COCOMPACT LATTICES OF MINIMAL COVOLUME IN RANK 2 KAC-MOODY GROUPS, PART I: EDGE-TRANSITIVE LATTICES

INNA (KORCHAGINA) CAPDEBOSCQ AND ANNE THOMAS

Abstract

Let G be a topological Kac-Moody group of rank 2 with symmetric Cartan matrix, defined over a finite field. An example is $G=S L_{2}(K)$, where K is the field of formal Laurent series over \mathbb{F}_{q}. The group G acts on its Bruhat-Tits building X, a regular tree, with quotient a single edge. We classify the cocompact lattices in G which act transitively on the edges of X. Using this, for many such G we find the minimum covolume among cocompact lattices in G, by proving that the lattice which realises this minimum is edge-transitive. Our proofs use covering theory for graphs of groups, the dynamics of the G-action on X, the Levi decomposition for the parabolic subgroups of G, and finite group theory.

Introduction

A classical theorem of Siegel [23] states that the minimum covolume among lattices in $G=S L_{2}(\mathbb{R})$ is $\frac{\pi}{21}$, and determines the lattice which realises this minimum. In the nonarchimedean setting, Lubotzky [17] constructed the lattice of minimal covolume in $G=S L_{2}(K)$, where K is the field $\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)$ of formal Laurent series over \mathbb{F}_{q}.

The group $G=S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right.$) has, in recent developments, been viewed as the first example of a complete Kac-Moody group of rank 2 over a finite field. Such Kac-Moody groups are locally compact, totally disconnected topological groups, which may be thought of as infinite-dimensional analogues of semisimple algebraic groups (see Section 1.4 below for definitions). In this paper, we determine the cocompact lattice of minimal covolume in many such G, by classifying those lattices of G which act transitively on the edges of the associated Bruhat-Tits tree, and then showing that a cocompact lattice of minimal covolume is edge-transitive. Our main results are Theorems 1, 2 and 3 below, which give precise statements.

It is interesting that there exist any cocompact lattices in the groups G we consider, since starting with $n=3$, most Kac-Moody groups of rank n do not possess any uniform lattices (with the possible exception of those whose root systems contain a subsystem of type \tilde{A}_{n} - see Remark 4.4 of [6]). For rank 2, the only previous examples of cocompact lattices in complete Kac-Moody groups G are the free Schottky groups constructed by Carbone-Garland in [9].

The Kac-Moody groups G that we consider have a refined Tits system, and so have Bruhat-Tits building a regular tree X (see [19]). The action of G on X induces an edge of groups

where P_{1} and P_{2} are the standard parabolic/parahoric subgroups of G, and $B=P_{1} \cap P_{2}$ is the standard Borel/Iwahori subgroup. Now let m, n be integers ≥ 2. An (m, n)-amalgam is a free product with amalgamation $A_{1} * A_{0} A_{2}$, where the group A_{0} has index m in A_{1} and index n in A_{2}. The amalgam is faithful if A_{0}, A_{1} and A_{2} have no common normal subgroup. In Bass-Serre theory (see Section 1.2), an (m, n)-amalgam is the fundamental group Γ of an edge of groups

[^0]with universal cover the (m, n)-biregular tree, and this amalgam is faithful if and only if $\Gamma=\pi_{1}(\mathbb{A}) \cong$ $A_{1} * A_{0} A_{2}$ acts faithfully on the universal cover.

The question of classifying amalgams is, in general, difficult. A deep theorem of Goldschmidt [15] established that there are only 15 faithful (3,3 -amalgams of finite groups, and classified such amalgams. Goldschmidt and Sims conjectured that when both m and n are prime, there are only finitely many faithful (m, n)-amalgams of finite groups (see $[3,13,15]$). This conjecture remains open, except for the case $(m, n)=(2,3)$, which was established by Djoković-Miller [11], and the work of Fan [13], who proved the conjecture when the edge group A_{0} is a p-group, with p a prime distinct from both m and n. On the other hand, Bass-Kulkarni [3] showed that if either m or n is composite, there are infinitely many faithful (m, n)-amalgams of finite groups.

