. (4.14)

Conditions (4.13) and (4.15) are implied by the differentiability of B with respect to x, y, z at r = 0.
Equations (4.14) arise from the self-exciting dynamo condition (1.5) for an insulating exterior. If B is
analytic at r = 0, as assumed herein, additional useful conditions hold,

Smn (−r) = (−)nSmn (r) , Tmn (−r) = (−)nTmn (r) . (4.15)

The magnetic field eigenfunctions decouple for each azimuthal wavenumber m, since the flows considered
herein are axisymmetric. Moreover, by property (4.3), only modes with m ≥ 0 need be considered, since the
fields are real. The case m = 0, which gives only decaying modes by the axisymmetric antidynamo theorem
(see Ivers & James 1985), was ignored.
In numerical work the expansions (4.4) and (4.4) were truncated at n = N , and n1 = N + 1 in (4.5),

giving 2(N −m+ 1) spherical harmonic coefficient functions Smn and Tmn for n = m, . . . , N with m fixed.

4.2 Radial Discretisation

The radial dependence is discretised using fourth-order finite-differences over a uniform grid rj := j/J ,
j = 0 : J on 0 ≤ r ≤ 1. Centred-difference formulas are applied to the truncated poloidal and toroidal
spectral equations at the interior points rj , j = 1 : J − 2, using conditions (4.15) at j = 1 and the one-sided
formulas,

f
(1)
0 =

−f−3 + 6f−2 − 18f−1 + 10f0 + 3f1
12h

− 1

20
f (5)(η)h4
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Reλ Imλ

J\N 20 30 40 20 30 40
100 236.4 255.0 254.7 52786.7 52733.2 52731.1
200 258.5 277.7 277.7 52721.2 52688.3 52688.0
400 261.5 279.1 279.2 52716.5 52685.6 52685.4
800 261.7 279.2 279.3 52716.3 52685.4 52785.2

Table 2: Convergence of the dominant mode’s eigenvalue λ with J and N for v1 at Rm = 100, 000.

f
(2)
0 =

f−4 − 6f−3 + 14f−2 − 4f−1 − 15f0 + 10f1
12h2

− 13

180
f (6)(η)h4

for the toroidal equation at rJ−1,

f
(1)
0 =

f−2 − 9f−1 − 9f0 + 17f1 − 6hf (1)1
18h

+
1

60
f (5)(η)h4

f
(2)
0 =

3f−3 − 32f−2 + 252f−1 − 480f0 + 257f1 − 60hf (1)1
144h2

− 1

360
f (6)(η)h4

for the poloidal equation at rJ−1 and

f
(2)
0 =

−9f−4 + 64f−3 − 216f−2 + 576f−1 − 415f0 + 300hf (1)0
72h2

+
1

15
f (6)(η)h4

for the poloidal equation at rJ . There are thus (2J + 1)(N −m + 1) unknowns, Smn (rj) for j = 1 : J and
Tmn (rj) for j = 1:J − 1

4.3 Computation of the Eigenvalues and Eigenfunctions

For a given magnetic Reynolds number Rm the discretisation leads to an eigenvalue problem

Ax = λx , (4.16)

where A is an (2J + 1)(N −m+ 1)× (2J + 1)(N −m+ 1) matrix, which depends linearly on Rm.
The matrix A is banded with the bandwidth minimized by ordering the unknowns to block together all

harmonic coefficients at each grid-point. Thus x = [x1, . . . ,xj , . . . ,xN ], where the vector xj of unknowns at
rj is

xj := [S
m
m(rj), T

m
m (rj), S

m
m+1(rj), T

m
m+1(rj), S

m
m+2(rj), T

m
m+2(rj), ...., S

m
N (rj), T

m
N (rj)]

for j = 1:J − 1 and
xN := [S

m
m(rJ ), S

m
m+1(rJ ), S

m
m+2(rJ ), ...., S

m
N (rJ )] .

The equations are ordered identically. Moreover, the matrix band itself is sparse, with many zero elements
due to the selection rules (James 1973) for the coupling integral in (4.11) and (4.12).
We determined the eigenvalues and eigenfunctions by inverse iteration and the implicitly restarted Arnoldi

method using ARPACK (Sorensen 1992). The Arnoldi method was particularly helpful in identifying the
mode of fastest growth at large Rm as the ratio of the real part of the growth rate to the imaginary part is

O(R−1/2m ). Consequently inverse iteration had difficulty in converging to the eigenvalue of largest real part
without a good estimate of the true eigenvalue.
The solution of (4.16) was straightforward except that very large dimensions were required in some cases

to achieve convergence (on increasing J and N) for very large Rm (=5×105). The truncation levels J and N
were restricted by the memory limit. The largest matrix computed was 64, 040×64, 040 for J = 800, N = 40,
m = 1. Convergence of the eigenvalue λ of largest real part with respect to J and N is shown at Rm = 10

5 for
v1 in table 2 and for v2 in table 3. The higher modes with n = 1, 2 require even higher truncation levels, as
they exhibit greater spatial variation. As Rm is increased greater truncation levels are required as the length-

scale of the fastest growing mode decreases like O(R−1/4m ). Difficulties were encountered for Rm>5×105 as
the truncation required (and consequently the size of the matrices generated) became prohibitive.

The eigenfunctions are normalised so that maxr,θ{(Re B̂)2+(Im B̂)2} = 1 and Re B̂r = 0 at the maximum,
where B = B̂(r, θ) eimφ+λτ .
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Reλ Imλ

J\N 20 30 40 20 30 40
200 687.7 688.2 688.3 16390.6 16391.6 16392.8
400 688.2 687.5 687.5 16390.6 16391.9 16392.1
800 688.2 687.5 687.5 16390.6 16392.0 16392.3

Table 3: Convergence of the dominant mode’s eigenvalue λ with J and N for v2 at Rm = 100, 000.

Rm Reλ0 Imλ0 Reλ1 Imλ1 Reλ2 Imλ2

416.1864 0 170.2922 – – – –
500 3.1054 208.8 −88.05 198.2411 – –
750 11.2432 325.55 – – – –

1000 17.9967 444.19 −77.7 425.57 −237.2588 421.808
1500 28.3164 684.99 – – – –
2000 35.3415 929.29 – – – –
3000 43.1781 1426.89 – – −207.5813 1353.06
5000 54.6313 2445.51 −180.165 2306.466 – –

10000 78.5208 5032.19 −133.484 4788.276 −387.1595 4678.515
20000 115.6785 10270.02 – – – –
50000 193.5259 26118.99 −324.540 25560.96 −811.1473 25003.12

100000 279.162 52685.35 −467.662 51898.48 −1182.71 51107.84
150000 344.9439 79324.97 – – – –
200000 400.2472 106002.52 −668.846 104897.5 −1726.128 103768.5
300000 492.6508 159423.87 −825.961 158069 −2024.529 156876.3
400000 571.3119 212899.37 – – −1968.609 209731.6
500000 641.1343 266407.22 −1080.54 264712.9 −1863.246 262300.9

Table 4: The growth rates of the leading modes as computed by the numerical eigenproblem for v1,m = k = 1
at different Rm. The subscript of λ indicates the corresponding n mode number.

