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Abstract

Given any biordered set E, a natural construction yields a semi-

group TE that is always fundamental, in the sense that TE possesses

no nontrivial idempotent-separating congruence. In the case that

E = E(S) is the biordered set of idempotents of a semigroup S

generated by regular elements, there is a natural representation of

S by TE, such that S becomes a biorder-preserving coextension of

a fundamental and symmetric subsemigroup of TE . If further S

is regular then this yields the fundamental constructions of Nam-

booripad, Grillet and Hall, which in turn generalise the construc-

tion of Munn of a maximum fundamental inverse semigroup from

its semilattice of idempotents.
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1 Introduction

The biordered set of a semigroup S is the partial algebra E(S) of idempo-

tents of S where multiplication is restricted to those pairs of idempotents such

that one idempotent is a left or right zero for the other. Remarkably, such

partial algebras have been characterised by biordered set axioms [21, 22, 4].

An abstract biordered set E (here abbreviated to boset) is a generalisation

of the notion of a partially ordered set (or poset) and exploits two inter-

twined quasi-orders whose intersection forms a partial order (so that when

the quasi-orders coincide, E becomes a poset). When each pair of elements

has a non-empty sandwich set, the boset is called regular, and a regular poset

is just a semilattice. Nambooripad [22] developed boset axioms in order to

successfully generalise Munn’s construction [19, 20] of fundamental inverse

semigroups from semilattices to the class of regular semigroups, but using a

construction based on regular bosets. Equivalent constructions were found

also by Grillet [12, 13, 14], based on cross-connections, and Hall [15], based

on idempotent-generated semigroups. In this paper we construct a semigroup

TE from an arbitrary (not necessarily regular) boset E, and prove a num-

ber of properties. In particular, we show that TE is always fundamental, in

the sense of having no nontrivial idempotent-separating congruences. In the

case that E = E(S) for some semigroup S generated by regular elements, we

show that S is represented by a symmetric subsemigroup of TE , so that S

becomes a biorder-preserving coextension of a fundamental semigroup. When

E is regular, the construction reduces to Nambooripad’s fundamental regu-

lar semigroup on a regular boset. When E is a semilattice, the construction

reduces to Munn’s fundamental inverse semigroup on a semilattice.

2 Preliminaries

Basic terminology and facts about semigroups and Green’s relations, as given

in say [1], [17] or [16], will be assumed. Let S be a semigroup. Denote

its set of idempotents by E(S) and its set of regular elements by Reg(S).

We say that a congruence σ on S is idempotent-separating if e σ f implies

e = f for any e, f ∈ E(S), and say that S is fundamental if S possesses no
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nontrivial idempotent-separating congruences. Call a congruence σ on S an

H-congruence if

(∀e ∈ E(S))(∀x ∈ S) e σ x =⇒ He ≤ Hx .

In particular, H-congruences are idempotent-separating. Surprisingly (The-

orem 2.2 below), the absence of nontrivial H-congruences implies that S is

fundamental.

Denote the full transformation semigroup on a set X by TX , and its dual

by T ∗
X . In order to avoid confusion in correctly interpreting the order of com-

position of transformations, if σ is an element of TX , then we write σ∗ when

it is to be considered as an element of T ∗
X . We often adjoin a new symbol

∞ to X, which stands for ‘undefined’ and is always mapped to itself by any

transformation.

Now let X be the set of all regular L-classes of a semigroup S and Y the

set of all regular R-classes. Define a representation

φ◦ = (ρ◦, λ◦∗) : S → TX∪{∞} × T ∗
Y ∪{∞} , s 7→ (ρ◦

s, λ
◦
s
∗)

by

ρ◦
s : Lx 7→







Lxs if xRxs

∞ otherwise
and λ◦

s : Rx 7→







Rsx if xLsx

∞ otherwise.

This representation first appeared in [6] and [7], though similar representations

had been used earlier in the literature (see, for example, [15] or [12]). The

kernel of this representation,

µ = µ(S) = ker φ◦

= { (a, b) ∈ S × S | (∀x ∈ Reg(S)) (xRxa or xRxb) =⇒ xaHxb

and (xLax or xLbx) =⇒ axHbx } ,

has been studied extensively by Edwards [7, 8, 9, 10, 11] and Easdown [2, 5].

