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Abstract

The twisted q-Yangians are coideal subalgebras of the quantum affine algebra
associated with glN . We prove a classification theorem for finite-dimensional irre-
ducible representations of the twisted q-Yangians associated with the symplectic Lie
algebras sp2n. The representations are parameterized by their highest weights or by
their Drinfeld polynomials. In the simplest case of sp2 we give an explicit descrip-
tion of all the representations as tensor products of evaluation modules. We prove
analogues of the Poincaré–Birkhoff–Witt theorem for the quantum affine algebra and
for the twisted q-Yangians. We also reproduce a proof of the classification theorem
for finite-dimensional irreducible representations of the quantum affine algebra by
relying on its R-matrix presentation.
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3.1 Representations of Uq(ĝl2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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1 Introduction

The Yangian Y(a) and quantum affine algebra Uq(â) associated with a simple Lie algebra a

are known as ‘infinite-dimensional quantum groups’. They are deformations of the universal

enveloping algebras U(a[z]) and U(â), respectively, in the class of Hopf algebras, and were

introduced by Drinfeld [12] and Jimbo [20]. Here a[z] denotes the Lie algebra of polynomials

in a variable z with coefficients in a, while â is the affine Kac–Moody algebra, i.e., a central

extension of the Lie algebra a[z, z−1] of Laurent polynomials in z.

The case of a = slN (the A type) is exceptional in the sense that only in this case

do there exist epimorphisms Y(a) → U(a) and Uq(â) → Uq(a), called the evaluation

homomorphisms, where Uq(a) is the corresponding quantized enveloping algebra. These

epimorphisms have important applications in the representation theory of both the finite-

and infinite-dimensional quantum groups. For the classical Lie algebra a (of type B,

C or D) there are ‘twisted’ analogues of the Yangian and quantum affine algebra for

which the corresponding epimorphisms do exist. Namely, the twisted Yangians Y′(oN) and

Y′(sp2n) associated with the orthogonal and symplectic Lie algebras were introduced by

Olshanski [32], while their q-analogues Y′
q(oN) and Y′

q(sp2n), called the twisted q-Yangians,

appeared in Molev, Ragoucy and Sorba [29]. These algebras do not possess natural Hopf

algebra structures, but they are coideal subalgebras of the A type Yangian and quantum

affine algebra, respectively. The evaluation homomorphisms have the form

Y′(gN)→ U(gN), Y′
q(gN)→ U′

q(gN),

where gN denotes either the orthogonal Lie algebra oN or the symplectic Lie algebra spN

(the latter with N = 2n) and U′
q(gN) is the twisted (or nonstandard) quantized enveloping

algebra associated with gN which was defined in [15], [30] and [31].

Finite-dimensional irreducible representations of the Yangians Y(a) were classified by

Drinfeld [13]. The particular case a = sl2 plays a key role in the arguments and it was done

earlier by Tarasov [36, 37]; see [28, Ch. 3] for a detailed exposition of these results. The

classification theorem for the representations of the quantum affine algebras was proved by

Chari and Pressley [7], [8, Ch. 12]. Again, the case of Uq(ŝl2) is crucial, and it is possible

to prove the theorem here following Tarasov’s arguments [36, 37]. The corresponding proof

was also outlined in [28, Sec. 3.5] and we give more details below (Section 3), as the same

approach will be used for the twisted q-Yangians.

A classification of finite-dimensional irreducible representations of the twisted Yangians

Y(oN) and Y(sp2n) was obtained in [26]; see also [28] for a detailed exposition, more

references and applications to representation theory of the classical Lie algebras. Recent

renewed interest in the representation theory of Yangians and twisted Yangians was caused

by its surprising connection with the theory of finite W -algebras (see [4], [6], [33]) and by a

generalized Howe duality (see [23], [24]). Note also the applications of the twisted Yangians
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and their q-analogues to the soliton spin chain models with special boundary conditions

[1], [2].

In this paper we prove a classification theorem for finite-dimensional irreducible rep-

resentations of the twisted q-Yangians associated with the symplectic Lie algebras sp2n.

The results and the arguments turn out to be parallel to both the twisted Yangians and

quantum affine algebras; cf. [8, Ch. 12] and [28, Sec. 3.5 and 4.3]. First we prove that every

finite-dimensional irreducible representation of Y′
q(sp2n) is a highest weight representation.

Then we give necessary and sufficient conditions on the highest weight representations to

be finite-dimensional. These conditions involve a family of polynomials P1(u), . . . , Pn(u)

in u (analogues of the Drinfeld polynomials) so that the finite-dimensional irreducible rep-

resentations are essentially parameterized by n-tuples
(
P1(u), . . . , Pn(u)

)
. In the case of

Y′
q(sp2) we give an explicit construction of all finite-dimensional irreducible representations

as tensor products of the evaluation modules over Uq(ĝl2).

An important ingredient in our arguments is the Poincaré–Birkhoff–Witt theorem for

the quantum affine algebra Uq(ĝlN), where q is a fixed nonzero complex number; see

Corollaries 2.12 and 2.13 below. This allows us to derive a new proof of this theorem for

the twisted q-Yangians Y′
q(oN) and Y′

q(sp2n); cf. [29]. A version of the PBW theorem in

terms of the ‘new realization’ of the quantum affine algebra Uq(â) over the field of rational

functions in q was given by Beck [3], with the case of ŝl2 previously done by Damiani [10];

see also Hernandez [17] for a weak version of this theorem for the quantum affinizations

of symmetrized quantum Kac–Moody algebras, where q is regarded as a nonzero complex

number, not a root of unity. Although it is believed that the PBW theorem (in the

strong form) holds for the quantum affine algebras over C where q is considered as a fixed

nonzero complex number (with some additional conditions of the form q2di 6= 1), a proof of

the theorem appears to be unavailable in the literature; cf. [8, Prop. 12.2.2]. The existence

of PBW type bases follows also from the general results of Kharchenko [22]. Our proof of

the PBW theorem for Uq(ĝlN) applies to the RTT -presentation of this algebra.

The general approach of this paper developed for the C type twisted q-Yangians should

be applicable to the B and D types as well, although some additional arguments will

be needed in order to obtain analogous classification theorems for representations of the

algebras Y′
q(oN); cf. [19] and [27].

We are grateful to David Hernandez and Mikhail Kotchetov for discussions of the

Poincaré–Birkhoff–Witt theorem for the quantum affine algebras.

2 Poincaré–Birkhoff–Witt theorem

We start by reviewing and proving analogues of the PBW theorem for some quantum

algebras. In particular, we prove it for the RTT presentation of the quantum affine algebra
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Uq(ĝlN) and then use it to get a new proof of the theorem for the twisted q-Yangians.

2.1 Quantized enveloping algebra Uq(glN) and its representations

Fix a nonzero complex number q. Following [21] and [34], consider the R-matrix presenta-

tion of the quantized enveloping algebra Uq(glN). The R-matrix is given by

R = q
∑

i

Eii ⊗ Eii +
∑

i 6=j

Eii ⊗ Ejj + (q − q−1)
∑
i<j

Eij ⊗ Eji (2.1)

which is an element of EndCN ⊗ EndCN , where the Eij denote the standard matrix

units and the indices run over the set {1, . . . , N}. The R-matrix satisfies the Yang–Baxter

equation

R12R13R23 = R23R13R12, (2.2)

where both sides take values in EndCN ⊗ EndCN ⊗ EndCN and the subscripts indicate

the copies of EndCN , e.g., R12 = R⊗ 1 etc.

The algebra Uq(glN) is generated by elements tij and t̄ij with 1 6 i, j 6 N subject to

the relations

tij = t̄ji = 0, 1 6 i < j 6 N,

tii t̄ii = t̄ii tii = 1, 1 6 i 6 N,

RT1T2 = T2T1R, RT 1T 2 = T 2T 1R, RT 1T2 = T2T 1R.

(2.3)

Here T and T are the matrices

T =
∑
i,j

tij ⊗ Eij, T =
∑
i,j

tij ⊗ Eij, (2.4)

which are regarded as elements of the algebra Uq(glN)⊗EndCN . Both sides of each of the

R-matrix relations in (2.3) are elements of Uq(glN)⊗EndCN ⊗EndCN and the subscripts

of T and T indicate the copies of EndCN where T or T acts; e.g. T1 = T ⊗ 1. In terms of

the generators the defining relations between the tij can be written as

qδij tia tjb − qδab tjb tia = (q − q−1) (δb<a − δi<j) tja tib (2.5)

where δi<j equals 1 if i < j and 0 otherwise. The relations between the t̄ij are obtained by

replacing tij by t̄ij everywhere in (2.5):

qδij t̄ia t̄jb − qδab t̄jb t̄ia = (q − q−1) (δb<a − δi<j) t̄ja t̄ib, (2.6)

while the relations involving both tij and t̄ij have the form

qδij t̄ia tjb − qδab tjb t̄ia = (q − q−1) (δb<a tja t̄ib − δi<j t̄ja tib). (2.7)
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Note that for any nonzero complex number d the mapping

tij 7→ d tij, t̄ij 7→ d−1 t̄ij (2.8)

defines an automorphism of the algebra Uq(glN).

Let z denote an indeterminate. Introduce the algebra Uz(glN) over C(z) with the

generators tij and t̄ij with 1 6 i, j 6 N subject to the relations given in (2.3) with q

replaced by z. Furthermore, we denote by U◦
z(glN) the algebra defined over the ring of

Laurent polynomials C [z, z−1] with the same set of generators and relations. Then we have

the isomorphism

U◦
z(glN)⊗C [z,z−1] C ∼= Uq(glN), (2.9)

where the C [z, z−1]-module C is defined via the evaluation of the Laurent polynomials at

z = q.

The quantized enveloping algebras admit families of PBW bases depending on choices

of reduced decompositions of the longest element of the Weyl group; see Lusztig [25].

In the A type such bases were previously constructed by Rosso [35] and Yamane [38].

These constructions use the Drinfeld–Jimbo presentation of the quantized enveloping al-

gebras. In this presentation, the algebra Uz(glN) over C(z) is generated by the elements

t1, . . . , tN , t
−1
1 , . . . , t−1

N , e1, . . . , eN−1 and f1, . . . , fN−1 subject to the defining relations

ti tj = tj ti, ti t
−1
i = t−1

i ti = 1,

tiej t
−1
i = ej z

δij−δi,j+1 , tifj t
−1
i = fj z

−δij+δi,j+1 ,

[ei, fj] = δij
ki − k−1

i

z − z−1
with ki = ti t

−1
i+1,

[ei, ej] = [fi, fj] = 0 if |i− j| > 1,

e2
i ej − (z + z−1)eiej ei + ej e

2
i = 0 if |i− j| = 1,

f 2
i fj − (z + z−1)fifj fi + fj f

2
i = 0 if |i− j| = 1.

The root vectors can be defined inductively by

ei,i+1 = ei, ei+1,i = fi,

eij = eipepj − z epj eip for i < p < j, (2.10)

eij = eipepj − z−1epj eip for i > p > j,

and the elements eij are independent of the choice of values of the index p.

An isomorphism between the two presentations of Uz(glN) is given by the formulas

tii 7→ ti, t̄ii 7→ t−1
i , t̄ij 7→ −(z − z−1)eij t

−1
i , tji 7→ (z − z−1)ti eji (2.11)

for i < j; see [11], [34]. We shall identify the corresponding elements of Uz(glN) via this

isomorphism.
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The quantized enveloping algebra Uz(slN) can be defined as the C(z)-subalgebra of

Uz(glN) generated by the elements ki, k
−1
i , ei, fi for i = 1, . . . , N − 1. Similarly, if q is a

nonzero complex number such that q2 6= 1, then Uq(slN) can be defined as the subalgebra

of Uq(glN) generated by the same elements.

We will be using the following form of the PBW theorem for the quantized enveloping

algebra associated with glN .

Proposition 2.1. The monomials

t
kN,N−1

N,N−1 t
kN,N−2

N,N−2 t
kN−1,N−2

N−1,N−2 . . . t
kN2
N2 . . . t

k32
32 tkN1

N1 . . . tk21
21

× tl111 . . . t
lN
NN t̄

k12
12 . . . t̄ k1N

1N t̄ k23
23 . . . t̄ k2N

2N . . . t̄
kN−1,N

N−1,N , (2.12)

where the kij run over non-negative integers and the li run over all integers, form a basis

of the C [z, z−1]-algebra U◦
z(glN).

Proof. It follows easily from the defining relations of U◦
z(glN) that the monomials span the

algebra over C [z, z−1]. Suppose now that there is a nontrivial linear combination of the

monomials (2.12) with coefficients in C [z, z−1] equal to zero. Applying the isomorphism

(2.11) and the relations ti ejb = zδij−δib ejb ti we then obtain a nontrivial linear combination

over C [z, z−1] of the monomials

e
kN,N−1

N,N−1 e
kN,N−2

N,N−2 e
kN−1,N−2

N−1,N−2 . . . e
kN2
N2 . . . e

k32
32 ekN1

N1 . . . ek21
21

× t l1
1 . . . t lN

N ek12
12 . . . ek1N

1N ek23
23 . . . ek2N

2N . . . e
kN−1,N

N−1,N (2.13)

equal to zero. Here the kij run over non-negative integers and the li run over all integers.

However, by the PBW theorem for the Drinfeld–Jimbo presentation of the algebra Uz(glN)

(see [25], [35], [38]), the monomials (2.13) form a basis of Uz(glN) over C(z). This makes

a contradiction.

The following corollary is immediate from the isomorphism (2.9).

Corollary 2.2. Let q be a nonzero complex number. Then the monomials (2.12) form a

basis of Uq(glN) over C.

Note that in the particular case q = 1 the algebra U1(glN) is commutative. Using

Corollary 2.2 we will identify it with the algebra of polynomials PN in the variables x̄ij, xji

with 1 6 i < j 6 N and xii, x̄ii with i = 1, . . . , N subject to the relations xiix̄ii = 1 for all

i. Thus, due to (2.9) we have the isomorphism

U◦
z(glN)⊗C [z,z−1] C ∼= PN , (2.14)

where the C [z, z−1]-module C is defined via the evaluation of the Laurent polynomials at

z = 1.
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In the other degenerate case q = −1 the algebra U−1(glN) is essentially a ‘quasi-

polynomial’ algebra; see e.g. [9, Sec. 1.8]. It is well known that quasi-polynomial algebras

admit PBW bases.

We will also use an extended version of the quantized enveloping algebra considered in

[27]. Denote by Uext
z (glN) the algebra over C [z, z−1] generated by elements tij and t̄ij with

1 6 i, j 6 N and elements t−1
ii and t̄ −1

ii with 1 6 i 6 N subject to the relations

tij = t̄ji = 0, 1 6 i < j 6 N,

tii t̄ii = t̄ii tii, tii t
−1
ii = t−1

ii tii = 1, t̄ii t̄
−1

ii = t̄ −1
ii t̄ii = 1, 1 6 i 6 N,

RT1T2 = T2T1R, RT 1T 2 = T 2T 1R, RT 1T2 = T2T 1R,

(2.15)

where we use the notation of (2.3) with q replaced by z in the definition of R. Although

we use the same notation for the generators of the algebras Uext
z (glN) and U◦

z(glN), it

should always be clear from the context which algebra is considered at any time. There is

a natural epimorphism Uext
z (glN) → U◦

z(glN) which takes the generators tij and t̄ij to the

elements with the same name. The kernel K of this epimorphism is the two-sided ideal

of the algebra Uext
z (glN) generated by the elements tii t̄ii − 1 for i = 1, . . . , N . All these

elements are central in this algebra and we have the isomorphism Uext
z (glN)/K ∼= U◦

z(glN).

The following analogue of the PBW theorem is implied by Proposition 2.1; see also

[27].

Proposition 2.3. The monomials

t
kN,N−1

N,N−1 t
kN,N−2

N,N−2 t
kN−1,N−2

N−1,N−2 . . . t
kN2
N2 . . . t

k32
32 tkN1

N1 . . . tk21
21 tl111 . . . t

lN
NN

× t̄m1
11 . . . t̄mN

NN t̄ k12
12 . . . t̄ k1N

1N t̄ k23
23 . . . t̄ k2N

2N . . . t̄
kN−1,N

N−1,N , (2.16)

where the kij run over non-negative integers and the li and mi run over all integers, form

a basis of the C [z, z−1]-algebra Uext
z (glN).

By specializing z to a nonzero complex number q in the definition of Uext
z (glN) we

obtain an algebra Uext
q (glN) over C defined by the same set of relations (2.15). So we have

the isomorphism

Uext
z (glN)⊗C [z,z−1] C ∼= Uext

q (glN), (2.17)

where the C [z, z−1]-module C is defined via the evaluation of the Laurent polynomials at

z = q. The corresponding monomials (2.16) form a basis of Uext
q (glN). In the particular

case q = 1 the algebra Uext
1 (glN) can be identified with the algebra of polynomials P ext

N in

the variables x̄ij, xji with 1 6 i < j 6 N and xii, x
−1
ii , x̄ii, x̄

−1
ii with i = 1, . . . , N . Thus we

have the isomorphism

Uext
z (glN)⊗C [z,z−1] C ∼= P ext

N , (2.18)
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where the C [z, z−1]-module C is defined via the evaluation of the Laurent polynomials at

z = 1.

Suppose now that q is a nonzero complex number which is not a root of unity. A

description of finite-dimensional irreducible representations of the algebra Uext
q (glN) can

be easily obtained from the corresponding results for the algebras Uq(glN) and Uq(slN); see

e.g. [8, Ch. 10]. A representation L of Uext
q (glN) is called a highest weight representation

if L is generated by a nonzero vector ζ (the highest vector) such that

t̄ij ζ = 0 for 1 6 i < j 6 N, and

tii ζ = λiζ, t̄ii ζ = λ̄iζ, for 1 6 i 6 N,

for some nonzero complex numbers λi and λ̄i. The tuple (λ1, . . . , λN ; λ̄1, . . . , λ̄N) is called

the highest weight of L. Due to Proposition 2.3, for any N -tuples of nonzero complex

numbers λ = (λ1, . . . , λN) and λ̄ = (λ̄1, . . . , λ̄N), there exists an irreducible highest repre-

sentation L(λ; λ̄) with the highest weight (λ; λ̄). This representation can be defined as a

quotient of the corresponding Verma module in a standard way.

The irreducible highest weight representations L(µ), µ = (µ1, . . . , µN), over the algebra

Uq(glN) are defined in a similar way with the above conditions on the highest vector

replaced by

t̄ij ζ = 0 for 1 6 i < j 6 N, and

tii ζ = µiζ, for 1 6 i 6 N.

The representation L(µ) is finite-dimensional if and only if there exist nonnegative integers

mi satisfying m1 > m2 > · · · > mN , elements εi ∈ {−1, 1} for i = 1, . . . , N , and a nonzero

complex number d such that

µi = d εi q
mi , i = 1, . . . , N.

