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Abstract

We classify all the possible asymptotic behavior at the origin for positive solutions of quasilinear
elliptic equations of the form div (|∇u|p−2∇u) = b(x)h(u) in Ω \ {0}, where 1 < p ≤ N and Ω is
an open subset of RN with 0 ∈ Ω. Our main result provides a sharp extension of a well-known
theorem of Friedman and Véron for h(u) = uq and b(x) ≡ 1, and a recent result of the authors for
p = 2 and b(x) ≡ 1. We assume that the function h is regularly varying at∞ with index q (that is,
limt→∞ h(λt)/h(t) = λq for every λ > 0) and the weight function b(x) behaves near the origin as
a function b0(|x|) varying regularly at zero with index θ greater than −p. This condition includes
b(x) = |x|θ and some of its perturbations, for instance, b(x) = |x|θ(− log |x|)m for any m ∈ R.
Our approach makes use of the theory of regular variation and a new perturbation method for
constructing sub- and super-solutions.
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1. Introduction

Let 1 < p ≤ N and Ω be an open subset of RN such that the origin is contained in Ω.
Motivated by [7], [3], [17] and our recent work [4], we classify here all the possible asymptotic
behavior at the origin for positive solutions of quasilinear elliptic equations of the form

−div (|∇u|p−2∇u) + b(x)h(u) = 0 in Ω∗ := Ω \ {0}, (1.1)

under suitable assumptions on b(x) and h(u). Unless stated otherwise, the functions h and b
always satisfy the following conditions.

A A. The function h is continuous on R and positive on (0,∞) with h(0) = 0, and
h(t)/tp−1 is bounded for small t > 0, while b is a positive continuous function on Ω \ {0}.

By a solution of (1.1), we mean the following.
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Definition 1.1. A function u is said to be a solution (sub-solution, super-solution) of (1.1) if
u(x) ∈ C1(Ω∗) and for all functions (non-negative functions) ϕ(x) in C1

c (Ω∗),∫
Ω

|∇u|p−2∇u · ∇ϕ dx +

∫
Ω

b(x)h(u)ϕ dx = 0 (≤ 0, ≥ 0). (1.2)

By C1
c (Ω∗) we denote the space of functions in C1(Ω∗) having compact support in Ω∗.

Friedman and Véron considered in [7] the following special case of (1.1):

−div (|∇u|p−2∇u) + |u|q−1u = 0 in Ω∗. (1.3)

They obtained a complete classification of the behavior near zero for all positive solutions when
p − 1 < q < (p−1)N

N−p (any q > p − 1 if p = N). The homogeneity of the power non-linearity and
various scaling arguments were key ingredients in the approach of [7] and other related papers
such as [18, 19] and [3]. These arguments can be easily modified to treat a more general case
where h(u) behaves like uq near infinity, but it is crucial that in the limit it behaves like a pure
power, that is, limt→∞ h(t)/tq = c > 0; see Remark 2.3 in [7].

Our main goal is to extend the classification result of Friedman and Véron [7] to weighted
equations of the type (1.1) when the nonlinearity h needs not behave like a pure power at infinity.
For such h the scaling arguments used before fail to work in several key steps. The condition
near infinity we impose on h is the following:

lim
t→∞

h(λt)
h(t)

= λq for every λ > 0 and some q > p − 1. (1.4)

Functions satisfying condition (1.4) are known as regularly varying functions at ∞ with index
q. More precisely, a positive measurable function h defined on an interval (A,∞) with A > 0 is
called regularly varying at ∞ with index q, written h ∈ RVq, provided that the equation in (1.4)
holds for some q ∈ R. A regularly varying function of index zero is called a slowly varying
function. Any positive constant function is trivially a slowly varying function. Other non-trivial
examples of slowly varying functions include:

(a) The logarithm log t, its m-iterates logm t (defined as log logm−1 t) and powers of logm t for
any integer m ≥ 1.

(b) exp
(

log t
log log t

)
.

(c) exp((log t)α) with α ∈ (0, 1).

We have h ∈ RVq if and only if h(t) = tqL(t) for a function L that is slowly varying at∞.
The concept of regular variation can be applied at zero as follows.

Definition 1.2 (see [12]). We say that b0 is regularly varying at (the right of) zero with index
θ ∈ R (written as b0 ∈ RVθ(0+)) if t → b0(1/t) is regularly varying at∞ with index −θ.

Thus b0 ∈ RVθ(0+) if and only b0(r) = rθL(1/r) for r > 0 small, where L is a slowly varying
function at∞. Note that limr→0 b0(r) = 0 if θ > 0, whereas limr→0 b0(r) = ∞ if θ < 0. However,
if b0 is slowly varying at zero (that is, θ = 0), then the above examples show that the limit of b0
at zero in general cannot be determined, and it may not even exist. For instance, if

b0(r) = exp{(− log r)1/3 cos((− log r)1/3)} for r ∈ (0, 1),
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then b0 is slowly varying at zero, but lim infr→0 b0(r) = 0 and lim supr→0 b0(r) = +∞.
Our hypothesis on b involves regular variation at zero, namely

lim
|x|→0

b(x)
b0(|x|)

= 1 for some b0 ∈ RVθ(0+) and θ > −p. (1.5)

Let µ(x) denote (as in [7]) the fundamental solution of the p-harmonic equation

−div (|∇u|p−2∇u) = δ0 in D′(RN) (in the sense of distributions in RN),

where δ0 denotes the Dirac mass at 0. If ωN denotes the volume of the unit ball in RN , then

µ(x) = µ(|x|) =


p − 1
N − p

(NωN)−1/(p−1)|x|(p−N)/(p−1) for 1 < p < N,

(NωN)−1/(N−1) log(1/|x|) for p = N.

From (1.5), the function b is locally in L
N

p−ε (Ω) for some ε > 0 small. Hence Theorem 1 of Serrin
[14] is applicable to (1.1) whenever h(t)/tp−1 is bounded in a neighbourhood of +∞. In this case,
if u is any given positive solution of (1.1), then one of the following holds

(a) u can be defined at 0 so that the resulting function is a continuous solution of (1.1) in all
of Ω (that is, u ∈ W1,p

loc (Ω) ∩C(Ω) such that (1.2) holds for all ϕ ∈ C1
c (Ω));

(b) there exists a constant C > 0 such that C−1µ(x) ≤ u(x) ≤ Cµ(x) near x = 0.

To ensure that h(t)/tp−1 is unbounded at∞, we require q > p − 1 in (1.4). We define

CN,p,θ :=
(p − 1)(N + θ)

N − p
if 1 < p ≤ N (CN,p,θ = ∞ if p = N), (1.6)

where θ appears in (1.5). In Theorem 1.2 we show that if p − 1 < q < CN,p,θ, then a new type of
behavior near zero arises (in the sense of solutions u satisfying lim|x|→0 u(x)/µ(x) = ∞).

Our central result (Theorem 1.1) establishes a complete classification of the positive solutions
of (1.1), assuming that p − 1 < q < CN,p,θ. We also show that the restriction q < CN,p,θ is sharp
(cf., Theorem 1.3) and that there exist solutions in each of the categories of Theorem 1.1 under
suitable regularity and monotonicity assumptions (see Theorem 1.2).

We now state precisely our main results.

Theorem 1.1. Let (1.4) and (1.5) hold with 1 < p ≤ N and p − 1 < q < CN,p,θ. If u is a positive
solution of (1.1), then as |x| → 0 exactly one of the following applies:

(i1) |x|pb(x)
h(u(x))
up−1(x)

converges to the following positive number

ξN,p,q,θ :=
(

p + θ

q + 1 − p

)p−1 (
pq

q + 1 − p
− N +

(p − 1)θ
q + 1 − p

)
.

(i2) u(x)/µ(x) converges to a positive constant γ and

−div(|∇u|p−2∇u) + b(x)h(u) = γp−1δ0 in D′(Ω). (1.7)

(i3) u(x) has a finite limit and u can be extended as a continuous solution of (1.1) in all Ω.
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Theorem 1.2. Let (1.4) and (1.5) hold with 1 < p ≤ N and p − 1 < q < CN,p,θ. Assume that Ω

is a bounded domain with C1-boundary and ϑ ∈ C1(∂Ω) is a non-negative function. If h(t)/tp−1

is non-decreasing for t > 0, then for every γ ∈ [0,∞) ∪ {+∞}, the following problem
− div (|∇u|p−2∇u) + b(x)h(u) = 0 in Ω∗,

lim
|x|→0

u(x)
µ(x)

= γ, u = ϑ on ∂Ω,
(1.8)

admits a unique non-negative solution uγ, which is in C1,α
loc (Ω∗) for some α ∈ (0, 1). Moreover, if

γ ∈ [0,∞), then (1.7) holds with u = uγ.

Theorem 1.3. Let (1.4) and (1.5) hold with 1 < p < N and q ≥ CN,p,θ. If q = CN,p,θ, then we
assume in addition that

lim inf
t→∞

h(t)
tCN,p,θ

> 0 and lim inf
|x|→0

b(x)
|x|θ

> 0. (1.9)

Then any positive solution of (1.1) can be extended as a continuous solution of (1.1) in all Ω.

Remark 1.1. We extend several results in papers such as [7], [3], [17] and [4].

(a) Theorem 1.1 with b ≡ 1 and h(t) = tq reduces to Theorem 2.1 of Friedman and Véron [7]
on Eq. (1.3), which for p = 2 was proved earlier by Véron [18, 19] and also by Brezis and
Oswald [2] (with a different approach to [18, 19]).

(b) Theorem 1.2 with h(t) = tq and b(x) ≡ 1 is due to Friedman and Véron [7].
(c) Theorem 1.3 extends results given for b(x) ≡ 1 by Brezis–Véron [3] (p = 2) and Vázquez–

Véron [17] (1 < p < N). Our proof is somehow different than in [3] and [17].

In Theorem 5.1 we prove that if u is a positive solution of (1.1) and lim sup|x|→0
u(x)
µ(x) , ∞,

then either (i2) or (i3) holds in the settings of Theorem 1.1. However, the most difficult part in
the proof of Theorem 1.1 is the next result dealing with the case lim sup|x|→0

u(x)
µ(x) = ∞.

Theorem 1.4. Let (1.4) and (1.5) hold with 1 < p ≤ N and p − 1 < q < CN,p,θ. If u is a positive
solution of (1.1) such that lim sup|x|→0 u(x)/µ(x) = ∞, then

lim
|x|→0

u(x)
Υ(|x|)

= η, where η :=
(

pq
q + 1 − p

− N +
(p − 1)θ
q + 1 − p

) 1
q+1−p

, (1.10)

and the function Υ is defined by∫ ∞

Υ(r)

dt

[h(t)]
1

p−1

=

∫ r

0
[sb0(s)]

1
p−1 ds for small r > 0. (1.11)

The statement of (i1) in Theorem 1.1 is equivalent to (1.10). This can be easily checked
using (A.6) and (A.7) in Appendix A. Theorem 1.4 determines the precise asymptotic limit of
solutions with strong singularities at zero (that is, solutions u satisfying lim sup|x|→0

u(x)
µ(x) = ∞).