Theorem 2.1 [8, 2] For any semigroup S, the congruence µ is the maximum

H-congruence on S and µ(S/µ) is the trivial congruence on S/µ. �
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Theorem 2.2 [5] Any semigroup S is fundamental if and only if µ is the triv-

ial congruence on S. �

Let E be a set with a partial multiplication (denoted by juxtaposition)

with domain DE (allowing for the possibility that DE = E ×E). We call E a

partial algebra. Define relations >−− and −−−> on E by

e >−− f if (e, f) is in DE and ef = e

and

e−−−> f if (f, e) is in DE and fe = e .

Call >−− the left arrow and −−−> the right arrow on E. As usual, put >−−< =

>−− ∩ −−< , <−−−−−> = <−−− ∩ −−−> and >−−−> = >−− ∩ −−−> . Then (following

Easdown’s slight reformulation of Nambooripad’s original axioms, to avoid

sandwich sets), E is a biordered set (abbreviated to boset) when the following

axioms are satisfied, where e, f, g are arbitrary elements of E.

(B1) The left and right arrows are preorders and

DE = >−− ∪ −−−> ∪ <−−− ∪ −−< .

(B2.1)
e f implies

e f

ef

(B2.1)∗

e f implies
e f

fe

(B2.2)

e f

g

implies eg fg
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(B2.2)∗

e f

g

implies ge gf

(B3.1) e f g implies (eg)f = ef

(B3.1)∗ e f g implies f(ge) = fe

(B3.2)

e f

g

implies (fe)g = (fg)(eg)

(B3.2)∗

e f

g

implies g(ef) = (ge)(gf)

(B4)

e f

g

eg fg

implies
e f

e′

g

e′g = eg fg

for some e′ ∈ E

(B4)∗

e f

g

ge gf

implies
e f

e′

g

ge′ = ge gf

for some e′ ∈ E

Frequently, below, we will invoke (B4) when the arrow eg >−− fg in the hy-

pothesis is double, that is, eg >−−< fg. In this case, it follows quickly from

boset associativity (see the next paragraph), or more directly by Lemma 2 of

[3], that the arrow e′ >−− f also becomes double, that is, e′ >−−< f . We will

use this fact without comment, and also the corresponding fact for the dual

axiom (B4)∗.
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Let E be an arbitrary boset. Call a subset F of E a subboset if F becomes

a boset with respect to the restriction of the partial multiplication of E. A

morphism from E to a boset F is a mapping θ : E → F such that (eθ, fθ) ∈ DF

and (ef)θ = (eθ)(fθ) for all (e, f) ∈ DE. A boset representation is a boset

morphism into a semigroup (typically consisting of pairs of transformations

and dual transformations). A boset embedding is an injective morphism whose

inverse (with respect to the image) is a morphism. An isomorphism is a surjec-

tive embedding. By a theorem of Easdown [4], there exists a semigroup S such

that E is isomorphic to the boset E(S) of idempotents of S with domain of

multiplication consisting of pairs (e, f) such that e is a left or right zero for f ,

or f is a left or right zero for e. Thus we may reassociate brackets arbitrarily

in expressions involving boset elements, provided the expressions are defined

in the boset.

We say that a congruence σ on a semigroup S is biorder-preserving if E =

E(S) is a subboset of E(S/σ) and the natural map σ♮ : S → S/σ induces

a boset isomorphism from E onto its image Eσ. In this case we say S is a

biorder-preserving coextension of S/σ.

Theorem 2.3 [6] The congruence µ is biorder-preserving for any semigroup

S. �

This and the preceding theorems then yield immediately the following result.

Corollary 2.4 [5] If S is any semigroup then S/µ is fundamental and E(S)

is a biordered subset of E(S/µ). Thus every semigroup is a biorder-preserving

coextension of a fundamental semigroup. �

It is then natural to ask if there are ‘synthetic’ constructions on arbitrary

bosets that produce candidates for such fundamental images, generalising the

classical constructions of Munn, for semilattices, and of Hall, Grillet and Nam-

booripad, in the regular setting. Such a candidate, with many nice properties,

is offered in the next section.

We finish the preliminaries by recalling the definition of a sandwich set.