5 Results

We present results for each of the flows v1 and v2, corresponding to a representative configuration of the
parameters for the same resonant curve. For both v1 and v2 the resonant curve is Ψo = Ψ(rs, π/2) ≈
−0.20287 . . . with rs = 0.93. The resonance is ensured for given m and k by setting the tuning parameter
σ according to (2.68). The resonance conditions for v1 and v2 may be expressed as σ = σ1(m, k,Ψ) and
σ = σ2(m, k,Ψ). We find that σ1(1, 1,Ψ0) ≈ 0.1373, σ1(2, 1,Ψ0) ≈ 0.2747, and σ2(1, 1,Ψ0) ≈ 0.2050 to 4
significant figures. Moreover, for the flows we examine there is no degeneracy in σ, i.e. for a given σ there
is only one possible set of (m, k,Ψ), so there can only be one resonant curve for a given flow.
The different times t, τ of the asymptotic and numerical results are related by t/τ = Rm. Thus to compare

the asymptotic and numerical results, the numerical growth rates are divided by Rm, i.e. p = Reλ/Rm,
ω = Imλ/Rm. Moreover, asymptotic and numerical modes must be correctly matched. There is no difficulty
with the azimuthal wavenumber m, since it coincides in the asymptotic and numerical results for v1, and
also for v2, when ζ is decomposed and the factor e

imφ is extracted from the eigenfunction. We assumed that,
once the resonant curve and the wavenumbers m, k are chosen, which sets the tuning parameter σ(m, k,Ψ),
the collection of modes determined by the numerical eigenproblem correspond to the various asymptotic n
modes. The strongest growing exact (numerical) mode was identified with n = 0.

5.1 Growth Rates

The growth rates of the n = 0, 1, 2 magnetic modes for k = 1 and m = 1, 2 in the spherical helical dynamos,
which we considered, are presented below. Tables 4 and 5 show the growth rates of the n = 0, 1, 2 modes, as
computed by the numerical eigenproblem for v1 and v2 at the truncation levels N = 40 and J = 800. The

scaling Imλ/Reλ ∼ R
1/2
m predicted by the asymptotic theory for large Rm [see equations (2.15)] is clearly

evident. Moreover the leading modes possess growth rates whose imaginary parts asymptote to a common
value (−ΠoRm). This closely clustered property of the eigenvalues in spherical helical dynamos explains
the difficulty of algebraic eigen-solvers in separating the eigenvalues at large Rm. In this regime a partial
eigen-solver, such as the implicitly restarted Arnoldi method, is invaluable.
Figures 2 to 8 present the (real) growth rates p and angular frequencies ω calculated using the asymptotic

theory with the higher order terms (the solid lines) of Gilbert & Ponty (2000) included, the asymptotic theory
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Rm Reλ0 Imλ0 Reλ1 Imλ1 Reλ2 Imλ2

500 17.8 18.2 −60.3 17.8 – –
1,000 38.0 74.7 −48.0 66.1 −642.4 113.6
2,000 68.9 206.3 −25.0 187.4 −384.8 196.7
3,000 93.6 347.2 −5.2 320.8 −375.0 322.2
5,000 133.2 641.3 27.4 602.2 −348.1 592.7

10,000 203.8 1408.9 87.8 1344.3 −282.1 1303.8
20,000 293.9 3006.6 178.5 2878.7 −211.5 2747.8
30,000 363.0 4645.6 224.4 4423.7 −237.0 4339.7
50,000 477.1 7969.4 250.7 7697.2 −86.1 7546.4

100,000 687.5 16392.3 348.9 16000.0 −19.2 15566.2
200,000 982.4 33432.1 486.2 32867.1 −57.2 32299.4

Table 5: The growth rates of the leading modes as computed by the numerical eigenproblem for v2,m = k = 1
at different Rm. The subscript of λ indicates the corresponding n mode number.

correct to order ε2 (the dashed line) and the numerical method (the data points). The truncation levels
for the asymptotic values and the numerical values are K = 400, J = 800, N = 40. Figures 2–4 show the
growth rates pn and angular frequencies ωn for the m = 1, k = 1, n = 0, 1, 2 magnetic modes of the v1
flow with σ = σ1(1, 1,Ψ0). Of the three modes shown, only the n = 0 mode is a dynamo, above the critical
magnetic Reynolds number at Rm ≈ 416 (see table 4) with a maximum positive growth rate at Rm ≈ 1500.
For Rm & 1500, the asymptotic theory and figure 2 imply that p0 → 0 monotonically, as Rm → ∞, and
hence that the dynamo is slow. Figures 3,4 and the asymptotic theory imply that the n = 1, 2 modes
decay for all Rm & 100. Figure 5 shows p0, ω0 for the m = 2, k = 1, n = 0 mode of the v1 flow with
σ = σ1(2, 1,Ψ0). Observe that the flows are actually different for the k = 1,n = 0 magnetic modes with the
azimuthal wavenumbers m = 1, 2, since the modes share the same resonance curve. This requires different
σ and hence different amplitude ratios of meridional to azimuthal flow.
Figures 6–8 show pn, ωn for the m = 1, k = 1, n = 0, 1, 2 magnetic modes of the v2 flow with σ =

σ2(1, 1,Ψ0). The n = 0 mode is a dynamo above the critical magnetic Reynolds number at Rm∼100 with a
maximum growth rate at Rm∼800. For the v2 flow the n = 1 mode also acts as a dynamo above Rm∼2000
with a maximum growth rate at Rm ∼ 2×104. The n = 2 mode decays for all Rm & 2000 with p2 → 0 as
Rm →∞.
There is excellent agreement between the asymptotic growth rates of order ε2 and the numerical growth

rates when Rm & 105 for v1 and when Rm & 4×104 for v2, with even better agreement in the angular
frequencies. If the additional terms of Gilbert & Ponty (2000) are retained in the asymptotic growth rates
the agreement extends down to Rm & 104, substantiating their neglect of the other terms at this order, at
least for the modes of small n. This agreement strongly supports the asymptotic theory. It also indicates
that the identification of the numerical modes with the asymptotic modes is correct.

5.2 Magnetic Field Structure

Figures 9–17 show magnetic modes for various parameter values. Figure 9 plots the real and imaginary
parts of the magnetic field components, B̂r, B̂θ, B̂φ, of the m = 1, k = 1, n = 0 mode for the v1 flow with
σ = σ1(1, 1,Ψ0) and Rm = 10

5. The asymptotic field to leading order and the numerical magnetic field are
shown. Solid (dashed) contours represent positive (negative) magnetic field. Superimposed on the plots is
the resonant curve to highlight the localisation of the magnetic field. It is apparent from the figures that
the asymptotic and numerical magnetic fields agree in their dominant features: the position, orientation and
shape of the local maxima and minima, but with a slight offset outwards away from the resonant streamline.
This is clearer in figures 10 and 11, which show |B̂r|, |B̂θ|, |B̂φ|, and |B̂| respectively, for the same mode.
The localisation of the field to the resonant stream line is readily observed in figures 9–11, with marked flux
expulsion inside the resonant streamline and even outdside. The k = 1 nature of the field is readily apparent
from its variation around the streamline.
Figures 12–14 show the m = 1, k = 1, n = 0 mode for the v1 flow with σ = σ1(1, 1,Ψ0), but with

Rm = 5×105. The structure in Im B̂r, Im B̂θ, |B̂r|, |B̂θ| and |B̂| near the z-axis, which is present at
Rm = 10

5, has disappeared at Rm = 5×105 and the magnetic field is more localised and intense. The offset
of the maxima and minima from the resonant streamline is substantially reduced compared to Figures 9–11.
Finally, Figures 13–17 show the m = 1, k = 1, n = 1 mode for the v1 flow with σ = σ1(1, 1,Ψ0) and

Rm = 10
5. This mode decays slowly with time as shown in figure 3. Its spatial structure is more complicated
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Figure 2: The growth rate p0 and angular frequency ω0 for the m = 1, k = 1, n = 0 mode of v1 calculated
using the asymptotic formulae with the extra terms of Gilbert & Ponty (2000) (solid lines), the asymptotic
formulae correct to order ε2 (dashed line) and the numerical method (points on the dotted lines).
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Figure 3: The growth rate p1 and angular frequency ω1 for the m = 1, k = 1, n = 1 mode of v1.
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Figure 4: The growth rate p2 and angular frequency ω2 for the m = 1, k = 1, n = 2 mode of v1.
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Figure 5: The growth rate p0 and angular frequency ω0 for the m = 2, k = 1, n = 0 mode of v1.
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Figure 6: The growth rate p0 and angular frequency ω0 for the m = 1, k = 1, n = 0 mode of v2.
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Figure 7: The growth rate p0 and angular frequency ω0 for the m = 1, k = 1, n = 1 mode of v2.
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Figure 8: The growth rate p0 and angular frequency ω0 for the m = 1, k = 1, n = 2 mode of v2.
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Figure 9: Plots of the real and imaginary parts of B̂r, B̂θ, B̂φ for the m = 1, k = 1, n = 0 mode of v1
at Rm = 10

5, determined asymptotically (left) to leading order and numerically (right), and the resonant
stream line (thick lines).

due to the variation with ψ under the gaussian envelope of D1(Υ/κ). In particular, the field components
vanish on the resonant streamline. The field is not fully localised at this magnetic Reynolds number, with
some structure in |B̂r| still present near the z-axis. The maxima and minima of the leading order asymptotic
field components are broader and displaced further away from the resonant streamline. The asymptotic field
also shows structure in Re B̂r, Im B̂r, Re B̂θ, |B̂r|, |B̂θ| and |B̂| near the z-axis absent from the numerical
field.