Understanding the blow-up behavior at zero for such solutions is more intricate than in [7] due
to the lack of homogeneity of h in (1.4) and the richness of the admissible class for the weight
function b in (1.5). We recently made progress in [4] by treating such a nonlinearity h in the
special case b ≡ 1 and p = 2. More exactly, we extended Véron’s classification result in [18, 19]
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to positive solutions of ∆u = h(u) in Ω∗ when h ∈ RVq with q > 1. To overcome the difficulty
caused by the lack of homogeneity of h, we introduced in [4] a perturbation method that enabled
us to construct crucial sub-super-solutions to the equation. These were used to obtain the precise
limiting behavior of the solutions u with a strong singularity at zero. But the perturbation method
in [4] seems difficult to apply if p , 2.

In this paper, we introduce a different perturbation method, which not only applies to the
general case 1 < p ≤ N, but can also tackle a weight function b(x) in the equation. Moreover,
even in the special case p = 2 and b ≡ 1, this new method is much simpler to use than the earlier
perturbation method of [4]. In Section 2 by assuming two facts (to be validated later in Section 3
and Section 7), we prove Theorem 1.4. Our key ingredient is given by the construction of sub-
and super-solutions via the new perturbation method. The super-solutions will be used to obtain
a key sharp upper bound (see (2.9)), while the sub-solutions are instrumental in proving a sharp
lower bound for positive solutions with strong singularities at zero.

The rest of the paper is organized as follows. In Section 3 we show that for r0 > 0 small,
every positive sub-solution u(x) of (1.1) is bounded above by C1Υ(|x|) for 0 < |x| < r0, where
C1 = C1(r0) > 0 is a constant independent of u (see (3.1)). This validates our first assumed fact
and enables us to prove that every positive solution u satisfies a Harnack-type inequality (see
Lemma 3.1). Section 4 proves a regularity result that is to be frequently used in compactness
arguments in later sections. One such application is in Section 5, where we prove Theorem 5.1
that treats the case of positive solutions (1.1) satisfying lim sup|x|→0

u(x)
µ(x) , ∞. Section 6 gives

several results for the power case b(x) = |x|θ and h(t) = tq for t > 0, which will be useful for
the general case later. The arguments here are based on ideas in [7]. In Section 7 we complete
the proof of Theorem 1.4 by validating the second fact assumed true in Section 2. The proof of
Theorem 1.1 rests on Theorem 5.1 if lim sup|x|→0 u(x)/µ(x) , ∞, otherwise we use Theorem 1.4.
The above ingredients will also serve to prove Theorem 1.2 in Section 8 and Theorem 1.3 in
Section 9. In Appendix A, we include properties of regularly varying functions used in the
paper, along with some known comparison results (Lemma A.8 and Lemma A.9).

2. Solutions with strong singularities at zero

We first assume that (1.4) and (1.5) hold with 1 < p ≤ N and q > p − 1.

Remark 2.1. The function Υ in (1.11) is regularly varying at zero of index − θ+p
q−p+1 . Hence,

limr→0
Υ(r)
f (r) = 0 for every f ∈ RVσ(0+) with σ < − θ+p

q−p+1 .

Consequently, Lemma 3.1 (a) implies the following.
Fact 1: Any positive sub-solution u of (1.1) satisfies

lim
|x|→0

u(x)
f (|x|)

= 0 for every f ∈ RVσ(0+) with σ < −
θ + p

q − p + 1
. (2.1)

For the remainder of Section 2, we assume in addition that q < CN,p,θ. We shall later prove
Fact 2: If u is a positive solution of (1.1) such that lim sup|x|→0

u(x)
µ(x) = ∞, then

lim
|x|→0

u(x)
f (|x|)

= ∞ for every f ∈ RVσ(0+) with σ > −
θ + p

q − p + 1
. (2.2)

We postpone the validation of Fact 2 to Lemma 7.1 in Section 7. We can now proceed with the
proof of Theorem 1.4, which relies on the construction of sub-super-solutions in Section 2.2.
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2.1. Proof of Theorem 1.4 (assuming Facts 1 and 2)
Let u denote a positive solution of (1.1) such that lim sup|x|→0

u(x)
µ(x) = ∞. Without loss of

generality, we can assume that h(t) is increasing for large t > 0, the function Υ ∈ C2(0, r0) for
small r0 > 0 and (A.8) holds (see Remark A.2 and Remark A.4 of Appendix A).

Fix ε > 0 sufficiently small. We can find η−ε < η < η+
ε such that η±ε → η as ε → 0 and η−ε Υ

(respectively, η+
ε Υ) is a sub-solution (respectively, super-solution) of (1.1) in Brε (0)\{0} for some

small rε > 0. This assertion follows from Lemma 2.1 (with ν = 0). If we could show that u(x) is dominated by η+
ε Υ(|x|) near zero,

u(x) dominates η−ε Υ(|x|) near zero,
(2.3)

then we could use the comparison principle (Lemma A.8) to conclude that

η+
ε Υ(|x|) + Cε ≥ u(x) and u(x) + C′ε ≥ η

−
ε Υ(|x|) for every 0 < |x| ≤ rε, (2.4)

where Cε = max|x|=rε u(x) and C′ε := ηΥ(rε). From (2.4), we would immediately get

η+
ε ≥ lim sup

|x|→0

u(x)
Υ(|x|)

and lim inf
|x|→0

u(x)
Υ(|x|)

≥ η−ε . (2.5)

By letting ε → 0 in (2.5), we would get (1.10). However, it is difficult to obtain (2.3) since we do
not have enough control of u(x) near x = 0 to compare it with η±ε Υ(|x|). Thus we introduce a per-
turbation method that uses the weaker information from Facts 1 and 2 above. In Section 2.2 we
construct a one-parameter family of functions

(
η+
ε,νΥν(r)

)
ν∈(0,ν0]

(respectively,
(
η−ε,νΥ−ν(r)

)
ν∈(0,ν0]

)
such that limν→0 η

±
ε,ν = η±ε , and limν→0 Υ±ν(r) = Υ(r) for every r in a small interval (0, r0) (see

(2.10) and (2.14)). Moreover, for each ν ∈ (0, ν0], we have:
(P1) Υν(r) ≥ Υ(r) ≥ Υ−ν(r) for all r ∈ (0, r0) (see (2.11)).
(P2) r 7−→ Υν(r) is regularly varying at zero of index less than − θ+p

q−p+1 (using (2.10)).

(P3) r 7−→ Υ−ν(r) is regularly varying at zero of index greater than − θ+p
q−p+1 .

(P4) η+
ε,νΥν(r) (respectively, η−ε,νΥ−ν(r)) is a super-solution (respectively, sub-solution) of (1.1)

in Brε (0) \ {0} for some small rε > 0 that is independent of ν (see Lemma 2.1).

The facts assumed early in the section can now be used to compare u and η±ε,νΥ±ν near zero.
Let ν ∈ (0, ν0] be arbitrary. Using (P2) and (P3), jointly with (2.1) and (2.2), we obtain

lim
|x|→0

u(x)
Υν(|x|)

= 0, lim
|x|→0

u(x)
Υ−ν(|x|)

= ∞. (2.6)

We prove below that (2.4) holds when η+
εΥ(|x|) (respectively, η−εΥ(|x|)) is replaced by η+

ε,νΥν(|x|)
(respectively, η−ε,νΥ−ν(|x|)). Notice that η+

ε,νΥν(r) + Cε is a super-solution of (1.1) in Brε (0) \ {0}.
By (2.6), we see that u(x) is dominated by η+

ε,νΥν(|x|) near x = 0. By applying the comparison
principle (Lemma A.8), we find

u(x) ≤ η+
ε,νΥν(|x|) + Cε for every 0 < |x| ≤ rε. (2.7)

Using η > η−ε and limν→0 η
−
ε,ν = η−ε , by (P1) we find C′ε ≥ η−ε,νΥ−ν(rε) for every ν ∈ (0, ν0] (if

needed, we reduce ν0 > 0). Since u(x) dominates η−ε,νΥ−ν(|x|) near x = 0 and u(x) + C′ε is a
super-solution of (1.1) in Brε (0) \ {0}, by applying Lemma A.8 again, we obtain

u(x) + C′ε ≥ η
−
ε,νΥ−ν(|x|) for every 0 < |x| ≤ rε. (2.8)

Letting ν→ 0 in (2.7) and (2.8), we arrive at (2.4). This completes the proof of (1.10).
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Remark 2.2. Using Fact 1, we proved that any positive sub-solution u of (1.1) satisfies

lim sup
|x|→0

u(x)
Υ(|x|)

≤ η, where η is given by (1.10). (2.9)

2.2. Sub- and super-solutions via a new perturbation method
Our construction of sub-super-solutions uses a suitable perturbation of the function Υ defined

by (1.11). Fix ν0 ∈ (0, 1) suitably small. For every ν ∈ [0, ν0], we define Υν(r) by∫ ∞

Υν(r)

dt

[h(t)]
1

p−1

=

(∫ r

0
[sb0(s)]

1
p−1 ds

)1+ν

for r ∈ (0, r0). (2.10)

We assume that r0 > 0 is small such that b0(r) > 0 and
∫ r

0 [sb0(s)]
1

p−1 ds < 1 for all r ∈ (0, r0).
Clearly Υ = Υ0. Let Υ−ν be obtained from the definition of Υν with ν replaced by −ν. Hence,

Υν ≥ Υ ≥ Υ−ν ≥ Υ−ν0 for every 0 ≤ ν ≤ ν0. (2.11)

From (2.10), we see that Υν (respectively, Υ−ν) is regularly varying at zero of index − (1+ν)(θ+p)
q−p+1

(respectively, − (1−ν)(θ+p)
q−p+1 ). Since p − 1 < q < CN,p,θ, the constant η in (1.10) is positive. In what

follows, ε and rε will denote small positive constants, and Brε := Brε (0). We will define

Φ+
ε (r) := η+

εΥ(r), Φ−ε (r) := η−εΥ(r) for r ∈ (0, r0) (2.12)

with suitable η±ε > 0 satisfying limε→0 η
±
ε = η, and then show that Φ+

ε (respectively, Φ−ε ) is a
radial super-solution (respectively, sub-solution) of (1.1) in Brε \ {0} for rε > 0 small. This is
achieved by a perturbation method involving Υ±ν given above.