Proposition 2.4. Every finite-dimensional irreducible representation of Uext
q (glN) is iso-

morphic to a highest weight representation L(λ; λ̄) such that

λi − a q2miλ̄i = 0, i = 1, . . . , N,

for some nonnegative integers mi satisfying m1 > m2 > · · · > mN and a nonzero complex

number a.

Proof. A standard argument shows that every finite-dimensional irreducible representation

of Uext
q (glN) is isomorphic to a highest weight representation; cf. [8, Ch. 10]. Hence we

only need to determine when the representation L(λ; λ̄) is finite-dimensional. Each central

element tii t̄ii of Uext
q (glN) acts on L(λ; λ̄) as multiplication by the scalar λiλ̄i. Fix constants

c1, . . . , cN such that

c2i = λiλ̄i, i = 1, . . . , N.
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Then the mapping

tij 7→ ci tij, t̄ij 7→ ci t̄ij

defines an epimorphism Uext
q (glN)→ Uq(glN) whose kernel is generated by the elements

tii t̄ii − λiλ̄i, i = 1, . . . , N. (2.19)

Hence, identifying Uq(glN) with the quotient of Uext
q (glN) by this kernel, we can equip

L(λ; λ̄) with the structure of an irreducible highest weight representation of Uq(glN). Its

highest weight (µ1, . . . , µN) is given by

µi = c−1
i λi, i = 1, . . . , N.

This representation is finite-dimensional if and only if

c−1
i λi = d εi q

mi

for some nonnegative integers mi satisfying m1 > m2 > · · · > mN , a nonzero complex

number d, and some elements εi ∈ {−1, 1} for i = 1, . . . , N . By our choice of the constants

ci, this is equivalent to the relations λi λ̄
−1
i = a q2mi with a = d2, as required.

2.2 Twisted quantized enveloping algebras U′q(oN) and U′q(sp2n)

The twisted quantized enveloping algebra U′
q(oN) associated with the orthogonal Lie alge-

bra oN was introduced independently in [15] and [30]. Its R-matrix presentation was given

in [31]. We follow the notation of [29] and define U′
q(oN) as the subalgebra of Uq(glN)

generated by the matrix elements sij of the matrix S = T T
t
, where t denotes the usual

matrix transposition. More explicitly, the elements sij are given by

sij =
N∑

a=1

tiat̄ja. (2.20)

Hence, (2.3) implies

sij = 0, 1 6 i < j 6 N, (2.21)

sii = 1, 1 6 i 6 N. (2.22)

Furthermore, U′
q(oN) is isomorphic to the algebra with (abstract) generators sij with the

condition i, j ∈ {1, . . . , N} subject to the defining relations (2.21), (2.22) and

RS1R
t1S2 = S2R

t1S1R, (2.23)

where

R t1 = q
∑

i

Eii ⊗ Eii +
∑

i6=j

Eii ⊗ Ejj + (q − q−1)
∑
i<j

Eji ⊗ Eji. (2.24)
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In terms of the generators, relation (2.23) takes the form

qδaj+δij sia sjb − qδab+δib sjb sia = (q − q−1) qδai (δb<a − δi<j) sja sib

+ (q − q−1)
(
qδab δb<i sji sba − qδij δa<j sij sab

)

+ (q − q−1)2 (δb<a<i − δa<i<j) sji sab,

(2.25)

where δi<j or δi<j<k equals 1 if the subscript inequality is satisfied and 0 otherwise.

An analogue of the PBW theorem for the algebra U′
q(oN) was proved in [18]; see also

[27], [29]. Yet another proof is obtained from Proposition 2.1. We regard q as a nonzero

complex number.

Proposition 2.5. The monomials

s k21
21 s k32

32 s k31
31 . . . s kN1

N1 s kN2
N2 . . . s

kN,N−1

N,N−1 , (2.26)

where the kij run over non-negative integers form a basis of the algebra U′
q(oN).

Proof. Let us consider the C [z, z−1]-subalgebra U◦
z(oN) of U◦

z(glN) generated by the ele-

ments sij defined by (2.20) and show that the monomials (2.26) form its basis. It follows

easily from the defining relations that the monomials span the algebra; see [29, Lemma 2.1].

Suppose now that a nontrivial C [z, z−1]-linear combination of the monomials (2.26) is zero.

By Proposition 2.1 we may suppose that at least one coefficient of the combination does

not vanish at z = 1. Using the isomorphism (2.14) we then get a nontrivial C-linear com-

bination of the corresponding monomials in the polynomial algebra PN . We will come to

a contradiction if we show that the images σij of the generators of sij, i > j, in PN are

algebraically independent.

We have

σij =
N∑

a=1

xia x̄ja.

It suffices to verify that the differentials dσij are linearly independent. Calculate the

differentials in terms of dxia and dx̄ia and specialize the coefficient matrix by setting xij =

x̄ij = δij. Then dσij = dx̄ji + dxij which implies that the differentials dσij are linearly

independent even under the specialization.

This proves that the monomials (2.26) form a basis over C [z, z−1] in the subalgebra

U◦
z(oN). The application of the isomorphism (2.9) shows that the monomials (2.26) form

a basis over C in U′
q(oN).

Finite-dimensional irreducible representations of the algebra U′
q(oN) were classified in

[19]. Moreover, that paper also contains explicit realization of the representations of ‘clas-

sical type’ via Gelfand–Tsetlin bases.
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The twisted quantized enveloping algebra U′
q(sp2n) associated with the symplectic Lie

algebra sp2n was first introduced in [31]. In order to define it, consider the 2n× 2n matrix

G given by

G = q

n∑

k=1

E2k−1,2k −
n∑

k=1

E2k,2k−1, (2.27)

that is,

G =




0 q · · · 0 0

−1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 q

0 0 · · · −1 0



.

We define U′
q(sp2n) as the subalgebra of Uext

q (gl2n) generated by the matrix elements sij of

the matrix S = T GT
t
together with the elements

s−1
i,i+1 = q−1 t−1

ii t̄ −1
i+1,i+1 (2.28)

for i = 1, 3, . . . , 2n− 1. More explicitly,

sij = q

n∑
a=1

ti,2a−1t̄j,2a −
n∑

a=1

ti,2at̄j,2a−1. (2.29)

By (2.3) we have

sij = 0 for i < j unless j = i+ 1 with i odd. (2.30)

All matrix elements s̄ij of the matrix S = T GT t also belong to the subalgebra. It was

proved in [29] that U′
q(sp2n) is isomorphic to the algebra with (abstract) generators sij

with i, j ∈ {1, . . . , 2n} and s−1
i,i+1 with i = 1, 3, . . . , 2n− 1, subject to the defining relations

(2.23) (with N = 2n), (2.30) and

si,i+1 s
−1
i,i+1 = s−1

i,i+1 si,i+1 = 1, i = 1, 3, . . . , 2n− 1. (2.31)

Our definition of U′
q(sp2n) follows closer the original paper [31], while a slightly different

algebra U tw
q (sp2n) was studied in [29]. The latter was defined as a subalgebra of Uq(gl2n)

by the same formulas (2.28) and (2.29) which lead to extra relations for the generators:

for any odd i

si+1,i+1 sii − q2 si+1,i si,i+1 = q3. (2.32)

They are implied by the relations tii t̄ii = 1 which hold in the algebra Uq(gl2n) but not

in Uext
q (gl2n). Moreover, the elements si+1,i+1 sii − q2 si+1,i si,i+1 are central in the algebra

U′
q(sp2n) and its quotient by the relations (2.32) is isomorphic to U tw

q (sp2n); see also [27],
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where a slightly different notation was used. The latter algebra is a deformation of the

universal enveloping algebra U(sp2n); see [29].

An analogue of the PBW theorem for the algebra U′
q(sp2n) was proved in [27]. That

paper and [29] also contain proofs of this theorem for the quotient algebra U tw
q (sp2n). Here

we give a more direct proof based on Proposition 2.3 for a slightly different order on the

set of generators.

We define a function ς : {1, 2, . . . , 2n} → {±1,±3, . . . ,±(2n− 1)} by

ς(i) =

{
i if i is odd,

−i+ 1 if i is even.
(2.33)

We say sia < sjb if
(
ς(i) + ς(a), ς(i)

)
<

(
ς(j) + ς(b), ς(j)

)
when ordered lexicographically.

In the next proposition we consider the corresponding ordered monomials in the gen-

erators sij with i > j together with si,i+1 and s−1
i,i+1 with odd i.

Proposition 2.6. The ordered monomials

s
k2n,2n

2n,2n s
k2n,2n−2

2n,2n−2 . . . s
k2n,2n−1

2n,2n−1 . . . s
k21
21 s k12

12 . . . s
k2n−1,2n

2n−1,2n . . . s
k2n−1,2n−3

2n−1,2n−3 s
k2n1,2n−1

2n−1,2n−1, (2.34)

where k12, k34, . . . , k2n−1,2n run over all integers and the remaining powers kij run over

non-negative integers, form a basis of the algebra U′
q(sp2n).

Proof. Let us consider the C [z, z−1]-subalgebra U◦
z(sp2n) of Uext

z (gl2n) generated by the

elements (2.28) and (2.29) with q replaced by z and show that the monomials (2.34) form

its basis. The application of the isomorphism (2.17) will then imply that the monomials

form a basis over C in U′
q(sp2n).

First we prove that an arbitrary monomial in the generators can be written as a linear

combination of the ordered monomials; cf. [29, Lemma 2.1]. Due to the relations

si,i+1 skl = zδik+δil−δi+1,k−δi+1,l skl si,i+1, i = 1, 3, . . . , 2n− 1,

we can restrict our attention to those monomials where all generators occur in non-negative

powers. We define the degree of a monomial si1a1 . . . sipap , to be d = i1 + · · · + ik and we

argue by induction on the degree d. Modulo products of degree less than i+j, the relations

(2.25) (with q replaced by z) imply:

zδaj+δijsiasjb − zδab+δibsjbsia

≡ (z − z−1)zδai(δb<a − δi<j)sjasib. (2.35)

Swapping here i with j and a with b we can also write this in the form

zδaj+δabsiasjb − zδij+δibsjbsia

≡ (z−1 − z)zδbj(δa<b − δj<i)sibsja. (2.36)

12



Suppose ς(i) + ς(a) > ς(j) + ς(b). Then if ς(i) + ς(b) > ς(j) + ς(a), the equation (2.35)

allows us to write siasjb as a linear combination of ordered monomials and monomials of

lower degree. On the other hand, if ς(i) + ς(b) < ς(j) + ς(a) then the same outcome is

achieved by using (2.36). In the case ς(i) + ς(b) = ς(j) + ς(a) we have either ς(i) > ς(j) or

ς(i) < ς(j) and we use (2.35) or (2.36), respectively; the equality ς(i) = ς(j) is impossible

as it would imply ς(i) + ς(a) = ς(j) + ς(b).

Now suppose that we have a pair of generators sia, sjb such that ς(i)+ς(a) = ς(j)+ς(b),

and that ς(i) > ς(j). Then ς(a) < ς(b), and so

ς(i) + ς(b) > ς(j) + ς(a).

This means that by applying (2.35), we can write siasjb as a linear combination of ordered

monomials. Thus, given an arbitrary monomial, we may rearrange each pair of generators

in turn to write the monomial as a linear combination of ordered monomials and monomials

of lower degree.

Suppose now that a nontrivial C [z, z−1]-linear combination of the monomials (2.34) is

zero. By Proposition 2.3 we may suppose that at least one coefficient of the combination

does not vanish at z = 1. Using the isomorphism (2.18) we then get a nontrivial C-linear

combination of the corresponding monomials in the polynomial algebra P ext
2n .

Let σij denote the image of sij in P ext
2n . Hence

σij =
n∑

a=1

(
xi,2a−1 x̄j,2a − xi,2a x̄j,2a−1

)
.

It suffices to verify that the polynomials σij with i > j and σi,i+1 with odd i are algebraically

independent in P ext
2n . Calculate their differentials in terms of dxia and dx̄ia and specialize

the coefficient matrix by setting xij = x̄ij = δij. Then

dσij =





dx̄j,i+1 + dxi,j−1 if i is odd, j is even,

dx̄j,i+1 − dxi,j+1 if i is odd, j is odd,

−dx̄j,i−1 + dxi,j−1 if i is even, j is even,

−dx̄j,i−1 − dxi,j+1 if i is even, j is odd,

so that the differentials are linearly independent.

Finally, for the use in the next sections we reproduce the classification theorem for

finite-dimensional irreducible representations of the algebra U′
q(sp2n). This theorem was

proved in [27] for the quotient U tw
q (sp2n) of this algebra by the relations (2.32), and it is

not difficult to get the corresponding results for the algebra U′
q(sp2n). For the rest of this

section we suppose that q is a nonzero complex number which is not a root of unity.
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A representation V of U′
q(sp2n) is called a highest weight representation if V is generated

by a nonzero vector ξ (the highest vector) such that

sij ξ = 0 for i = 1, 3, . . . , 2n− 1, j = 1, 2, . . . , i, and

s2i,2i−1 ξ = µi ξ, s2i−1,2i ξ = µ′i ξ, for i = 1, 2, . . . , n,

for some complex numbers µi and µ′i. The numbers µ′i have to be nonzero due to the

relation (2.31). The tuple (µ1, . . . , µn;µ′1, . . . , µ
′
n) is called the highest weight of V .

Due to the PBW theorem for the algebra U′
q(sp2n) (Proposition 2.6), given any two n-

tuples of complex numbers µ = (µ1, . . . , µn) and µ′ = (µ′1, . . . , µ
′
n), where all µ′i are nonzero,

there exists an irreducible highest weight representation V (µ;µ′) with the highest weight

(µ;µ′). It is defined as the unique irreducible quotient of the corresponding Verma module

M(µ;µ′); cf. [27]. By definition, M(µ;µ′) is the quotient of U′
q(sp2n) by the left ideal

generated by the elements sij with i = 1, 3, . . . , 2n− 1, j = 1, 2, . . . , i, and by s2i,2i−1 − µi,

s2i−1,2i − µ′i with i = 1, . . . , n.

Proposition 2.7. Every finite-dimensional irreducible representation of U′
q(sp2n) is iso-

morphic to a highest weight representation V (µ;µ′) such that

µ′i + q2pi+1µi = 0, i = 1, . . . , n,

for some nonnegative integers pi satisfying p1 6 p2 6 · · · 6 pn.

Proof. A standard argument as in [27] shows that every finite-dimensional irreducible rep-

resentation of U′
q(sp2n) is isomorphic to V (µ;µ′) for certain µ and µ′. In order to find out

when an irreducible highest weight representation V (µ;µ′) is finite-dimensional, consider

first the case n = 1. Let M(µ1;µ
′
1) be the Verma module over U′

q(sp2) with the highest

vector ξ. The vectors sk
22ξ with k > 0 form a basis of M(µ1;µ

′
1). The central element

s22s11 − q2s21s12 acts on M(µ1;µ
′
1) as multiplication by the scalar −q2µ1µ

′
1. Hence using

the defining relations (2.25) we derive by induction on k that

s11s
k
22ξ =

(
q−2k − 1

)(
q2µ1µ

′
1 + (µ′1)

2q3−2k
)
sk−1
22 ξ.

Since µ′1 6= 0, this implies that if µ1 = 0 then M(µ1;µ
′
1) is irreducible and so the represen-

tation V (µ1;µ
′
1) is infinite-dimensional.

By embedding U′
q(sp2) into U′

q(sp2n) as the subalgebra generated by the elements

s2i−1,2i, s
−1
2i−1,2i, s2i,2i−1, s2i−1,2i−1 and s2i,2i for i ∈ {1, . . . , n}, we can conclude that if

the representation V (µ;µ′) of U′
q(sp2n) is finite-dimensional, then all components µi must

be nonzero. Furthermore, each central element s2i,2is2i−1,2i−1 − q2 s2i,2i−1s2i−1,2i acts in

V (µ;µ′) as multiplication by the nonzero scalar −q2µiµ
′
i.

On the other hand, the quotient of U′
q(sp2n) by the ideal generated by the elements

s2i,2is2i−1,2i−1 − q2 s2i,2i−1s2i−1,2i + q2µiµ
′
i, i = 1, . . . , n, (2.37)
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is isomorphic to the algebra U tw
q (sp2n). Indeed, the mapping sij 7→ cicj sij for nonzero

scalars c1, . . . , c2n such that

q2µiµ
′
i = −q3 c22i−1c

2
2i, i = 1, . . . , n,

defines an epimorphism U′
q(sp2n) → U tw

q (sp2n) whose kernel is generated by the elements

(2.37). Thus, V (µ;µ′) becomes an irreducible highest weight representation of the algebra

U tw
q (sp2n) whose highest weight λ = (λ1, λ3, . . . , λ2n−1) in the notation of [27, Sec. 4] is

found by

λ2i−1 = c−1
2i−1c

−1
2i µ

′
i, i = 1, . . . , n.

This implies λ2
2i−1 = −qµ′i µ−1

i . By [27, Theorem 6.3] we must have

λ2
2i−1 = q2mi , i = 1, . . . , n,

for some positive integers mi satisfying m1 6 m2 6 · · · 6 mn. This gives the desired

conditions on the highest weight (µ;µ′).

Remark 2.8. If q2 6= 1 then the algebra U tw
q (sp2) is isomorphic to Uq(sl2). An isomorphism

can be given by

k 7→ q−1s12, e 7→ s11

q3 − q , f 7→ s−1
12 s22

1− q2
,

where e, f, k, k−1 are the standard generators of Uq(sl2) satisfying the relations

ke = q2ek, kf = q−2f k, ef − f e =
k − k−1

q − q−1
.

This isomorphism can be used to get a description of finite-dimensional irreducible repre-

sentations of U tw
q (sp2); cf. [27].