6 The Asymptotic Theory to O(ε4)

6.1 The O(ε1) Magnetic Field

The asymptotic analysis of section 2 is extended to determine the growth rate up to order ε4. At order ε3

it is found that there is no contribution to the growth rate, which partially explains the good agreement
between the asymptotic and numerical growth rates, and the magnetic field in (2.28) is fully determined to
order ε1. The tuning parameter σ is suppressed in this section.
The ε3-equations are
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Figure 10: Plots of |B̂r|, |B̂θ|, |B̂φ| for the m = 1, k = 1, n = 0 mode of v1 at Rm = 10
5, determined

asymptotically (left) to leading order and numerically (right), and the resonant stream line (thick lines).

d0bψ3 + d1bψ2 + (d2 − γ0∂2Υ )bψ1 + (d3 − γ1Υ∂2Υ )bψ0 = 2(χ0,1 + µi,o)∂Υ bψ0
+ 2µa,o∂Υ bϑ2 + 2µ

′
a,oΥ∂Υ bϑ1 + µ

′′
a,oΥ

2∂Υ bϑ0 + (2µb,o∂ϑ + 2imµc,o + µd,o)bϑ1

+ (2µ′b,o∂ϑ + 2imµ
′
c,o + µ

′
d,o)Υbϑ0 + 2imµg,obζ1 + 2imµ

′
g,oΥbζ0 (6.1)

d0bϑ3 + d1bϑ2 + (d2 − γ0∂
2
Υ )bϑ1 + (d3 − γ1Υ∂

2
Υ )bϑ0 = 2(χ1,o + λa,o)∂Υ bϑ0 + Ω

′
obψ1 + ΥΩ′′obψ0 (6.2)

d0bζ3+d1bζ2+(d2−γ0∂2Υ )bζ1+(d3−γ1Υ∂2Υ )bζ0 = 2(χ1,o+ρb,o)∂Υ bζ0+2ρa,o∂Υ bϑ0+W
′
obψ1+ΥW

′′
obψ0 ,
(6.3)

introducing
χ1 :=

1
2∇

2ψ + i(k∇ψ · ∇ϑ+m∇ψ · ∇ζ) .
The operator d2 − γ0∂2Υ = −Ξ + 1

2Υ
2Ω′′o (∂ϑ − ik)− (γ0 − γ0)∂2Υ . The solutions of equations (6.1)–(6.3) can

be written in the form,

bψ3 = Fψ3(Υ )e
ikϑ +Gψ3(Υ, ϑ)e

ikϑ , Gψ3 = 0 (6.4)
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Figure 11: Plots of |B̂| for the m = 1, k = 1, n = 0 mode of v1 at Rm = 10
5, determined asymptotically

(left) to leading order and numerically (right), and the resonant stream line (thick lines).

bϑ3 = Fϑ3(Υ )e
ikϑ +Gϑ3(Υ, ϑ)e

ikϑ , Gϑ3 = 0 (6.5)

bζ3 = Fζ3(Υ )e
ikϑ +Gζ3(Υ, ϑ)e

ikϑ , Gζ3 = 0 . (6.6)

Projecting equations (6.1)–(6.3) onto eikϑ and using (2.11) gives

ΞFψ1 + 2iαoFϑ1 = (p3 + iω3 +
1
6 iΠ

′′′
o Υ

3 − γ1Υ∂2Υ )Fψ0 − 2(χ1,o + µi,o)F ′ψ0 − 2iα′oΥFϑ0
ΞFϑ1 +Ω

′
oFψ1 = (p3 + iω3 +

1
6 iΠ

′′′
o Υ

3 − γ1Υ∂2Υ )Fϑ0 − 2(χ1,o + λa,o)F ′ϑ0 − ΥΩ′′oFψ0
ΞFζ1 +W

′
oFψ1 = (p3 + iω3 +

1
6 iΠ

′′′
o Υ

3 − γ1Υ∂2Υ )Fζ0 − 2χ1,oF ′ζ0 − 2ρa,oF ′ϑ0 − ΥW
′′
oFψ0 ,

since G′ψ1 = 0, G
′′
ψ1 = 0, µa,o = µ′a,o = µ′′a,o = 0, µd,o = µ′d,o = 0, µg,o = µ′g,o = 0, ρb,o = 0. The primes on

the G functions denote differentiation with respect to Υ . Note from (2.37) and (2.55),

γ0G′′ψ1 + 2µa,oG
′
ϑ2 =

2F ′′′ϑ0
Ωo

(γ0µ̂a,o + γ̂0µa,o) = 0 .

In vector form the projected equations are

LF1 = {(p3 + iω3)yn + 1
6 iΠ

′′′
o Υ

3yn − γ1Υy′′n − 2χ1,oy′n}a− Υyna1 − 2y′na2 , (6.7)
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Figure 12: Plots of the real and imaginary parts of B̂r, B̂θ, B̂φ for the m = 1, k = 1, n = 0 mode of v1 at
Rm = 5×105, determined asymptotically (left) to leading order and numerically (right), and the resonant
stream line (thick lines).

where L is defined in (2.44), F1 := (Fψ1, Fϑ1, Fζ1)
T and

a1 := [2iα
′
oΩ
′
o,−Ω′′oξn,−W

′′
oξn]

T , a2 := [−µi,oξn, λa,oΩ′o, ρa,oΩ′o]T . (6.8)

The primes on yn indicate derivatives with respect to Υ .
We next express the derivatives and terms multiplied by Υ on the right side of (6.7) in terms of parabolic

cylinder functions of different orders by using the recurrence relations,

y′n =
1
2κ
−1(nyn−1 − yn+1) , Υ yn = κ(nyn−1 + yn+1) , (6.9)

which are derived from the parabolic cylinder function recurrence relations, (d/dz+ z/2)Dn(z) = nDn−1(z),
(d/dz − z/2)Dn(z) = −Dn+1(z). Iteration yields equations (B.1)–(B.5) in Appendix B. Thus (6.7) becomes

LF1 =

3∑′

j=−3
gn,j yn+j , (6.10)

where the prime on the summation sign indicates summation over every second index. The vectors gn,j are
given by

gn,0 = (p3 + iω3)a
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Figure 13: Plots of |B̂r|, |B̂θ|, |B̂φ| for the m = 1, k = 1, n = 0 mode of v1 at Rm = 5×105, determined
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gn,−3 =
1
4n(n− 1)(n− 2)( 13γ0Π

′′′
o /Π

′′
o − γ1)κ−1a

gn,−1 =
1
4 [n

2γ0Π
′′′
o /Π

′′
o + n(n− 2)γ1 − 4nχ1,o]κ−1a− nκa1 − nκ−1a2

gn,1 =
1
4 [(n+ 1)γ0Π

′′′
o /Π

′′
o + (n+ 3)γ1 + 4χ1,o]κ

−1a− κa1 + κ−1a2
gn,3 =

1
4 (
1
3γ0Π

′′′
o /Π

′′
o − γ1)κ−1a ,

since iκ4 = γ0/2Π
′′
o . We assume a solution to (6.7) of the form

F1 =

3∑′

j=−3
bn,j yn+j . (6.11)

By (6.10) the coefficient vectors in (6.11) are determined from

Ln+jbn,j = gn,j , j = 0,±1,±3 , (6.12)

where Ln+j is defined in (2.47)(b). When j 6= 0 the determination of bn,j is straightforward, since Ln+j is
invertible,

L(ξ)
−1
=

1

ξ2 − ξ2n




ξ −2iαo 0
−Ω′o ξ 0

−W ′
o 2iαoW

′
o/ξ (ξ2 − ξ2n)/ξ


 . (6.13)
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Figure 14: Plots of |B̂| for the m = 1, k = 1, n = 0 mode of v1 at Rm = 5×105, determined asymptotically
(left) to leading order and numerically (right), and the resonant stream line (thick lines).