Construction of Φ±ε,ν. For any ν ∈ (0, ν0], we define Φ±ε,ν(r) for r ∈ (0, r0) by

Φ+
ε,ν(r) := η+

ε,νΥν(r) and Φ−ε,ν(r) := η−ε,νΥ−ν(r), (2.13)

where η±ε,ν > 0 is suitably chosen such that limν→0 η
±
ε,ν = η±ε and limε→0 η

±
ε = η. We will take

η+
ε,ν =

[
(1 + ν)p−1

(1 − ε)2

(
ηq+1−p + o+

ε,ν

)] 1
q+1−p

, η−ε,ν =

[
(1 − ν)p−1

(1 + ε)2

(
ηq+1−p + o−ε,ν

)] 1
q+1−p

(2.14)

for some o+
ε,ν > 0 and o−ε,ν < 0 satisfying limν→0 o±ε,ν = o±ε and o±ε → 0 as ε→ 0.

For ν = 0 we identify Φ±ε,0 with Φ±ε given by (2.12). Hence the one-parameter family (Φ±ε,ν)ν
can be regarded as a “perturbation” of Φ±ε , which converges to Φ±ε as ν goes to 0.

Lemma 2.1. For any small ε > 0, there exists rε > 0 such that Φ+
ε,ν (respectively, Φ−ε,ν) is a radial

super-solution (respectively, sub-solution) of (1.1) in Brε \ {0} for every ν ∈ [0, ν0].

Proof. We fix ε > 0 sufficiently small. By (1.5), there exists rε > 0 small such that

(1 − ε)b0(|x|) ≤ b(x) ≤ (1 + ε)b0(|x|) for every 0 < |x| ≤ rε.

By reducing rε > 0 if needed, we will show that for any ν ∈ [0, ν0], the function v = Φ+
ε,ν satisfies

−(rN−1|vr |
p−2vr)r + (1 − ε)rN−1b0(r)h(v(r)) ≥ 0 for r ∈ (0, rε). (2.15)
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This clearly implies that Φ+
ε,ν is a super-solution of (1.1) in Brε \ {0}. Since h ∈ RVq, there exists

a function L which varies slowly at∞ such that h(t) = tqL(t) for t > 0 large enough. From (2.14)
and Proposition A.2, it follows that

lim
t→∞

L(η±ε,νt)
L(t)

= 1 uniformly with respect to ν ∈ [0, ν0],

provided that ν0 > 0 is small enough. So, by taking tε > 0 large enough, the ratio L(η±ε,νt)/L(t) is
bounded below by 1 − ε for all t ≥ tε and every ν ∈ [0, ν0]. Since Υ(r) → ∞ as r → 0, we can
reduce rε > 0 such that Υ(r) ≥ tε for all r ∈ (0, rε). By (2.11) and (2.13), we get

h(Φ+
ε,ν(r)) ≥ (1 − ε)(η+

ε,ν)
qh(Υν(r)) for every r ∈ (0, rε) and any ν ∈ [0, ν0].

Hence to prove (2.15) for v = Φ+
ε,ν, it suffices to show that for every ν ∈ [0, ν0], we have

(rN−1|vr |
p−2vr)r ≤ (1 − ε)2(η+

ε,ν)
qrN−1b0(r)h(Υν(r)) for every r ∈ (0, rε). (2.16)

Let J, B and F be given by (A.6) and (A.8). For small r > 0, we set

Pν(r) := −N −
rb′0(r)
b0(r)

+ (1 + ν)B(r)J(Υν(r))F(Υν(r)) − ν(p − 1)B(r). (2.17)

Using (2.10) and (2.13), after some calculations, we find that for v = Φ+
ε,ν the left-hand side of

(2.16) is given by

[(1 + ν)η+
ε,ν]

p−1Pν(r)
[∫ r

0
(sb0(s))

1
p−1 ds

]ν(p−1)

rN−1b0(r)h(Υν(r)). (2.18)

In view of (2.17), we write Pν(r) = T1,ν(r) + νT2,ν(r), where T1,ν(r) is given by

T1,ν(r) := −N −
rb′0(r)
b0(r)

+ B(r)J(Υν(r))F(Υν(r)).

From (2.11) and the convergence properties in (A.7) and (A.8), we deduce that as r → 0 the
function T1,ν(r) (respectively, T2,ν(r)) converges to ηq−p+1 (respectively, (θ+p)(p−1)

q−p+1 ), uniformly
with respect to ν ∈ [0, ν0]. Hence, there exists rε > 0 such that for every ν ∈ [0, ν0]

0 < Pν(r) ≤ ηq−p+1 + o+
ε,ν for every r ∈ (0, rε), (2.19)

where o+
ε,ν > 0 satisfies limν→0 o+

ε,ν = o+
ε > 0 and o+

ε → 0 as ε → 0. From (2.19) and (2.14), we
find that the quantity in (2.18) is bounded above by the right-hand side of (2.16). This ends the
proof of (2.15) for v = Φ+

ε,ν. One can similarly check that v = Φ−ε,ν satisfies the reverse inequality
in (2.15) (i.e., “≤” instead of “≥”) with −ε replaced by +ε. Since the argument follows the same
ideas as for (2.15), we omit the details. This completes the proof of Lemma 2.1.

3. A priori estimates and Harnack inequality

In this section, we assume that (1.4) and (1.5) hold with 1 < p ≤ N and q > p − 1. Note
that here we do not impose any upper bound restriction on q. We first extend Lemma 2.1 and
Lemma 2.2 in [7], where the special case b ≡ 1 and h(t) = |t|q−1t is treated. In Lemma 3.1 we
prove that every positive sub-solution of (1.1) satisfies a priori estimates of the type (3.1), which
will be used to derive a Harnack inequality for positive solutions u of (1.1). If lim|x|→0

u(x)
µ(x) = 0,

then we show that u can be extended as a continuous solution of (1.1) in all Ω (cf. Lemma 3.2).
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Lemma 3.1. Fix r0 > 0 such that B2r0 (0) ⊂⊂ Ω. Then there exist positive constants C1 and C2
(which depend on r0) such that

(a) (A priori estimates) For every positive sub-solution u of (1.1), we have

u(x) ≤ C1Υ(|x|) for every 0 < |x| ≤ r0. (3.1)

(b) (Harnack-type inequality) For every positive solution u of (1.1), it holds

max
|x|=r

u(x) ≤ C2 min
|x|=r

u(x) for all 0 < r ≤ r0/2. (3.2)

Proof. Without any loss of generality, we can take h to be increasing on (0,∞) (see Remark A.2).
Using the convention in Remark A.4, we may assume that (A.8) holds.

To conclude (3.1), it is enough to prove that there exists a constant C > 0 such that∫ ∞

u(x)

dt

[h(t)]
1

p−1

≥
[
C|x|pb(x)

] 1
p−1 for every 0 < |x| ≤ r0. (3.3)

Then we can find a large constant C1 > 0 such that

[C|x|pb(x)]
1

p−1∫ ∞
C1Υ(|x|)[h(t)]−

1
p−1 dt

≥ 1 for every 0 < |x| ≤ r0. (3.4)

Indeed, by (A.7) and (1.11), it follows that as |x| → 0, the left-hand side of (3.4) converges to

C
1

p−1 C
q−p+1

p−1

1

(
θ+p
p−1

)
. Hence, by choosing a suitable large constant C1 > 0, the inequality in (3.4)

holds for |x| ∈ (0, ε) and some ε > 0. Then for |x| ∈ [ε, r0], the inequality in (3.4) holds by
possibly enlarging C1 > 0 (since

∫ ∞
C1Υ(r0)[h(t)]−

1
p−1 dt → 0 as C1 → ∞). This proves (3.4) for

some constant C1 > 0 sufficiently large. By combining (3.3) and (3.4), we reach (3.1).
We now prove (3.3). Fix x0 ∈ RN with 0 < |x0| ≤ r0. We set p′ = p/(p − 1) and define

ζ(x) := 1 −
(

2|x − x0|

|x0|

)p′

for x ∈ B |x0 |
2

(x0).

We have ζ(x0) = 1 and 0 < ζ ≤ 1 in B|x0 |/2(x0). For some C > 0, we define S as follows∫ ∞

S (x)

dt

[h(t)]
1

p−1

=
[
C|x0|

pb(x0)
] 1

p−1
[
ζ(x)

]p′ for x ∈ B |x0 |
2

(x0). (3.5)

The right-hand side of (3.5) equals zero for x ∈ ∂B|x0 |/2(x0). Hence S = ∞ on ∂B|x0 |/2(x0). We
shall choose in (3.5) a constant C > 0, which is independent of x0, such that S satisfies

−div(|∇S |p−2∇S ) + b(x)h(S ) ≥ 0 in B|x0 |/2(x0). (3.6)

Then we can apply the comparison principle (see Lemma A.8 in Appendix A) to deduce that

u(x) ≤ S (x) for every x ∈ B|x0 |/2(x0). (3.7)

Using x = x0 in (3.7) and (3.5), we get the inequality in (3.3) with x = x0. This proves (3.3)
since x0 is arbitrarily fixed with 0 < |x0| ≤ r0. To end our proof, we need to show (3.6).
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Proof of (3.6). Using (1.5) and Proposition A.2, we can find a constant c > 0 such that

b(x0) ≤ c b(x) for every x, x0 such that 0 < |x0| ≤ r0 and |x0|/2 ≤ |x| ≤ 3|x0|/2. (3.8)

We next show that S defined by (3.5) satisfies

div(|∇S |p−2∇S ) ≤ Cc(p′)2(p−1)2p
[
N + (p′)2J(S )F(S )

]
b(x)h(S ), ∀x ∈ B |x0 |

2
(x0), (3.9)

where J and F are given by (A.6) and (A.8), respectively. Using (3.5), we obtain

∇S = (p′)2
{
2pCb(x0)h(S )|x − x0|

2−pζ(x)
} 1

p−1 (x − x0) in B|x0 |/2(x0). (3.10)

Hence, using (3.5), (A.6) and (A.8), it follows that

h′(S )
h(S )

ζ(x)∇S · (x − x0) = (p′)2(1 − ζ(x))J(S )F(S ) < (p′)2J(S )F(S ) in B|x0 |/2(x0). (3.11)

By (3.10), we find that the left-hand side of (3.9) equals

C(p′)2(p−1)2p
[
Nζ(x) +

h′(S )
h(S )

ζ(x)∇S · (x − x0) − p′(1 − ζ(x))
]

b(x0)h(S ). (3.12)

Using (3.11), (3.8) and 0 < ζ ≤ 1 in B|x0 |/2(x0), we obtain that the quantity in (3.12) is bounded
above by the right-hand side of (3.9). This concludes the proof of (3.9).

From (1.5), we have lim|x|→0 |x|pb(x) = 0 so that sup0<|x|≤r0
|x|pb(x) < ∞. From the definition

of S in (3.5), the minimum of S on the ball B|x0 |/2(x0) can be made as large as desired by choosing
a sufficiently small constant C > 0, which is independent of x0. From (A.7) and (A.8), we have
limt→∞ J(t)F(t) =

q(p−1)
q−p+1 . Using (3.9), we see that (3.6) holds for a small positive constant C that

is independent of x0. This proves the claim of (a).