2.3 Quantum affine algebra Uq(ĝlN)

We start by recalling some well-known facts about the quantum affine algebra (or quantum

loop algebra) associated with glN . We will keep the notation q for a fixed nonzero complex

number. Consider the Lie algebra of Laurent polynomials glN [λ, λ−1] in an indeterminate

λ. We denote it by ĝlN for brevity. The quantum affine algebra Uq(ĝlN) (with the trivial

central charge) has countably many generators t
(r)
ij and t̄

(r)
ij where 1 6 i, j 6 N and r runs

over nonnegative integers. They are combined into the matrices

T (u) =
N∑

i,j=1

tij(u)⊗ Eij, T (u) =
N∑

i,j=1

t̄ij(u)⊗ Eij, (2.38)
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where tij(u) and t̄ij(u) are formal series in u−1 and u, respectively:

tij(u) =
∞∑

r=0

t
(r)
ij u−r, t̄ij(u) =

∞∑
r=0

t̄
(r)
ij ur. (2.39)

The defining relations are

t
(0)
ij = t̄

(0)
ji = 0, 1 6 i < j 6 N,

t
(0)
ii t̄

(0)
ii = t̄

(0)
ii t

(0)
ii = 1, 1 6 i 6 N,

R(u, v)T1(u)T2(v) = T2(v)T1(u)R(u, v),

R(u, v)T 1(u)T 2(v) = T 2(v)T 1(u)R(u, v),

R(u, v)T 1(u)T2(v) = T2(v)T 1(u)R(u, v),

(2.40)

where R(u, v) is the trigonometric R-matrix given by

R(u, v) = (u− v)
∑

i6=j

Eii ⊗ Ejj + (q−1u− qv)
∑

i

Eii ⊗ Eii

+ (q−1 − q)u
∑
i>j

Eij ⊗ Eji + (q−1 − q)v
∑
i<j

Eij ⊗ Eji.
(2.41)

Both sides of each of the R-matrix relations are series with coefficients in the algebra

Uq(ĝlN) ⊗ EndCN ⊗ EndCN and the subscripts of T (u) and T (u) indicate the copies of

EndCN ; e.g. T1(u) = T (u)⊗ 1. In terms of the generators these relations can be written

more explicitly as

(q−δiju− qδijv) tia(u) tjb(v) + (q−1 − q) (u δi>j + v δi<j) tja(u) tib(v)

= (q−δabu− qδabv) tjb(v) tia(u) + (q−1 − q) (u δa<b + v δa>b) tja(v) tib(u)
(2.42)

for the relations involving the t
(r)
ij ,

(q−δiju− qδijv) t̄ia(u) t̄jb(v) + (q−1 − q) (u δi>j + v δi<j) t̄ja(u) t̄ib(v)

= (q−δabu− qδabv) t̄jb(v) t̄ia(u) + (q−1 − q) (u δa<b + v δa>b) t̄ja(v) t̄ib(u)
(2.43)

for the relations involving the t̄
(r)
ij and

(q−δiju− qδijv) t̄ia(u) tjb(v) + (q−1 − q) (u δi>j + v δi<j) t̄ja(u) tib(v)

= (q−δabu− qδabv) tjb(v) t̄ia(u) + (q−1 − q) (u δa<b + v δa>b) tja(v) t̄ib(u)
(2.44)

for the relations involving both t
(r)
ij and t̄

(r)
ij .

Note that the last relation in (2.40) can be equivalently written in the form

R(u, v)T1(u)T 2(v) = T 2(v)T1(u)R(u, v). (2.45)
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Indeed, we have the identity

R(u, v)Rq−1(u, v) = (qu− q−1v)(q−1u− qv) 1⊗ 1,

where Rq−1(u, v) is obtained from R(u, v) by replacing q with q−1. Therefore, the last

relation in (2.40) can be written as

Rq−1(u, v)T2(v)T 1(u) = T 1(u) T2(v)Rq−1(u, v).

Now conjugate both sides by the permutation operator

P =
N∑

i,j=1

Eij ⊗ Eji, (2.46)

then swap u and v to get (2.45), as

R(u, v) = −P Rq−1(v, u)P.

In terms of the generators the relation (2.45) takes the form

(q−δiju− qδijv) tia(u) t̄jb(v) + (q−1 − q) (u δi>j + v δi<j) tja(u) t̄ib(v)

= (q−δabu− qδabv) t̄jb(v) tia(u) + (q−1 − q) (u δa<b + v δa>b) t̄ja(v) tib(u).
(2.47)

Let f(u) and f̄(u) be formal power series in u−1 and u, respectively,

f(u) = f0 + f1 u
−1 + f2 u

−2 + . . . ,

f̄(u) = f̄0 + f̄1 u+ f̄2 u
2 + . . . ,

such that f0 f̄0 = 1. Then it is immediate from the defining relations that the mapping

T (u) 7→ f(u)T (u), T (u) 7→ f̄(u)T (u) (2.48)

defines an automorphism of the algebra Uq(ĝlN).

We will also use an involutive automorphism of the algebra Uq(ĝlN) given by

T (u) 7→ T (u−1)t, T (u) 7→ T (u−1)t, (2.49)

where t denotes the matrix transposition. The first two sets of relations in (2.40) are

obviously preserved by the map (2.49). In order to verify that the R-matrix relations are

preserved as well, apply the transposition t1 in the first copy of EndCN to each of them,

followed by the transposition t2 in the second copy of EndCN . Then conjugate both sides

by the permutation operator (2.46), replace u and v by v−1 and u−1 respectively, and

observe that

uv PRt1t2(v−1, u−1)P = R(u, v).
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Another involutive automorphism is defined by the mapping

tij(u) 7→ εi tij(u), t̄ij(u) 7→ εi t̄ij(u), (2.50)

where each εi equals 1 or −1.

It follows easily from the defining relations (2.40) that the mapping

tij(u) 7→ tN−j+1,N−i+1(u), t̄ij(u) 7→ t̄N−j+1,N−i+1(u) (2.51)

defines an involutive anti-automorphism of the algebra Uq(ĝlN).

Ding and Frenkel [11] used the Gauss decompositions of the matrices T (u) and T (u)

to construct an isomorphism between the RTT -presentation (2.40) and Drinfeld’s “new

realization” of Uq(ĝlN); see also [14]. However, the version of the PBW theorem given

by Beck [3] for the new realization of the quantum affine algebras Uq(â) over the field of

rational functions in q does not immediately imply a PBW-type theorem for the RTT -

presentation. Our next goal is to prove the PBW theorem for the RTT -presentation of the

algebra Uq(ĝlN), where q is an arbitrary fixed nonzero complex number.

As before, we let z denote an indeterminate. Introduce the algebra U◦
z(ĝlN) over

C [z, z−1] by the respective generators and relations given in (2.40) with q replaced by

z. Then we have the isomorphism

U◦
z(ĝlN)⊗C [z,z−1] C ∼= Uq(ĝlN), (2.52)

where the C [z, z−1]-module C is defined via the evaluation of the Laurent polynomials at

z = q. The next proposition takes care of the weak part of the PBW theorem. We use a

particular total order on the generators of the algebra for which the argument appears to

be the most straightforward. For the purposes of representation theory a different order is

more useful and we will take care of that one in Corollary 2.13 below.

We associate the triple (i, a, r) to each nonzero generator t
(r)
ia or t̄

(r)
ia of U◦

z(ĝlN). If

(i, a, r) < (j, b, s) in the lexicographical order then we will say that each generator as-

sociated with (i, a, r) precedes each generator associated with (j, b, s). Moreover, we will

suppose that t
(r)
ia precedes t̄

(r)
ia for each triple (i, a, r) such that both generators are nonzero.

Proposition 2.9. The ordered monomials in the generators span the algebra U◦
z(ĝlN) over

C [z, z−1].

Proof. Let r and s be nonnegative integers. Multiply both sides of the relation (2.42) with

q replaced with z by
1

z−δiju− z δijv
=

∞∑

k=1

z(2k−1)δiju−k vk−1
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and equate the coefficients of u−rv−s. This provides an expression for the product t
(r)
ia t

(s)
jb

with i > j as a C [z, z−1]-linear combination of the elements of the form t
(k)
jc t

(l)
id . Further-

more, taking i = j in (2.42) with q replaced with z we obtain

(z−abu− zabv) tib(v) tia(u)

= (z−1u− zv) tia(u) tib(v)− (z−1 − z) (u δa<b + v δa>b) tia(v) tib(u). (2.53)

This allows us to express the product t
(r)
ib t

(s)
ia with b > a as a C [z, z−1]-linear combination

of the elements of the form t
(k)
ia t

(l)
ib . Taking a = b in (2.53), we find that the generators t

(r)
ia

and t
(s)
ia commute for any r and s.

Applying similar arguments to the relations (2.43) and (2.44) with q replaced with

z and using induction on the length of monomials we conclude that any monomial in

the generators of U◦
z(ĝlN) can be written as a C [z, z−1]-linear combination of the ordered

monomials.

Recall now that the algebra U◦
z(ĝlN) possesses a Hopf algebra structure with the co-

product

∆ : U◦
z(ĝlN)→ U◦

z(ĝlN)⊗ U◦
z(ĝlN),

where the tensor product is taken over C [z, z−1], defined by

∆
(
tij(u)

)
=

N∑

k=1

tik(u)⊗ tkj(u), ∆
(
t̄ij(u)

)
=

N∑

k=1

t̄ik(u)⊗ t̄kj(u). (2.54)

The quantized enveloping algebra U◦
z(glN) is a Hopf subalgebra of U◦

z(ĝlN) defined by the

embedding

tij 7→ t
(0)
ij , t̄ij 7→ t̄

(0)
ij . (2.55)

Moreover, the mapping

π : T (u) 7→ T + T u−1, T (u) 7→ T + T u (2.56)

defines a C [z, z−1]-algebra homomorphism U◦
z(ĝlN) → U◦

z(glN) called the evaluation ho-

momorphism.

In our proof of the PBW theorem for the quantum affine algebra we will follow the

approach used in [5] to prove the corresponding theorem for the Yangian for glN ; see also

[16] for the super-version of the same approach.

We will need a simple lemma which is easily verified by induction. Let x1, . . . , xl be

indeterminates. For r = 0, . . . , l − 1 and k = 1, . . . , l consider the elementary symmetric

polynomials in l − 1 variables, where the variable xk is skipped:

erk = er(x1, . . . , x̂k, . . . xl) =
∑

xi1 . . . xir ,

summed over indices ia 6= k with 1 6 i1 < · · · < ir 6 l.
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Lemma 2.10. We have

det




e01 e02 · · · e0l

e11 e12 · · · e1l

...
...

. . .
...

el−1,1 el−1,2 · · · el−1,l


 =

∏

16i<j6l

(xi − xj). (2.57)

In particular, the determinant is nonzero under any specialization of variables xi = ai,

i = 1, . . . , l, where the ai are distinct complex numbers.

For each positive integer l introduce the C [z, z−1]-algebra homomorphism

κl : U◦
z(ĝlN)→ U◦

z(glN)⊗l

by setting

κl = π⊗l ◦∆(l−1), (2.58)

where

∆(l−1) : U◦
z(ĝlN)→ U◦

z(ĝlN)⊗l

denotes the coproduct iterated l − 1 times. The explicit formulas for the images of the

generators of U◦
z(ĝlN) under the homomorphism κl have the following form:

κl : t
(r)
ij 7→

∑
p1<···<pr

∑
i1,...,il

tii1 ⊗ ti1i2 ⊗ . . .⊗ t̄ip1−1ip1
⊗ . . .⊗ t̄ipr−1ipr

⊗ . . .⊗ til−1j,

κl : t̄
(r)
ij 7→

∑
p1<···<pr

∑
i1,...,il

t̄ii1 ⊗ t̄i1i2 ⊗ . . .⊗ tip1−1ip1
⊗ . . .⊗ tipr−1ipr

⊗ . . .⊗ t̄il−1j,
(2.59)

where the indices i1, . . . , il in each formula run over the set {1, . . . , N} and the indices

{p1, . . . , pr} ⊂ {1, . . . , l} indicate the places taken by the barred generators t̄kl (resp. un-

barred generators tkl) in the first (resp. second) formula. The images of t
(r)
ij and t̄

(r)
ij under

the homomorphism κl are zero unless l > r.

With the order on the generators of U◦
z(ĝlN) introduced before Proposition 2.9 consider

the corresponding ordered monomials. The zero generators t
(0)
ij for i < j and t̄

(0)
ij for i > j

will be excluded. Moreover, using the relation t
(0)
ii t̄

(0)
ii = 1 we will suppose that for each

i = 1, . . . , N each monomial contains either a nonnegative power of t
(0)
ii or a positive power

of t̄
(0)
ii . With these conventions we have the following version of the PBW theorem.

Theorem 2.11. The ordered monomials in the generators t
(r)
ij and t̄

(r)
ij form a basis of the

algebra U◦
z(ĝlN) over C [z, z−1].

Proof. Due to Proposition 2.9, we only need to verify that the ordered monomials are

linearly independent. We will argue by contradiction. Suppose that a nontrivial linear
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combination of the ordered monomials is zero. Let m be the minimum nonnegative integer

such that for all generators t
(r)
ij and t̄

(r)
ij occurring in the combination we have 0 6 r 6 m.

Consider the homomorphism κl defined in (2.58) with l = 2m + 1 and apply it to the

linear combination. We then get the respective nontrivial C [z, z−1]-linear combination of

elements of the algebra U◦
z(glN)⊗l equal to zero. By Proposition 2.1 we may suppose that

at least one coefficient of the combination does not vanish at z = 1.

On the other hand, due to (2.14) we have the isomorphism

U◦
z(glN)⊗l ⊗C [z,z−1] C ∼= P⊗l

N .

Taking the image of the linear combination under this isomorphism we get a nontrivial

C-linear combination of elements of the polynomial algebra P⊗l
N equal to zero.

We will regard P⊗l
N as the algebra of polynomials in l sets of variables {x[k]

ij , x̄
[k]
ij }, where

the parameter k ∈ {1, . . . , l} indicates the k-th copy of PN in the tensor product. Thus,

the proof of the theorem is now reduced to verifying the following claim. Consider the

elements y
(r)
ij and ȳ

(r)
ij of the algebra P⊗l

N defined by the relations

y
(r)
ij =

∑
p1<···<pr

∑
i1,...,il

x
[1]
ii1
x

[2]
i1i2

. . . x̄
[p1]
ip1−1ip1

. . . x̄
[pr]
ipr−1ipr

. . . x
[l]
il−1j,

ȳ
(r)
ij =

∑
p1<···<pr

∑
i1,...,il

x̄
[1]
ii1
x̄

[2]
i1i2

. . . x
[p1]
ip1−1ip1

. . . x
[pr]
ipr−1ipr

. . . x̄
[l]
il−1j,

with the same conditions on the summation indices as in (2.59) together with the relations

x
[s]
ij = x̄

[s]
ji = 0 for i < j. We need to verify that modulo the relations

y
(0)
ij = ȳ

(0)
ji = 0, 1 6 i < j 6 N,

y
(0)
ii ȳ

(0)
ii = 1, 1 6 i 6 N,

the polynomials y
(r)
ij , ȳ

(r)
ij with 1 6 i, j 6 N and 0 6 r 6 m are algebraically independent.

It will be sufficient to show that the corresponding differentials dy
(r)
ij , dȳ

(r)
ij are linearly

independent. In order to do this, we calculate the matrix of the map

(
dx

[s]
ij , dx̄

[s]
ij

)→ (
dy

(r)
ij , dȳ

(r)
ij )

and show that its determinant is nonzero even when the variables are specialized to

x
[s]
ij = δijcs, x̄

[s]
ij = δijc

−1
s , (2.60)

where c1, . . . , cl are distinct nonzero complex numbers.

If i > j then under the specialization (2.60) we have

dy
(r)
ij = c1 . . . cl

l∑
s=1

c−1
s er(c

−2
1 , . . . , ĉ−2

s , . . . , c−2
l ) dx

[s]
ij
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for r = 0, 1, . . . ,m, and

dȳ
(r)
ij = c1 . . . cl

l∑
s=1

c−1
s el−r(c

−2
1 , . . . , ĉ−2

s , . . . , c−2
l ) dx

[s]
ij

for r = 1, . . . ,m. Similarly, for i < j we have

dȳ
(r)
ij = c−1

1 . . . c−1
l

l∑
s=1

cs er(c
2
1, . . . , ĉ

2
s, . . . , c

2
l ) dx̄

[s]
ij

for r = 0, 1, . . . ,m, and

dy
(r)
ij = c−1

1 . . . c−1
l

l∑
s=1

cs el−r(c
2
1, . . . , ĉ

2
s, . . . , c

2
l ) dx̄

[s]
ij

for r = 1, . . . ,m. Note that since x
[s]
ii x̄

[s]
ii = 1, we have dx̄

[s]
ii = −(

x
[s]
ii

)−2
dx

[s]
ii . Therefore,

setting e−1 = 0, for i = j we obtain

dy
(r)
ii = c1 . . . cl

l∑
s=1

c−1
s

(
er(c

−2
1 , . . . , ĉ−2

s , . . . , c−2
l )− c−2

s er−1(c
−2
1 , . . . , ĉ−2

s , . . . , c−2
l )

)
dx

[s]
ii

for r = 0, 1, . . . ,m, and

dȳ
(r)
ii = c1 . . . cl

l∑
s=1

c−1
s

(
el−r(c

−2
1 , . . . , ĉ−2

s , . . . , c−2
l )− c−2

s el−r−1(c
−2
1 , . . . , ĉ−2

s , . . . , c−2
l )

)
dx

[s]
ii

for r = 1, . . . ,m.

It follows from Lemma 2.10 that in each of the three cases, the determinant of the l× l
matrix is nonzero. This proves that the differentials dy

(r)
ij and dȳ

(r)
ij are linearly independent

(excluding dy
(0)
ij for i < j and dȳ

(0)
ij for i > j), thus completing the proof.

The following corollary is immediate from the isomorphism (2.52).

Corollary 2.12. Let q be a nonzero complex number. With the same order on the gen-

erators as in Theorem 2.11, the ordered monomials in the generators t
(r)
ij and t̄

(r)
ij form a

basis of the algebra Uq(ĝlN) over C.

Note that the proof of the linear independence of the ordered monomials in U◦
z(ĝlN)

over C [z, z−1] does not rely on the ordering used. Therefore, Theorem 2.11 holds in the

same form for any other ordering, provided that the corresponding weak form of the PBW

theorem holds; cf. Proposition 2.9. We will prove this weak form for another ordering

which is useful for the description of representations of Uq(ĝlN).
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To each nonzero generator t
(r)
ia and t̄

(r)
ia of U◦

z(ĝlN) we now associate the triple of integers

(a−i, i, r). The generators will now be ordered in accordance with the lexicographical order

on the corresponding triples and we will also suppose that t
(r)
ia precedes t̄

(r)
ia for each triple

(a − i, i, r) such that both generators are nonzero. We have the following version of the

PBW theorem.

Corollary 2.13. Let q be a nonzero complex number. With the order on the generators

defined above, the ordered monomials in the generators t
(r)
ij and t̄

(r)
ij form a basis of the

algebra Uq(ĝlN) over C.

Proof. As we pointed out above, the linear independence of the corresponding monomials in

the C [z, z−1]-algebra U◦
z(ĝlN) will follow by the argument used in the proof of Theorem 2.11.

We only need to show that the ordered monomials span this algebra over C [z, z−1]. The

corollary will then follow from the isomorphism (2.52).