Now let Γ be a cocompact lattice in the complete Kac-Moody group G which acts transitively on the edges of the Bruhat-Tits tree X. As we explain in Section 1.4 below, Γ is the fundamental group of an edge of groups \mathbb{A} as above, with moreover A_{0}, A_{1} and A_{2} finite groups. Hence to classify the edge-transitive cocompact lattices in G, we classify the amalgams $A_{1} *_{A_{0}} A_{2}$ which embed in G. We note that, since the action of G on X is not in general faithful, an amalgam Γ may embed as a cocompact edge-transitive lattice in G even though it is not faithful.

We now state our first main result, Theorem 1. There are some exceptions for small values of p and q, which are stated separately below in Theorem 2. In Section 3 below, we state Theorems 1 and 2 for the special case $G=S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$. The group G in our results is a topological Kac-Moody group, meaning that it is the completion of a minimal Kac-Moody group Λ with respect to some topology. We use the completion in the 'building topology', which is discussed in, for example, [8].

Our notation is as follows. We write C_{n} for the cyclic group of order n and S_{n} for the symmetric group on n letters. Since for a finite field \mathbb{F}_{q} and the root system A_{1} there exist at most two corresponding finite groups of Lie type (one isomorphic to $S L_{2}\left(\mathbb{F}_{q}\right)$, and the other to $P S L_{2}\left(\mathbb{F}_{q}\right)$), to avoid complications we use Lie-theoretic notation, and write $A_{1}(q)$ which stands for both of these groups. We will discuss this ambiguity whenever necessary. (Notice that as $P S L_{2}\left(\mathbb{F}_{q}\right) \cong S L_{2}\left(\mathbb{F}_{q}\right) / Z\left(S L_{2}\left(\mathbb{F}_{q}\right)\right)$, if q is odd then $P S L_{2}\left(\mathbb{F}_{q}\right) \cong S L_{2}\left(\mathbb{F}_{q}\right) /\langle-I\rangle$, while if q is even, $S L_{2}\left(\mathbb{F}_{q}\right)=P S L_{2}\left(\mathbb{F}_{q}\right)$.) We denote by T a fixed maximal split torus of G with $T \leq P_{1} \cap P_{2}$. The centre $Z(G)$ of G is then contained in T, and T is isomorphic to a quotient of $\mathbb{F}_{q}^{*} \times \mathbb{F}_{q}^{*}$ (the particular quotient depending upon G).

We say that two edge-transitive cocompact lattices $\Gamma=A_{1} *_{A_{0}} A_{2}$ and $\Gamma^{\prime}=A_{1}^{\prime} *_{A_{0}^{\prime}} A_{2}^{\prime}$ in G are isomorphic if $A_{i} \cong A_{i}^{\prime}$ for $i=0,1,2$ and the obvious diagram commutes; our classification of edge-transitive lattices is up to isomorphism. In particular, this means that we assume $A_{i} \leq P_{i}$ for $i=1,2$.
Theorem 1. Let G be a topological Kac-Moody group of rank 2 defined over a finite field \mathbb{F}_{q} of order $q=p^{a}$ where p is prime, with symmetric generalised Cartan matrix $\left(\begin{array}{cc}2 & -m \\ -m & 2\end{array}\right), m \geq 2$. Then G has edge-transitive cocompact lattices Γ of each of the following isomorphism types, and every edge-transitive cocompact lattice Γ in G is isomorphic to one of the following amalgams.
(1) If $p=2$ then $\Gamma=A_{1} *_{A_{0}} A_{2}$ where for $i=1,2$:
(a) $A_{i}=A_{0} \times H_{i}$ with $H_{i} \cong C_{q+1}$; and
(b) A_{0} is a cyclic subgroup of T with $\left|A_{0}\right|$ dividing $(q-1)$.
(2) If p is odd and $q \equiv 1(\bmod 4)$, then G does not contain any edge-transitive cocompact lattices (with finitely many exceptions, listed in Theorem 2 below).
(3) If p is odd and $q \equiv 3(\bmod 4)$, then (with finitely many exceptions listed in Theorem 2 below) $\Gamma=A_{1} *_{A_{0}} A_{2}$ where for $i=1,2$:
(a) $A_{i}=A_{0} H_{i}$, with H_{i} isomorphic to the normaliser of a non-split torus in $A_{1}(q)$; and
(b) A_{0} is a subgroup of the normaliser $N_{T}\left(H_{i}\right)$ of H_{i} in T.