(b) We rewrite the equation (1.1) in the form

−div(|∇u|p−2∇u) + [b2(x)]pup−1 = 0 for 0 < |x| < r0, (3.13)

where b2(x) is a positive function defined by

[b2(x)]p :=
b(x)h(u(x))
[u(x)]p−1 for every x ∈ RN with 0 < |x| < r0. (3.14)

Using (3.1), (3.14) and (A.3) in Lemma A.7, we find

|x|p[b2(x)]p ≤ (C1)1−p|x|pb(x)
h2(C1Υ(|x|))
[Υ(|x|)]p−1 for every 0 < |x| ≤ r0. (3.15)

By (1.11), (A.7) and Remark A.2, we find that as |x| → 0, the right-hand side of (3.15) converges
to (C1)q−p+1

(
θ+p

q−p+1

)p−1
. Hence, for some constant A > 0, we have

|x|p[b2(x)]p ≤ A for all 0 < |x| ≤ r0. (3.16)

Fix x0 ∈ RN such that 0 < |x0| ≤ r0/2. By applying the Harnack inequality (Theorem 1.1) of
Trudinger [16] for (3.13) on B|x0 |/2(x0), there exists a constant c0 > 0 depending only on p, N
and |x0|‖b2(x)‖L∞(B|x0 |/2(x0)) such that

sup
x∈B|x0 |/6(x0)

u(x) ≤ c0 inf
x∈B|x0 |/6(x0)

u(x). (3.17)
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Using (3.16), we derive that |x0|‖b2(x)‖L∞(B|x0 |/2(x0)) is bounded above by 2A1/p, which is indepen-
dent of x0. Hence c0 = c0(p,N, A) > 0 is independent of x0 with 0 < |x0| ≤ r0/2. To deduce
(3.2), we use a standard covering argument as in [7]. If x1 and x2 are any points in RN such that
0 < |x1| = |x2| ≤ r0/2, then x1 and x2 can be joined by 10 overlapping balls of radius |x1|/6 with
centers on ∂B|x1 |(0). By (3.17), we obtain (3.2) with C2 = c10

0 .

Lemma 3.2. Let u be a positive solution of (1.1) and γ := lim sup|x|→0 u(x)/µ(x).

(i) If γ , 0, then lim|x|→0 u(x) = ∞;
(ii) If γ = 0, then lim|x|→0 u(x) is finite, and u can be extended as a continuous solution of (1.1)

in all Ω.

Proof. (i) Clearly, γ , 0 implies that lim sup|x|→0 u(x) = ∞. Suppose by contradiction that
d0 := lim inf |x|→0 u(x) < ∞. Then there exists a sequence {xn}n≥1 in RN which converges to zero
such that limn→∞ u(xn) = d0. Without loss of generality, we can take |xn| to be decreasing to zero
as n→ ∞ and 0 < |xn| ≤ r0/2 for some r0 > 0 small such that B2r0 (0) ⊂⊂ Ω. Let n0 ≥ 1 be large
enough such that u(xn) ≤ d0 + 1 for every n ≥ n0. By Lemma 3.1 (b), there exists a constant
C2 > 0 such that (3.2) holds. Thus we obtain that

max
|x|=|xn |

u(x) ≤ C2 min
|x|=|xn |

u(x) ≤ C2 u(xn) ≤ C2(d0 + 1), ∀n ≥ n0.

Since −div(|∇u|p−2∇u) ≤ 0 for 0 < |x| < |xn0 |, by the weak maximum principle for the p-Laplace
operator ([8]) applied on {x ∈ RN : |xn| < |x| < |xn0 |} with n > n0, we find u(x) ≤ C2(d0 + 1) for
all 0 < |x| ≤ |xn0 |. This is a contradiction with lim sup|x|→0 u(x) = ∞.

(ii) Let u satisfy lim|x|→0 u(x)/µ(x) = 0. We rewrite the equation (1.1) in the form

−div(|∇u|p−2∇u) + d(x)up−1 = 0 in Ω, (3.18)

where d(x) := b(x)h(u)/up−1 for x ∈ Ω. Let r0 > 0 be small such that Br0 (0) ⊂⊂ Ω. We first
prove that lim sup|x|→0 u(x) < ∞. We set C := max|x|=r0 u(x). For any integer n ≥ 1, we define

vn(x) := (1/n)µ(x) + C for every 0 < |x| ≤ r0.

Since γ = 0, we see that for any integer n ≥ 1, there exists rn > 0 such that u(x) ≤ vn(x) for every
x ∈ RN with 0 < |x| ≤ rn. We may assume that {rn}n≥1 decreases to zero and rn < r0 for every
n ≥ 1. Set Qn := {x ∈ RN : rn < |x| < r0}. Then we have

u ≤ vn on ∂Qn and − div(|∇u|p−2∇u) ≤ 0 = −div(|∇vn|
p−2∇vn) in Qn.

By the maximum principle, we find u ≤ vn in Qn for any n ≥ 1. For x ∈ RN with 0 < |x| < r0,
we have u(x) ≤ vn(x) for all n ≥ 1 sufficiently large. Since limn→∞ vn(x) = C, we conclude that
u(x) ≤ C for 0 < |x| ≤ r0. By (1.5), we find that b(x) ∈ L

N
p−ε (Br0 (0)) for some small ε > 0. Using

Assumption A, it follows that d(x) ∈ L
N

p−ε (Br0 (0)). We can then apply Theorem 1 of Serrin [14]
to the solution u of (3.18) and conclude the assertion of (ii).

4. A regularity result

Our aim is to extend the regularity result of Lemma 1.1 in [7] on (1.3) to equations of the
form (1.1). We let r0 > 0 be small such that B4r0 (0) ⊂⊂ Ω and let g be a positive continuous
function defined on (0, 4r0]. We prove here the following result.
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Lemma 4.1. Let (1.4) and (1.5) hold for q > p − 1 and p > 1. Assume that N > 1 and
0 ≤ δ ≤ θ+p

q+1−p . Let g ∈ RV−δ(0+) satisfy lim supr→0
g(r)
Υ(r) < ∞, where Υ is defined by (1.11).

If u is a positive solution of (1.1) such that, for some constant C1 > 0,

0 < u(x) ≤ C1g(|x|) for 0 < |x| < 2r0, (4.1)

then there exist constants C > 0 and α ∈ (0, 1) such that

|∇u(x)| ≤ C
g(|x|)
|x|

and |∇u(x) − ∇u(x′)| ≤ C
g(|x|)
|x|1+α

|x − x′|α, (4.2)

for any x, x′ in RN satisfying 0 < |x| ≤ |x′| < r0.

Remark 4.1. (i) If 1 < p ≤ N in Lemma 4.1, then there exists a constant C1 > 0 such that (4.1)
holds with g ≡ Υ for every positive solution u of (1.1) (cf., Lemma 3.1).

(ii) If g ∈ RV−δ(0+) with 0 ≤ δ < θ+p
q+1−p , then limr→0

g(r)
Υ(r) = 0 since Υ ∈ RV

−
θ+p

q+1−p
(0+).

Proof. We use a line of thought similar to Lemma 1.1 of [7] based upon a C1,α-regularity result
of Tolksdorf [15] applied to nonlinear degenerate elliptic equations of the form

−div(|∇Ψ|p−2∇Ψ) + B = 0 in Γ, where Γ := {y ∈ RN : 1 < |y| < 7} (4.3)

and B ∈ L∞(Γ). If Ψ ∈ L∞(Γ) ∩ W1,p(Γ) is a weak solution of (4.3), then there exist constants
α = α(N, p) ∈ (0, 1) and C̃ = C̃(N, p, ‖Ψ‖L∞(Γ), ‖B‖L∞(Γ)) ≥ 0 such that

‖∇Ψ‖C0,α(Γ∗) ≤ C̃, where Γ∗ := {y ∈ RN : 2 < |y| < 6}. (4.4)

For every β ∈ (0, r0/6), we define Ψβ on Γ as follows

Ψβ(ξ) :=
u(βξ)
g(β)

for ξ ∈ Γ. (4.5)

It follows that
∇u(x) =

g(β)
β
∇Ψβ(x/β) for all x ∈ {βξ : ξ ∈ Γ}. (4.6)

Since u is a solution of (1.1), we see that Ψβ satisfies the equation (4.3) with B = Bβ given by

Bβ(ξ) :=
βp

[g(β)]p−1 b(βξ)h(u(βξ)) for ξ ∈ Γ. (4.7)

We prove that there exists a constant C̃ > 0, which is independent of β ∈ (0, r0/6), such that

‖∇Ψβ‖C0,α(Γ∗) ≤ C̃. (4.8)

To this end, we check that Ψβ and Bβ are in L∞(Γ) with their L∞-norms bounded above by a
positive constant that is independent of β ∈ (0, r0/6). Using (4.1) and (4.5), we find

Ψβ(ξ) ≤ C1
g(β|ξ|)
g(β)

for every ξ ∈ Γ and all β ∈ (0, r0/6). (4.9)
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Since g ∈ RV−δ(0+), we can write it as g(t) = t−δL(t) for some function L that is continuous on
(0, 2r0) and slowly varying at zero. Using Proposition A.2, we have

lim
β→0

L(β|ξ|)
L(β)

= 1 uniformly with respect to ξ ∈ Γ.

Hence there exist positive constants ĉ and Ĉ, which depend on r0, such that

ĉg(β) ≤ g(β|ξ|) ≤ Ĉg(β) for every β ∈ (0, r0/6) and every ξ ∈ Γ. (4.10)

Using (4.9), we obtain that Ψβ ∈ L∞(Γ) and ‖Ψβ‖L∞(Γ) ≤ C1Ĉ for every β ∈ (0, r0/6).
We now prove Bβ ∈ L∞(Γ). Since h(t)/tp−1 is bounded for small t > 0, in view of Remark A.2,

we can find two positive constants a1 and a2 such that

h(t) ≤ a1tp−1 + a2h1(t/C1) for every t > 0.

This, combined with (4.1) and the properties of h1, leads to

h(u(βξ)) ≤ a1Cp−1
1 [g(β|ξ|)]p−1 + a2h(g(β|ξ|)).

Using the above inequality and (4.7), we obtain

Bβ(ξ) ≤
(

g(β|ξ|)
g(β)

)p−1 [
a1Cp−1

1 (β|ξ|)pb(βξ) + a2(β|ξ|)pb(βξ)
h(g(β|ξ|))

[g(β|ξ|)]p−1

]
, ∀ξ ∈ Γ. (4.11)

We claim that in the right-hand side of (4.11), the quantity in square brackets is bounded above
by a constant independent of β ∈ (0, r0/6). By lim|x|→0 |x|pb(x) = 0 and lim supr→0

g(r)
Υ(r) < ∞, we

deduce that there exist constants c∗ = c∗(r0) > 0 and c∗ = c∗(r0) > 0 such that

|x|pb(x) ≤ c∗, |x|pb(x)
h(g(|x|))

[g(|x|)]p−1 ≤ c∗ for every x ∈ RN with 0 < |x| < 2r0. (4.12)

Using (4.10) and (4.12) in (4.11), we arrive at

Bβ(ξ) ≤ Ĉp−1(a1Cp−1
1 c∗ + a2c∗) for every β ∈ (0, r0/6) and every ξ ∈ Γ.