In particular,

L(ξ)−1a =
a

ξ − ξn
, ξn+j − ξn = −jγ0κ−2 . (6.14)

Thus

L−1n±1a = ∓
κ2

γ0
a , L−1n±3a = ∓

κ2

3γ0
a ,

L−1n±1a1 =
1

ξ2n±1 − ξ2n




2iα′oΩ
′
oξn±1 + 2iαoΩ

′′
oξn

−2iα′o(Ω′o)2 − Ω′′oξnξn±1
−2iα′oΩ′oW

′
o − 2iαoW

′
oΩ
′′
oξn/ξn±1 − (ξ2n±1 − ξ2n)W

′′
oξn/ξn±1


 , (6.15)

and

L−1n±1a2 =
1

ξ2n±1 − ξ2n




−µi,oξnξn±1 − 2iαoλa,oΩ′o
Ω′oµi,oξn + λa,oΩ

′
oξn±1

W
′
oµi,oξn + 2iαoW

′
oΩ
′
oλa,o/ξn±1 + (ξ

2
n±1 − ξ2n)ρa,oΩ′o/ξn±1


 . (6.16)

Hence the solution vectors in (6.11) determined from (6.12) for j 6= 0 are

bn,−3 =
1
12n(n− 1)(n− 2)( 13γ0Π

′′′
o /Π

′′
o − γ1)

κ

γ0
a (6.17)
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Figure 15: Plots of the real and imaginary parts of B̂r, B̂θ, B̂φ for the m = 1, k = 1, n = 1 mode of v1
at Rm = 10

5, determined asymptotically (left) to leading order and numerically (right), and the resonant
stream line (thick lines).

bn,−1 =
1
4 [n

2γ0Π
′′′
o /Π

′′
o + n(n− 2)γ1 − 4nχ1,o]

κ

γ0
a− nL−1n−1(κa1 + κ−1a2) (6.18)

bn,1 = − 14 [(n+ 1)γ0Π
′′′
o /Π

′′
o + (n+ 3)γ1 + 4χ1,o]

κ

γ0
a− L−1n+1(κa1 − κ−1a2) (6.19)

bn,3 = − 1
12 (

1
3γ0Π

′′′
o /Π

′′
o − γ1)

κ

γ0
a . (6.20)

In the j = 0 case the matrix Ln is singular. It satisfies cTLn = 0, where

c := [−Ω′o , ξn , 0]T /2Ω′oξn (6.21)

and cTa = 1. Thus the j = 0 equation in (6.11) furnishes us with the solvability condition cTgn,0 = 0, i.e.
p3 + iω3 = 0, which ensures that gn,0 = 0 and that bn,0 is a constant multiple of a. Thus the term bn,0 yn
can be absorbed into the order ε0 solution. Without loss of generality we can set bn,0 = 0. To complete the
derivation of the magnetic field to order ε1, it remains to show that the ε1 solenoidal condition is satisfied.
Equation (2.40) reduces to

ikFϑ1 + imFζ1 = ξny
′
n , (6.22)

29



−1

−0.5

0

0.5

1

|B
r
|

 z

|Bθ| |Bφ|

0 0.5 1
−1

−0.5

0

0.5

1

|B
r
|

 s

 z

0 0.5 1

|Bθ|

 s
0 0.5 1

|Bφ|

 s

Figure 16: Plots of |B̂r|, |B̂θ|, |B̂φ| for the m = 1, k = 1, n = 1 mode of v1 at Rm = 10
5, determined

asymptotically (left) to leading order and numerically (right), and the resonant stream line (thick lines).

using (2.46) and (2.50). Substituting (6.10) and equating coefficients of yn, using (6.9)(a), yields

ik · [bn,−3,bn,−1,bn,1,bn,3] = [0, 12nκ
−1ξn,− 12κ

−1ξn, 0] ,

where k = k1ϑ+m1ζ . Substituting (6.17)–(6.20) and noting (k1ϑ+m1ζ) ·a = 0 by the resonance condition
(2.35)(b), the first and last equations are satisfied, and the remaining two equations reduce to

ik · L−1n∓1(κa1 ± κ−1a2) = ∓ 12κ
−1ξn .

But a simple calculation gives k · L(ξ)−1 = ξ−1(k1ϑ +m1ζ). Thus

k · L(ξ)−1a1 = −ξ−1ξnΠ′′o , k · L(ξ)−1a2 = ξ−1(kλa,o +mρa,o)Ω
′
o .

Hence, noting ξn±1 = ξn ∓ γ0κ−2,
1
2ξ
2
n ∓ ( 12γ0κ

−2 − iκ2ξnΠ′′o ) + i(kλa,o +mρa,o)Ω′o = 0 .

By (2.46)(c) these two conditions reduce to the single condition,

ξ2n = −2i(kλa,o +mρa,o)Ω′o ,
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Figure 17: Plots of |B̂| for the m = 1, k = 1, n = 1 mode of v1 at Rm = 10
5, determined asymptotically

(left) to leading order and numerically (right), and the resonant stream line (thick lines).

Thus, since ξ2n = 2iαoΩ
′
o, condition(6.22) is equivalent to

αo = −(kλa,o +mρa,o) .

From
kλa +mρa = ∇(kϑ+mζ) · (∇ψ · ∇fϑ) ,

α := kµb +mµc = ∇ψ · [∇(kϑ+mζ) · ∇fϑ] ,

fϑ · ∇ψ = ∂ϑψ = 0

and
fϑ · ∇(kϑ+mζ) = k ,

it follows that

α+ (kλa +mρa) = −fϑ · ∇[∇ψ · ∇(kϑ+mζ)] = −∂ϑ[∇ψ · ∇(kϑ+mζ)] .

Hence
α = −(kλa +mρa)

and the solenoidal condition (??) is satisfied.
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Only the particular solution Gϑ3 to (6.4)–(6.6) is required below,

ΩoGϑ3 +Ω
′
oΥGϑ2 = γ̂0F

′′
ϑ1 + γ̂1ΥF

′′
ϑ0 + 2(χ̂1,o + λ̂a,o)F

′
ϑ0 +Ω

′
oĜψ1 .