We now give the finitely many exceptions to the statements in Theorem 1.
Theorem 2. Let G be as in Theorem 1 above. The edge-transitive lattices for p odd and $q \equiv 1(\bmod 4)$ are:
(1) $q=5, \Gamma=A_{1} *_{A_{0}} A_{2}$ where for $i=1,2, A_{i}=A_{0} H_{i}$ where $H_{i} \cong A_{1}(3), A_{0} \leq N_{T}\left(H_{i}\right)$, and $\left|H_{i}: H_{i} \cap A_{0}\right|=6 ;$ and
(2) $q=29, \Gamma=A_{1} *_{A_{0}} A_{2}$ where for $i=1,2, A_{i}=A_{0} H_{i}$ where $H_{i} \cong A_{1}(5), A_{0} \leq N_{T}\left(H_{i}\right)$, and $\left|H_{i}: H_{i} \cap A_{0}\right|=30$.
The exceptional edge-transitive lattices for p odd, $q \equiv 3(\bmod 4)$ are:
(1) If $q=7$ or $23, \Gamma=A_{1} *_{A_{0}} A_{2}$ where for $i=1,2, A_{i}=A_{0} H_{i}, H_{i} \cong S_{4}$ or $2 S_{4}, A_{0} \leq N_{T}\left(H_{i}\right)$ and $\left|H_{i}: H_{i} \cap A_{0}\right|=q+1$ where $H_{i} \cap A_{0}$ is cyclic.
(2) If $q=11, \Gamma=A_{1} *_{A_{0}} A_{2}$ where for $i=1,2, A_{i}=A_{0} H_{i}$, and $A_{0} \leq N_{T}\left(H_{i}\right)$ with $\left|H_{i}: H_{i} \cap A_{0}\right|=12$, $H_{i} \cap A_{0}$ being cyclic, and one of the following holds:
(a) $H_{1} \cong H_{2} \cong A_{1}(3)$, or
(b) $H_{1} \cong H_{2} \cong A_{1}(5)$.
(3) If $q=19$ or $59, \Gamma=A_{1} *_{A_{0}} A_{2}$ where for $i=1,2, A_{i}=A_{0} H_{i}, H_{i} \cong A_{1}(5), A_{0} \leq N_{T}\left(H_{i}\right)$ and $\left|H_{i}: H_{i} \cap A_{0}\right|=q+1$ with $H_{i} \cap A_{0}$ being cyclic.
We now state our main result on covolumes, Theorem 3. We note in Section 1.4 below that the Haar measure μ on G may be normalised so that the covolume $\mu(\Gamma \backslash G)$ of an edge-transitive cocompact lattice $\Gamma=A_{1} *_{A_{0}} A_{2}$ is equal to $\left|A_{1}\right|^{-1}+\left|A_{2}\right|^{-1}$. Using this normalisation, we obtain the following.
Theorem 3. Let G be as in Theorem 1 above. If $p=2$ then

$$
\min \{\mu(\Gamma \backslash G) \mid \Gamma \text { a cocompact lattice in } G\}=\frac{2}{(q+1)|Z(G)|}
$$

If p is odd and $q \equiv 3(\bmod 4)$, suppose also that $q \geq 300$. Then

$$
\min \{\mu(\Gamma \backslash G) \mid \Gamma \text { a cocompact lattice in } G\}=\frac{2}{2(q+1)|Z(G)| \delta}
$$

where $\delta \in\{1,2\}$ (depending upon the particular group G).
Moreover, in these cases, the cocompact lattice of minimal covolume in G is edge-transitive.
Even more precise statements of Theorems 1 and 2 above are obtained in Section 5 below, where we also prove Theorem 3. We plan to consider covolumes for the case $q \equiv 1(\bmod 4)$, in which G does not generally admit any edge-transitive lattices, in Part II of this paper.