Hence, Bβ ∈ L∞(Γ) and ‖Bβ‖L∞(Γ) is bounded above by a constant independent of β. We can thus
apply the above regularity result of Tolksdorf [15] to obtain (4.8).

We are now ready to prove the inequalities in (4.2), where it suffices to take 0 < |x| < r0/2.
Hence we can find β ∈ (0, r0/6) such that x belongs to the set {βξ : ξ ∈ Γ∗ and |ξ| ≤ 3}. For x in
this set, x/β ∈ Γ∗ and (4.6) holds. Using (4.6), (4.8) and (4.10), we conclude the first inequality
in (4.2). To prove the second inequality, we first assume that 0 < |x| ≤ |x′| < 2|x|. Then x′/β also
belongs to Γ∗. By (4.6) and (4.8), we obtain

β|∇u(x) − ∇u(x′)| = g(β)|∇Ψβ(x/β) − ∇Ψβ(x′/β)| ≤ C̃g(β)β−α|x − x′|α.

Hence by (4.10) we reach the second inequality in (4.2). Finally, if 2|x| ≤ |x′| < r0, then

|x′ − x| ≥ |x′| − |x| ≥ |x|. (4.13)

Since g(t)/t belongs to RV−δ−1(0+), by Proposition A.6 (see also Definition 1.2), g(t)/t behaves
near zero as a monotone decreasing function. By the first inequality of (4.2) and (4.13), we find

|∇u(x) − ∇u(x′)| ≤ C
(

g(|x|)
|x|

+
g(|x′|)
|x′|

)
≤ C′

g(|x|)
|x|
≤ C′

g(|x|)
|x|α+1 |x

′ − x|α,

where C′ > 0 denotes a large constant. This completes the proof of (4.2).
13



5. Solutions without strong singularities at zero

Theorem 1.1 of Friedman and Véron [7] on (1.3) is extended below to equations like (1.1).

Theorem 5.1. Let (1.4) and (1.5) hold for 1 < p ≤ N and p − 1 < q < CN,p,θ. Assume that u is a
positive solution of (1.1) such that γ := lim sup|x|→0

u(x)
µ(x) , ∞. Then we have:

(a) either u(x) admits a finite limit at zero and u(x) can be extended as a continuous solution of
(1.1) in the whole Ω;

(b) or u(x)/µ(x) converges to γ ∈ (0,∞) as |x| → 0 and

−div(|∇u|p−2∇u) + b(x)h(u) = γp−1δ0 in D′(Ω). (5.1)

Proof. If γ = 0, then by Lemma 3.2 we conclude the alternative (a). We now assume that
γ ∈ (0,∞) and prove that (b) occurs. We only give the details when 1 < p < N, since the case
p = N follows a similar line of argument to Theorem 1.1 in [7]. Let r0 > 0 be small such that
B2r0 (0) ⊂⊂ Ω. Since γ ∈ (0,∞), there exists a positive constant C1 = C1(r0) such that

u(x) ≤ C1µ(x) for every 0 < |x| ≤ 2r0. (5.2)

We take g(|x|) := µ(|x|) so that g ∈ RV−δ(0+) with δ =
N−p
p−1 . Since 1 < p < N and q < CN,p,θ,

we find 0 < δ < θ+p
q+1−p . By (5.2) and Remark 4.1, the assumptions of Lemma 4.1 are satisfied.

Hence there exist constants C > 0 and α ∈ (0, 1) such that for any x, x′ with 0 < |x| ≤ |x′| < r0,

|∇u(x)| ≤ Cµ(1)|x|−δ−1, |∇u(x) − ∇u(x′)| ≤ Cµ(1)|x|−δ−1−α|x − x′|α. (5.3)

For r ∈ (0, r0) fixed, we now define the function

V(r)(ξ) :=
u(rξ)
µ(r)

for 0 < |ξ| <
r0

r
. (5.4)

We shall prove below that

lim
r→0

V(r)(ξ) =
γ

µ(1)
µ(ξ), lim

r→0
∇V(r)(ξ) =

γ

µ(1)
∇µ(ξ) for every ξ ∈ RN \ {0}. (5.5)

To this end, we first show that limr→0 γ̃(r) = γ, where

γ̃(r) := sup
|x|=r

u(x)
µ(x)

for r ∈ (0, r0). (5.6)

Since clearly lim supr→0 γ̃(r) = γ, it suffices to show that lim infr→0 γ̃(r) = γ. Assuming the
contrary, there exists a decreasing sequence rn that converges to 0 such that γ̃(rn) → γ0 ∈ [0, γ).
Let ε > 0 be small such that γ0 + ε < γ. Hence there exists a large n0 ≥ 1 such that for every
n ≥ n0, we have γ̃(rn) ≤ γ0 + ε. For each n > n0, we define the set Qn by

Qn := {x ∈ RN : rn < |x| < rn0 }.

Since lim supr→0 γ̃(r) = γ, there exists r∗ > 0 small such that γ0 + ε < γ̃(r∗). Choose n > n0 large
such that r∗ ∈ Qn. Since γ̃(r∗) is greater than the maximum of γ̃ over the boundary of Qn, we
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find that u/µ achieves its maximum over Qn in the interior of Qn and u/µ , const. in Qn. This is
a contradiction to Remark A.3 in Section A.2. Hence, limr→0 γ̃(r) = γ.

We now set to prove (5.5). This will involve an estimate, a compactness argument and the
use of the strong maximum principle. It is easily seen that V(r)(ξ) in (5.4) satisfies the equation

−div(|∇V(r)(ξ)|p−2∇V(r)(ξ)) + [µ(1)]1−prNb(rξ)h(u(rξ)) = 0 for 0 < |ξ| < r0/r. (5.7)

We start with an estimate for the second term in (5.7), namely

lim
r→0

rNb(rξ)h(u(rξ)) = 0 for every fixed ξ ∈ RN \ {0}. (5.8)

Using (1.5), Lemma A.7 and (5.2), we find that (5.8) holds if we can prove

T(r) := rNb0(r|ξ|)h2(C1µ(rξ))→ 0 as r → 0. (5.9)

We observe that r 7−→ T(r) is regularly varying at zero with index N + θ − q(N−p)
p−1 , and this index

is positive by our assumption that q < CN,p,θ. Hence (5.9) holds, which proves (5.8).
Next we use a compactness argument to show that V(r) converges along a sequence rn → 0.

From (5.2) and (5.3), it follows that for every fixed r ∈ (0, r0), we have 0 < V(r)(ξ) ≤ C1|ξ|
−δ, |∇V(r)(ξ)| ≤ C|ξ|−δ−1,

|∇V(r)(ξ) − ∇V(r)(ξ′)| ≤ C|ξ − ξ′|α|ξ|−δ−1−α,
(5.10)

for every ξ and ξ′ in RN satisfying 0 < |ξ| ≤ |ξ′| < r0/r.
From (5.7), (5.8) and (5.10), we find that for any sequence r̄n decreasing to zero, there exists

a subsequence rn such that V(rn) → V in C1
loc(RN \ {0}), and V satisfies the equation

−div(|∇V |p−2∇V) = 0 in D′(RN \ {0}).

We now use the strong maximum principle to show that the limit function V is given by

V(ξ) =
γ

µ(1)
µ(ξ) for every ξ ∈ RN \ {0}. (5.11)

From (5.6), we can choose ξrn on the (N − 1)-dimensional unit sphere SN−1 in RN such that

γ̃(rn) =
u(rnξrn )
µ(rn)

.

Using µ(ξ)µ(rn) = µ(1)µ(rnξ) and (5.6), we find that

V(rn)(ξ)
µ(ξ)

≤
γ̃(rn|ξ|)
µ(1)

for 0 < |ξ| <
r0

rn
and

V(rn)(ξrn )
µ(ξrn )

=
γ̃(rn)
µ(1)

.

We may assume ξ0 = limn→∞ ξrn . Then from limr→0 γ̃(r) = γ we deduce

V(ξ)
µ(ξ)

≤
γ

µ(1)
for every ξ ∈ RN \ {0} and

V(ξ0)
µ(ξ0)

=
γ

µ(1)
.

By Lemma A.9, we conclude (5.11). Hence, using V(rn) → V in C1
loc(RN \ {0}), we find

lim
n→∞

V(rn)(ξ) =
γ

µ(1)
µ(ξ), lim

n→∞
∇V(rn)(ξ) =

γ

µ(1)
∇µ(ξ), ∀ξ ∈ RN \ {0}.
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Since {r̄n} is an arbitrary sequence decreasing to zero, the above implies (5.5). Taking |ξ| = 1 and
x = rξ in (5.5), we obtain that lim|x|→0 u(x)/µ(x) = γ and the following

lim
|x|→0
−

x · ∇u(x)
|x|(p−N)/(p−1) = γ(NωN)−1/(p−1) := C0. (5.12)

To complete the proof of the theorem, it remains to show (5.1). Thus we need to verify that∫
Ω

|∇u|p−2∇u · ∇ϕ dx +

∫
Ω

b(x)h(u)ϕ dx = γp−1ϕ(0), ∀ϕ ∈ C1
c (Ω). (5.13)

We fix ϕ ∈ C1
c (Ω). For each ε > 0 small, let wε(r) be a non-decreasing and smooth function on

(0,∞) such that wε(r) = 1 for r ≥ 2ε, wε(r) = 0 for r ∈ (0, ε], and 0 < wε(r) < 1 for r ∈ (ε, 2ε).
Since ϕ(x)wε(|x|) ∈ C1

c (Ω∗) we can use ϕwε as a test function in Definition 1. Hence,∫
Ω

|∇u|p−2wε∇u · ∇ϕ dx +

∫
Ω

b(x)h(u)ϕwε dx = −

∫
Ω

|∇u|p−2ϕ∇u · ∇wε dx. (5.14)

Let RHS (ε) denote the right-hand side of (5.14), that is

RHS (ε) = −

∫
Ω

|∇u|p−2ϕ∇u · ∇wε dx = −

∫
{ε<|x|<2ε}

|∇u|p−2ϕw′ε(|x|)∇u ·
x
|x|

dx. (5.15)

We prove that for every τ > 0, there exists ε0 > 0 such that for every ε ∈ (0, ε0), we have

(ϕ(0)Cp−1
0 − τ)NωN ≤ RHS (ε) ≤ (ϕ(0)Cp−1

0 + τ)NωN , ∀ε ∈ (0, ε0). (5.16)

Indeed, from (5.12) we find

−|∇u|p−2ϕ(x)|x|N−2∇u · x→ ϕ(0)Cp−1
0 as |x| → 0.