Arguing as in the proof of Proposition 2.9, we derive from the relation (2.42) that

t
(r)
ia t

(s)
jb = linear combination of t

(k)
jb t

(l)
ia and t

(m)
ja t

(p)
ib (2.61)

for some k, l,m, p. Swapping i with j and a with b in (2.42) we also obtain

t
(r)
ia t

(s)
jb = linear combination of t

(k)
jb t

(l)
ia and t

(m)
ib t

(p)
ja . (2.62)

Suppose now that a− i > b− j. If a− j 6= b− i, then we use the formula (2.61) or (2.62)

depending on whether a− j < b− i or b− i < a− j to write t
(r)
ia t

(s)
jb as a linear combination

of the ordered products of the generators. If a− j = b− i, then either j < i or i < j; the

equality i = j is impossible due to the condition a− i > b− j. Again, the product t
(r)
ia t

(s)
jb

is then written as a linear combination of the ordered products of the generators by (2.61)

or (2.62), respectively.

Further, suppose that a − i = b − j and i > j. Then a > b and b − i < a − j so that

(2.62) provides an expression of t
(r)
ia t

(s)
jb as a linear combination of the ordered products of

the generators.

The same arguments relying on (2.43) instead of (2.42) prove the corresponding state-

ment for the products of the generators t̄
(r)
ia .

Finally, relation (2.44) implies the following counterpart of (2.61):

t̄
(r)
ia t

(s)
jb = linear combination of t

(k)
jb t̄

(l)
ia , t̄

(m)
ja t

(p)
ib and t

(h)
ja t̄

(n)
ib . (2.63)

The corresponding counterpart of (2.62) is obtained from (2.47) and it has the form

t̄
(r)
ia t

(s)
jb = linear combination of t

(k)
jb t̄

(l)
ia , t

(p)
ib t̄

(m)
ja and t̄

(n)
ib t

(h)
ja . (2.64)

The above argument can now be applied to the products t̄
(r)
ia t

(s)
jb allowing one to write it as

a linear combination of the ordered products of the generators.
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Recalling that each of the generators t
(r)
ia and t̄

(r)
ia commutes with each of t

(s)
ia and t̄

(s)
ia

for all r and s, we conclude by an easy induction that any monomial in U◦
z(ĝlN) can be

written as a C [z, z−1]-linear combination of the ordered products of the generators.

As with the quantized enveloping algebra, we need to introduce an extended quantum

affine algebra. We denote by Uext
q (ĝlN) the algebra over C with countably many generators

t
(r)
ij and t̄

(r)
ij , 1 6 i, j 6 N and r > 0, together with t

(0)−1
ii and t̄

(0)−1
ii with 1 6 i 6 N , subject

to the defining relations (2.40), where the second set of relations is replaced with

t
(0)
ii t̄

(0)
ii = t̄

(0)
ii t

(0)
ii , t

(0)
ii t

(0)−1
ii = t

(0)−1
ii t

(0)
ii = 1, t̄

(0)
ii t̄

(0)−1
ii = t̄

(0)−1
ii t̄

(0)
ii = 1,

for i = 1, . . . , N . We have the natural epimorphism

Uext
q (ĝlN)→ Uq(ĝlN) (2.65)

whose kernel is the ideal of Uext
q (ĝlN) generated by the central elements t

(0)
ii t̄

(0)
ii − 1 for

i = 1, . . . , N . We also define the algebra Uext
z (ĝlN) over C [z, z−1] with the same generators

and relations, where q should be replaced with z.

It is straightforward to conclude that the PBW theorem for the algebra Uext
q (ĝlN) holds

in the same form as in Corollaries 2.12 and 2.13, except for allowing the generators t
(0)
ii

and t̄
(0)
ii to occur simultaneously in the monomials and their powers can now run over the

set of all integers.

Observe that given any tuple (φ1, . . . , φN) of nonzero complex numbers, the mapping

tij(u) 7→ φi tij(u), t̄ij(u) 7→ φi t̄ij(u), (2.66)

defines an automorphism of the algebra Uext
q (ĝlN).

2.4 Twisted q-Yangians Y′q(oN) and Y′q(sp2n)

The twisted q-Yangians Y′
q(oN) and Y′

q(sp2n) associated with the orthogonal Lie algebra

oN and symplectic Lie algebra sp2n were introduced in [29]. By definition, Y′
q(oN) is the

subalgebra of Uq(ĝlN) generated by the coefficients s
(r)
ij , r > 0, of the series

sij(u) =
∞∑

r=0

s
(r)
ij u−r, 1 6 i, j 6 N, (2.67)

where

sij(u) =
N∑

a=1

tia(u) t̄ja(u
−1). (2.68)
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In the symplectic case, we define Y′
q(sp2n) as the subalgebra of Uext

q (ĝl2n) generated by the

coefficients s
(r)
ij , r > 0, of the series

sij(u) =
∞∑

r=0

s
(r)
ij u−r, 1 6 i, j 6 2n, (2.69)

where

sij(u) = q

n∑
a=1

ti,2a−1(u) t̄j,2a(u
−1)−

n∑
a=1

ti,2a(u) t̄j,2a−1(u
−1), (2.70)

and by the elements s
(0)−1
i,i+1 with i = 1, 3, . . . , 2n− 1.

Remark 2.14. The twisted q-Yangian in the symplectic case was defined in [29] by the above

formulas as a subalgebra of the quantum affine algebra Uq(ĝl2n) without using its extension.

The generators of the corresponding algebra Ytw
q (sp2n) satisfy some extra relations: for any

odd i

s
(0)
i+1,i+1 s

(0)
ii − q2 s

(0)
i+1,i s

(0)
i,i+1 = q3. (2.71)

Moreover, the elements s
(0)
i+1,i+1 s

(0)
ii − q2 s

(0)
i+1,i s

(0)
i,i+1 are central in Y′

q(sp2n) and its quotient

by the relations (2.71) is isomorphic to Ytw
q (sp2n).

Both in the orthogonal and symplectic cases, the twisted q-Yangians can be equiva-

lently defined as abstract algebras with quadratic defining relations. Namely, consider the

matrices S(u) = T (u)T (u−1)t and S(u) = T (u)GT (u−1)t, where the matrix G is defined

in (2.27). Then the matrix elements of S(u) are the formal series sij(u) given by (2.68)

and (2.70), respectively. The coefficients s
(r)
ij of these series then satisfy the relations

R(u, v)S1(u)R
t1(u−1, v)S2(v) = S2(v)R

t1(u−1, v)S1(u)R(u, v), (2.72)

where the R-matrix R(u, v) is defined in (2.41) and

R t1(u, v) = (u− v)
∑

i6=j

Eii ⊗ Ejj + (q−1u− qv)
∑

i

Eii ⊗ Eii

+ (q−1 − q)u
∑
i>j

Eji ⊗ Eji + (q−1 − q)v
∑
i<j

Eji ⊗ Eji.
(2.73)

In terms of the generating series sij(u) the relation (2.72) takes the form

(q−δiju− qδijv)αijab(u, v) + (q−1 − q)(uδj<i + vδi<j)αjiab(u, v)

= (q−δabu− qδabv)αjiba(v, u) + (q−1 − q)(uδa<b + vδb<a)αjiab(v, u),
(2.74)

where

αijab(u, v) = (q−δaj − qδajuv) sia(u) sjb(v) + (q−1 − q)(δj<a + uvδa<j) sij(u) sab(v).
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All coefficients s̄
(r)
ij of the matrix elements s̄ij(u) of the matrices

S(u) = T (u)T (u−1)t and S(u) = T (u)GT (u−1)t (2.75)

belong to the subalgebras Y′
q(oN) ⊆ Uq(ĝlN) and Y′

q(sp2n) ⊆ Uext
q (ĝl2n), respectively.

Moreover, the relations between the elements s
(r)
ij and s̄

(r)
ij can be derived from those of the

algebras Uq(ĝlN) and Uext
q (ĝl2n). They take the form

R(u, v)S1(u)R
t1(u−1, v)S2(v) = S2(v)R

t1(u−1, v)S1(u)R(u, v),

R(u, v)S1(u)R
t1(u−1, v)S2(v) = S2(v)R

t1(u−1, v)S1(u)R(u, v),

R(u, v)S1(u)R
t1(u−1, v)S2(v) = S2(v)R

t1(u−1, v)S1(u)R(u, v).

(2.76)

The proof of the equivalence of the two definitions of the twisted q-Yangians is based on

analogues of the PBW theorem whose proofs were outlined in [29]. They use a specialization

argument based on the fact the twisted q-Yangians are deformations of universal enveloping

algebras. Here we give a different proof relying on Theorem 2.11.

In the orthogonal case we consider the same total order on the set of generators of

Y′
q(oN) as in [29]; we order the generators s

(r)
ia in accordance with the lexicographical order

on the corresponding triples (i, a, r).

In the symplectic case use the function ς : {1, 2, . . . , 2n} → {±1,±3, . . . ,±(2n − 1)}
defined in (2.33) and order the generators s

(r)
ia of Y′

q(sp2n) in accordance with the lexico-

graphical order on the corresponding triples (ς(i) + ς(a), ς(i), r). Since for any odd i the

generators s
(0)
i,i+1 and s

(0)−1
i,i+1 commute, it is unambiguous to associate each of them to the

same triple (0, i, 0).

By the definition (2.68) we have

s
(0)
ij = 0 for i < j and s

(0)
ii = 1 for all i (2.77)

in the orthogonal case. Similarly, by (2.70) in the symplectic case we have

s
(0)
ij = 0 for i < j unless j = i+ 1 with i odd. (2.78)

Consequently, the generators (2.77) and (2.78) will not occur in the ordered monomials.

Proposition 2.15. Let q be a nonzero complex number. With the orders on the generators

chosen as above, the ordered monomials in the generators form a basis of the respective

algebra Y′
q(oN) and Y′

q(sp2n).

Proof. The weak form of the PBW theorem was proved in [29, Lemma 3.2] for the or-

der used in the orthogonal case. The proof for the order we chose in the symplectic case

is obtained by obvious modifications of the same arguments; cf. the proof of Proposi-

tion 2.6. Thus, in both cases the ordered monomials span the algebra Y′
q(oN) or Y′

q(sp2n),

respectively.
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Furthermore, by Theorem 2.11, we have the isomorphism

U◦
z(ĝlN)⊗C [z,z−1] C ∼= P̂N , (2.79)

where the C [z, z−1]-module C is defined via the evaluation of the Laurent polynomials at

z = 1 and P̂N is the algebra of polynomials in the variables x
(r)
ij , x̄

(r)
ij with 1 6 i, j 6 N and

r > 0 subject to the relations x
(0)
ij = x̄

(0)
ji = 0 for i < j and x

(0)
ii x̄

(0)
ii = 1 for all i.

Define the algebra Y◦
z(oN) over C [z, z−1] as the C [z, z−1]-subalgebra of U◦

z(ĝlN) gener-

ated by the elements s
(r)
ij defined in (2.67) and (2.68). Suppose that a nontrivial C [z, z−1]-

linear combination of the ordered monomials in the generators of Y◦
z(oN) is zero. By

Theorem 2.11 we may suppose that at least one coefficient of the combination does not

vanish at z = 1. Using the isomorphism (2.79) we then get a nontrivial C-linear combina-

tion of the ordered monomials in the images of the generators in the polynomial algebra

P̂N . We will come to a contradiction if we show that the images of the generators of Y◦
z(oN)

in P̂N are algebraically independent.

Let σ
(r)
ij denote the image of s

(r)
ij in P̂N . Then

σ
(r)
ij =

N∑
a=1

∑

k+l=r

x
(k)
ia x̄

(l)
ja .

It suffices to verify that the differentials dσ
(r)
ij are linearly independent. Calculate the

differentials in terms of dx
(k)
ia and dx̄

(k)
ia and specialize the coefficient matrix by setting

x
(k)
ij = x̄

(k)
ij = δij δk0. (2.80)

Then

dσ
(r)
ij = dx̄

(r)
ji + dx

(r)
ij

which implies that the differentials dσ
(r)
ij are linearly independent even under the special-

ization (2.80). This completes the proof in the orthogonal case.

In the symplectic case define the algebra Y◦
z(sp2n) over C [z, z−1] as the C [z, z−1]-

subalgebra of Uext
z (ĝl2n) generated by the elements s

(r)
ij defined by (2.69) and (2.70) with

q replaced by z and with the same additional generators s
(0)−1
i,i+1 . Suppose that a nontriv-

ial C [z, z−1]-linear combination of the ordered monomials in the generators of Y◦
z(sp2n) is

zero. We may ignore the generators s
(0)−1
i,i+1 because they can be excluded from the linear

combination by multiplying it by appropriate powers of the elements s
(0)
i,i+1 and using the

following consequence of (2.74) (with q replaced by z):

s
(0)
i,i+1 skl(u) = zδik+δil−δi+1,k−δi+1,l skl(u) s

(0)
i,i+1, i = 1, 3, . . . , 2n− 1. (2.81)

By the PBW theorem for the algebra Uext
z (ĝl2n) (see Sec. 2.3) we have the isomorphism

Uext
z (ĝl2n)⊗C [z,z−1] C ∼= P̂ ext

2n , (2.82)
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where the C [z, z−1]-module C is defined via the evaluation of the Laurent polynomials at

z = 1 and P̂ ext
2n is the algebra of polynomials in the variables x

(r)
ij , x̄

(r)
ij with 1 6 i, j 6 N

and r > 0 together with x
(0)−1
ii and x̄

(0)−1
ii subject to the relations x

(0)
ij = x̄

(0)
ji = 0 for i < j

and

x
(0)
ii x

(0)−1
ii = 1, x̄

(0)
ii x̄

(0)−1
ii = 1

for all i. As in the orthogonal case, it suffices to verify that the images σ
(r)
ij of the generators

s
(r)
ij in P̂ ext

2n are algebraically independent. Calculating the differentials and specializing the

variables as in (2.80), we get

dσ
(r)
ij =





dx̄
(r)
j,i+1 + dx

(r)
i,j−1 if i is odd, j is even,

dx̄
(r)
j,i+1 − dx(r)

i,j+1 if i is odd, j is odd,

dx̄
(r)
j,i−1 + dx

(r)
i,j−1 if i is even, j is even,

dx̄
(r)
j,i−1 − dx(r)

i,j+1 if i is even, j is odd,

which shows that the differentials are linearly independent in this case as well.

3 Representations of the quantum affine algebra

As in the Lie algebra representation theory, the representations of the quantum affine

algebra associated with sl2 plays a key role in the description of the representations of the

quantum affine algebras Uq(â); see [7], [8]. Finite-dimensional irreducible representations

of Uq(ŝl2) were classified in [7]. In our proofs below the case of the twisted q-Yangian

Y′
q(sp2) will be similarly important for the general classification theorem. In order to

make our arguments clearer, we first reproduce a proof of the classification theorem for

the representations of Uq(ĝl2) following an approach used for the Yangian representations

and which goes back to pioneering work of Tarasov [36, 37]. This approach is alternative

to [7] and it also allows one to obtain a description of the finite-dimensional irreducible

representations of Uq(ĝl2) as tensor products of the evaluation modules. The corresponding

arguments were outlined in [28, Sec. 3.5].

Suppose that the complex number q is nonzero and not a root of unity. A representation

L of Uq(ĝlN) is called a highest weight representation if L is generated by a nonzero vector

ζ (the highest vector) such that

tij(u) ζ = 0, t̄ij(u) ζ = 0 for 1 6 i < j 6 N,

tii(u) ζ = νi(u) ζ, t̄ii(u) ζ = ν̄i(u) ζ for 1 6 i 6 N,
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where ν(u) = (ν1(u), . . . , νN(u)) and ν̄(u) = (ν̄1(u), . . . , ν̄N(u)) are certain N -tuples of

formal power series in u−1 and u, respectively:

νi(u) =
∞∑

r=0

ν
(r)
i u−r, ν̄i(u) =

∞∑
r=0

ν̄
(r)
i ur. (3.1)

We have ν
(0)
i ν̄

(0)
i = 1 for each i due to the second set of relations in (2.40).

Note that this definition corresponds to pseudo-highest weight representations of the

quantum loop algebras in the terminology of [8, Def. 12.2.4].

A standard argument shows that any finite-dimensional irreducible representation of

Uq(ĝlN) is a highest weight representation; cf. [8, Prop. 12.2.3]. Furthermore, Corol-

lary 2.13 implies that given any formal series of the form (3.1) with ν
(0)
i ν̄

(0)
i = 1 for all i,

there exists a nontrivial Verma module M(ν(u); ν̄(u)) which is defined as the quotient of

Uq(ĝlN) by the left ideal generated by all coefficients of the series tij(u), t̄ij(u) for i < j

and tii(u)− νi(u), t̄ii(u)− ν̄i(u) for all i. Moreover, M(ν(u); ν̄(u)) has a unique irreducible

quotient L(ν(u); ν̄(u)). Therefore, in order to describe all finite-dimensional irreducible

representations of the algebra Uq(ĝlN), we need to determine for which highest weights

(ν(u); ν̄(u)) the representation L(ν(u); ν̄(u)) is finite-dimensional. By considering ‘simple

root embeddings’ Uq(ĝl2) ↪→ Uq(ĝlN), the problem is largely reduced to the particular case

N = 2.

3.1 Representations of Uq(ĝl2)

Consider an arbitrary irreducible highest weight representation L
(
ν1(u), ν2(u); ν̄1(u), ν̄2(u)

)

of the algebra Uq(ĝl2).

Proposition 3.1. Suppose that dimL
(
ν1(u), ν2(u); ν̄1(u), ν̄2(u)

)
< ∞. Then there exist

polynomials Q(u) and R(u) in u of the same degree such that the product of the constant

term and the leading coefficient of each polynomial is equal to 1, and

ν1(u)

ν2(u)
=
Q(u)

R(u)
=
ν̄1(u)

ν̄2(u)
, (3.2)

where the first equality is understood in the sense that the ratio of polynomials has to be

expanded as a power series in u−1, while for the second equality the same ratio has to be

expanded as a power series in u.

Proof. By twisting the representation L
(
ν1(u), ν2(u); ν̄1(u), ν̄2(u)

)
with an appropriate au-

tomorphism of the form (2.48), we may assume without loss of generality that ν2(u) =

ν̄2(u) = 1. Consider the vector subspace L of L
(
ν1(u), 1; ν̄1(u), 1

)
spanned by all vectors

t
(i)
21ζ, i > 0 and t̄

(j)
21 ζ, j > 1. Since dimL <∞, the space L is spanned by the vectors t

(i)
21ζ
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and t̄
(j)
21 ζ, where i and j run over some finite sets of values. This implies that for sufficiently

large n and m any vector cn t
(n)
21 ζ+dmt̄

(m)
21 ζ is a linear combination of the spanning vectors

t
(i)
21ζ and t̄

(j)
21 ζ. Hence, there exist integers n > 0, m > 1 and complex numbers ci, dj such

that
n∑

i=0

ci t
(i)
21ζ +

m∑
j=1

dj t̄
(j)
21 ζ = 0,

and cn, dm 6= 0. Denote the linear combination which occurs on the left-hand side by ξ.

Then t
(r)
12 ξ = 0 for all r > 1. On the other hand, by the defining relations (2.42) we have

(u− v) (
t12(u) t21(v)− t21(v) t12(u)

)
= (q − q−1) v

(
t22(u) t11(v)− t22(v) t11(u)

)
.