Substituting for Gψ1 from (2.37) and Gϑ2 from (2.55),

ΩoGϑ3 = −
Ω′o
Ωo
γ̂0ΥF

′′
ϑ0 + γ̂0F

′′
ϑ1 + γ̂1ΥF

′′
ϑ0 + 2(χ̂1,o + λ̂a,o)F

′
ϑ0 + 2

Ω′o
Ωo

̂̂µa,oF ′ϑ0 (6.23)

6.2 The O(ε4) Growth Rate and Angular Frequency

Finally we consider the ε4-equations. At this order we are only interested in finding the solvability condition
which determines p4 and ω4. Only the ψ and ϑ equations are required,

d0bψ4 + d1bψ3 + (d2 − γ0∂2Υ )bψ2 + (d3 − γ1Υ∂2Υ )bψ1 + (d4 − 1
2γ2Υ

2∂2Υ )bψ0 =

2(χ1 + µi)o∂Υ bψ1 + 2(χ1 + µi)
′
oΥ∂Υ bψ0

+ (χ2 + 2ikµj + 2imµk + µl)obψ0 + 2µa,o∂Υ bϑ3 + 2µ
′
a,oΥ∂Υ bϑ2 + µ

′′
a,oΥ

2∂Υ bϑ1 +
1
3µ
′′′
a,oΥ

3∂Υ bϑ0

+ (2µb∂ϑ + 2imµc + µd)obϑ2 + (2µb∂ϑ + 2imµc + µd)
′
oΥbϑ1 +

1
2 (2µb∂ϑ + 2imµc + µd)

′′
oΥ

2bϑ0

+ 2imµg,obζ2 + 2imµ
′
g,oΥbζ1 + imµ

′′
g,oΥ

2bζ0 (6.24)

and

d0bϑ4 + d1bϑ3 + (d2 − γ0∂2Υ )bϑ2 + (d3 − γ1Υ∂2Υ )bϑ1 + (d4 − 1
2γ2Υ

2∂2Υ )bϑ0 =

2(χ1 + λa)o∂Υ bϑ1 + 2(χ1 + λa)
′
oΥ∂Υ bϑ0 + (χ2 + 2ikλb + 2imλc + λd)obϑ0

+ 2imλg,obζ0 +Ω
′
obψ2 + ΥΩ

′′
obψ1 +

1
2Ω
′′′
o Υ

2bψ0 , (6.25)

where
χ2 := −k2|∇ϑ|2 −m2|∇ζ|2 − 2mk∇ϑ · ∇ζ + i(k∇2ϑ+m∇2ζ) .

We project onto eikϑ, noting (2.11) and µa,o = µ′a,o = µ′′a,o = µ′′′a,o = 0, µd,o = µ′d,o = µ′′d,o = 0,
µg,o = µ′g,o = µ′′g,o = 0. From equation (6.24) we obtain

−ΞFψ2 − 2iαoFϑ2 = γ0G′′ψ2 − 1
6 iΥ

3Π′′′o Fψ1 + γ1ΥF
′′
ψ1 + γ1G

′′
ψ1Υ − (p4 + iω4 + 1

24 iΥ
4Π′′′′o )Fψ0 +

1
2γ2Υ

2F ′′ψ0

+2(χ1,o+µi,o)F
′
ψ1+2(χ1,o + µi,o)G

′
ψ1+2(∇ψ · ∇ϑ)o∂ϑG′ψ1+2(χ′1,o+µ′i,o)ΥF ′ψ0+(χ2,o+2ikµj,o+2imµk,o+µl,o)Fψ0

+ 2µa,oG′ϑ3 + 2µ
′
a,oG

′
ϑ2Υ + (2iαo + µd,o)Gϑ2 + 2µb,o∂ϑGϑ2 + 2iα

′
oΥFϑ1 + iα

′′
oΥ

2Fϑ0 + 2imµg,oGζ2 (6.26)

and from (6.25),

− ΞFϑ2 − Ω′oFψ2 = γ0G′′ϑ2 − 1
6 iΥ

3Π′′′o Fϑ1 + γ1ΥF
′′
ϑ1 − (p4 + iω4 + 1

24 iΥ
4Π′′′′o )Fϑ0 +

1
2γ2Υ

2F ′′ϑ0

+ 2(χ1,o + λa,o)F
′
ϑ1 + 2(χ

′
1,o + λ

′
a,o)ΥF

′
ϑ0 + (χ2,o + 2ikλb,o + 2imλc,o + λd,o)Fϑ0

+ 2imλg,oFζ0 + ΥΩ
′′
oFψ1 +

1
2Ω
′′′
o Υ

2Fψ0 , (6.27)

Substituting for Gψ1, Gψ2, Gϑ2, Gζ2, Gϑ3 from (2.37), (2.54)–(2.56), (6.23), respectively, into (6.26) gives

− ΞFψ2 − 2iαoFϑ2 = {−
2Ω′o
Ωo

γ0µ̂a,o(ΥF
′
ϑ0)

′′ + γ0γ̂0F
′′′′
ψ0 + 2γ0µ̂a,oF

′′′
ϑ1

+ 2γ0µ̂′a,o(ΥF
′
ϑ0)

′′ + γ0(2iα̂o + µ̂d,o)F
′′
ϑ0 + 2imγ0µ̂g,oF

′′
ζ0}/Ωo

− 1
6 iΥ

3Π′′′o Fψ1 + γ1ΥF
′′
ψ1 + γ1µ̂a,oΥ

2F ′′′ϑ0
Ωo
− (p4 + iω4 + 1

24 iΥ
4Π′′′′o )Fψ0 +

1
2γ2Υ

2F ′′ψ0 + 2(χ1,o + µi,o)F
′
ψ1

+ 4(χ1,o + µi,o)µ̂a,o
F ′′ϑ0
Ωo

+ 4(∇ψ · ∇ϑ)oµa,o
F ′′ϑ0
Ωo

+ 2(χ′1,o + µ
′
i,o)ΥF

′
ψ0 + (χ2,o + 2ikµj,o + 2imµk,o + µl,o)Fψ0

{−2µa,oγ̂0
Ω′o
Ωo
(ΥF ′′ϑ0)

′ + 2µa,oγ̂0F
′′′
ϑ1 + 2µa,oγ̂1(ΥF

′′
ϑ0)

′ + 4µa,o(χ̂1,o + λ̂a,o)F
′′
ϑ0 + 4µa,o

̂̂µa,o
Ω′o
Ωo
F ′′ϑ0}/Ωo

+ 2µ′a,oγ̂0
1

Ωo
ΥF ′′′ϑ0 + (2iαo + µd,o)γ̂0

F ′′ϑ0
Ωo

+ 2µb,o∂ϑγ̂0
F ′′ϑ0
Ωo

+ 2iα′oΥFϑ1 + iα
′′
oΥ

2Fϑ0 + 2imµg,oγ̂0
F ′′ζ0
Ωo

.
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Using the relations,

γ0µ̂a,o + µa,oγ̂0 = 0

γ0γ̂0 = 0

γ0µ̂′a,o + µ
′
a,oγ̂0 = 0

γ0(2iα̂o + µ̂d,o) + (2iαo + µd,o)γ̂0 = 0

γ0µ̂g,o + µg,oγ̂0 = 0

γ1µ̂a,o + µa,oγ̂1 = 0

χ1,oµ̂a,o + µa,oχ̂1,o = 0 ,

which follow from the property (2.38)(a) of the operator ̂, this equation reduces to

− ΞFψ2 − 2iαoFϑ2 = − 16 iΠ
′′′
o Υ

3Fψ1 + γ1ΥF
′′
ψ1 − (p4 + iω4 + 1

24 iΥ
4Π′′′′o )Fψ0 +

1
2γ2Υ

2F ′′ψ0

+ 2(χ1,o + µi,o)F
′
ψ1 + 2(χ

′
1,o + µ

′
i,o)ΥF

′
ψ0 + (χ2,o + 2ikµj,o + 2imµk,o + µl,o)Fψ0

+ χ3,oF
′′
ϑ0 + 2iα

′
oΥFϑ1 + iα

′′
oΥ

2Fϑ0 (6.28)

where the real quantity χ3 is defined by

Ωoχ3 := −
2Ω′

Ω
γ0µ̂a + 4γ0µ̂

′
a + 2µaγ̂1 + 4µaλ̂a + 4µa

̂̂µa
Ω′

Ω
+ 2µb∂ϑγ̂0 + 4µiµ̂a + 4(∇ψ · ∇ϑ)µa .