Theorem 3 above generalises Theorem 2 of Lubotzky [17], which found the lower bound on covolumes of cocompact lattices in $G=S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$ by explicitly constructing the cocompact lattices of minimal covolume. Since many such lattices are edge-transitive, Lubotzky's constructions appear in our list above when $G=S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$. In the special case $q=2$, L. Carbone has informed us that she obtained such examples independently. Although our theorems in the case $G=S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$ essentially follow from Lubotzky's work, in order to show where the difficulty in the general case lies, and to illustrate different techniques of proof, we prove Theorems 1 and 2 for $G=S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$ in Section 3 below. We then present the general proof in Section 4.

Our main methods for determining whether or not a given amalgam is a cocompact lattice in G are described in Section 2 below. The first method is Bass' covering theory for graphs of groups [2], which is used in the proof for $G=S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$, together with elementary matrix computations (which cannot be carried out in the general case). As we explain in Section 2.1 below, an amalgam $\Gamma=A_{1} *_{A_{0}} A_{2}$ embeds as an edge-transitive cocompact lattice in G if and only if there is a covering of graphs of groups $\mathbb{A} \rightarrow \mathbb{G}$, where \mathbb{A} and \mathbb{G} are the edges of groups sketched above.

For the general proof in Section 4, an important tool is Lemma 4 below, which generalises Lemma 3.1 of Lubotzky [17]. Lubotzky's result gave sufficient conditions for an amalgam to embed in $G=S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$. Our result, proved in Section 2.2, gives necessary and sufficient conditions, and applies to more general locally compact groups G acting on trees.

Lemma 4. Let q_{1} and q_{2} be positive integers and let X be the $\left(q_{1}+1, q_{2}+1\right)$-biregular tree. Let G be a locally compact group of automorphisms of X, which acts on X with compact open stabilisers and with fundamental domain an edge $\left(x_{1}, x_{2}\right)$, where for $i=1,2$ the vertex x_{i} of X has valence $q_{i}+1$.

Suppose for $i=1,2$ that A_{i} is a finite subgroup of the stabiliser $G_{x_{i}}$ such that:
(1) A_{i} acts transitively on the set of $q_{i}+1$ neighbours of x_{i} in X; and
(2) $\operatorname{Stab}_{A_{i}}\left(x_{3-i}\right)=A_{1} \cap A_{2}$.

Then $\Gamma=\left\langle A_{1}, A_{2}\right\rangle$, the group generated by A_{1} and A_{2}, is a cocompact lattice in G, with fundamental domain the edge $\left(x_{1}, x_{2}\right)$. Moreover, Γ is isomorphic to the free product with amalgamation $\Gamma \cong A_{1} *_{A_{1} \cap A_{2}} A_{2}$, and $\Gamma_{x_{i}}=A_{i}$.

Conversely, suppose Γ is a cocompact lattice in G with fundamental domain the edge $\left(x_{1}, x_{2}\right)$. Let $A_{i}=\Gamma_{x_{i}}$. Then $\Gamma \cong A_{1} *_{A_{1} \cap A_{2}} A_{2}$, and A_{i} is a finite subgroup of $G_{x_{i}}$ such that (1) and (2) hold.

The other key result for the general proof is Proposition 5 below. This is in fact the statement that takes some work to prove, and is a nice result in its own right.

Proposition 5. Let G be as in Theorem 1 above. If Γ is a cocompact lattice in G, then Γ does not contain p-elements.

We apply Proposition 5 to restrict the possible finite groups A_{0}, A_{1} and A_{2} in a lattice amalgam $\Gamma=$ $A_{1} *_{A_{0}} A_{2}$. Our proof of Proposition 5 in Section 4 below was suggested by the Property (FPRS) in recent work of Caprace-Rémy [8], and makes use of the dynamics of the G-action on X, including some results of Carbone-Garland [9].