Let E be a boset and e, f ∈ E. Define

M(e, f) = { g ∈ E | e−−< g−−−> f }
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and

S(e, f) = { g ∈ M(e, f) | (∀h ∈ M(e, f) eh−−−> eg and hf >−− gf }

Recall that S(e, f) is the sandwich set of the pair (e, f) ∈ E × E and E is

regular if sandwich sets are always nonempty. Nambooripad [22] proved that a

boset arises as the boset of a regular semigroup if and only if it is regular, and

he used regular bosets as the basis for his generalisation of the Munn inverse

semigroup. We recover Nambooripad’s construction up to isomorphism in the

final section. The following observation follows routinely from the axioms and

is useful also in the next section.

Lemma 2.5 [22] If e >−−<x−−−> f in a boset then x ∈ S(e, f). �

3 The construction for an arbitrary boset

Throughout this section, E denotes an arbitrary boset. Put L = LE = >−−< ,

R = RE = <−−−−−> , which are equivalence relations on E, and put ≤=≤E

= >−−−> , which is a partial order on E. For e ∈ E, denote its L-class by

Le, its R-class by Re, and put ω(e) = {f ∈ E | f ≤ e}, called the principal

ideal generated by e. Principal ideals of E are subbosets and we exploit boset

isomorphisms between principal ideals in a construction below that generalises

the Munn inverse semigroup on a semilattice. Throughout, whenever we write

α : ω(e) ։ ω(f), for e, f ∈ E, we mean that α is a principal ideal isomorphism.

For such α, put

φα = (ρα, λ∗
α) ∈ TE/L∪{∞} × T ∗

E/R∪{∞}

where

ρα : L 7→







L(xe)α if x−−−> e for some x ∈ L

∞ otherwise,

and

λα : R 7→







R(fx)α−1 if x>−− f for some x ∈ R

∞ otherwise.
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The identity mapping 1ω(e) is always a principal ideal automorphism for any

e ∈ E, and we write φe for φ1ω(e)
, in which case the definition here coincides

with the definition of φe in [3], where it is proved that the restriction of φ to

E is a boset isomorphism onto Eφ. Write

U = { (e, f) ∈ E × E | ω(e) ∼= ω(f) },

and, for (e, f) ∈ U ,

Te,f = { principal ideal isomorphisms : ω(e) ։ ω(f) } .

Now define

TE =
〈

⋃

(e,f)∈U

{φα |α ∈ Te,f }
〉

the subsemigroup of TE/L∪{∞} ×T ∗
E/R∪{∞} generated by pairs φα = (ρα, λ∗

α) as

α ranges over all principal ideal isomorphisms of E.

We say that a subsemigroup S of a semigroup T is full if S contains E(T ).

A subsemigroup S of TE is called symmetric if S contains φe for each e ∈ E

and

S =
〈

⋃

(e,f)∈U

{φα |α ∈ T ′
e,f }

〉

where, for each (e, f) ∈ U , we have T ′
e,f ⊆ Te,f and

α ∈ T ′
e,f =⇒ α−1 ∈ T ′

f,e .

For example, 〈Eφ〉 is symmetric, taking each T ′
e,f to be the singleton set {φe},

if e = f , and empty otherwise. A symmetric subsemigroup of TE need not

be full, but will be full if E(TE) = Eφ (which occurs, for example, when E is

regular, as explained in the final section).

In this section we prove the following two theorems after developing some

technical lemmas.

Theorem 3.1 Let E be any boset. Then any symmetric subsemigroup of TE

is fundamental and generated by regular elements. In particular, TE is funda-

mental and generated by regular elements.

Theorem 3.2 Let S be any semigroup generated by regular elements and put

E = E(S). Then there exists a representation Φ : S → TE such that ker Φ
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is the maximum H-congruence on S and SΦ is a symmetric subsemigroup of

TE.

Immediately then, by Theorem 2.3, we have the following result that sug-

gests TE might play a central role in the study of semigroups generated by

regular elements.

Corollary 3.3 Any semigroup generated by regular elements with boset of

idempotents E is a biorder-preserving coextension of a symmetric subsemi-

group of TE.

One might ask whether there is any chance of relaxing the hypothesis to

obtain a representation theorem that includes semigroups that need not be

generated by regular elements. The following simple example suggests that

to successfully generalise these ideas to even wider classes of semigroups may

involve embeddings.