Now multiply both sides by
1

u− v =
∞∑

k=1

u−kvk−1

and take the coefficients of u−rv−s on both sides to get

t
(r)
12 t

(s)
21 − t(s)21 t

(r)
12 = (q − q−1)

r∑
p=1

(
t
(r−p)
22 t

(s+p)
11 − t(s+p)

22 t
(r−p)
11

)
.

Similarly, using (2.47) we get

t
(r)
12 t̄

(s)
21 − t̄ (s)

21 t
(r)
12 = (q − q−1)

min{r,s}∑
p=1

(
t
(r−p)
22 t̄

(s−p)
11 − t̄ (s−p)

22 t
(r−p)
11

)
.

Since t
(r)
22 ζ = t̄

(r)
22 ζ = 0 for r > 1, we find that

t
(r)
12 t

(s)
21 ζ = (q − q−1) ν

(r+s)
1 ζ, t

(r)
12 t̄

(s)
21 ζ = (q − q−1) (ν̄

(s−r)
1 − ν(r−s)

1 ) ζ,

where s > 1 in the second relation and we assume ν
(s)
1 = ν̄

(s)
1 = 0 for s < 0. Hence, taking

the coefficient of ζ in t
(r)
12 ξ = 0 we get

n∑
i=0

ciν
(r+i)
1 +

m∑
j=1

dj

(
ν̄

(j−r)
1 − ν(r−j)

1

)
= 0

for all r > 1. This is equivalent to the relation

ν1(u)

(
n∑

i=0

ciu
i −

m∑
j=1

dju
−j

)
=

n∑
i=0

ciu
i
(
ν

(0)
1 + · · ·+ ν

(i)
1 u−i

)

−
m∑

j=1

dju
−j

(
ν̄

(0)
1 + · · ·+ ν̄

(j−1)
1 uj−1

)
.
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Now use the relations t̄
(r)
12 ξ = 0, r > 0. The defining relations (2.43) give

(u− v) (
t̄12(u) t̄21(v)− t̄21(v) t̄12(u)

)
= (q − q−1) v

(
t̄22(u) t̄11(v)− t̄22(v) t̄11(u)

)
.

Divide both sides by u− v and use the expansion

v

u− v = −
∞∑

k=0

ukv−k.

Comparing the coefficients of urvs on both sides we get

t̄
(r)
12 t̄

(s)
21 − t̄ (s)

21 t̄
(r)
12 = (q − q−1)

r∑
p=0

(
t̄
(s+p)
22 t̄

(r−p)
11 − t̄ (r−p)

22 t̄
(s+p)
11

)
.

Similarly, using (2.44) we get

t̄
(r)
12 t

(s)
21 − t(s)21 t̄

(r)
12 = (q − q−1)

min{r,s}∑
p=0

(
t
(s−p)
22 t̄

(r−p)
11 − t̄ (r−p)

22 t
(s−p)
11

)
.

Hence,

t̄
(r)
12 t̄

(s)
21 ζ = (q−1 − q) ν̄ (r+s)

1 ζ, t̄
(r)
12 t

(s)
21 ζ = (q − q−1) (ν̄

(r−s)
1 − ν(s−r)

1 ) ζ,

where s > 1 in the first relation. Taking the coefficient of ζ in t̄
(r)
12 ξ = 0 we get

n∑
i=0

ci
(
ν̄

(r−i)
1 − ν(i−r)

1

)−
m∑

j=1

dj ν̄
(r+j)
1 = 0

for all r > 0. This is equivalent to the relation

ν̄1(u)

(
n∑

i=0

ciu
i −

m∑
j=1

dju
−j

)
=

n∑
i=0

ciu
i
(
ν

(0)
1 + · · ·+ ν

(i)
1 u−i

)

−
m∑

j=1

dju
−j

(
ν̄

(0)
1 + · · ·+ ν̄

(j−1)
1 uj−1

)
.

Thus, both series ν1(u) and ν̄1(u) are expansions of the same rational function in u,

ν1(u) =
Q(u)

R(u)
= ν̄1(u),

where the polynomials Q(u) and R(u) have the required properties.
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Write decompositions

Q(u) = (α1u+ α−1
1 ) . . . (αku+ α−1

k ),

R(u) = (β1u+ β−1
1 ) . . . (βku+ β−1

k ),

where αi and βi are nonzero complex numbers. By twisting the finite-dimensional represen-

tation L
(
ν1(u), ν2(u); ν̄1(u), ν̄2(u)

)
by an appropriate automorphism of the form (2.48), we

can get another finite-dimensional representation such that the components of the highest

weight have the form:

ν1(u) = (α1 + α−1
1 u−1) . . . (αk + α−1

k u−1),

ν2(u) = (β1 + β−1
1 u−1) . . . (βk + β−1

k u−1),

ν̄1(u) = (α1u+ α−1
1 ) . . . (αku+ α−1

k ),

ν̄2(u) = (β1u+ β−1
1 ) . . . (βku+ β−1

k ).

(3.3)

For any pair of nonzero complex numbers α and β consider the corresponding irreducible

highest weight representation L(α, β) of Uq(gl2). That is, L(α, β) is generated by a nonzero

vector ζ such that

t̄12 ζ = 0, t11 ζ = αζ, t22 ζ = βζ.

The representation L(α, β) is finite-dimensional if and only if α/β = ±qm for some nonneg-

ative integer m. We make L(α, β) into a module over the quantum affine algebra Uq(ĝl2)

via the evaluation homomorphism Uq(ĝl2) → Uq(gl2) given by the formulas (2.56). This

evaluation module is a highest weight representation of Uq(ĝl2) with the highest weight

(
α + α−1u−1, β + β−1u−1; αu+ α−1, β u+ β−1

)
.

The comultiplication map (2.54) allows us to regard the tensor product

L(α1, β1)⊗ L(α2, β2)⊗ . . .⊗ L(αk, βk) (3.4)

as a representation of Uq(ĝl2). Moreover, it follows easily from (2.54) that the cyclic span

Uq(ĝl2)(ζ1 ⊗ . . .⊗ ζk) is a highest weight representation of Uq(ĝl2) with the highest weight

given by the formulas (3.3); here ζi denotes the highest vector of L(αi, βi). Our next goal

is to show that under some additional conditions on the parameters αi and βi the tensor

product module (3.4) is irreducible and, hence, isomorphic to L(ν1(u), ν2(u); ν̄1(u), ν̄2(u)).

Namely, we will suppose that for every i = 1, . . . , k − 1 the following condition holds: if

the multiset {αr/βs | i 6 r, s 6 k} contains numbers of the form ±qm with nonnegative

integers m, then αi/βi = ±qm0 and m0 is minimal amongst these nonnegative integers.

The following proposition goes back to [37].

Proposition 3.2. If the above condition on the parameters αi and βi holds, then the

representation (3.4) of Uq(ĝl2) is irreducible.
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Proof. We follow the corresponding argument used in the Yangian case; see e.g. [28,

Prop. 3.3.2]. Denote the representation (3.4) by L. We start by proving the following

claim: any vector ξ ∈ L satisfying t12(u)ξ = 0 is proportional to ζ = ζ1 ⊗ . . .⊗ ζk. We use

the induction on k. The claim is obvious for k = 1 so suppose that k > 2. Write any such

vector ξ, which is assumed to be nonzero, in the form

ξ =

p∑
r=0

(t21)
rζ1 ⊗ ξr, where ξr ∈ L(α2, β2)⊗ . . .⊗ L(αk, βk)

and p is some nonnegative integer. Moreover, if α1/β1 = ±qm for some nonnegative integer

m, then we will assume that p 6 m. We will also assume that ξp 6= 0. Using the coproduct

formulas (2.54), we get

p∑
r=0

(
t11(u)(t21)

rζ1 ⊗ t12(u)ξr + t12(u)(t21)
rζ1 ⊗ t22(u)ξr

)
= 0. (3.5)

By (2.56), we obtain

t11(u)(t21)
rζ1 = (t11 + t̄11u

−1)(t21)
rζ1 =

(
q−rα1 + qrα−1

1 u−1
)
(t21)

rζ1, (3.6)

and

t12(u)(t21)
rζ1 = u−1t̄12 (t21)

rζ1 = u−1 (qr − q−r)
(
qr−1β1/α1 − q−r+1α1/β1

)
(t21)

r−1ζ1. (3.7)

Taking the coefficient of (t21)
pζ1 in (3.5) we get t12(u)ξp = 0. By the induction hypothesis,

applied to the representation L(α2, β2)⊗ . . .⊗L(αk, βk), the vector ξp must be proportional

to ζ2 ⊗ . . .⊗ ζk . Therefore, using again (2.54) and (2.56), we obtain

t22(u)ξp = (β2 + β−1
2 u−1) . . . (βk + β−1

k u−1) ξp. (3.8)

The proof of the claim will be completed if show that p = 0. Suppose on the contrary that

p > 1. Then taking the coefficient of (t21)
p−1ζ1 in (3.5) we derive

(
q−p+1α1 + qp−1α−1

1 u−1
)
t12(u)ξp−1

+ u−1 (qp − q−p)
(
qp−1β1/α1 − q−p+1α1/β1

)
t22(u) ξp = 0.

Note that t12(u)ξp−1 is a polynomial in u−1. Taking u = −q2p−2α−2
1 and using (3.8) we

obtain the relation

(
q2p−2 − (α1/β1)

2
)(
q2p−2 − (α1/β2)

2
)
. . .

(
q2p−2 − (α1/βk)

2
)

= 0,

where we also used the assumption that q is not a root of unity. However, this is impossible

due to the conditions on the parameters αi and βi. Thus, p must be zero and the claim

follows.
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Now suppose that M is a nonzero submodule of L. Then M must contain a nonzero

vector ξ such that t12(u)ξ = 0. This can be seen by considering Uq(gl2)-weights of M .

If η ∈ M is a vector of weight (µ1, µ2), i.e., t11η = µ1η and t22η = µ2η, then t12(u)η has

weight (qµ1, q
−1µ2). So it suffices to observe that the set of Uq(gl2)-weights of L has a

maximal element with respect to the natural ordering on the set of weights.

Due to the claim proved above, the highest vector ζ belongs to M . It remains to show

that the vector ζ is cyclic in L, that is, the submodule K = Uq(ĝl2)ζ coincides with L.

Note that all Uq(gl2)-weight spaces of L are finite-dimensional. Denote by L∗ the

restricted dual vector space to L which is the direct sum of the dual vector spaces to the

Uq(gl2)-weight spaces of L. We equip L∗ with the Uq(ĝl2)-module structure defined by

(y ω)(η) = ω(κ(y) η) for y ∈ Uq(ĝl2) and ω ∈ L∗, η ∈ L, (3.9)

where κ is the involutive anti-automorphism of the algebra Uq(ĝl2), defined by

κ : tij(u) 7→ t̄3−i,3−j(u
−1), t̄ij(u) 7→ t3−i,3−j(u

−1). (3.10)

The latter is the composition of the automorphism (2.49) and the anti-automorphism

(2.51). The anti-automorphism κ commutes with the comultiplication ∆ in the sense that

∆ ◦ κ = (κ ⊗ κ) ◦∆.

This implies the isomorphism of Uq(ĝl2)-modules:

L∗ ∼= L(β−1
1 , α−1

1 )⊗ . . .⊗ L(β−1
k , α−1

k ). (3.11)

Moreover, the highest vector ζ∗i of the module L(β−1
i , α−1

i ) ∼= L(αi, βi)
∗ can be identified

with the element of L(αi, βi)
∗ such that ζ∗i (ζi) = 1 and ζ∗i (ηi) = 0 for all Uq(gl2)-weight

vectors ηi ∈ L(αi, βi) whose weights are different from the weight of ζi.

Now suppose on the contrary that the submodule K = Uq(ĝl2)ζ of L is proper. The

annihilator of K defined by

AnnK = {ω ∈ L∗ | ω(η) = 0 for all η ∈ K} (3.12)

is a submodule of the Uq(ĝl2)-module L∗, which does not contain the vector ζ∗1 ⊗ . . .⊗ ζ∗k .

However, this contradicts the claim verified in the first part of the proof, because the

condition on the parameters αi and βi remain satisfied after we replace each αi by β−1
i and

each βi by α−1
i .

We can now describe the finite-dimensional irreducible representations of the algebra

Uq(ĝl2).
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Theorem 3.3. The irreducible highest weight representation L
(
ν1(u), ν2(u); ν̄1(u), ν̄2(u)

)

of Uq(ĝl2) is finite-dimensional if and only if there exists a polynomial P (u) in u with

constant term 1 such that

ε1 ν1(u)

ε2 ν2(u)
= q− deg P · P (uq2)

P (u)
=
ε1 ν̄1(u)

ε2 ν̄2(u)
(3.13)

for some ε1, ε2 ∈ {−1, 1}. In this case P (u) is unique.

Proof. Suppose that the representation L
(
ν1(u), ν2(u); ν̄1(u), ν̄2(u)

)
is finite-dimensional.

As was shown above, we may assume without loss of generality that the components of

the highest weight have the form (3.3). Moreover, we may re-enumerate the parameters

αi and βi to satisfy the conditions of Proposition 3.2. By that proposition, the representa-

tion L
(
ν1(u), ν2(u); ν̄1(u), ν̄2(u)

)
is isomorphic to the tensor product (3.4). Therefore, all

ratios αi/βi must have the form ±qmi , where each mi is a nonnegative integer. Then the

polynomial

P (u) =
k∏

i=1

(1 + β2
i u)(1 + β2

i q
2u) . . . (1 + β2

i q
2mi−2u) (3.14)

satisfies (3.13) with an appropriate choice of the signs ε1, ε2 ∈ {−1, 1}.
Conversely, suppose (3.13) holds for a polynomial P (u) = (1 + γ1u) . . . (1 + γpu) and

some ε1, ε2 ∈ {−1, 1}. Choose square roots βi so that β2
i = γi for i = 1, . . . , p and set

µ1(u) = (β1q + β−1
1 q−1u−1) . . . (βpq + β−1

p q−1u−1),

µ2(u) = (β1 + β−1
1 u−1) . . . (βp + β−1

p u−1),

µ̄1(u) = (β1q u+ β−1
1 q−1) . . . (βpq u+ β−1

p q−1),

µ̄2(u) = (β1u+ β−1
1 ) . . . (βpu+ β−1

p ).

Consider the tensor product module

L(β1q, β1)⊗ L(β2q, β2)⊗ . . .⊗ L(βpq, βp)

of Uq(ĝl2). This module is finite-dimensional and the cyclic Uq(ĝl2)-span of the ten-

sor product of the highest vectors of L(βiq, βi) is a highest weight module with the

highest weight (µ1(u), µ2(u); µ̄1(u), µ̄2(u)). Hence, the irreducible highest weight module

L(µ1(u), µ2(u); µ̄1(u), µ̄2(u)) is finite-dimensional. Since

µ1(u)

µ2(u)
=
ε1 ν1(u)

ε2 ν2(u)
,

µ̄1(u)

µ̄2(u)
=
ε1 ν̄1(u)

ε2 ν̄2(u)

there exist automorphisms of Uq(ĝl2) of the form (2.48) and (2.50) such that their compo-

sition with the representation L(µ1(u), µ2(u); µ̄1(u), µ̄2(u)) is isomorphic to the irreducible

highest weight representation L
(
ν1(u), ν2(u); ν̄1(u), ν̄2(u)

)
. Thus, the latter is also finite-

dimensional.

The uniqueness of P (u) is easily verified.
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The above arguments imply that, up to twisting with an automorphism of the form

(2.48), every finite-dimensional irreducible representation of Uq(ĝl2) is isomorphic to a

tensor product representation of the form (3.4). We will now establish a criterion of

irreducibility of such representations which we will use in Sec. 4.2 below. It is essentially

a version of the well-known results; see [8, Ch. 12], [37].

We will define a q-string to be any subset of C of the form {β, β q, . . . , β qp}, where β 6= 0

and p is a nonnegative integer. Since q is not a root of unity, the q-strings {β, β q, . . . , β qp}
and {−β,−βq, . . . ,−βqp} have no common elements. Their union will be called a q-spiral .

Two q-spirals S1 and S2 are in general position if either

(i) S1 ∪ S2 is not a q-spiral; or

(ii) S1 ⊂ S2, or S2 ⊂ S1.

Given a pair of nonzero complex numbers (α, β) with α/β = ±qm and m ∈ Z+ the

corresponding q-spiral is defined as

Sq(α, β) = {β, β q, . . . , β qm−1} ∪ {−β,−βq, . . . ,−β qm−1}.

If α = β, then the set Sq(α, β) is regarded to be empty. Note that changing sign of α or β

does not affect the q-spiral.

Denote by L the tensor product (3.4), where for all ratios we have αi/βi = ±qmi for

some nonnegative integers mi.

Corollary 3.4. The representation L of Uq(ĝl2) is irreducible if and only if the q-spirals

Sq(α1, β1), . . . , Sq(αk, βk) are pairwise in general position.

Proof. Suppose that the q-spirals are pairwise in general position and assume first that

the nonnegative integers mi satisfy the inequalities m1 6 · · · 6 mk. This implies that the

condition of Proposition 3.2 on the parameters αi and βi holds. Indeed, if this is not the

case, then αr/βs = ±qp for some i 6 r, s 6 k and a nonnegative integer p with p < mi. By

our assumption, r 6= s. Suppose that r > s. Then mi 6 ms so we may assume that s = i.

The condition αr = ±βiq
p means that αr belongs to the q-spiral Sq(αi, βi). Hence, the

q-spirals Sq(αi, βi) and Sq(αr, βr) are not in general position, a contradiction. The opposite

inequality r < s leads to a similar contradiction.

Thus, L is irreducible by Proposition 3.2. It is easy to verify (cf. [28, Prop. 3.2.10])

that any permutation of the tensor factors yields an isomorphic irreducible representation.

Conversely, let k = 2 and let L(α1, β1) ⊗ L(α2, β2) be irreducible. Suppose that the

q-spirals Sq(α1, β1) and Sq(α2, β2) are not in general position. Then the q-spirals Sq(α1, β2)

and Sq(α2, β1) are in general position. Hence, the representation L(α1, β2) ⊗ L(α2, β1) of

Uq(ĝl2) is irreducible due to the first part of the proof. Comparing the dimension of this

representation with the dimension of L(α1, β1)⊗ L(α2, β2) we come to a contradiction.
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The case of general k > 3 is reduced to k = 2 by permuting the tensor factors in (3.4),

if necessary. Indeed, if L is irreducible, but a pair of q-spirals Sq(αi, βi) and Sq(αj, βj)

is not in general position, then we may assume that i and j are adjacent. However, the

representation L(αi, βi) ⊗ L(αj, βj) of Uq(ĝl2) is reducible as shown above. This implies

that L is reducible, a contradiction.