Our proofs in Sections 3, 4 and 5 below also use the Levi decompositions of the parabolic subgroups P_{1} and P_{2} of G, which we recall in Section 1.4, and classical results of finite group theory, which are stated in Section 1.5 below.

Acknowledgements. The question of classifying edge-transitive lattices in Kac-Moody groups was suggested to us by Lisa Carbone, and we thank her for this suggestion and for her interest in this project. We also thank Leigh Cobbs for carefully checking some arguments. We are grateful to Bertrand Rémy, Richard Weiss, Kevin Wortman and especially Pierre-Emmanuel Caprace for helpful correspondence and conversations. The second author also thanks the Mathematical Sciences Research Institute and the London Mathematical Society for travel support, and the Universities of New South Wales and Sydney for their hospitality in the period during which this work was completed.

1. Preliminaries

We recall some definitions and results concerning trees in Section 1.1, sketch the theory of graphs of groups in Section 1.2, and give some definitions and important properties for cocompact lattices in Section 1.3. In Section 1.4 we outline those parts of the theory of Kac-Moody groups that we will need. The required results of finite group theory are stated in Section 1.5.
1.1. Trees. Let X be a simplicial tree. We define combinatorial balls in X inductively as follows. Given a vertex v of X, the combinatorial ball $\operatorname{Ball}(v, 0)$ consists of the vertex v, and for integers $n \geq 1$, the combinatorial ball $\operatorname{Ball}(v, n)$ consists of all closed edges in X which meet $\operatorname{Ball}(v, n-1)$. Similarly, given an edge e of $X, \operatorname{Ball}(e, 0)$ consists of the (closed) edge e, and for $n \geq 1, \operatorname{Ball}(e, n)$ consists of all closed edges in X which meet $\operatorname{Ball}(e, n-1)$.

We may now define the distance $d\left(e, e^{\prime}\right)$ between edges e and e^{\prime} of X to be 0 if $e=e^{\prime}$, and to be $n \geq 1$ if $e^{\prime} \in \operatorname{Ball}(e, n)-\operatorname{Ball}(e, n-1)$.

Two geodesic rays (that is, half-lines) α and α^{\prime} in the tree X are said to be equivalent if their intersection is infinite. The set of ends of X is then the collection of equivalence classes of geodesic rays in X, under this relation. We say that an end is determined by a half-line α if α represents this end.

The following result of Serre will be very useful for us. A group A is said to act without inversions on a tree X if for all $g \in A$ and all edges $e \in E X$, if g preserves e then g fixes e pointwise.

Proposition 6 (Serre, Proposition 19, Section I.4.3 [21]). Let A be a finite group acting without inversions on a tree X. Then there is a vertex of X which is fixed by A.
1.2. Bass-Serre theory. Let A be a connected graph, with sets $V A$ of vertices and $E A$ of oriented edges. The initial and terminal vertices of $e \in E A$ are denoted by $\partial_{0} e$ and $\partial_{1} e$ respectively. The map $e \mapsto \bar{e}$ is orientation reversal, with $\overline{\bar{e}}=e$ and $\partial_{1-j} \bar{e}=\partial_{j} e$ for $j=0,1$ and all $e \in E A$.

A graph of groups $\mathbb{A}=(A, \mathcal{A})$ over a connected graph A consists of an assignment of vertex groups \mathcal{A}_{a} for each $a \in V A$ and edge groups $\mathcal{A}_{e}=\mathcal{A}_{\bar{e}}$ for each $e \in E A$, together with monomorphisms $\alpha_{e}: \mathcal{A}_{e} \rightarrow \mathcal{A}_{\partial_{0} e}$ for each $e \in E A$. See for example [2] for the definitions of the fundamental group $\pi_{1}\left(\mathbb{A}, a_{0}\right)$ and the universal cover $X=\widetilde{\left(A, a_{0}\right)}$ of a graph of groups $\mathbb{A}=(A, \mathcal{A})$, with respect to a basepoint $a_{0} \in V A$. The universal cover X is a tree, on which $\pi_{1}\left(\mathbb{A}, a_{0}\right)$ acts by isometries inducing a graph of groups isomorphic to \mathbb{A}. A graph of groups is faithful if its fundamental group acts faithfully on its universal cover.