Example 3.4 Let F = 〈x〉 be the free semigroup on a single generator x, and

put F = {xi | i ≥ 1}, a set in a one-one correspondence with F . Now put

S = F ∪ F and extend the multiplication of F by the rules

xi xj = xi xj = xj and xi xj = xi+j

for any positive integers i and j. Then S is a semigroup that is not generated

by regular elements and its boset E = E(S) = F is a single R-class of mutual

right zeros. Clearly TE
∼= F , yet S is easily checked to be fundamental.

Certainly S does not embed in TE . However if we modify this example, just

slightly, by allowing F to be the free monoid on a single generator, then TE

then expands to include a group of units which is the full symmetric group

on a countably infinite set (the automorphism group of an infinite right zero

boset with identity adjoined), and then the new S embeds easily (and of course

contains the old S).

Lemma 3.5 Suppose α : ω(e) ։ ω(f) and β : ω(g) ։ ω(h) are principal

ideal isomorphisms and i ∈ S(f, g). Then φαφβ = φγ for the principal ideal

isomorphism

γ : ω[(fi)α−1] ։ ω[(ig)β] , x 7→ [[i(xα)](ig)]β .
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Proof. Put j = (fi)α−1 and k = (ig)β. Certainly γ is a principal ideal

isomorphism, being the composition of α restricted to ω(j), left translation

by i, right translation by ig and β restricted to ω(ig), which are respective

isomorphisms:

ω(j) ։ ω(fi) ։ ω(i) ։ ω(ig) ։ ω(k) .

By duality, it suffices to verify that ραρβ = ργ . Suppose first that Lραρβ 6= ∞,

so x−−−> e for some x ∈ L, and y−−−> g for some y ∈ L(xe)α. Hence fy−−−> fi,

since i ∈ S(f, g), so, by (B4)∗, there exists y′ such that y >−−<y′−−−> i and

fy′ = fy. Put x′ = (fy)α−1, so x′ >−−< xe, since α−1 is a morphism. By

(B4), there exists x′′ such that x′ = x′′e <−−−−−> x′′ >−−<x. Note further that

x′ −−−> j since x′α−−−> jα = fi, and also y′g >−− ig since i ∈ S(f, g). But

Lραρβ = L(yg)β and Lργ = L(x′′j)γ, where

(x′′j)γ = [(i[(x′′j)α])(ig)]β .

By boset associativity, and since α is a morphism,

(x′′j)α = ((x′′e)j)α = [(x′′e)α][jα] = (fy)(fi) = (fy′)(fi) = f(y′i) ,

so that

(x′′j)γ = [(i[f(y′i)])(ig)]β = [(i(y′i))(ig)]β

= [(y′i)(ig)]β = [y′(ig)]β = [(y′g)(ig)]β = (y′g)β ,

yielding Lργ = L(y′g)β = L(yg)β = Lραρβ .

Suppose now Lραρβ = ∞. If Lργ 6= ∞ then x−−−> j for some x ∈ L, so

that, by (B4)∗, there exists y such that fy = (xe)α >−−< y−−−> i−−−> g, so

that Lραρβ = L(yg)β 6= ∞, which is a contradiction. Hence Lργ = ∞ This

completes the proof that ραρβ = ργ . �

Lemma 3.6 Suppose α : ω(e) ։ ω(f) is a principal ideal isomorphism. Then

x−−−> e =⇒ φα−1φxφα = φ(xe)α

and dually

x>−− f =⇒ φαφxφα−1 = φ(fx)α−1 .
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Proof. Throughout this proof we use boset associativity and the fact that α

is a boset morphism without comment. Suppose that x−−−> e. We first show

ρα−1ρxρα = ρ(xe)α. If Lρ(xe)α 6= ∞ then y−−−> (xe)α for some y ∈ L, so that

Lρα−1ρxρα = L[([(yf)α−1]x)e]α = L(yf)[(xe)α] = Ly[(xe)α] = Lρ(xe)α .

If, on the other hand, Lρα−1ρxρα 6= ∞ then y−−−> f for some y ∈ L and

z−−−> x for some z ∈ L(yf)α−1 , so that, by (B4), there exists z′ such that z′f =

zα <−−−−−> z′ >−−< y, whence z′ ∈ Ly = L and z′ <−−−−−> zα−−−> (xe)α, yielding

z′ −−−> (xe)α, so that Lρ(xe)α 6= ∞. This verifies that ρα−1ρxρα = ρ(xe)α.