Remark 3.5. An isomorphism between the RTT -presentation of the algebra Uq(ĝlN) and

its new realization is provided in [11] by using the Gauss decomposition of the matrices

T (u) and T (u); cf. [5], [14]. Thus, Theorem 3.3 provides a description of finite-dimensional

irreducible representations of the algebras Uq(ĝl2) and Uq(ŝl2) in terms of the new realiza-

tion via this isomorphism. This argument is alternative to [7] and it is straightforward to

apply this description to prove the classification theorem for finite-dimensional irreducible

representations of an arbitrary quantum affine algebra Uq(â); cf. the A type case considered

below.

3.2 Representations of Uq(ĝlN)

The evaluation homomorphism π : Uq(ĝlN)→ Uq(glN) defined in (2.56) allows us to regard

any Uq(glN)-module as a Uq(ĝlN)-module. In particular, we thus obtain the evaluation

modules L(µ) over Uq(ĝlN); see Sec. 2.1.

As we pointed out in the beginning of Sec. 3, in order to describe all finite-dimensional

irreducible representations of the algebra Uq(ĝlN), we need to determine for which highest

weights (ν(u); ν̄(u)) the representation L(ν(u); ν̄(u)) is finite-dimensional. These condi-

tions are provided by the following theorem which is essentially equivalent to [8, Theo-

rem 12.2.6].

Theorem 3.6. The irreducible highest weight representation L
(
ν(u); ν̄(u)

)
of Uq(ĝlN) is

finite-dimensional if and only if there exist polynomials P1(u), . . . , PN−1(u) in u, all with

constant term 1, such that

εi νi(u)

εi+1 νi+1(u)
= q− deg Pi · Pi(uq

2)

Pi(u)
=

εi ν̄i(u)

εi+1 ν̄i+1(u)
(3.15)

for i = 1, . . . , N−1 and some εj ∈ {−1, 1}. The polynomials P1(u), . . . , PN−1(u) are deter-

mined uniquely while the tuple (ε1, . . . , εN) is determined uniquely, up to the simultaneous

change of sign of the εi.

Proof. Suppose that the representation L
(
ν(u); ν̄(u)

)
is finite-dimensional. Let us fix k ∈

{0, . . . , N − 2} and let Uq(ĝl2) act on L
(
ν(u); ν̄(u)

)
via the homomorphism Uq(ĝl2) →

Uq(ĝlN) which sends tij(u) and t̄ij(u) to tk+i,k+j(u) and t̄k+i,k+j(u), respectively, for any
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i, j ∈ {1, 2}. The cyclic Uq(ĝl2)-span of the highest vector of L
(
ν(u); ν̄(u)

)
is a highest

weight representation of the algebra Uq(ĝl2) with the highest weight
(
νk+1(u), νk+2(u); ν̄k+1(u), ν̄k+2(u)

)
.

Its irreducible quotient is finite-dimensional, and so the required conditions follow from

Theorem 3.3.

Conversely, taking into account the automorphisms (2.48) and (2.50), it is enough to

show that given any set of polynomials P1(u), . . . , PN−1(u) in u with constant terms equal

to 1, there exists an irreducible finite-dimensional representation whose highest weight

satisfies (3.15). Such a representation can be constructed by using the following inductive

procedure. Consider the irreducible highest weight representation L(λ) of Uq(glN) with

the highest weight

λ = (dqm1 , . . . , dqmN ),

where d is a nonzero complex number and the integers mi satisfy m1 > · · · > mN . This

representation is finite-dimensional and we regard it as the evaluation module over Uq(ĝlN)

by using the homomorphism (2.56). By the first part of the proof we can associate a family

of polynomials P1(u), . . . , PN−1(u) to any finite-dimensional representation L(ν(u); ν̄(u)).

Let ζ and ξ be the highest vectors of the representations L(λ) and L(ν(u); ν̄(u)), respec-

tively, and equip L(λ) ⊗ L(ν(u); ν̄(u)) with the Uq(ĝlN)-module structure by using the

coproduct (2.54). It is easily verified that the cyclic span Uq(ĝlN)(ζ ⊗ ξ) is a highest

weight representation of Uq(ĝlN) such that

tii(u)(ζ ⊗ ξ) =
(
d qmi + d−1q−miu−1

)
νi(u) (ζ ⊗ ξ),

t̄ii(u)(ζ ⊗ ξ) =
(
d−1q−mi + d qmiu

)
ν̄i(u) (ζ ⊗ ξ).

Hence, the irreducible quotient of this representation corresponds to the family of polyno-

mials Q1(u)P1(u), . . . , QN−1(u)PN−1(u), where

Qi(u) = (1 + d2q2mi+1u)(1 + d2q2mi+1+2u) . . . (1 + d2q2mi−2u), i = 1, . . . , N − 1.

Starting from the trivial representation of Uq(ĝlN) and choosing appropriate parameters

d and mi we will be able to produce a finite-dimensional highest weight representation

associated with an arbitrary family of polynomials P1(u), . . . , PN−1(u) by iterating this

construction. The last statement of the theorem is easily verified.

The polynomials P1(u), . . . , PN−1(u) introduced in Theorem 3.6 are called the Drin-

feld polynomials of the representation L
(
ν(u); ν̄(u)

)
. Moreover, any finite-dimensional

irreducible representation of Uq(ĝlN) is obtained from a representation L
(
ν(u); ν̄(u)

)
as-

sociated with the tuple (ε1, . . . , εN) = (1, . . . , 1) by twisting with an automorphism of the

form (2.50). Note also that the evaluation module L(µ) with

µi = qmi , i = 1, . . . , N,
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where m1 > m2 > · · · > mN are arbitrary integers, is a representation associated with the

tuple (1, . . . , 1). Its Drinfeld polynomials are given by

Pi(u) = (1 + q2mi+1u)(1 + q2mi+1+2u) . . . (1 + q2mi−2u),

for i = 1, . . . , N − 1.

A description of finite-dimensional irreducible representations of the extended algebra

Uext
q (ĝlN) can be easily obtained from that of the quantum affine algebra Uq(ĝlN). Namely,

every finite-dimensional irreducible representation of Uext
q (ĝlN) is isomorphic to the highest

weight representation L(ν(u); ν̄(u)). The latter is defined in the same way as for the

algebra Uq(ĝlN) except that the relations ν
(0)
i ν̄

(0)
i = 1 for the series (3.1) are replaced by

the condition that all constants ν
(0)
i and ν̄

(0)
i are nonzero. We have the following corollary

of Theorem 3.6.

Corollary 3.7. The irreducible highest weight representation L
(
ν(u); ν̄(u)

)
of the algebra

Uext
q (ĝlN) is finite-dimensional if and only if there exist polynomials P1(u), . . . , PN−1(u) in

u, all with constant term 1, and nonzero constants φ1, . . . , φN such that

φi νi(u)

φi+1 νi+1(u)
= q− deg Pi · Pi(uq

2)

Pi(u)
=

φi ν̄i(u)

φi+1 ν̄i+1(u)
(3.16)

for i = 1, . . . , N − 1. The polynomials P1(u), . . . , PN−1(u) are determined uniquely while

the tuple (φ1, . . . , φN) is determined uniquely, up to a common factor.

Proof. By twisting the representation L
(
ν(u); ν̄(u)

)
by an appropriate automorphism of

the algebra Uext
q (ĝlN) of the form (2.66), we can get the representation where all central

elements t
(0)
ii t̄

(0)
ii , i = 1, . . . , N , act as the identity operators. Therefore, due to (2.65),

we get the irreducible highest weight representation of the algebra Uq(ĝlN), such that the

components of the highest weight have the form φiνi(u) and φi ν̄i(u). Now all statements

follow from Theorem 3.6.

4 Representations of the twisted q-Yangians

We will combine the approaches of Sec. 3 and [28, Ch. 4] to classify the finite-dimensional

irreducible representations of the twisted q-Yangians Y′
q(sp2n). As with the quantum affine

algebras, the case n = 1 will play a key role. We start by proving some general results

about highest weight representation of the twisted q-Yangians.

4.1 Highest weight representations

As we recalled in Sec. 2.4, the twisted q-Yangian Y′
q(sp2n) can be defined as the algebra

generated by the elements s
(r)
ij with r > 0 and 1 6 i, j 6 2n and by the elements s

(0)−1
i,i+1
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with i = 1, 3, . . . , 2n − 1. The defining relations are written in terms of the generating

series (2.69) and they take the form (2.74) together with the relations

s
(0)
ij = 0 for i < j unless j = i+ 1 with i odd

and

s
(0)
i,i+1s

(0)−1
i,i+1 = s

(0)−1
i,i+1 s

(0)
i,i+1 = 1, i = 1, 3, . . . , 2n− 1. (4.1)

Observe that given any formal series g(u) in u−1 of the form

g(u) = g0 + g1u
−1 + g2u

−2 + . . . , g0 6= 0,

the mapping

sij(u) 7→ g(u) sij(u) (4.2)

defines an automorphism of the algebra Y′
q(sp2n).

Given any tuple (ψ1, . . . , ψ2n) of nonzero complex numbers, the mapping

sij(u) 7→ ψi ψj sij(u) (4.3)

defines another automorphism of the algebra Y′
q(sp2n).

Furthermore, the mapping

κ : sij(u) 7→ s2n−j+1,2n−i+1(u) (4.4)

defines an involutive anti-automorphism of the algebra Y′
q(sp2n). This can be verified

directly from the defining relations. Alternatively, one can show that the mappings (2.49)

and (2.51) respectively define an automorphism and anti-automorphism of the extended

algebra Uext
q (ĝl2n), and their composition κ preserves the subalgebra Y′

q(sp2n).

We will use the elements s̄
(r)
ij of the algebra Y′

q(sp2n) which are defined as the coefficients

of the power series s̄ij(u) in u; see (2.75). The relationship between the elements is given

by the formulas1

(u−1q − uq−1) s̄ij(u) =

(uqδij − u−1q−δij) sji(u
−1) + (q − q−1)(u−1δi<j + uδj<i) sij(u

−1). (4.5)

For the rest of this section we will suppose that the complex number q is nonzero and

not a root of unity. Recall the function ς : {1, 2, . . . , 2n} → {±1,±3, . . . ,±(2n − 1)}
defined in (2.33).

1The corresponding relation (3.62) in [29] should be corrected by swapping δi<j and δj<i.
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Definition 4.1. A representation V of the algebra Y′
q(sp2n) is called a highest weight

representation if V is generated by a nonzero vector ξ (the highest vector) such that

skl(u) ξ = 0, for ς(k) + ς(l) > 0,

s2i,2i−1(u) ξ = µi(u) ξ, for 1 6 i 6 n, (4.6)

s̄2i,2i−1(u) ξ = µ̄i(u) ξ, for 1 6 i 6 n,

where µ(u) = (µ1(u), . . . , µn(u)) and µ̄(u) = (µ̄1(u), . . . , µ̄n(u)) are certain n-tuples of

formal power series in u−1 and u, respectively:

µi(u) =
∞∑

r=0

µ
(r)
i u−r, µ̄i(u) =

∞∑
r=0

µ̄
(r)
i ur. (4.7)

Due to (4.5), the first relation in (4.6) is equivalent to

sij(u) ξ = s̄ij(u) ξ = 0 (4.8)

for j = 1, 3, . . . , 2n− 1 and i = 1, 2, . . . , j.

The definition of the highest weight representation is consistent with a particular choice

of the positive root system of type Cn. Namely, the root system Φ is the subset of vectors

in Rn of the form

± 2 εi with 1 6 i 6 n and ± εi ± εj with 1 6 i < j 6 n,

where εi denotes the n-tuple which has 1 on the i-th position and zeros elsewhere. Partition

this set into positive and negative roots Φ = Φ+ ∪ (−Φ+), where the set of positive roots

Φ+ consists of the vectors

2 εi with 1 6 i 6 n and εi + εj, − εi + εj with 1 6 i < j 6 n. (4.9)

We will regard U′
q(sp2n) as a subalgebra of Y′

q(sp2n) defined via the embedding

sij 7→ s
(0)
ij . (4.10)

By (2.81) we have

si,i+1 skl(u) = qδik+δil−δi+1,k−δi+1,l skl(u) si,i+1, (4.11)

for any i = 1, 3, . . . , 2n− 1. Hence, the generating series skl(u) with ς(k) + ς(l) > 0 can be

associated with the elements of Φ+ listed in (4.9) as follows:

2 εi ←→ s2i−1,2i−1(u), εi + εj ←→ {s2i−1,2j−1(u), s2j−1,2i−1(u)},
−εi + εj ←→ {s2i,2j−1(u), s2j−1,2i(u)}.

(4.12)

Here the commutative subalgebra of U′
q(sp2n) generated by the elements si,i+1 with i =

1, 3, . . . , 2n− 1 plays the role of a Cartan subalgebra; cf. [27].
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Theorem 4.2. Any finite-dimensional irreducible representation V of the algebra Y′
q(sp2n)

is a highest weight representation. Moreover, V contains a unique, up to a constant factor,

highest vector.

Proof. We use a standard argument with some necessary modifications; cf. [8, Sec. 12.2]

and [28, Sec. 4.2]. Set

V 0 = {η ∈ V | sij(u) η = s̄ij(u) η = 0,

j = 1, 3, . . . , 2n− 1 and i = 1, 2, . . . , j}. (4.13)

Equivalently, V 0 is spanned by the vectors annihilated by all operators skl(u) such that

ς(k) + ς(l) > 0. Let us show that V 0 is nonzero. The operators s2i−1,2i = s
(0)
2i−1,2i with

i = 1, . . . , n pairwise commute on V and so V contains a common eigenvector θ for these

operators:

s2i−1,2i θ = ρi θ, i = 1, . . . , n.

By (4.11), every coefficient of the series skl(u) θ with ς(k) + ς(l) > 0 is again a common

eigenvector for the operators s2i−1,2i, whose eigenvalues have the form ρi q
αi , i = 1, . . . , n,

where α = α1ε1+ · · ·+αnεn is the element of Φ+ associated with skl(u) by (4.12). Since the

sets of eigenvalues obtained in this way are distinct and dimV <∞, we can conclude that

there exists a nonzero element of V annihilated by all operators skl(u) with ς(k)+ ς(l) > 0.

Thus, V 0 6= {0}.
Next, we show that the subspace V 0 is invariant with respect to the action of all

operators sb+1,b(v) and s̄b+1,b(v) with odd b. Let us show first that if η ∈ V 0, then for any

odd a and i 6 a we have

sia(u)sb+1,b(v)η = 0. (4.14)

If i 6 b, then this follows by (2.74) with j = b + 1. If i > b, then b + 1 6 i 6 a and

(4.14) follows by the application of (2.74), where i, j, a, b are respectively replaced with

b+ 1, i, b, a, and u is swapped with v.

Furthermore, three more relations of the form (4.14) where sia(u) is replaced with s̄ia(u)

or sb+1,b(v) is replaced with s̄b+1,b(v), are verified by exactly the same argument with the

use of the corresponding relation in (2.76) instead of (2.72).

A similar argument shows that all operators s
(r)
a+1,a and s̄

(r)
a+1,a on the space V 0 with odd

a and r > 0 pairwise commute. Indeed, suppose that both a and b are odd and a 6 b. The

application of (2.74) with i = a+ 1 and j = b+ 1 proves that all operators s
(r)
a+1,a pairwise

commute. The remaining commutativity relations are verified in the same way with the

use of (2.76).

Thus, the operators s
(r)
a+1,a and s̄

(r)
a+1,a on the space V 0 with odd a and r > 0 are simul-

taneously diagonalizable. We let ξ be a simultaneous eigenvector for all these operators.

Then V = Y′
q(sp2n)ξ by the irreducibility of V , and ξ is a highest weight vector. By
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considering the U′
q(sp2n)-weights of V and using (4.11) we may also conclude that ξ is

determined uniquely, up to a constant factor.

Consider now the tuples µ(u) = (µ1(u), . . . , µn(u)) and µ̄(u) = (µ̄1(u), . . . , µ̄n(u)) of

arbitrary formal power series of the form (4.7).

The Verma module M(µ(u); µ̄(u)) over the twisted q-Yangian Y′
q(sp2n) is the quotient of

Y′
q(sp2n) by the left ideal generated by all coefficients of the series skl(u) for ς(k)+ ς(l) > 0,

s2i,2i−1(u)− µi(u) and s̄2i,2i−1(u)− µ̄i(u) for i = 1, . . . , n.

Clearly, the Verma module M(µ(u); µ̄(u)) is a highest weight representation of Y′
q(sp2n)

with the highest weight (µ(u); µ̄(u)). Moreover, any highest weight representation with the

same highest weight is isomorphic to a quotient of M(µ(u); µ̄(u)).

The Poincaré–Birkhoff–Witt theorem for the algebra Y′
q(sp2n) (Proposition 2.15) im-

plies that the ordered monomials of the form

s
(r1)
i1j1

. . . s
(rm)
imjm

1, m > 0, ς(ia) + ς(ja) < 0, (4.15)

form a basis of M(µ(u); µ̄(u)). Moreover, using (4.11) and considering the weights of

M(µ(u); µ̄(u)) with respect to the operators si,i+1 with odd i, we derive that the Verma

module M(µ(u); µ̄(u)) possesses a unique maximal proper submodule K.

The irreducible highest weight representation V (µ(u); µ̄(u)) of Y′
q(sp2n) with the highest

weight (µ(u); µ̄(u)) is defined as the quotient of the Verma module M(µ(u); µ̄(u)) by the

submodule K.

Due to Theorem 4.2, all finite-dimensional irreducible representations of the twisted

q-Yangian Y′
q(sp2n) have the form V (µ(u); µ̄(u)) for a certain highest weight (µ(u); µ̄(u)).

Hence, in order to classify such representations it remains to describe the set of highest

weights (µ(u); µ̄(u)) such that V (µ(u); µ̄(u)) is finite-dimensional. As with the quantum

affine algebra Uq(ĝlN) (see Sec. 3), a key role will be played by the particular case Y′
q(sp2)

which we consider in the next section.

4.2 Representations of Y′q(sp2)

The irreducible highest weight representations V (µ(u); µ̄(u)) of Y′
q(sp2) are parameterized

by formal series of the form

µ(u) = µ(0) + µ(1)u−1 + µ(2)u−2 + . . . ,

µ̄(u) = µ̄ (0) + µ̄ (1)u+ µ̄ (2)u2 + . . . , µ(r), µ̄ (r) ∈ C . (4.16)

The highest vector ξ of V (µ(u); µ̄(u)) satisfies the conditions

s11(u) ξ = 0, s21(u) ξ = µ(u) ξ, s̄21(u) ξ = µ̄(u) ξ.
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Note that due to the relations (4.5), the vector ξ is also an eigenvector for the operators

s12(u) and s̄12(u),

s12(u) ξ = µ′(u) ξ, µ′(u) =
(q2 − 1)µ(u) + (1− u2q2) µ̄(u−1)

q(u2 − 1)
,

s̄12(u) ξ = µ̄ ′(u) ξ, µ̄ ′(u) =
(q2 − 1)µ̄(u) + (1− u2q2)µ(u−1)

q(u2 − 1)
,

(4.17)

where µ′(u) and µ̄ ′(u) are regarded as formal series in u−1 and u, respectively.