In the special case that \mathbb{A} is a graph of groups over an underlying graph A which is a single edge e, we say that \mathbb{A} is an edge of groups. Suppose $\partial_{0} e=a_{1}$ and $\partial_{1} e=a_{2}$. Write A_{0} for the edge group \mathcal{A}_{e}, and for $i=1,2$ let A_{i} be the vertex group $\mathcal{A}_{a_{i}}$. The fundamental group $\pi_{1}\left(\mathbb{A}, a_{1}\right)$ is then isomorphic to the free product with amalgamation $A_{1} *_{A_{0}} A_{2}$, and the universal cover $X=\widetilde{\left(A, a_{1}\right)}$ is an (m, n)-biregular tree, where $m=\left[A_{1}: A_{0}\right]$ and $n=\left[A_{2}: A_{0}\right]$. Moreover, it follows from Proposition 1.23 of $[2]$ that \mathbb{A} is faithful if and only if for any normal subgroup N of \mathcal{A}_{e}, if $\alpha_{e} N$ is normal in $\mathcal{A}_{a_{1}}$ and $\alpha_{\bar{e}} N$ is normal in $\mathcal{A}_{a_{2}}$, then N is trivial.
1.3. Cocompact lattices. We recall some basic definitions and properties. Let G be a locally compact topological group with left-invariant Haar measure μ. A discrete subgroup $\Gamma \leq G$ is a lattice if $\Gamma \backslash G$ carries a finite G-invariant measure, and is cocompact if $\Gamma \backslash G$ is compact.

A well-known property of cocompact lattices that we will use is the following.
Theorem 7 (Gelfand-Graev-Piatetsky-Shapiro [14]). Let G be a locally compact topological group, and Γ a cocompact lattice in G. If $u \in \Gamma$, then $u^{G}=\left\{g u g^{-1} \mid g \in G\right\}$ is a closed subset of G.

Proof. This is a statement on p. 10 of [14].
We will also use the following normalisation of Haar measure. In Section 1.4 below we will apply this result to the Kac-Moody groups G that we consider.

Proposition 8 (Serre, [22]). Let G be a locally compact topological group acting on a set S with compact open stabilisers and a finite quotient $G \backslash S$. Then there is a normalisation of the Haar measure μ, depending only on the choice of G-set S, such that for each discrete subgroup Γ of G we have

$$
\mu(\Gamma \backslash G)=\operatorname{Vol}(\Gamma \backslash \backslash S):=\sum_{s \in \Gamma \backslash S} \frac{1}{\left|\Gamma_{s}\right|} \leq \infty
$$

Moreover, Γ is cocompact in G if and only if $\Gamma \backslash S$ is finite.
Note that a subgroup $\Gamma \leq G$ is discrete if and only if the stabilisers $\Gamma_{s}, s \in S$, are finite groups.
1.4. Kac-Moody groups. We first in Section 1.4.1 explain how one may associate, to a generalised Cartan matrix A and an arbitrary field, a Kac-Moody group Λ, the so-called minimal or incomplete Kac-Moody group. In Section 1.4.2 we specialise to rank 2 Kac-Moody groups over finite fields. Section 1.4.3 describes the completion G of Λ that appears in the statement of Theorem 1 above, and Section 1.4.4 discusses cocompact lattices in G. Our treatment of Kac-Moody groups is brief and combinatorial, and partly follows Appendix TKM of Dymara-Januszkiewicz [12]. For a more sophisticated and general approach, using the notion of a "twin root datum", we refer the reader to, for example, Caprace-Rémy [8].
1.4.1. Incomplete Kac-Moody groups. Let I be a finite set. A generalised Cartan matrix $A=\left(A_{i j}\right)_{i, j \in I}$ is a matrix with integer entries, such that $A_{i i}=2, A_{i j} \leq 0$ if $i \neq j$, and $A_{i j}=0$ if and only if $A_{j i}=0$. (If A is positive definite, then A is the Cartan matrix of some finite-dimensional semisimple Lie algebra.) A Kac-Moody datum is a 5 -tuple $\left(I, \mathfrak{h},\left\{\alpha_{i}\right\}_{i \in I},\left\{h_{i}\right\}_{i \in I}, A\right)$ where \mathfrak{h} is a finitely generated free abelian group, $\alpha_{i} \in \mathfrak{h}, h_{i} \in \operatorname{Hom}(\mathfrak{h}, \mathbb{Z})$, and $A_{i j}=h_{j}\left(\alpha_{i}\right)$. The set $\Pi=\left\{\alpha_{i}\right\}_{i \in I}$ is called the set of simple roots.