Now we show that λ∗
α−1λ∗

xλ
∗
α = λ∗

(xe)α, that is, λαλxλα−1 = λ(xe)α. If

Rλ(xe)α 6= ∞ then y >−− (xe)α for some y ∈ R, so, by (B4), there exists z

such that ze = (fy)α−1 <−−−−−> z >−−x, so that

Rλαλxλα−1 = R[(xz)e]α = R[(xe)α][(ze)α]

= R[(xe)α](fy) = R[(xe)α]y = Rλ(xe)α .

If, on the other hand, Rλαλxλα−1 6= ∞ then y >−− f for some y ∈ R and

z >−−x for some z ∈ R(fy)α−1 , so that, by (B4)∗, there exists y′ such that

fy′ = (ze)α >−−< y′ <−−−−−> y, whence y′ ∈ Ry = R and y′ >−−< (ze)α >−− (xe)α,

yielding y′ >−− (xe)α, so that Rλ(xe)α 6= ∞. This completes the proof that

φα−1φxφα = φ(xe)α. �

Lemma 3.7 Let x ∈ E. Suppose that S is a subsemigroup of TE containing

Eφ and φα1 , φα1
−1 , . . . , φαn

, φαn
−1 where each αi : ω(ei) ։ ω(eiαi) is a principal

ideal isomorphism. Then φx RS φxφα1 . . . φαn
if and only if there exists a

sequence x1, . . . , xn ∈ E such that
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x e1

x1 x1e1

e1α1

(x1e1)α1 e2

x2 x2e2

e2α2

(x2e2)α2

...

xi xiei

ei eiαi

(xiei)αi

...

xn xnen

en enαn

(xnen)αn

in which case there is a principal ideal isomorphism β : ω(x) → ω[(xnen)αn]

such that φxφα1 . . . φαn
= φβ .

Proof. If φx RS φxφα1 . . . φαn
then φx = φxφα1 . . . φαn

φβ1 . . . φβm
for some

φβ1, . . . , φβm
in TE , so that ρx = ρxρα1 . . . ραn

ρβ1 . . . ρβm
, yielding, in particular,

Lxρxρα1 . . . ραn
ρβ1 . . . ρβm

= Lxρx = Lx 6= ∞ ,

so that, by definition of ρ, there exist x1, . . . , xn with the desired property.

Suppose conversely that x1, . . . , xn exist with the desired property. We

obtain a new sequence x′
1, . . . , x

′
n inductively as follows. Put x′

n = xn and

suppose x′
i+1 has been defined such that

x′
i+1 >−−< (xiei)αi >−−−> eiαi .

By axiom (B4), there exists x′
i such that

x′
iei = [(eiαi)x

′
i+1]α

−1
i <−−−−−> x′

i >−−< xi >−−< (xi−1ei−1)αi−1 ,

so that

x′
i >−−< (xi−1ei−1)αi−1 >−−−> ei−1αi−1 .

By induction we obtain a sequence x′
1, . . . , x

′
n such that the following diagram

holds:
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x e1

x′
1 x′

1e1

e1α1

(x′
1e1)α1 = (e1α1)x

′
2

x′
2 x′

2e2 (x′
2e2)α2 = (e2α2)x

′
3

e2 e2α2

(x′
2e2)α2 = (e2α2)x

′
3

x′
3 x′

3e3
. . .

e3 . . .

en−1αn−1. . .

(x′
n−1en−1)α2 = (en−1αn−1)x

′
n

. . .

xn = x′
n

xnen (xnen)αn

en enαn

Put x′
n+1 = (xnen)αn. We verify by induction, for i = 0 to n, that

φx = (φxφα1 . . . φαi
)(φx′

i+1
φα−1

i
φx′

i
φα−1

i−1
. . . φx′

2
φα−1

1
φx′

1
) ,

where we interpret this for i = 0 as saying φxφx′

1
= φx, which holds since

x>−−< x′
1 and φ is a boset morphism, which starts the induction. The in-

ductive step follows from the previous lemma, the fact that x′
i <−−−−−> x′

iei =

[(eiαi)x
′
i+1]α

−1
i , and an inductive hypothesis:

φxφα1 . . . (φαi
φx′

i+1
φα−1

i
)φx′

i
φα−1

i−1
. . . φx′

2
φα−1

1
φx′

1

= φxφα1 . . . φαi−1
φ[(eiαi)x′

i+1]α
−1
i

φx′

i
φα−1

i−1
. . . φx′

2
φα−1

1
φx′

1

= φxφα1 . . . φαi−1
φx′

i
φα−1

i−1
. . . φx′

2
φα−1

1
φx′

1
= φx .