The ϑ-equation (6.27) becomes

− ΞFϑ2 − Ω′oFψ2 = − 16 iΠ
′′′
o Υ

3Fϑ1 + γ1ΥF
′′
ϑ1 − (p4 + iω4 + 1

24 iΥ
4Π′′′′o )Fϑ0 +

1
2γ2Υ

2F ′′ϑ0

+ 2(χ1,o + λa,o)F
′
ϑ1 + 2(χ

′
1,o + λ

′
a,o)ΥF

′
ϑ0 + (χ2,o + 2ikλb,o + 2imλc,o + λd,o)Fϑ0

+ 2imλg,oFζ0 + ΥΩ
′′
oFψ1 +

1
2Ω
′′′
o Υ

2Fψ0 . (6.29)

Using the yn recurrence relations (6.9), equations (6.28), (6.29) and an analogous equation for Fζ2, can
be written in the form

LF2 =

6∑′

j=−6
dn,j yn+j , (6.30)

where the solution F2 := (Fψ2, Fϑ2, Fζ2)
T must be of the form,

F2 =

6∑′

j=−6
hn,j yn+j , (6.31)

with constant vectors dn,j and hn,j . Thus

Ln+jhn,j = dn,j .

Since Ln is singular, a necessary condition for the existence of solutions to (6.30) is that the coefficient of yn
in cTLF2 vanish, i.e. cTdn,0 = 0.
We now construct 2Ω′oξnc

TLF2 from (6.28) and (6.29),

cTLF2 = cT [− 16 iΠ
′′′
o Υ

3F1+γ1ΥF′′1 − (p4+ iω4+ 1
24 iΥ

4Π′′′′o )F0+
1
2γ2Υ

2F′′0 +2χ1,oF
′
1+2χ

′
1,oΥF′0+χ2,oF0]

− 1
2ξ
−1
n

[
2µ′i,oΥF

′
ψ0 + (2ikµj,o + 2imµk,o + µl,o)Fψ0 + χ3,oF

′′
ϑ0 + iα

′′
oΥ

2Fϑ0

]

+ 1
2Ω
′
o
−1

[
2λ
′
a,oΥF

′
ϑ0 + (2ikλb,o + 2imλc,o + λd,o)Fϑ0 +

1
2Ω
′′′
o Υ

2Fψ0 + 2imλg,oFζ0

]
+ 2cT1 F′1 + ΥcT2 F1 ,

introducing
cT1 := [−Ω′oµi,o, ξnλa,o, 0]/2Ω′oξn , cT2 := [ξnΩ

′′
o ,−Ω′o2iα′o, 0]/2Ω′oξn .
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We need the yn terms of the right side. Using

cT [F0, ΥF′0, Υ
2F′′0 , Υ

4F0] = [yn, Υ y
′
n, Υ

2y′′n, Υ
4yn]

the equation reduces to

cTLF2 = [−(p4+iω4)+χ2,o+i(kµj,o+mµk,o+kλb,o+mλc,o)+ 1
2 (µl,o+λd,o)+imλg,oW

′
o/Ω

′
o− 1

24 iΠ
′′′′
o Υ 4]yn

+ 1
2γ2Υ

2y′′n + 2(χ
′
1,o +

1
2χ
′
4,o)Υy

′
n − 1

2 (Ω
′
oχ3,o/ξn)y

′′
n − 1

2 (Ω
′
oiα

′′
o/ξn +

1
2ξnΩ

′′′
o /Ω

′
o)Υ

2yn

+ cT [− 16 iΠ
′′′
o Υ

3F1 + γ1ΥF′′1 + 2χ1,oF
′
1] + 2c

T
1 F′1 + ΥcT2 F1 , (6.32)

where
χ4 := µi + λa .

The yn terms in y′′n, Υ
2yn, Υy

′
n, Υ

2y′′n and Υ 4yn can be extracted using the identities (B.1), (B.3),
(B.6)–(B.8) in Appendix B, derived from (6.9). Extracting these terms gives

p4 + iω4 = C1 + C2 + C3 + C4 + C5 , (6.33)

where

C1 = χ2,o + [i(kµj,o +mµk,o + kλb,o +mλc,o) +
1
2 (µl,o + λd,o)] + imλg,oW

′
o/Ω

′
o − 1

8 (n
2 + n+ 1

2 )γ0Π
′′′′
o /Π′′o

− 1
4 (n

2 + n− 1
2 )γ2 + (χ

′
1,o +

1
2χ
′
4,o) +

1
4 (n+

1
2 )(Ω

′
oχ3,o/q)− 1

2 (n+
1
2 )χ

′′
5,oq ,

with
χ5 := α/αo +Ω

′/Ω′o ,

and C2, C3, C4, C5 are the coefficients of yn from the terms − 16 iΠ′′′o Υ 3cTF1, γ1ΥcTF′′1 , 2χ1,oc
TF′1, 2c

T
1 F′1 +

ΥcT2 F1. The quantity q := κ2ξn is either real or purely imaginary, since q
2 = κ4ξ2n = γ0αoΩ

′
o/Π

′′
o is real. In

the flows we consider q2 < 0.
The coefficients C2, C3, C4, C5 are more difficult to extract. From the form (6.11) of the solution F1,

cT [Υ 3F1, ΥF′′1 , F
′
1] =

3∑′

j=−3
cTbn,j [Υ

3yn+j , Υ y
′′
n+j , y

′
n+j ] , (6.34)

where

cTbn,−3 =
1
12n(n− 1)(n− 2)( 13γ0Π

′′′
o /Π

′′
o − γ1)

κ

γ0

cTbn,−1 =
1
4

(
n2γ0Π

′′′
o /Π

′′
o + n(n− 2)γ1 − 4nχ1,o

) κ

γ0
− ncTL−1n−1(κa1 + κ

−1a2)

cTbn,1 = − 14
(
(n+ 1)γ0Π

′′′
o /Π

′′
o + (n+ 3)γ1 + 4χ1,o

) κ

γ0
− cTL−1n+1(κa1 − κ−1a2)

cTbn,3 = − 1
12 (

1
3γ0Π

′′′
o /Π

′′
o − γ1)

κ

γ0
,

using cTa = 1. By (6.15) and (6.16),

cTL−1n±1a1 = −
ξnχ

′
5,o

2(ξn±1 − ξn)
, cTL−1n±1a2 =

χ4,o
2(ξn±1 − ξn)

, (6.35)

since cTL(ξ)−1 = cT /(ξ − ξn). Hence by (6.14)(b),

cTL−1n±1a1 = ± 12χ
′
5,oq/γ0 , cTL−1n±1a2 = ∓ 12χ4,oκ

2/γ0 . (6.36)

Thus

cTbn,−3 =
1
12n(n− 1)(n− 2)

(
1
3γ0Π

′′′
o /Π

′′
o − γ1

)
κ

γ0
(6.37)

cTbn,−1 =
1
4

(
n2γ0Π

′′′
o /Π

′′
o + n(n− 2)γ1 − 4n(χ1,o + 1

2χ4,o) + 2nχ
′
5,oq

) κ

γ0
(6.38)
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cTbn,1 = − 14
(
(n+ 1)γ0Π

′′′
o /Π

′′
o + (n+ 3)γ1 + 4(χ1,o +

1
2χ4,o) + 2χ

′
5,oq

) κ

γ0
(6.39)

cTbn,3 = − 1
12

(
1
3γ0Π

′′′
o /Π

′′
o − γ1

)
κ

γ0
. (6.40)

The coefficients of yn in each component of (6.34) are of the following form,

γ0
κ
(AcTbn,−3+BcTbn,−1+CcTbn,1+DcTbn,3) =

1
12γ0Π

′′′
o /Π

′′
o [
1
3n(n−1)(n−2)A+3n

2B−3(n+1)C− 13D]

− 1
4γ1[

1
3n(n− 1)(n− 2)A− n(n− 2)B + (n+ 3)C − 1

3D]− (χ1,o + 1
2χ4,o)(nB + C) +

1
2χ
′
5,oq(nB − C)

Now, from the recurrence relations (6.9), identities (B.9)–(B.12) in Appendix B, give A = κ3, B = 3κ3n,
C = 3κ3(n+ 1)2, D = κ3(n+ 1)(n+ 2)(n+ 3). Thus

C2 := { 524 (n
2 + n+ 11

30 )
γ0Π

′′′
o

Π′′o
+ 3
8 (n

2 + n+ 7
18 )γ1 +

1
2 (n

2 + n+ 1
2 )(χ1,o +

1
2χ4,o) +

1
4 (n+

1
2 )χ

′
5,oq}

Π′′′o
Π′′o

.