Thus for every τ > 0 there exists ε0 = ε0(τ) > 0 such that for any ε ∈ (0, ε0), we have

ϕ(0)Cp−1
0 − τ ≤ −|∇u|p−2ϕ(x)|x|N−2∇u · x ≤ ϕ(0)Cp−1

0 + τ (5.17)

for every ε < |x| < 2ε. We now use Iε to denote

Iε :=
∫
{ε<|x|<2ε}

|x|1−Nw′ε(|x|) dx.

It follows that

Iε = NωN

∫ 2ε

ε

w′ε(r) dr = NωN .

Hence, using (5.15) and (5.17), we arrive at (5.16). Since τ > 0 is arbitrary, by (5.16) and (5.12)
we conclude that limε→0 RHS (ε) = γp−1ϕ(0). Thus (5.13) follows by letting ε → 0 in (5.14).
This completes the proof of Theorem 5.1.
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6. Analysis of the power model

For later applications, we give here several results for the equation (1.1) in the power case
b(x) = |x|θ and h(t) = tq for t > 0.

Lemma 6.1. Let 1 < p ≤ N and θ > −p. Assume that p − 1 ≤ q < CN,p,θ. Let R > 0 be any
positive number. Then for any non-negative numbers λ and γ, there exists a unique non-negative
function Ψ = Ψγ,λ in C1(0,R] satisfying

− (rN−1|Ψr |
p−2Ψr)r + rN−1+θΨq = 0 in (0,R),

lim
r→0

Ψ(r)
µ(r)

= γ, Ψ(R) = λ.
(6.1)

Moreover, limr→0
Ψr(r)
µr(r) = γ and the function γ 7−→ Ψγ,λ is non-decreasing in γ.

Proof. If p = N, we let ` := N/(θ + N) and define

w(r) := `
p

q−p+1 Ψ
(
r`

)
for 0 < r < R1/`. (6.2)

Then (6.1) with p = N holds if and only if w satisfies
− (rN−1|wr |

p−2wr)r + rN−1wq(r) = 0 in (0,R1/`),

lim
r→0

w(r)
µ(r)

= `
q+1

q−p+1 γ, w(R1/`) = `
p

q−p+1 λ.
(6.3)

Lemma 1.4 in [7] shows that for any q ≥ p − 1, the problem (6.3) admits a unique solution w in
C1(0,R1/`] that also satisfies limr→0

wr(r)
µr(r) = `

q+1
q−p+1 γ. Using (6.2), we conclude the proof.

For 1 < p < N the arguments of Lemma 1.4 in [7] can be easily modified to our situation and
therefore we omit the details.

Remark 6.1. The solution Ψγ,λ is positive in (0,R), unless both γ and λ are zero in which case
Ψ = 0 on [0,R]. As in Remark 1.3 in [7], the solution Ψ(r) of (6.1) solves the following singular
Dirichlet problem  − div(|∇Ψ|p−2∇Ψ) + |x|θΨq = γp−1δ0 in D′(BR(0)),

Ψ(x) = λ for x ∈ ∂BR(0).

If in Lemma 6.1 we assume that p − 1 < q < CN,p,θ, then there also exist solutions for the
problem (6.1) with γ = ∞. More precisely, we prove the following.

Lemma 6.2. Let 1 < p ≤ N and θ > −p. Assume that p − 1 < q < CN,p,θ. Let R > 0 be
any positive number. Then for any non-negative number λ, there exists a non-negative function
Ψ = Ψ∞,λ in C1(0,R], which is positive in (0,R) and satisfies

− (rN−1|Ψr |
p−2Ψr)r + rN−1+θΨq = 0 in (0,R),

lim
r→0

Ψ(r)
µ(r)

= ∞, Ψ(R) = λ ≥ 0.
(6.4)

Furthermore, for every such solution Ψ ∈ C1(0,R], we have

lim inf
r→0

r
θ+p

q−p+1 Ψ(r) > 0. (6.5)
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Proof. For every constant γ ≥ 1, by Lemma 6.1 and Remark 6.1, the problem (6.1) admits a
unique solution Ψγ = Ψγ,λ ∈ C1(0,R] and Ψγ is positive in (0,R). By Lemma 3.1 (a) and the
weak maximum principle (for p-subharmonic functions), there exists a large constant C > 0 such
that for every γ ≥ 1, we have

Ψγ(r) ≤ Cr−
θ+p

q−p+1 for all r ∈ (0,R/3], Ψγ(r) ≤ C(R/3)−
θ+p

q−p+1 for all r ∈ [R/3,R].

By the comparison principle, γ → Ψγ is increasing. Using Lemma 4.1, we deduce that Ψγ,λ →

Ψ∞,λ in C1 in every compact subset of (0,R] as γ → ∞ and Ψ∞,λ satisfies (6.4).
We now prove (6.5). We note that the case θ = 0 in (6.4) is covered by Lemma 2.3 of

Friedman and Véron [7]. When p = N then (6.4) can be transformed to (6.3) (with γ = ∞) by
using the change of variable in (6.2). By applying Lemma 2.3 of [7] to w, we conclude that

lim
r→0

r
p

q−p+1 w(r) = `
p

q−p+1 lim
r→0

r
θ+p

q−p+1 Ψ(r) = Const. > 0.

Suppose now that 1 < p < N. We will use a simple variant of the argument of Step 1 in the proof
of Lemma 2.3 in [7]. We make the change of variable s = r(p−N)/(p−1) and ϕ(s) = Ψ(r). To prove
(6.5), we need to show that

lim inf
s→∞

s
p−1−CN,p,θ

q−p+1 ϕ(s) > 0. (6.6)

It is easily checked that

Ψr(r) =

(
p − N
p − 1

)
r

1−N
p−1 ϕs(s), (6.7)

and ϕ satisfies the equation

−(|ϕs|
p−2ϕs)s +

(
p − 1
N − p

)p

s−1−CN,p,θϕq = 0 in [R
p−N
p−1 ,∞). (6.8)

Hence, |ϕs|
p−2ϕs is increasing in s and one of the following holds:

(i) lims→∞ ϕs(s) = β < ∞, (ii) lims→∞ ϕs(s) = ∞.

Case (i), jointly with (6.7), implies that limr→0
Ψ(r)
µ(r) =

β
µ(1) < ∞, which is a contradiction with

(6.4). Hence (ii) holds. It follows that ϕs(s) > 0 and ϕ(s) ≤ sϕs(s) for large s. Consequently,

(ϕp−1
s )s ≤

(
p − 1
N − p

)p

sq−1−CN,p,θϕ
q
s for all s ≥ s0,

where s0 > 0 is sufficiently large. Substituting a(s) = ϕ
p−1
s (s), we obtain

as ≤

(
p − 1
N − p

)p

sq−1−CN,p,θa
q

p−1 for all s ≥ s0. (6.9)

By (ii), we have a(s)→ ∞ as s→ ∞. Hence from (6.9), it follows that(
p − 1

q + 1 − p

)
a(s)

p−1−q
p−1 ≤

(
p − 1
N − p

)p sq−CN,p,θ

CN,p,θ − q
for every s ≥ s0.
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Since ϕs(s) = a
1

p−1 (s), we find ϕs(s) ≥ c s
CN,p,θ−q

q−p+1 for s ≥ s0, where c > 0 is a constant. Hence

ϕ(s) −
c(q − p + 1)

CN,p,θ − p + 1
s
−p+1+CN,p,θ

q−p+1

is a non-decreasing function for s ≥ s0. This proves (6.6), which completes the proof.

Corollary 6.3. Let 1 < p ≤ N and θ > −p. Assume that p − 1 < q < CN,p,θ. Let R > 0 and u be
a positive super-solution of the equation

−div(|∇v|p−2∇v) + |x|θvq = 0 in BR(0) \ {0}. (6.10)

If lim|x|→0
u(x)
µ(x) = ∞, then we have

lim inf
|x|→0

|x|
θ+p

q−p+1 u(x) > 0. (6.11)

Proof. Let u be a positive super-solution of (6.10) such that lim|x|→0
u(x)
µ(x) = ∞. Let Ψ∞,0 ∈

C1(0,R] denote the unique positive solution of (6.4) with λ = 0. By the construction of Ψ∞,0 in
Lemma 6.2 and the comparison principle, we infer that u(x) ≥ Ψ∞,0(|x|) for |x| ∈ (0,R). Since
Ψ = Ψ∞,0 satisfies (6.5), we conclude (6.11).

Our next result will be useful in the proof of Theorem 1.3.

Lemma 6.4. Let 1 < p ≤ N. Assume that θ > −p and q ≥ p − 1.

(i) If R > 0 and Ψ ∈ C1(0,R) is a positive solution of

−(rN−1|Ψr |
p−2Ψr)r + rN−1+θΨq = 0 in (0,R), (6.12)

then there exists limr→0 Ψ(r)/µ(r) ∈ [0,∞].
(ii) If we assume in addition that p , N and q ≥ CN,p,θ, then any positive solution Ψ ∈ C1(0,R)

of (6.12) must satisfy limr→0 Ψ(r)/µ(r) = 0.

Proof. (i) We argue by contradiction. If Ψ(r)/µ(r) does not admit a limit in [0,∞] as r → 0,
then there exists M > 0 such that

lim inf
r→0

Ψ(r)
µ(r)

< M < lim sup
r→0

Ψ(r)
µ(r)

. (6.13)

Let (rn)n≥1 be a sequence of positive numbers decreasing to zero such that Ψ(rn)/µ(rn) converges
to lim infr→0 Ψ(r)/µ(r) as n → ∞. We can assume that rn < R and Ψ(rn) ≤ Mµ(rn) for every
n ≥ 1. By the comparison principle in Lemma A.8, we find Ψ(r) ≤ Mµ(r) for any r ∈ (rn, r1) and
every n ≥ 2. Since limn→∞ rn = 0, we obtain that Ψ(r) ≤ Mµ(r) for every r ∈ (0, r1). This being
a contradiction with (6.13), we conclude the proof of (i).

(ii) We assume that 1 < p < N, which implies that CN,p,θ in (1.6) is finite. Let Ψ be an
arbitrary positive C1(0,R)-solution of (6.12). Set γ := limr→0 Ψ(r)/µ(r). We need to show that
γ = 0 whenever q ≥ CN,p,θ. By Lemma 3.1, there exists a constant C > 0 such that

Ψ(r) ≤ Cr−
θ+p

q+1−p for every r > 0 small. (6.14)
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If q > CN,p,θ, then (6.14) implies that γ = 0. When q = CN,p,θ, then by (6.14) and (i), we find
γ ∈ [0,∞). As in the proof of Lemma 6.2, we set s = r(p−N)/(p−1) and ϕ(s) = Ψ(r). Hence,
lims→∞ ϕ(s)/s = γµ(1) and (6.8) holds with q = CN,p,θ, that is

(|ϕs|
p−2ϕs)s =

(
p − 1
N − p

)p

s−1
(
ϕ(s)

s

)CN,p,θ

for s ∈ (R
p−N
p−1 ,∞). (6.15)

Thus ϕs is increasing for s > R
p−N
p−1 . If we assume that γ ∈ (0,∞), then lims→∞ ϕs(s) =

lims→∞ ϕ(s)/s = γµ(1). By integrating the right-hand (respectively, left-hand) side of (6.15)
over (R

p−N
p−1 , t) and letting t → ∞, we obtain∞ (respectively, a finite quantity). This contradiction

shows that γ = 0, which concludes the proof.