The case i = n verifies that φx RS φxφα1 . . . φαn
. The last claim of the lemma

follows by induction from Lemma 3.5, noting, by Lemma 2.5, that x1 ∈ S(x, e1)

and xi ∈ S((xi−1ei−1)αi−1, ei) for i = 2 to n. �

Lemma 3.8 Suppose α : ω(e) ։ ω(f) and β : ω(g) ։ ω(h) are principal

ideal isomorphisms. Then φα HTE
φβ if and only if e <−−−−−> g and f >−−< h.
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Proof. If φα HTE
φβ then φe = φαφα−1 RTE

φβφβ−1 = φg, so that φe <−−−−−> φg,

yielding e <−−−−−> g, since φ−1 is a boset morphism, and dually f >−−< h. Con-

versely if e <−−−−−> g and f >−−< h then φβφβ−1φeφα = φgφeφα = φeφα = φα,

since φ is a boset morphism, and similarly φαφα−1φgφβ = φβ, yielding φα RTE
φβ,

and dually φα LTE
φβ. �

Proof of Theorem 3.1. Let S be a symmetric subsemigroup of TE . A typical

generator φα of S is regular since we may assume also that φα−1 ∈ S and

clearly φαφα−1φα = φα . It remains then to prove that S is fundamental. By

Theorem 2.2, it suffices to show that the kernel of the representation φ◦ of S

is trivial. Suppose then that

φ◦
φα1 ...φαn

= φ◦
φβ1

...φβm

for some typical generators φα1, . . . , φαn
, φβ1, . . . , φβm

of S coming from prin-

cipal ideal isomorphisms αi : ω(ei) ։ ω(eiαi) for i = 1 to n and βj : ω(fj) ։

ω(fjβj) for j = 1 to m. Since S is symmetric we may assume φαi
−1 , φβj

−1 ∈ S

for each i, j.

Our task is to show that φα1 . . . φαn
= φβ1 . . . φβm

. By duality it suffices to

show ρα1 . . . ραn
= ρβ1 . . . ρβm

. Suppose then that Lρα1 . . . ραn
6= ∞, so there

exists x1 ∈ L and x2, . . . , xn ∈ E such that the following diagram holds:

e1

x1 x1e1

e1α1

(x1e1)α1 e2

x2 x2e2

e2α2

(x2e2)α2

...

xn xnen

en enαn

(xnen)αn

By Lemma 3.7, since S contains Eφ and φα1 , φα1
−1 , . . . , φαn

, φαn
−1, we have

that

φx1 RS φx1φα1 . . . φαn
.
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But ρ◦
φα1 ...φαn

= ρ◦
φβ1

...φβm
, so, by definition of ρ◦,

φx1 RS φx1φβ1 . . . φβm
and φx1φα1 . . . φαn

LS φx1φβ1 . . . φβm
.

By Lemma 3.7 again, there exist y1, . . . ym such that the following diagram

holds:

x1 f1

y1 y1f1

f1β1

(y1f1)β1 f2

y2 y2f2

f2β2

(y2f2)β2

...

ym ymfm

fm fmβm

(ymfm)βm

Also, by Lemma 3.7,

φx1φα1 . . . φαn
= φα and φx1φβ1 . . . φβm

= φβ

for some α : ω(x1) ։ ω((xnen)αn) and β : ω(x1) ։ ω((ymfm)βm). But

φα = φx1φα1 . . . φαn
HS φx1φβ1 . . . φβm

= φβ ,

so that

(xnen)αn >−−< (ymfm)βm ,

by Lemma 3.8, whence

Lρα1 . . . ραn
= L(xnen)αn

= L(ymfm)βm
= Lρβ1 . . . ρβm

.

Similarly, if Lρβ1 . . . ρβm
6= ∞ then Lρα1 . . . ραn

= Lρβ1 . . . ρβm
, which verifies

that ρα1 . . . ραn
= ρβ1 . . . ρβm

. This completes the proof of the theorem. �

Before proving Theorem 3.2, we introduce another representation of an

arbitrary semigroup S that essentially reconstructs the earlier representation

φ◦ of S, except that we now use transformations and dual transformations of L

and R-classes respectively of the boset E = E(S). In the following definition,
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L and R denote typical boset L and R-classes respectively, while if x ∈ S

then LS
x and RS

x denote semigroup LS and RS-classes respectively. Note that

if x ∈ Reg S, then LS
x ∩E and RS

x ∩E are boset L and R-classes respectively.