Proposition 4.3. If the representation V (µ(u); µ̄(u)) of Y′
q(sp2) is finite-dimensional, then

both coefficients µ(0) and µ̄ (0) in (4.16) are nonzero.

Proof. The constant term µ′ (0) of the series µ′(u) is nonzero due to the relation (4.1). By

(4.17) we have µ′ (0) = −q µ̄(0) and so, µ̄(0) 6= 0. Furthermore, consider the restriction of

V (µ(u); µ̄(u)) to the subalgebra U′
q(sp2) defined by the embedding (4.10). The cyclic span

U′
q(sp2) ξ of the highest vector is a finite-dimensional representation of the subalgebra with

the highest weight (µ(0);µ′ (0)). However, as was pointed out in the proof of Proposition 2.7,

this implies that µ(0) 6= 0.

The following is an analogue of Proposition 3.1 and its proof follows a similar approach.

Proposition 4.4. Suppose that dimV (µ(u); µ̄(u)) < ∞. Then there exists a polynomial

Q(u) in u of even degree with the constant term equal to 1 such that

µ̄(u−1)

µ(u)
=
udeg QQ(u−1)

Q(u)
. (4.18)

Proof. By twisting the representation V (µ(u); µ̄(u)) with an automorphism of Y′
q(sp2)

of the form (4.2) we get a representation isomorphic to V (g(u)µ(u); g(u−1)µ̄(u)). Since

µ′ (0) 6= 0, we may consider such an automorphism with

g(u) =
(
µ′(u) + q−1u−2µ(u)

)−1
.

Hence, we may assume without loss of generality that the highest weight of the represen-

tation V (µ(u); µ̄(u)) satisfies the condition µ′(u) + q−1u−2µ(u) = 1.

As in the proof of Proposition 3.1, the assumption dimV (µ(u); µ̄(u)) <∞ implies that

k∑

l=0

cl s
(l)
22 ξ = 0 (4.19)

for some k > 0 and some cl ∈ C with ck 6= 0.
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On the other hand, the defining relations (2.74) imply

(u−1 − v−1)(1− u−1v−1) s11(u) s22(v) ξ

= (q−1 − q)
(
u−1

(
µ′(u) + q µ(u)

)(
µ′(v) + q−1v−2µ(v)

)

− v−1
(
µ′(v) + q µ(v)

)(
µ′(u) + q−1u−2µ(u)

))
ξ.

Taking into account the assumption µ′(u) + q−1u−2µ(u) = 1, we can write these relations

as

(1− u−1v−1) s11(u) s22(v) ξ = (q−1 − q) u
−1ρ(u)− v−1ρ(v)

u−1 − v−1
ξ, (4.20)

where

ρ(u) = µ′(u) + q µ(u).

Write

ρ(u) =
∞∑

r=0

ρ(r) u−r. (4.21)

Divide both sides of (4.20) by 1 − u−1v−1 and compare the coefficients of u−mv−l. This

gives

s
(m)
11 s

(l)
22 ξ = (q−1 − q) ρ̃ (m,l) ξ,

where

ρ̃ (m,l) =

min{m,l}∑
i=0

ρ(m+l−2i).

Hence, applying the operator s
(m)
11 to the vector (4.19) and taking the coefficient of ξ we

get
k∑

l=0

cl ρ̃
(m,l) = 0 (4.22)

for all m > 0. Our next step is to demonstrate that this set of relations for the coefficients

of the series (4.21) implies that ρ(u) is the expansion of a rational function in u with the

property

ρ(u) = u2ρ(u−1). (4.23)

To this end, introduce the coefficients d−k, d−k+1, . . . , dk by the formulas

dr = d−r =

{
cr + cr+2 + · · ·+ ck if k − r is even,

cr + cr+2 + · · ·+ ck−1 if k − r is odd,
(4.24)

where r = 0, 1, . . . , k. For any m > k the relation (4.22) takes the form

k∑

l=0

cl
(
ρ(m+l) + ρ(m+l−2) + · · ·+ ρ(m−l)

)
= 0,
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which can written as
k∑

r=−k

dr ρ
(m+r) = 0.

Therefore, we have

(
dku

k + dk−1u
k−1 + · · ·+ d−ku

−k
)
ρ(u)

=
k∑

r=−k+1

(
dkρ

(k−r) + dk−1ρ
(k−r−1) + · · ·+ drρ

(0)
)
ur. (4.25)

This shows that ρ(u) is a rational function in u. The property (4.23) is equivalent to the

relations

dkρ
(k−r) + dk−1ρ

(k−r−1) + · · ·+ drρ
(0) = dkρ

(k+r−2) + dk−1ρ
(k+r−3) + · · ·+ d−r+2ρ

(0)

for r = 2, 3, . . . , k+ 1, where we assume that ρ(i) and di with out-of-range indices are zero.

However, the relations are easily verified by using (4.24): after writing them in terms of

the coefficients cl they take the form of (4.22) with m = r − 2.

The argument is now completed by noting that the series µ(u) and µ′(u) are expressed

in terms of ρ(u) as

µ(u) =
q (1− ρ(u))
u−2 − q2

, µ′(u) =
ρ(u)u−2 − q2

u−2 − q2
.

Hence, using (4.17), we obtain

µ̄(u−1)

µ(u)
=

1− u−2ρ(u)

1− ρ(u) . (4.26)

Now write (4.25) as D(u)ρ(u) = F (u) so that F (u) and D(u) are Laurent polynomials in

u with D(u−1) = D(u). Moreover, u2F (u−1) = F (u) due to (4.23). Hence, (4.26) implies

µ̄(u−1)

µ(u)
=
D(u)− u−2F (u)

D(u)− F (u)
.

Recalling that dk = d−k = ck 6= 0 set

Q(u) = d−1
k uk

(
D(u)− F (u)

)
= (1− ρ(0))u2k + · · ·+ 1.

The coefficient 1−ρ(0) is nonzero by (4.26) and Proposition 4.3. Hence Q(u) is a polynomial

in u of degree 2k with the constant term equal to 1 and Q(u) satisfies (4.18).
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Proposition 4.4 implies that if dimV (µ(u); µ̄(u)) < ∞ then there exist nonzero con-

stants γ1, . . . , γ2k such that

µ̄(u−1)

µ(u)
=

(u+ γ1) . . . (u+ γ2k)

(1 + γ1u) . . . (1 + γ2ku)
. (4.27)

Therefore, in order to determine which representations V (µ(u); µ̄(u)) are finite-dimensional,

we may restrict our attention to those whose highest weights satisfy (4.27). We now aim

to prove a tensor product decomposition for such representations analogous to Proposi-

tion 3.2; cf. [28, Prop. 4.3.2].

We will re-enumerate the numbers γi, if necessary, so that for each i = 1, . . . , k the

following condition holds: if the multiset {γrγs | 2i − 1 6 r < s 6 2k} contains numbers

of the form q−2m with nonnegative integers m, then γ2i−1γ2i = q−2m0 and m0 is minimal

amongst these nonnegative integers.

Assuming that the γi satisfy these conditions, let us choose square roots αi and βi so

that

α2
i = γ−1

2i−1, β2
i = γ2i, i = 1, 2, . . . , k. (4.28)

Recall the evaluation modules L(α, β) over the algebra Uq(ĝl2) defined in Sec. 3.1. Each

of them may also be regarded as a module over the extended algebra Uext
q (ĝl2) via the

epimorphism (2.65) so that the elements t
(0)
11 t̄

(0)
11 and t

(0)
22 t̄

(0)
22 act as the identity operators.

More generally, the tensor product

L(α1, β1)⊗ . . .⊗ L(αk, βk) (4.29)

can be regarded as a representation of the algebra Uext
q (ĝl2) and hence as a representation

over its subalgebra Y′
q(sp2). In other words, as far as the action of Y′

q(sp2) on the space

(4.29) is concerned, the operators sij(u) are related with the action of the generators of

the algebra Uq(ĝl2) by the formulas (2.70).

Proposition 4.5. If the above condition on the parameters γi holds, then there exists an

automorphism of the algebra Y′
q(sp2) of the form (4.2) such that its composition with the

representation V (µ(u); µ̄(u)) is isomorphic to the representation (4.29) of Y′
q(sp2).

Proof. Due to (2.70) the generators of Y′
q(sp2) act on the tensor product module (4.29) by

the formulas
s11(u) = q t11(u) t̄12(u

−1)− t12(u) t̄11(u
−1),

s21(u) = q t21(u) t̄12(u
−1)− t22(u) t̄11(u

−1),

s̄21(u) = q t̄21(u) t12(u
−1)− t̄22(u) t11(u

−1).

(4.30)

Consider the tensor product ζ = ζ1 ⊗ . . .⊗ ζk of the highest vectors of the representations

L(αi, βi). As we pointed out in Sec. 3.1, this vector generates a highest weight submodule
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of the tensor product module (4.29) over Uq(ĝl2). Therefore, the formulas (3.3) and (4.30)

imply that
s11(u) ζ = 0,

s21(u) ζ = −
k∏

i=1

(α−1
i + αiu

−1)(βi + β−1
i u−1) ζ,

s̄21(u
−1) ζ = −

k∏
i=1

(αi + α−1
i u−1)(β−1

i + βiu
−1) ζ.

(4.31)

Hence the ratio of the eigenvalues of s̄21(u
−1) and s21(u) equals

k∏
i=1

(αi + α−1
i u−1)(β−1

i + βiu
−1)

(α−1
i + αiu

−1)(βi + β−1
i u−1)

=
k∏

i=1

(u+ α−2
i )(u+ β2

i )

(1 + α−2
i u)(1 + β2

i u)
=

2k∏
i=1

u+ γi

1 + γiu
,

which coincides with µ̄(u−1)/µ(u) by (4.27). We may conclude that there exists an au-

tomorphism of the algebra Y′
q(sp2) of the form (4.2) such that its composition with the

representation V (µ(u); µ̄(u)) is isomorphic to the irreducible quotient of the cyclic span

Y′
q(sp2) ζ. In order to complete the argument, we will now be proving that Y′

q(sp2)-module

(4.29) is irreducible and so it coincides with the cyclic span of ζ.

Denote the representation (4.29) of Y′
q(sp2) by L. We first prove the following claim:

any vector ξ ∈ L satisfying s11(u)ξ = 0 is proportional to ζ. We use the induction on k

and suppose that k > 1. Write

ξ =

p∑
r=0

(t21)
rζ1 ⊗ ξr, where ξr ∈ L(α2, β2)⊗ . . .⊗ L(αk, βk)

and p is some nonnegative integer. Moreover, if α1/β1 = ±qm for some nonnegative integer

m, then we will assume that p 6 m. We will also assume that ξp 6= 0. Using (2.70) and

the coproduct formulas (2.54), we get

s11(u)
(
(t21)

rζ1 ⊗ ξr
)

= t11(u) t̄11(u
−1)(t21)

rζ1 ⊗ s11(u) ξr

+ t11(u) t̄12(u
−1)(t21)

rζ1 ⊗ s12(u) ξr

+ t12(u) t̄11(u
−1)(t21)

rζ1 ⊗ s21(u) ξr

+ t12(u) t̄12(u
−1)(t21)

rζ1 ⊗ s22(u) ξr.

Now use relations (3.6) and (3.7) together with the following formulas which are implied

by (2.56):

t̄11(u
−1)(t21)

rζ1 = (t̄11 + t11u
−1)(t21)

rζ1 =
(
qrα−1

1 + q−rα1u
−1

)
(t21)

rζ1,

and

t̄12(u
−1)(t21)

rζ1 = t̄12 (t21)
rζ1 = (qr − q−r)

(
qr−1β1/α1 − q−r+1α1/β1

)
(t21)

r−1ζ1.
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Taking the coefficient of (t21)
pζ1 in the expansion of s11(u)ξ we get s11(u)ξp = 0. By the

induction hypothesis, applied to the representation L(α2, β2)⊗ . . .⊗ L(αk, βk), the vector

ξp must be proportional to ζ2⊗ . . .⊗ζk . As we observed in Sec. 3.1, the cyclic Uq(ĝl2)-span

of the vector ξp is a highest weight representation of Uq(ĝl2) whose highest weight is found

by formulas (3.3). Hence, using (2.70), we find that

s21(u) ξp = ν(u) ξp, s̄21(u) ξp = ν̄(u) ξp, s12(u) ξp = ν ′(u) ξp,

where

ν(u) = −
k∏

i=2

(α−1
i + αiu

−1)(βi + β−1
i u−1),

ν̄(u−1) = −
k∏

i=2

(αi + α−1
i u−1)(β−1

i + βiu
−1),

and

ν ′(u) =
(q2 − 1)ν(u) + (1− u2q2) ν̄(u−1)

q(u2 − 1)
.

Note that these are polynomials in u−1. To complete the proof of the claim, we need to

show that p = 0. Suppose on the contrary that p > 1. Then taking the coefficient of

(t21)
p−1ζ1 in the expansion of s11(u)ξ we get

(
q−p+1α1 + qp−1α−1

1 u−1
)(
qp−1α−1

1 + q−p+1α1u
−1

)
s11(u)ξp−1

+ (qp − q−p)
(
qp−1β1/α1 − q−p+1α1/β1

)

×
((
q−p+1α1 + qp−1α−1

1 u−1
)
ν ′(u) + u−1

(
qpα−1

1 + q−pα1u
−1

)
ν(u)

)
ξp = 0.

(4.32)

By the definition of the action of the algebra Y′
q(sp2) on the vector space (4.29), the

expression s11(u)ξp−1 is a polynomial in u−1. Now we consider two cases. Suppose first

that the expression qpα−1
1 + q−pα1u

−1 does not vanish at u = −q2p−2α−2
1 . Then putting

this value of u into (4.32) and recalling the notation (4.28) we get the relation
(
γ1γ2 − q−2p+2

)(
γ1γ3 − q−2p+2

)
. . .

(
γ1γ2k − q−2p+2

)
= 0.

However, this is impossible due to the conditions on the parameters γi. Thus, in the case

under consideration, p must be zero.

Now suppose that the expression qpα−1
1 + q−pα1u

−1 vanishes at u = −q2p−2α−2
1 so that

γ1 = α−2
1 = ε q−2p+1 for some ε ∈ {−1, 1}. In this case we may simplify (4.32) by canceling

the common factor q−p+1α1 + qp−1α−1
1 u−1. Then setting u = −ε q we obtain

ν ′(−ε q)− q−1ν(−ε q) = −(q + q−1) ν̄(−ε q−1) = 0

which gives the relation
(
γ3 − ε q

)(
γ4 − ε q

)
. . .

(
γ2k − ε q

)
= 0.
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Hence, γ1γj = q−2p+2 for some j ∈ {3, . . . , 2k} which contradicts the condition of the γi.

Thus, p must be zero is this case as well, and the claim is proved.

Suppose that M is a nonzero submodule of L. Then M must contain a nonzero vector

ξ such that s11(u)ξ = 0. By the claim proved above, ξ is proportional to the highest vector

ζ, and so ζ belongs to M . It remains to show that the vector ζ is cyclic in L, that is,

the submodule K = Y′
q(sp2)ζ coincides with L. We will do this by employing the dual

space L∗ introduced in the proof of Proposition 3.2. We equip L∗ with a Y′
q(sp2)-module

structure by using the anti-automorphism (4.4). Namely, we set

(y ω)(η) = ω(κ(y) η) for y ∈ Y′
q(sp2) and ω ∈ L∗, η ∈ L. (4.33)

Since κ is obtained as the restriction of the anti-automorphism (3.10), we conclude that

(3.11) is a Y′
q(sp2)-module isomorphism. Arguing as in the proof of Proposition 3.2, suppose

now that the submodule K = Y′
q(sp2)ζ of L is proper. The annihilator

AnnK = {ω ∈ L∗ | ω(η) = 0 for all η ∈ K}
is a submodule of the Y′

q(sp2)-module L∗, which does not contain the vector ζ∗1 ⊗ . . .⊗ ζ∗k .

However, this contradicts the claim verified in the first part of the proof, because the tensor

product in (3.11) is associated with the set of parameters obtained by swapping γ2i−1 and

γ2i for each i = 1, . . . , k so that the condition on the parameters remain satisfied after this

swap.

Proposition 3.2 allows us to describe the finite-dimensional irreducible representations

of the algebra Y′
q(sp2).

Theorem 4.6. The irreducible highest weight representation V
(
µ(u); µ̄(u)

)
of Y′

q(sp2) is

finite-dimensional if and only if there exists a polynomial P (u) in u of even degree with

constant term 1 such that udeg P P (u−1) = q− deg P P (uq2) and

µ̄(u−1)

µ(u)
= q− deg P · P (uq2)

P (u)
. (4.34)

In this case P (u) is unique.

Proof. Suppose that the representation V
(
µ(u); µ̄(u)

)
is finite-dimensional. By Proposi-

tion 4.4 there exist constants γi such that (4.27) holds. Re-enumerate these constants to

satisfy the assumptions of Proposition 4.5. This proposition implies that each represen-

tation L(αi, βi) occurring in (4.29) is finite-dimensional. Therefore, all ratios αi/βi must

have the form ±qmi , where each mi is a nonnegative integer. Then the polynomial

P (u) =
k∏

i=1

(1 + β2
i u)(1 + β2

i q
2u) . . . (1 + β2

i q
2mi−2u)

×
k∏

i=1

(1 + α−2
i u)(1 + α−2

i q2u) . . . (1 + α−2
i q2mi−2u)
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has the property udeg P P (u−1) = q−deg P P (uq2) and satisfies (4.34).

Conversely, suppose (4.34) holds for a polynomial P (u) = (1 + γ1u) . . . (1 + γ2ku) with

the property udeg P P (u−1) = q−deg P P (uq2). This property implies that the multiset of

parameters γi can be written in the form

{γ1, . . . , γ2k} = {α1, . . . , αk, α
−1
1 q−2, . . . , α−1

k q−2}.
Consider the irreducible highest weight representation L(ν1(u), ν2(u); ν̄1(u), ν̄2(u)) of the

algebra Uq(ĝl2), where the components of the highest weight are given by

ν1(u) = (α1q + q−1u−1) . . . (αk q + q−1u−1),

ν2(u) = (α1 + u−1) . . . (αk + u−1),

ν̄1(u) = (q−1 + α1q u) . . . (q
−1 + αkq u),

ν̄2(u) = (1 + α1u) . . . (1 + αku).