7. Proof of Theorem 1.1

In this section we assume that (1.4) and (1.5) hold with 1 < p ≤ N and p − 1 < q < CN,p,θ.
Let u be a positive solution of (1.1). We conclude either (i2) or (i3) of Theorem 1.1 by invoking
Theorem 5.1 whenever lim sup|x|→0

u(x)
µ(x) , ∞. Assuming Facts 1 and 2, we proved in Theorem 1.4

that (i1) of Theorem 1.1 holds when lim sup|x|→0
u(x)
µ(x) = ∞. Since Fact 1 has been proved, to

complete the proof of Theorem 1.4 we need only show that Fact 2 is valid.

Lemma 7.1 (Fact 2). If u is a positive solution of (1.1) with lim sup|x|→0
u(x)
µ(x) = ∞, then

lim
|x|→0

u(x)
f (|x|)

= ∞ for every f ∈ RVσ(0+) with σ > −
θ + p

q − p + 1
. (7.1)

Proof. Since p − 1 < q < CN,p,θ, we can choose θ∗ and q∗ (close to θ and q) such that

−p < θ∗ < θ, q < q∗ < CN,p,θ∗ and σ > −
θ∗ + p

q∗ − p + 1
> −

θ + p
q − p + 1

. (7.2)

Using (7.2) and Proposition A.3 (ii), we see that to prove (7.1) it is enough to show that

lim inf
|x|→0

|x|
θ∗+p

q∗−p+1 u(x) > 0. (7.3)

Our choice of θ∗ and q∗ ensures that u is a super-solution for the equation

−div(|∇v|p−2∇v) + |x|θ∗vq∗ = 0 for 0 < |x| < R, (7.4)

where R > 0 is small enough. Indeed, using b0 ∈ RVθ(0+) with θ > θ∗ and h ∈ RVq with
q < q∗, we get that limt→∞ h(t)/tq∗ = 0 and limr→0 b0(r)/rθ∗ = 0. Lemma 3.2 (i) shows that
lim|x|→0 u(x) = ∞. Hence, there exists R > 0 such that BR(0) ⊂⊂ Ω and

b(x)h(u) ≤ |x|θ∗uq∗ for 0 < |x| ≤ R.

Thus u is a super-solution of (7.4). By our assumption, lim sup|x|→0
u(x)
µ(x) = ∞, and hence there

exists a sequence {xn} in RN such that |xn| = rn decreases to zero as n→ ∞ and limn→∞
u(xn)
µ(xn) = ∞.

Then by Lemma 3.1 (b), we obtain that

lim
n→∞

min
|x|=rn

u(x)
µ(x)

= ∞. (7.5)
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For any n ≥ 1, the equation (7.4), subject to lim|x|→0
v(x)
µ(x) = n and v|∂BR(0) = 0, admits a unique

positive solution vn, which is radial (by Lemma A.8 and Lemma 6.1). Using (7.5), we get
u(x) ≥ vn(|x|) on |x| = rn for large n ≥ 1. Since also u ≥ vn on |x| = R, by Lemma A.8

u(x) ≥ vn(|x|) if rn < |x| < R (7.6)

for all large n ≥ 1. As in the proof of Lemma 6.2, we have vn → v∗ in C1 in every compact subset
of (0,R] as n→ ∞ and v∗ is a positive solution of (7.4) such that limr→0

v∗(r)
µ(r) = ∞. Letting n→ ∞

in (7.6), we obtain u(x) ≥ v∗(|x|) for every x with 0 < |x| < R. Therefore lim|x|→0 u(x)/µ(x) = ∞.
We now apply Corollary 6.3 to the super-solution u of (7.4) to obtain (7.3) (since θ∗ > −p and
p − 1 < q∗ < CN,p,θ∗ ). This completes the proof of (7.1).

8. Proof of Theorem 1.2

(i) Uniqueness.
Let u1, u2 be two positive solutions of (1.8). We first prove uniqueness for γ = 0 in (1.8). By

Lemma 3.2, both u1 and u2 belong to W1,p
loc (Ω) ∩ L∞loc(Ω) and they can be extended as continuous

solutions of (1.1) in the whole Ω. Hence, for every ϕ ∈ C1
c (Ω), we have∫

Ω

|∇ui|
p−2∇ui · ∇ϕ dx +

∫
Ω

b(x)h(ui)ϕ dx = 0 with i ∈ {1, 2}. (8.1)

Using (1.5), the function b is locally in L
N

p−ε (Ω) for some ε > 0. It follows that (8.1) holds not
only for functions ϕ in C1

c (Ω), but in fact for any ϕwith strong derivatives in Lp and with compact
support in Ω. This is deduced using the Hölder inequality and the Sobolev embedding theorem
(see [13], p. 251). Since (u1 − u2) ∈ W1,p

0 (Ω), we let ϕ = u1 − u2 in (8.1) and find∫
Ω

(|∇u1|
p−2∇u1 − |∇u2|

p−2∇u2) · ∇(u1 − u2) dx +

∫
Ω

b(x)(h(u1) − h(u2))(u1 − u2) dx = 0.

Note that the integrand in the first integral is non-negative. Since b(x) > 0 in Ω∗ and h is
increasing, for the above equality to hold we must have u1 ≡ u2 in Ω.

We now assume that γ ∈ (0,∞) ∪ {+∞}. We notice that (u1/u2)(x) → 1 as |x| → 0, where
we apply Theorem 1.1 for γ = ∞. Let ε > 0 be arbitrary. Since h(t)/tp−1 is non-decreasing on
(0,∞), one can check that (1 + ε)ui is a super-solution of (1.1) for i = 1, 2. By the comparison
principle, we find that u1 ≤ (1 + ε)u2 in Ω∗ and u2 ≤ (1 + ε)u1 in Ω∗. By taking ε → 0, we
conclude that u1 = u2 in Ω∗.

(ii) Existence.
If γ = 0, then u is a regular solution of (1.1) in Ω (cf., Lemma 3.2). The existence assertion

follows by a standard minimization argument. Assume that γ is any positive number. We prove
that (1.8) admits at least one positive solution uγ. Let θ∗ ∈ (−p, θ) and q∗ be sufficiently close to
θ and q, respectively such that q < q∗ < CN,p,θ∗ . We fix C > 0 large such that

C > max
x∈∂Ω

ϑ(x) and h(t) ≤ tq∗ for every t ≥ C.

Let r∗ > 0 be small enough such that Br∗ (0) ⊂⊂ Ω and

b(x) ≤ |x|θ∗ for every 0 < |x| ≤ r∗.
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By Lemma 6.1, there exists a unique positive solution Ψγ ∈ C1(0, r∗] satisfying
− (rN−1|Ψr |

p−2Ψr)r + rN−1+θ∗Ψq∗ = 0 in (0, r∗),

lim
r→0

Ψ(r)
µ(r)

= γ, Ψ(r∗) = C.

Since Ψγ(r) is decreasing in r, we have Ψγ(r) ≥ C for every r ∈ (0, r∗). By the comparison
principle, we obtain Ψγ(|x|) ≤ γµ(|x|) + C for 0 < |x| ≤ r∗. For every integer n ≥ 1 satisfying
n > 1/r∗, we consider the boundary value problem − div(|∇v|p−2∇v) + b(x)h(v) = 0 for x ∈ Ω \ B1/n(0),

v = γµ + C for |x| = 1/n, v = ϑ on ∂Ω.
(8.2)

Let vn be the unique positive C1-solution of (8.2). It follows that vn+1 ≤ vn ≤ γµ + C for
x ∈ Ω \ B1/n(0) and every n > 1/r∗. Since

−div(|∇Ψγ|
p−2∇Ψγ) + b(x)h(Ψγ) ≤ 0 for 0 < |x| < r∗,

we deduce from the comparison principle that Ψγ ≤ vn +C for 1/n < |x| < r∗. By Lemma 4.1, we
conclude that for a sequence n j → ∞ we have vn j → v∞ in C1

loc(Ω∗) and v∞ is a positive solution
of (1.1) such that v∞ = ϑ on ∂Ω. Moreover, we have Ψγ ≤ v∞ + C ≤ γµ + 2C for 0 < |x| < r∗,
which leads to lim|x|→0 v∞(x)/µ(x) = γ. Hence, v∞ is a positive solution of (1.8).

Consequently, (1.8) admits a (unique) positive solution uγ ∈ C1(Ω∗) for every γ ∈ [0,∞). By
Theorem 5.1, we know that uγ satisfies (1.7). Applying Lemma 4.1 to uγ with g ≡ Const. > 0 if
γ = 0 and g(|x|) = µ(|x|) if γ ∈ (0,∞), we find that uγ ∈ C1,α

loc (Ω∗) for some α ∈ (0, 1).
To construct a positive solution of (1.8) for γ = ∞, we proceed as follows. Let un be the

unique positive solution of (1.8) with γ = n ≥ 1. By the comparison principle, we find un ≤ un+1
in Ω∗. By Remark 4.1 and Lemma 4.1, we see that, up to a subsequence, un converges in C1

loc(Ω∗)
to u∞, which is a positive solution of (1.8) with γ = ∞. Moreover, u∞ ∈ C1,α

loc (Ω∗) for some
α ∈ (0, 1). This completes the proof.

9. Proof of Theorem 1.3

Let (1.4) and (1.5) hold with 1 < p < N and q ≥ CN,p,θ. If q = CN,p,θ, then we further assume
(1.9). Let u be any positive solution of (1.1). By Lemma 3.2, it is enough to show that

lim
|x|→0

u(x)
µ(x)

= 0. (9.1)

We distinguish two cases. We first suppose that q > CN,p,θ. Then p−N
p−1 is less than − θ+p

q−p+1 . Since

µ is regularly varying at zero of index p−N
p−1 , by (2.1) we find (9.1).

We next consider the case q = CN,p,θ. Then Υ and µ vary regularly at zero with the same
index, and we need condition (1.9) to prove (9.1). Set γ := lim sup|x|→0

u(x)
µ(x) . It suffices to show

that γ = 0. Arguing indirectly, we assume that γ , 0. We shall arrive at a contradiction with
Lemma 6.4 (ii) as follows. By Lemma 3.2, we have lim|x|→0 u(x) = ∞. Using (1.9), we find that
u is a sub-solution of

−div(|∇v|p−2∇v) + ε|x|θvCN,p,θ = 0 in BR(0) \ {0}, (9.2)
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where ε > 0 and R > 0 are small constants such that BR(0) ⊂⊂ Ω. By applying Lemma 3.1 (a) to
(9.2), we conclude that γ < ∞. For every τ > 0, the comparison principle leads to

u(x) ≤ (γ + τ)µ(x) + max
|y|=R

u(y) for 0 < |x| < R.