Define a mapping

Φ = (P, Λ∗) : S → TE/L∪{∞} × T ∗
E/R∪{∞} , s 7→ (Ps, Λ

∗
s)

by

Ps : L 7→







LS
xs ∩ E if xRS xs for some x ∈ L

∞ otherwise

and

Λs : R 7→







RS
sx ∩ E if xLS sx for some x ∈ R

∞ otherwise.

Lemma 3.9 The mapping Φ is a representation of S with kernel µ. For s ∈

Reg(S) with inverse s′ the map

α : ω(ss′) → ω(s′s), x 7→ s′xs

is a principal ideal isomorphism of E = E(S) and Φs = φα. In particular,

Φe = φe for each e ∈ E, and if S is generated by regular elements then Φ is a

representation of S by TE.

Proof. That P is well-defined follows because LS is a right congruence on S,

and the homomorphic property follows easily from Green’s Lemma. Hence P is

a representation. Dually Λ is an anti-representation, so Φ is a representation.

Let X denote the set of regular LS-classes of S. Intersection with E is a

bijection between X and E/L. If LS ∈ X and s ∈ S, then LSρ◦
s 6= ∞ if and

only if there exists an idempotent x ∈ LS such that xRS xs, and this occurs if

and only if (LS ∩ E)Ps 6= ∞, in which case the following diagram commutes:

LS
x LS

xs

Lx LS
xs ∩ E

ρ◦
s

Ps

∩E ∩E
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Immediately then ker P = ker ρ◦, and dually ker Λ = ker λ◦, so that

ker Φ = ker φ◦ = µ .

It follows quickly from the definitions that α : ω(ss′) → ω(s′s), x 7→ s′xs

is a principal ideal isomorphism, so, by duality, to complete the proof of the

lemma, it suffices to verify that Ps = ρα.

Suppose first that Lρα 6= ∞. Then x−−−> ss′ for some x ∈ L, so that

x<−−−−−> x(ss′), yielding xRS xss′, whence xRS xs and L Ps = LS
xs ∩ E. But

s(s′xs) = xs since x−−−> ss′, so that xsLS s′xs and

Lρα = L[x(ss′)]α = Ls′[x(ss′)]s = Ls′xs = LS
s′xs ∩ E = LS

xs ∩ E = L Ps .

Suppose now that L Ps 6= ∞. Then xRS xs for some x ∈ L, so x = xst

for some t ∈ S. Put e = stx. Then one readily checks that e ∈ E and

ss′ <−−− e >−−< x, so that Lρα 6= ∞. This completes the proof that Ps = ρα. �

Proof of Theorem 3.2. We are supposing that S is generated by regular ele-

ments and E = E(S). By Lemma 3.9, Φ is a representation of S with kernel

µ and SΦ is contained in TE . It remains to check that SΦ is symmetric. Since

S = 〈Reg(S)〉,

SΦ = 〈(Reg(S))Φ〉 = 〈Φs | s ∈ Reg(S)〉 =
〈

⋃

(e,f)∈U

{φα |α ∈ T ′
e,f }

〉

by Lemma 3.9, where, for each (e, f) ∈ U ,

T ′
e,f = {α : ω(e) ։ ω(f) | (∃s ∈ Reg(S))(∃s′ ∈ V(x)) e = ss′, f = s′s

and (∀z ∈ ω(e)) α : z 7→ s′zs } .

Certainly T ′
e,f ⊆ Te,f and φe = Pe ∈ Te,e. Further, if α ∈ T ′

e,f so that e = ss′,

f = s′s for some s ∈ Reg(S) with inverse s′ and α : z 7→ s′zs for z ∈ ω(e),

then it is straightforward to check that α−1 = β ∈ Tf,e where

β : ω(f) → ω(e), z 7→ szs′ .

Thus SΦ is symmetric and the proof is complete. �
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Corollary 3.10 Let S be a fundamental semigroup generated by regular ele-

ments and S ′ a full subsemigroup of S generated by regular elements. Then S ′

is fundamental.