Similarly, (B.13)–(B.16) in Appendix B, give A = 1
4κ
−1, B = − 14κ−1(n + 2), C = − 14κ−1(n − 1)(n + 1),

D = 1
4κ
−1(n+ 1)(n+ 2)(n+ 3), which imply

C3 := {− 18 (n
2 + n+ 5

6 )γ0
Π′′′o
Π′′o

+ 3
8 (n

2 + n− 1
6 )γ1 +

1
2 (n

2 + n− 1
2 )(χ1,o +

1
2χ4,o)− 1

4 (n+
1
2 )χ

′
5,oq}γ1/γ0 .

For the last component in (6.34) the relation (6.9)(a) gives A = 0, B = − 12κ−1, C = 1
2 (n + 1)κ

−1, D = 0,
which imply

C4 = {− 14 (n
2 + n + 1

2 )γ0
Π′′′o
Π′′o
− 1

4 (n
2 + n + 3

2 )γ1 − 1
2 (χ0,o +

1
2χ4,o) − 1

2 (n +
1
2 )χ

′
5,oq}2χ1,o/γ0 .

To derive C5 note that the coefficients of yn in y
′
n±1, y

′
n±3 are

1
2κ
−1(n + 1), − 12κ−1 0, 0, respectively,

by (6.9)(a). Similarly, the coefficients of yn in Υyn±1, Υyn±3 are κ(n+ 1), κ 0, 0, respectively, by (6.9)(b).
Thus C5 := (−κ−1cT1 + κcT2 )bn,−1 + (n+ 1)(κ−1cT1 + κcT2 )bn,1.
Since

cT1 a = 1
2χ4,o , cT2 a = − 12ξnχ

′
5,o ,

it follows that

(−κ−1cT1 + κcT2 )κa = − 12χ4,o − 1
2χ
′
5,oq

(κ−1cT1 + κc
T
2 )κa =

1
2χ4,o − 1

2χ
′
5,oq .

From (6.36),

cT1 L−1n∓1(a1±κ−2a2) = −
1

2γ0(±2q + γ0)
{[∓qχ4,o−γ0µi,o](∓qα′o/αo+µi,o)+[∓qχ4,o−γ0λa,o](∓qΩ′′o/Ω′o+λa,o)} ,

using κ2ξn∓1 = q ± γ0, and

cT2 L−1n∓1(a1±κ−2a2) =
ξn

2γ0(±2q + γ0)
{[∓qχ′5,o−γ0Ω′′o/Ω′o](∓qα′o/αo+µi,o)+[∓χ′5,oq−γ0α′o/αo](∓qΩ′′o/Ω′o+λa,o)} .

Hence

(∓κ−1cT1 +κcT2 )L−1n∓1(κa1±κ−1a2) =
1

2γ0(2q ± γ0)
{[∓q(χ4,o+γ0Ω′′o/Ω′o)−γ0µi,o−χ′5,oq2](∓qα′o/αo+µi,o)

+ [∓q(χ4,o + γ0α′o/αo)− γ0λa,o − χ′5,oq2](∓qΩ′′o/Ω′o + λa,o)} .

Finally,

C5 = − 18 [n
2γ0Π

′′′
o /Π

′′
o + n(n− 2)γ1 − 4nχ1,o]

1

γ0
[χ4,o + χ

′
5,oq]
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− n

2γ0(2q + γ0)
{[−q(χ4,o + γ0Ω′′o/Ω′o)− γ0µi,o − χ′5,oq2](−qα′o/αo + µi,o)

+ [−q(χ4,o + γ0α′o/αo)− γ0λa,o − χ′5,oq2](−qΩ′′o/Ω′o + λa,o)}

− 1
8 [(n+ 1)

2γ0Π
′′′
o /Π

′′
o + (n+ 1)(n+ 3)γ1 + 4(n+ 1)χ1,o]

1

γ0
[χ4,o − χ′5,oq]

− n+ 1

2γ0(2q − γ0)
{[q(χ4,o + γ0Ω′′o/Ω′o)− γ0µi,o − χ′5,oq2](qα′o/αo + µi,o)

+ [q(χ4,o + γ0α
′
o/αo)− γ0λa,o − χ′5,oq2](qΩ′′o/Ω′o + λa,o)}

From (6.33) the additional term of Gilbert & Ponty (2000) in p4 + iω4 is Reχ2,o + γ
−1
0 (Imχ1,o)

2.

7 Conclusions

The asymptotic theory of Gilbert & Ponty (2000) for axisymmetric roll dynamos in a sphere has been com-
pared to the numerically computed results of the exact dynamo theory for two simple flows, with azimuthal
components of the special form vφ = r sin θW (ψ) and of general form. Good agreement has been found

between the asymptotic theory to O(R−1/2m ) and the numerical results for the growth rate and angular fre-
quency if the magnetic Reynolds number Rm & 105. The asymptotic formulas for the growth rate and the

angular frequency have been extended to O(R−1m ), with no contribution at O(R
−3/4
m ). For the magnetic field

the agreement between the asymptotic theory at leading order and the numerical results is reasonable if
Rm = 10

5 and good if Rm = 5×105. The asymptotic formula for the magnetic field has also been extended
but only to second order.
Only the simplest class of axisymmetric roll dynamos have been considered: those which consist of a

single roll flow with a single resonant streamline. The magnetic field in these dynamos is localised to the
resonant stream surface and can interact only with itself. Further work is required on more complicated
spherical roll flows, those with a single roll but more than one resonant streamline, or those with several
rolls. Such flows offer the possibility of interaction between magnetic fields localised to separate regions of
the flow. This may produce interacting modes of non-Ponomarenko type, e.g. Gailitis type modes, besides
Ponomarenko type modes. A related question for future work, which arises from the localised nature of the
Ponomarenko type modes at large Rm, is whether they depend on the magnetic boundary conditions at the
surface of the conducting fluid.
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Appendix A

Derivatives of Ω and W

1

Q
= ψ2r +

ψ2θ
r2

Qr = −2Q2
(
ψrψrr +

ψθψrθ
r2

− ψ2θ
r3

)

Qθ = −2Q2
(
ψrψrθ +

ψθψθθ
r2

)

Qrr =
2Q2r
Q
− 2Q2

(
ψ2rr + ψrψrrr +

ψ2rθ
r2
+
ψθψrrθ
r2

− 4ψθψrθ
r3

+
3ψ2θ
r4

)

Qrθ =
2QrQθ
Q

− 2Q2
(
ψrrψrθ + ψrψrrθ +

ψrθψθθ
r2

+
ψθψrθθ
r2

− 2ψθψθθ
r3

)

Qθθ =
2Q2θ
Q
− 2Q2

(
ψ2rθ + ψrψrθθ +

ψ2θθ
r2
+
ψθψθθθ
r2

)
.

∇2ψ = ψrr +
2ψr
r
+
ψθθ
r2
+
cot θ ψθ
r2

(∇2ψ)r = ψrrr +
2ψrr
r
− 2ψr

r2
+
ψrθθ
r2
− 2ψθθ

r3
+
cot θ ψrθ

r2
− 2 cot θ ψθ

r3

(∇2ψ)θ = ψrrθ +
2ψrθ
r
+
ψθθθ
r2

+
cot θ ψθθ

r2
− csc

2 θ ψθ
r2

.