Letting τ→ 0, we obtain

u(x) ≤ γµ(x) + max
|y|=R

u(y) for 0 < |x| < R.

For every large integer n ≥ 1, we set Qn := {x ∈ RN : 1/n < |x| < R}. Let vn denote the unique
positive solution of (9.2) considered in Qn, subject to the boundary condition

v|∂BR(0) = max
|x|=R

u(x) and v|∂B1/n(0) = max
|x|=1/n

u(x). (9.3)

From (9.3) and uniqueness of vn, we must have that vn is radially symmetric in Qn. We notice
that u is a sub-solution (respectively, γµ(x) + max|y|=R u(y) is a super-solution) for (9.2) in Qn,
subject to (9.3). Using the comparison principle, we get

u(x) ≤ vn(|x|) ≤ γµ(x) + max
|y|=R

u(y) in Qn. (9.4)

Using Lemma 4.1, we find that for a sequence nk → ∞ we have vnk → v∞ in C1
loc(0,R] and

V := ε
1

CN,p,θ−p+1 v∞ satisfies the following equation

−(rN−1|Vr |
p−2Vr)r + rN−1+θVCN,p,θ = 0 in (0,R).

Letting n → ∞ in (9.4) and using Lemma 6.4 (i), we find limr→0
V(r)
µ(r) = ε

1
CN,p,θ−p+1 γ ∈ (0,∞). But

this is a contradiction with Lemma 6.4 (ii). This concludes the proof of (9.1).

A. Regular variation theory and related results

A.1. Properties of regularly varying functions
If h is a positive measurable function defined in a neighbourhood of infinity and the limit

limt→∞ h(λt)/h(t) exists in (0,∞) for every λ > 0, then necessarily (1.4) holds for some q ∈ R
(see [12]). Such functions were first introduced by Karamata [9] and are called regularly varying
functions at ∞ with index q. Their theory, which was later extended and developed by many
others, plays an important role in certain areas of probability theory such as in the theory of
domains of attraction and max-stable distributions. For detailed accounts of the theory of regular
variation, its extensions and many of its applications, we refer the interested reader to [12], [1]
and [11].

For the reader’s convenience, we include here some basic properties of regularly varying
functions. We recall that a positive measurable function L defined on a neighbourhood of infinity
is called slowly varying at∞ if limt→∞ L(λt)/L(t) = 1 for every λ > 0.

N. By f1(t) ∼ f2(t) as t → ∞, we mean that limt→∞ f1(t)/ f2(t) = 1. As in [11], let f←

denote the (left continuous) inverse of a non-decreasing function f on R, namely

f←(t) = inf{s : f (s) ≥ t}.
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Proposition A.1 (Representation Theorem). A function L is slowly varying at∞ if and only if it
can be written in the form

L(t) = T (t) exp
{∫ t

t0

ϕ(ξ)
ξ

dξ
}

(t ≥ t0 > 0) (A.1)

where ϕ ∈ C[t0,∞) satisfies limt→∞ ϕ(t) = 0 and T is measurable function on [t0,∞) such that
limt→∞ T (t) := T̂ ∈ (0,∞).

Remark A.1. For any f ∈ RVρ (ρ ∈ R), there exists a C1-function f̂ ∈ RVρ such that

lim
t→∞

f̂ (t)
f (t)

= 1 and lim
t→∞

t f̂ ′(t)

f̂ (t)
= ρ. (A.2)

Indeed, if L(t) := f (t)/tρ, then L is slowly varying at∞ and (A.1) holds. We define f̂ as follows

f̂ (t) = T̂ tρ exp
{∫ t

t0

ϕ(ξ)
ξ

dξ
}

(t ≥ t0).

Hence, f̂ is a C1-function that satisfies (A.2), since we have

f̂ (t)
f (t)

=
T̂

T (t)
→ 1 and

t f̂ ′(t)

f̂ (t)
= ρ + ϕ(t)→ ρ as t → ∞.

Proposition A.2 (Uniform Convergence Theorem). If L is slowly varying at ∞, then L(λt)/L(t)
converges to 1 as t → ∞, uniformly on each compact λ-set in (0,∞).

Proposition A.3 (Properties of slowly varying functions). Assume that L is slowly varying at∞.
The following hold:

(i) log L(t)/ log t converges to 0 as t → ∞;
(ii) For any j > 0, we have t jL(t)→ ∞ and t− jL(t)→ 0 as t → ∞;

(iii) (L(t)) j varies slowly at∞ for every j ∈ R;
(iv) If L1 varies slowly at∞, so does the product (respectively the sum) of L and L1.

Proposition A.4 (Karamata’s Theorem). If f ∈ RVρ is locally bounded in [A,∞), then

(i) lim
t→∞

t j+1 f (t)∫ t
A ξ

j f (ξ) dξ
= j + ρ + 1 for any j ≥ −(ρ + 1);

(ii) for any j < −(ρ + 1) (and for j = −(ρ + 1) if
∫ ∞

ξ−(ρ+1) f (ξ) dξ < ∞) we have

lim
t→∞

t j+1 f (t)∫ ∞
t ξ j f (ξ) dξ

= −( j + ρ + 1).

Proposition A.5 (see Proposition 0.8 in [11]). We have

(i) If f ∈ RVρ, then limt→∞ log f (t)/ log t = ρ.
(ii) If f1 ∈ RVρ1 and f2 ∈ RVρ2 with limt→∞ f2(t) = ∞, then

f1 ◦ f2 ∈ RVρ1ρ2 .
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(iii) Suppose f is non-decreasing, f (∞) = ∞, and f ∈ RVρ with 0 < ρ < ∞. Then

f← ∈ RV1/ρ.

The next result shows that any function f varying regularly at∞with positive index is asymp-
totic to a monotone function.

Proposition A.6 (see Theorem 1.5.3 in [1]). Let f ∈ RVρ and choose t0 ≥ 0 so that f is locally
bounded on [t0,∞). If ρ > 0, then we have

(a) f (t) := sup{ f (s) : t0 ≤ s ≤ t} ∼ f (t) as t → ∞;
(b) f (t) := inf{ f (s) : s ≥ t} ∼ f (t) as t → ∞.

A.2. Other results
Lemma A.7. If p > 1, then there exist two functions h1 and h2 which have the properties of h
stated in Assumption A in Section 1, as well as the following

h1(t) ≤ h(t) ≤ h2(t) for t ∈ [0,∞),
h1(t)
tp−1 and

h2(t)
tp−1 are both increasing for t ∈ (0,∞).

(A.3)

Proof. Let q > p − 1. We set g∗(t) := inf s≥t g(s) for t > 0, where g(t) := t−
(q+p−1)

2 h(t). Hence,
g∗ ≤ g on (0,∞) and g∗ is non-decreasing on (0,∞). We define h1 on [0,∞) with

h1(t) := t
q+p−1

2 g∗(t) for any t > 0 and h1(0) = 0. (A.4)

Using the monotonicity of g∗ and q > p − 1, we see that h1(t)/tp−1 = t
q−p+1

2 g∗(t) is increasing for
t ∈ (0,∞). Moreover, h1(t) ≤ h(t) for any t ≥ 0. We now construct h2 on [0,∞) as follows

h2(t) := tp−1
(

sup
0<s≤t

h(s)
sp−1 + t

q−p+1
2

)
for any t > 0 and h2(0) = 0. (A.5)

Since h(0) = 0 and h(t)/tp−1 is assumed to be bounded for small t > 0, we infer that h2 is
well-defined and satisfies the properties of h and (A.3).

Remark A.2. If in Lemma A.7 we assume, in addition, that h ∈ RVq for some q > p−1, then the
functions h1 and h2 constructed in (A.4) and (A.5) are asymptotically equivalent to h at infinity,
that is limt→∞ hi(t)/h(t) = 1 for i = 1, 2. This follows by applying Proposition A.6.

The monotonicity of the functions h1 and h2 in Lemma A.7 allows us to use the following
comparison principle (see, for example, Theorem 2.4.1 in [10]). For other versions, we refer to
Theorem 10.7 in [8], or Proposition 2.2 in [5] (see also [6]).

Lemma A.8 (Comparison principle). Let Ω be a bounded domain of RN with N ≥ 2. Assume
that g : Ω × [0,∞) 7−→ [0,∞) is in L∞loc(Ω × [0,∞)) and g = g(x, z) is non-decreasing in z. Let
p > 1 and u, v be positive C1-functions on Ω such that

−div (|∇u|p−2∇u) + g(x, u) ≤ 0 ≤ −div (|∇v|p−2∇v) + g(x, v) in D′(Ω).

If u ≤ v on ∂Ω, then u ≤ v in Ω.
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The next result (see [7]) relies on the strong maximum principle in [8, Theorem 8.19].

Lemma A.9 (Lemma 1.3 in [7]). Let O be a domain in RN and c ∈ L∞loc(O). Assume that p > 1
and u, v are C1-functions on O such that

−div (|∇u|p−2∇u) + cu ≤ 0, −div (|∇v|p−2∇v) + cv ≥ 0,

in the weak sense in O, and ∇v , 0 for every x ∈ O. If u ≤ v in O and if there exists a point
x0 ∈ O such that u(x0) = v(x0), then u ≡ v in O.

Remark A.3. Let O be a domain in RN and O ⊂ Ω∗. If u is a positive sub-solution of (1.1) in O

and u/µ achieves a maximum β in O, then u/µ ≡ β in O. This follows by using Lemma A.9 with
v = βµ.

If (1.4) holds with q > p − 1 > 0 and b0 ∈ RVθ(0+) with θ > −p, then we define J and B by

J(t) :=

∫ ∞
t [h(s)]−

1
p−1 ds

t[h(t)]−
1

p−1

for t > 0, B(r) :=
[rpb0(r)]

1
p−1∫ r

0 [sb0(s)]
1

p−1 ds
for small r > 0. (A.6)

Then by Proposition A.4, we have that

lim
t→∞

J(t) =
p − 1

q − p + 1
, lim

r→0
B(r) =

θ + p
p − 1

. (A.7)

Remark A.4. In view of Remark A.1, in the definition of the function Υ(r) in (1.11), we can
replace h and b0 by asymptotically equivalent C1-functions without affecting our proofs. With
such a change, Υ(r) becomes a C2-function on a small interval (0, r0), and we have

lim
r→0

rb′0(r)
b0(r)

= θ and lim
t→∞

F(t) = q, where F(t) :=
th′(t)
h(t)

for t > 0 large. (A.8)

These conventions are used frequently in our proofs.
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