Proof. By Theorem 3.2, Φ : S → TE(S) is a faithful representation. By the

method in the last part of the proof of Theorem 3.2, the image of S ′ is a sym-

metric subsemigroup of TE(S), so is fundamental by Theorem 3.1. �

Corollary 3.11 Any full subsemigroup of TE, for any boset E, generated by

regular elements is fundamental. �

This result is surprising, because whilst the full subsemigroup of TE may not

be symmetric, the method of proof utilises a faithful representation into TE(TE),

where the image then becomes symmetric. This phenomenon is obscured in

the regular case (see the final section), because if E is a regular boset then

E ∼= E(TE) and all full subsemigroups of TE are automatically symmetric.

The next two examples are special cases of large classes of (typically non-

regular) bosets, studied by Jordan [18] and Roberts [23].

Example 3.12 The following diagram uniquely defines a five element boset

E. Both E and its dual are the smallest examples of bosets of finite semi-

groups that are not regular. However TE is regular and is described by the

eggbox diagram listed below. The subsemigroup S consisting of the two lower

D-classes of TE together with φe and φf is a full subsemigroup of TE , so is fun-

damental by the previous corollary. (It is clear S is fundamental also because

S is regular and it is routine to check that there is no nontrivial congruence

contained in H.) However S is not symmetric.

E

e f

g kh
q

ke
q

hf

In the following diagram, α and β are principal ideal isomorphisms where

α : e 7→ e, h 7→ g 7→ h and β : e 7→ f, h 7→ g 7→ k, and the idempotents
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are indicated by asterisks. The original boset E embeds in E(TE), which is

regular with three additional idempotents in the middle D-class.

TE

φαφf

φeφfφeφβ−1

∗φαφβ−1

∗φβ−1αφf

φβ−1φf
∗φβ−1φβ−1

φβ−1αφβ−1

∗φe

φα

∗φf

φβ−1αβ

φβ

φαβ

φβ−1

φβ−1α

∗φh
∗φg

∗φk

Example 3.13 The previous example can be modified slightly to yield an-

other boset F which is not regular, and for which TF is also not regular.

F

e f

g kh ℓ
q

ke
q

ℓe

q

hf

Now the symmetry is broken and ω(e) and ω(f) are no longer isomorphic. In

the following diagram, α, γ and δ are principal ideal automorphisms where

α : e 7→ e, h 7→ g 7→ h, γ : f 7→ f, g 7→ k 7→ ℓ 7→ g and δ : f 7→ f, g 7→

g, k 7→ ℓ 7→ k. The bosets F and E(TF ) are isomorphic and the middle D-class

of TF is not regular.
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TF

φαφγ2

φeφγ2

φαφγ

φeφγφeφf

φαφf

∗φe

φα

∗φf φγ φγ2

φδ φδγ φδγ2

∗φh
∗φg

∗φk
∗φℓ

4 The regular case

In the regular case, we can dispense with angular brackets in the definition

of TE and recover all of the properties of Nambooripad’s original formulation

[21, 22] of the maximum fundamental regular semigroup on a regular boset.

Theorem 4.1 Let E be any regular boset. Then

TE =
⋃

(e,f)∈U

{φα |α ∈ Te,f }

is regular and E ∼= Eφ = E(TE).

Proof. The fact that angular brackets can be ignored in the definition of TE

is immediate by Lemma 3.5, since all sandwich sets are nonempty. Certainly

each φα is regular for any principal ideal isomophism α, so TE is regular.

It remains only to verify that E(TE) ⊆ Eφ. Suppose that φα is idempo-

tent and α : ω(e) ։ ω(f). In particular, ρα is idempotent and Leρα = Lf ,

so Lfρα = Lf , yielding some x ∈ Lf such that x−−−> e and Lf = L(xe)α.

But (xe)α >−−−> f so that (xe)α = f = eα, yielding also xe = e. Hence

e <−−−−−> x>−−< f , so that φα HTE
φx, whence φα = φx ∈ Eφ, and the proof is

complete. �
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Corollary 4.2 Let E be any regular boset. Then every regular semigroup S

with boset E can be represented by TE by a homomorphism whose kernel is the

maximum idempotent-separating congruence on S. In particular TE is, up to

isomorphism, the maximum fundamental regular semigroup with boset E. All

full subsemigroups of TE are fundamental.
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