∇∇F = 1r1rFrr + (1r1θ + 1θ1r)

(
Frθ
r
− Fθ
r2

)
+ 1θ1θ

(
Fr
r
+
Fθθ
r2

)
+ 1φ1φ

(
Fr
r
+
cot θ Fθ
r2

)

∇ψ · ∇∇F · ∇ψ = ψ2rFrr + 2ψr
ψθ
r

(
Frθ
r
− Fθ
r2

)
+
ψ2θ
r2

(
Fr
r
+
Fθθ
r2

)

∇ψ · ∇∇ψ · ∇F = ψrψrrFr +

(
ψrθ
r
− ψθ
r2

)(
ψθ
r
Fr + ψr

Fθ
r

)
+
ψθ
r

(
ψr
r
+
ψθθ
r2

)
Fθ
r
= − 12∇Q · ∇F .

∇Q · ∇ψ = Qrψr +
Qθψθ
r2

(∇Q · ∇ψ)r = Qrrψr +Qrψrr +
Qrθψθ
r2

+
Qθψrθ
r2

− 2Qθψθ
r3

(∇Q · ∇ψ)θ = Qrθψr +Qrψrθ +
Qθθψθ
r2

+
Qθψθθ
r2

R = ∇Q · ∇ψ +Q∇2ψ
Rr = (∇Q · ∇ψ)r +Qr∇2ψ +Q(∇2ψ)r
Rθ = (∇Q · ∇ψ)θ +Qθ∇2ψ +Q(∇2ψ)θ

∇Q · ∇F = QrFr +
QθFθ
r2

∇ψ · ∇F = ψrFr +
ψθFθ
r2

∇ψ · ∇R = ψrRr +
ψθRθ
r2

.

F2 = (R
2 +Q∇ψ · ∇R)F + (2RQ+Q∇Q · ∇ψ)∇ψ · ∇F − 1

2∇Q · ∇F +Q
2∇ψ · ∇∇F · ∇ψ

W
′
= Ω

(
W

Ω

)′
+
WΩ′

Ω
, W

′′
= Ω

(
W

Ω

)′′
+
2W

′
Ω′

Ω
+
WΩ′′

Ω
− 2W (Ω

′)2

Ω2
.
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Appendix B

Recurrence Relations

The following recurrence relations follow the two fundamental recurrence relations,

y′n =
1
2κ
−1(nyn−1 − yn+1) , Υ yn = κ(nyn−1 + yn+1) .

y′′n =
1
4κ
−2[n(n− 1)yn−2 − (2n+ 1)yn + yn+2] (B.1)

y′′′n =
1
8κ
−3[n(n− 1)(n− 2)yn−3 − 3n2yn−1 + 3(n+ 1)yn+1 − yn+3] (B.2)

Υ 2yn = κ2[n(n− 1)yn−2 + (2n+ 1)yn + yn+2] (B.3)

Υ 3yn = κ3[n(n− 1)(n− 2)yn−3 + 3n2yn−1 + 3(n+ 1)yn+1 + yn+3] (B.4)

Υy′′n =
1
4κ
−1[n(n− 1)(n− 2)yn−3 − n(n− 2)yn−1 − (n+ 3)yn+1 + yn+3] . (B.5)

Υy′n =
1
2n(n− 1)yn−2 + 1

2yn − 1
2yn+2 (B.6)

Υ 2y′′n =
1
4n(n− 1)(n− 2)(n− 3)yn−4 + n(n− 1)yn−2 − 1

4 (2n
2 + 2n− 1)yn − yn+2 + 1

4yn+4 (B.7)

Υ 4yn = κ4{n(n− 1)(n− 2)(n− 3)yn−4 + 2n(n− 1)(2n− 1)yn−2 + 3(2n2 + 2n+ 1)yn + 2(2n+ 3)yn+2 + yn+4} .
(B.8)

Υ 3yn−3 = κ3{(n− 3)(n− 4)(n− 5)yn−6 + 3(n− 3)2yn−4 + 3(n− 2)yn−2 + yn} (B.9)

Υ 3yn−1 = κ3{(n− 1)(n− 2)(n− 3)yn−4 + 3(n− 1)2yn−2 + 3nyn + yn+2} (B.10)

Υ 3yn+1 = κ3{(n+ 1)n(n− 1)yn−2 + 3(n+ 1)2yn + 3(n+ 2)yn+2 + yn+4} (B.11)

Υ 3yn+3 = κ3{(n+ 3)(n+ 2)(n+ 1)yn + 3(n+ 3)2yn+2 + 3(n+ 4)yn+4 + yn+6} . (B.12)

Υy′′n−3 =
1
4κ
−1{(n− 3)(n− 4)(n− 5)yn−6 − (n− 3)(n− 5)yn−4 − nyn−2 + yn} (B.13)

Υy′′n−1 =
1
4κ
−1{(n− 1)(n− 2)(n− 3)yn−4 − (n− 1)(n− 3)yn−2 − (n+ 2)yn + yn+2} (B.14)

Υy′′n+1 =
1
4κ
−1{(n+ 1)n(n− 1)yn−2 − (n+ 1)(n− 1)yn − (n+ 4)yn+2 + yn+4} (B.15)

Υy′′n+3 =
1
4κ
−1{(n+ 3)(n+ 2)(n+ 1)yn − (n+ 3)(n+ 1)yn+2 − (n+ 6)yn+4 + yn+6} . (B.16)
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Appendix C

Real, Imaginary and q Parts of p4 + iω4

We separate C1 into real, imaginary and q parts, R1, I1 and Q1. Q1 may be real or imaginary.

R1 = χ1,o +
1
2 (µl,o + λd,o)− 1

16 (2n
2 + 2n+ 1)γ0Π

′′′′
o /Π′′o − 1

8 (2n
2 + 2n− 1)γ2 + 1

2 (∇2ψ)
′
o +

1
2χ
′
4,o

I1 = χ2,o + kµj,o +mµk,o + kλb,o +mλc,o +mλg,oW
′
o/Ω

′
o + χ

′
0,o

Q1 =
1
8 (2n+ 1)Ω

′
oχ3,o/q − 1

4 (2n+ 1)χ
′′
5,oq .

Separate C2 into real, imaginary and q parts,

R2 = { 524 (n
2 + n+ 11

30 )
γ0Π

′′′
o

Π′′o
+ 3
8 (n

2 + n+ 7
18 )γ1 +

1
4 (n

2 + n+ 1
2 )[(∇2ψ)o + χ4,o]}

Π′′′o
Π′′o

I2 =
1
2 (n

2 + n+ 1
2 )χ0,o

Π′′′o
Π′′o

Q2 =
1
4 (n+

1
2 )χ

′
5,o

Π′′′o
Π′′o

q .

Separate C3 into real, imaginary and q parts,

R3 = {− 18 (n
2 + n+ 5

6 )γ0
Π′′′o
Π′′o

+ 3
8 (n

2 + n− 1
6 )γ1 +

1
4 (n

2 + n− 1
2 )[(∇2ψ)o + χ4,o]}

γ1
γ0

I3 =
1
2 (n

2 + n− 1
2 )χ0,o

γ1
γ0

Q3 = − 14 (n+ 1
2 )χ

′
5,o

γ1
γ0
q .

Separate C4 into real, imaginary and q parts,

R4 = {− 14 (n
2 + n+ 1

2 )γ0
Π′′′o
Π′′o
− 1
4 (n

2 + n+ 3
2 )γ1 − 1

4 [(∇2ψ)o + χ4,o]}∇2ψo/γ0 + (χ0,o)
2/γ0 .

I4 = − 12χ0,o∇2ψo/γ0 + {− 12 (n
2 + n+ 1

2 )γ0
Π′′′o
Π′′o
− 1
2 (n

2 + n+ 3
2 )γ1 − 1

2 [(∇2ψ)o + χ4,o]}χ0,o/γ0 .

Q4 = − 12 (n+ 1
2 )χ

′
5,oq(2iχ0,o +∇2ψo)/γ0 .
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