By Theorem 3.3, the representation L(ν1(u), ν2(u); ν̄1(u), ν̄2(u)) is finite-dimensional as

ν1(u)

ν2(u)
= q−deg Q · Q(uq2)

Q(u)
=
ν̄1(u)

ν̄2(u)

with Q(u) = (1+α1u) . . . (1+αku). We will regard L(ν1(u), ν2(u); ν̄1(u), ν̄2(u)) as a repre-

sentation of the extended algebra Uext
q (ĝl2) via the epimorphism (2.65). The formulas (4.30)

imply that the cyclic span Y′
q(sp2) ζ of the highest vector ζ of L(ν1(u), ν2(u); ν̄1(u), ν̄2(u))

is a highest weight representation of Y′
q(sp2) with the highest weight (λ(u); λ̄(u)), where

λ(u) = −ν2(u) ν̄1(u
−1), λ̄(u) = −ν̄2(u)ν1(u

−1).

Therefore, the irreducible highest weight representation V (λ(u); λ̄(u)) is finite-dimensional

and
λ̄(u−1)

λ(u)
=
ν1(u)

ν2(u)
· ν̄2(u

−1)

ν̄1(u−1)
=
Q(uq2)Q(u−1)

Q(u)Q(u−1q2)
= q− deg P · P (uq2)

P (u)
.

Due to (4.34) there exists an automorphism of the algebra Y′
q(sp2) of the form (4.2) such

that the composition of the representation V (λ(u); λ̄(u)) with this automorphism is iso-

morphic to V (µ(u); µ̄(u)). Hence the latter is also finite-dimensional.

The uniqueness of P (u) is easily verified.

In the following corollary we use the q-spirals introduced in Sec. 3.1. Denote by L the

tensor product (4.29), where for all i = 1, . . . , k we have αi/βi = ±qmi for some nonnegative

integers mi.

Corollary 4.7. The representation L of Y′
q(sp2) is irreducible if and only if each pair of

the q-spirals

Sq(αi, βi), Sq(αj, βj) and Sq(β
−1
i , α−1

i ), Sq(αj, βj)

is in general position for all 1 6 i < j 6 k.
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Proof. Suppose that the condition on the q-spirals is satisfied. Then Corollary 3.4 implies

that L is irreducible as a representation of the algebra Uq(ĝl2). Moreover, as we pointed

out in the proof of that corollary, any permutation of the tensor factors in (4.29) yields

an isomorphic representation. Hence we may assume that the nonnegative integers mi

satisfy the inequalities m1 6 · · · 6 mk. Let us verify that in this case the condition of

Proposition 4.5 is satisfied. Indeed, if this is not the case, then γrγs = q−2p for some

2i − 1 6 r < s 6 2k and a nonnegative integer p such that p < mi. Suppose first that

r and s are both odd. Then we may assume that r = 2i − 1 and s = 2j − 1 for some

j > i. By (4.28) we have γ2i−1 = α−2
i and γ2j−1 = α−2

j . Hence, αj = ±α−1
i qp which means

that αj belong to the q-spiral Sq(β
−1
i , α−1

i ). However, the condition mi 6 mj then implies

that the q-spirals Sq(β
−1
i , α−1

i ) and Sq(αj, βj) are not in general position. This contradicts

the assumptions of the proposition. The remaining cases, where r or s is even lead to

similar contradictions. Thus, Proposition 4.5 allows us to conclude that L is irreducible as

a representation of Y′
q(sp2).

Conversely, suppose that the representation L of Y′
q(sp2) is irreducible. Then L is

irreducible as a representation of Uq(ĝl2). By Corollary 3.4 the q-spirals Sq(αi, βi) and

Sq(αj, βj) are in general position for all i < j. Now fix an index i ∈ {1, . . . , k} and

consider the Y′
q(sp2)-module L′ obtained by replacement of the tensor factor L(αi, βi) by

L(β−1
i , α−1

i ). We claim that L′ is isomorphic to L. Indeed, the formulas (4.31) show that

the highest weight of the cyclic Y′
q(sp2)-span of the tensor product of the highest vectors of

the tensor factors occurring in L′ is unchanged under the replacement αi 7→ β−1
i , βi 7→ α−1

i .

This implies that the module L is isomorphic to the irreducible quotient of this span. Since

dimL = dimL′, the claim follows.

Thus, L′ is irreducible as a Y′
q(sp2)-module and, hence, as a Uq(ĝl2)-module. By Corol-

lary 3.4, the q-spiral Sq(β
−1
i , α−1

i ) is in general position with any q-spiral Sq(αj, βj) for

i 6= j. This gives the required condition on the q-spirals.

4.3 Classification theorem

We can now prove the classification theorem for finite-dimensional irreducible representa-

tions of the twisted q-Yangian Y′
q(sp2n) for arbitrary n > 1. By Theorem 4.2, all finite-

dimensional irreducible representations of the twisted q-Yangian Y′
q(sp2n) have the form

V (µ(u); µ̄(u)) for a certain highest weight (µ(u); µ̄(u)).

Theorem 4.8. The irreducible highest weight representation V (µ(u); µ̄(u)) of the algebra

Y′
q(sp2n) is finite-dimensional if and only if there exist polynomials P1(u), . . . , Pn(u) in

u, all with constant term 1, where P1(u) is of even degree and satisfies udeg P1 P1(u
−1) =

q−deg P1 P1(uq
2), and nonzero constants φ1, . . . , φn such that

φi−1µi−1(u)

φi µi(u)
= q− deg Pi · Pi(uq

2)

Pi(u)
=
φi−1µ̄i−1(u)

φi µ̄i(u)
(4.35)
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for i = 2, . . . , n and
µ̄1(u

−1)

µ1(u)
= q− deg P1 · P1(uq

2)

P1(u)
. (4.36)

The polynomials P1(u), . . . , Pn(u) are determined uniquely, while the tuple (φ1, . . . , φn) is

determined uniquely, up to a common factor.

Proof. Suppose first that dimV (µ(u); µ̄(u)) < ∞. Let J be the left ideal of Y′
q(sp2n)

generated by all coefficients of the series sij(u) with i, j = 1, 3, . . . , 2n − 1. Due to (4.5),

all coefficients of the series s̄ij(u) with i, j = 1, 3, . . . , 2n − 1 also belong to J . Consider

the subspace V J of V (µ(u); µ̄(u)) defined by

V J = {η ∈ V (µ(u); µ̄(u)) | sij(u) η = 0 for all i, j = 1, 3, . . . , 2n− 1}.

Note that the highest vector ξ of V (µ(u); µ̄(u)) belongs to V J . The defining relations (2.74)

together with (2.76) imply that if the indices i, a, b are odd and j is even, then

sia(u)sjb(v), sia(u) s̄jb(v) ∈ J.

Therefore the subspace V J is stable under the action of the operators s2i,2a−1(u) and

s̄2i,2a−1(u). Moreover, regarding the relations (2.74) and (2.76) modulo the left ideal J , we

find that the mapping

tia(u) 7→ s2i,2a−1(u), t̄ia(u) 7→ s̄2i,2a−1(u), i, a = 1, . . . , n, (4.37)

defines an action of the algebra Uext
q (ĝln) on the space V J . The cyclic span Uext

q (ĝln) ξ

is a finite-dimensional highest weight representation of Uext
q (ĝln) with the highest weight

(µ(u); µ̄(u)). It follows from Corollary 3.7 that the highest weight satisfies the conditions

(4.35) for appropriate nonzero constants φi.

Furthermore, the twisted q-Yangian Y′
q(sp2) act on V (µ(u); µ̄(u)) via the homomor-

phism Y′
q(sp2)→ Y′

q(sp2n) which sends sij(u) to the series with the same name in Y′
q(sp2n).

The cyclic span Y′
q(sp2)ξ is a highest weight representation of Y′

q(sp2) with the highest

weight (µ1(u); µ̄1(u)). Its irreducible quotient is finite-dimensional, and so (4.36) follows

from Theorem 4.6.

In order to prove the converse statement, note that given two irreducible highest weight

representations V (µ(u); µ̄(u)) and V (λ(u); λ̄(u)) such that the components of the high-

est weights satisfy the conditions (4.35) and (4.36) with the same set of polynomials

P1(u), . . . , Pn(u), there exist automorphisms of the form (4.2) and (4.3) such that the

composition of the representation V (µ(u); µ̄(u)) with these automorphisms is isomorphic to

V (λ(u); λ̄(u)). Hence, it suffices to show that given any set of polynomials P1(u), . . . , Pn(u)

of the form described in the formulation of the theorem, there exists a finite-dimensional

representation V (µ(u); µ̄(u)) whose highest weight satisfies (4.35) and (4.36) with φi = 1
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for all i. We will use a result from [27, Sec. 6] concerning a particular irreducible highest

weight representation L(ν) of the quantized enveloping algebra Uq(gl2n); see Sec. 2.1 above

for the definition. The highest weight ν has the form

ν = (qrn , . . . , qr1 , 1, . . . , 1), rn > · · · > r1 > 0,

where the parameters ri are integers. The representation L(ν) is finite-dimensional and

it admits a basis parameterized by the Gelfand–Tsetlin patterns associated with ν. As in

[27] consider the pattern Ω0 such that for each k = 1, 2, . . . , n its row 2k− 1 counted from

the bottom is (rk, rk−1, . . . , r1, 0, . . . , 0) with k−1 zeros, while the row 2k from the bottom

is (rk, rk−1, . . . , r1, 0, . . . , 0) with k zeros. Then the corresponding basis vector ζΩ0 has the

properties
t̄ij ζΩ0 = 0 if j is even and i < j,

tij ζΩ0 = 0 if i is odd and i > j.
(4.38)

We denote by L(d ν) the composition of the representation L(ν) with the automorphism

of Uq(gl2n) given in (2.8). We will consider L(d ν) as an evaluation module over Uq(ĝl2n)

by using the homomorphism (2.56).

Suppose now that V (µ(u); µ̄(u)) is a finite-dimensional highest weight representation of

Y′
q(sp2n) with the highest vector ξ. By the first part of the proof we can associate a family

of polynomials P1(u), . . . , Pn(u) to V (µ(u); µ̄(u)). The coproduct structure on Uq(ĝl2n)

given by (2.54) allows us to equip the vector space L(d ν)⊗V (µ(u); µ̄(u)) with a structure

of a Y′
q(sp2n)-module so that for the action of the generators we have

sij(u)(η ⊗ θ) =
2n∑

k,l=1

tik(u) t̄jl(u
−1) η ⊗ skl(u) θ, η ∈ L(d ν), θ ∈ V (µ(u); µ̄(u)). (4.39)

Let us verify that ζΩ0 ⊗ ξ is the highest vector of the Y′
q(sp2n)-module Y′

q(sp2n)(ζΩ0 ⊗ ξ).
Take η = ζΩ0 and ζ = ξ in (4.39) and suppose that j is odd and i 6 j. Using (2.56) and

(4.38), we find that

t̄jl(u
−1) ζΩ0 = u−1tjl ζΩ0 = 0

for j > l. If l is even and j < l, then by (4.38)

t̄jl(u
−1) ζΩ0 = t̄jl ζΩ0 = 0.

Hence, we may assume that l = j + 2p for a nonnegative integer p; in particular, l is

odd. Then the index k in (4.39) may be assumed to be even as otherwise skl(u) ξ = 0.

Furthermore, if k 6 i then k 6 j + 2p = l so that skl(u) ξ = 0 in this case too. Therefore,

we may assume that k > i. In this case we have

tik(u) t̄jl(u
−1) ζΩ0 = u−1t̄ik (t̄jl + u−1δjl tjl) ζΩ0 . (4.40)
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By the defining relations (2.6) we have

t̄ik t̄jl = qδij t̄jl t̄ik − (q − q−1) (δk<l − δj<i) t̄il t̄jk.

Now, if k < l then skl(u) ξ = 0. Otherwise, δk<l − δj<i 6= 0 only if j < i. But in this case

j < k and t̄jk ζΩ0 = 0. Thus, in all cases (4.40) is zero due to (4.38). A similar calculation

shows that s̄ij(u)(ζΩ0⊗ξ) = 0 for odd j and i 6 j. By (4.5) this proves sij(u)(ζΩ0⊗ξ) = 0

if ς(i) + ς(j) > 0; see Definition 4.1.

Let us now calculate the eigenvalues of ζΩ0 ⊗ ξ with respect to the operators s2i,2i−1(u)

and s̄2i,2i−1(u). The above arguments show that (4.39) with η = ζΩ0 and ζ = ξ simplifies

to
s2i,2i−1(u)(ζΩ0 ⊗ ξ) = t2i,2i(u) t̄2i−1,2i−1(u

−1) ζΩ0 ⊗ s2i,2i−1(u) ξ

=
(
d+ d−1u−1

)(
d−1q−ri + dqriu−1

)
µi(u)(ζΩ0 ⊗ ξ).

Similarly,

s̄2i,2i−1(u)(ζΩ0 ⊗ ξ) = t̄2i,2i(u)t2i−1,2i−1(u
−1) ζΩ0 ⊗ s̄2i,2i−1(u) ξ

=
(
d−1 + du

)(
dqri + d−1q−ri

)
µ̄i(u)(ζΩ0 ⊗ ξ).

The cyclic span Y′
q(sp2n)(ζΩ0 ⊗ ξ) is finite-dimensional. By the above formulas, the irre-

ducible quotient of this representation of Y′
q(sp2n) corresponds to the family of polynomials

Q1(u)P1(u), . . . , Qn(u)Pn(u), where

Qi(u) = (1 + d−2q−2riu)(1 + d−2q−2ri+2u) . . . (1 + d−2q−2ri−1−2u), i = 2, . . . , n,

and
Q1(u) = (1 + d2u)(1 + d2q2u) . . . (1 + d2q2r1−2u)

× (1 + d−2q−2r1u)(1 + d−2q−2r1+2u) . . . (1 + d−2q−2u).

Thus, starting from the trivial representation V (µ(u); µ̄(u)) and choosing appropriate pa-

rameters d and ri we will be able to produce a finite-dimensional highest weight repre-

sentation of Y′
q(sp2n) associated with an arbitrary family of polynomials P1(u), . . . , Pn(u)

by iterating this construction; cf. the proof of Theorem 3.6. The last statement of the

theorem is easily verified.

We will call P1(u), . . . , Pn(u) the Drinfeld polynomials of the finite-dimensional repre-

sentation V (µ(u); µ̄(u)).

We will now use Theorem 4.8 to describe finite-dimensional irreducible representations

of the quotient algebra Ytw
q (sp2n) of Y′

q(sp2n) by the relations (2.71); see Remark 2.14.

Every finite-dimensional irreducible representation of the algebra Ytw
q (sp2n) is isomorphic

to the highest weight representation V (µ(u); µ̄(u)) which is defined in the same way as for

the algebra Y′
q(sp2n); see Definition 4.1. This time the constant terms of the series (4.7)

should satisfy the conditions µ
(0)
i µ̄

(0)
i = 1 for i = 1, . . . , n.
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Corollary 4.9. The irreducible highest weight representation V (µ(u); µ̄(u)) of the algebra

Ytw
q (sp2n) is finite-dimensional if and only if there exist polynomials P1(u), . . . , Pn(u) in

u, all with constant term 1, where P1(u) is of even degree and satisfies udeg P1 P1(u
−1) =

q−deg P1 P1(uq
2) such that

εi−1µi−1(u)

εi µi(u)
= q− deg Pi · Pi(uq

2)

Pi(u)
=
εi−1µ̄i−1(u)

εi µ̄i(u)
(4.41)

for i = 2, . . . , n and
µ̄1(u

−1)

µ1(u)
= q−deg P1 · P1(uq

2)

P1(u)
(4.42)

for some εi ∈ {−1, 1}. The polynomials P1(u), . . . , Pn(u) are determined uniquely, while

the tuple (ε1, . . . , εn) is determined uniquely, up to a simultaneous change of sign.

Proof. Suppose that dimV (µ(u); µ̄(u)) < ∞. We argue as in the proof of Theorem 4.8.

The first part of that proof is now modified so that the mapping (4.37) defines an action

of the algebra Uq(ĝln) on the corresponding space V J . The necessary conditions on the

components of the highest weight come from the application of Theorem 3.6.

Conversely, suppose that conditions (4.41) and (4.42) hold. Using the natural epimor-

phism Y′
q(sp2n) → Ytw

q (sp2n) we may regard V (µ(u); µ̄(u)) as a Y′
q(sp2n)-module. This

module is finite-dimensional by Theorem 4.8.

We conclude with a discussion of a particular class of representations of the twisted q-

Yangians associated with the evaluation homomorphisms. By [29, Theorem 3.15] there

exists a homomorphism Ytw
q (sp2n) → Utw

q (sp2n) which is identical on the subalgebra

Utw
q (sp2n). The arguments used for the proof of that theorem apply to the algebra Y′

q(sp2n)

without any changes so that we have the homomorphism Y′
q(sp2n)→ U′

q(sp2n) given by

S(u) 7→ S + qu−1S. (4.43)

It allows one to extend any representation of U′
q(sp2n) to the twisted q-Yangian Y′

q(sp2n).

Consider the highest weight representations V (µ;µ′) defined in Sec. 2.2. The Y′
q(sp2n)-

modules V (µ;µ′) will be called the evaluation modules.

Suppose that this representation is finite-dimensional with the parameters pi as defined

in Proposition 2.7.

Proposition 4.10. The Drinfeld polynomials of the evaluation module V (µ;µ′) over the

algebra Y′
q(sp2n) are given by

P1(u) = (1 + qu)(1 + q3u) . . . (1 + q2p1−1u)(1 + q−2p1−1u)(1 + q−2p1+1u) . . . (1 + q−3u)

and

Pi(u) = (1 + q−2pi−1u)(1 + q−2pi+1u) . . . (1 + q−2pi−1−3u)
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for i = 2, . . . , n. The parameters φi are found by

φi = µ−1
i q−pi , i = 1, . . . , n.

Proof. The highest vector of the representation V (µ;µ′) of U′
q(sp2n) is also the highest

vector of the evaluation module over Y′
q(sp2n). The claims are now verified by calculating

the highest weight of the Y′
q(sp2n)-module V (µ;µ′) with the use of (4.43) and the formulas

relating the matrix elements of the matrices S and S; cf. [29, (2.52)]. The components of

the highest weight are found by

µi(u) = µi − u−1µ′i, µ̄i(u) =
1 + qu

u+ q
(uµi − µ′i), i = 1, . . . , n.

Together with (4.35) and (4.36) this implies all the statements.

As we pointed out in the proof of Proposition 2.7, if the highest weight (µ;µ′) satisfies

the additional conditions µi µ
′
i = −q for i = 1, . . . , n, then V (µ;µ′) can be regarded as a

representation of the quotient algebra Ytw
q (sp2n). In this case we have µi = εi q

−pi for all i

and some εi ∈ {−1, 1}. The corresponding evaluation module over Ytw
q (sp2n) has the same

Drinfeld polynomials as given in Proposition 4.10, while φi = εi for all i.
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