Given a generalised Cartan matrix A as above, we define a Coxeter matrix $M=\left(m_{i j}\right)_{i, j \in I}$ as follows: $m_{i i}=1$, and if $i \neq j$ then $m_{i j}=2,3,4,6$ or ∞ as $A_{i j} A_{j i}=0,1,2,3$ or is ≥ 4. The associated Weyl group W is then the Coxeter group with presentation determined by M :

$$
\left.W=\left\langle\left\{w_{i}\right\}_{i \in I}\right|\left(w_{i} w_{j}\right)^{m_{i j}} \text { for } m_{i j} \neq \infty\right\rangle
$$

The Weyl group acts on \mathfrak{h} via $w_{i}: \beta \mapsto \beta-h_{i}(\beta) \alpha_{i}$ for each $\beta \in \mathfrak{h}$ and each $i \in I$. In particular, $w_{i}\left(\alpha_{i}\right)=-\alpha_{i}$ for each simple root α_{i}. The set Φ of real roots is defined by $\Phi=W \cdot \Pi$. In general, the set of real roots is infinite.

We will, not by coincidence, use the same terminology and notation for simple roots and real roots which are defined in the following combinatorial fashion. Let ℓ be the word length on the Weyl group W, that is, $\ell(w)$ is the minimal length of a word in the letters $\left\{w_{i}\right\}_{i \in I}$ representing w. The simple roots $\Pi=\left\{\alpha_{i}\right\}_{i \in I}$ are then defined by

$$
\alpha_{i}=\left\{w \in W \mid \ell\left(w_{i} w\right)>\ell(w)\right\} .
$$

The set Φ of real roots is $\Phi=W \cdot \Pi=\left\{w \alpha_{i} \mid w \in W, \alpha_{i} \in \Pi\right\}$, and W acts naturally on Φ. The set Φ_{+}of positive roots is $\Phi_{+}=\left\{\alpha \in \Phi \mid 1_{W} \in \alpha\right\}$, and the set of negative roots Φ_{-}is $\Phi \backslash \Phi_{+}$. The complement of a root α in W, denoted $-\alpha$, is also a root. As before, $w_{i}\left(\alpha_{i}\right)=-\alpha_{i}$ for each simple root α_{i}.

We now define the split Kac-Moody group Λ associated to a Kac-Moody datum as above, over an arbitrary field k. The group Λ may be given by a presentation, which is essentially due to Tits (see [25]), and which appears in Carter [10]. For simplicity, we state this presentation only for the simply-connected group Λ_{u} and then discuss the general case. Let $\left(I, \mathfrak{h},\left\{\alpha_{i}\right\}_{i \in I},\left\{h_{i}\right\}_{i \in I}, A\right)$ be a Kac-Moody datum and k a field. The associated simply-connected Kac-Moody group Λ_{u} over k is generated by root subgroups $U_{\alpha}=U_{\alpha}(k)=\left\langle x_{\alpha}(t) \mid t \in k\right\rangle$, one for each real root $\alpha \in \Phi$. We write $x_{i}(u)=x_{\alpha_{i}}(u)$ and $x_{-i}(u)=x_{-\alpha_{i}}(u)$ for each $u \in k$ and $i \in I$, and put $\tilde{w}_{i}(u)=x_{i}(u) x_{-i}\left(u^{-1}\right) x_{i}(u), \tilde{w}_{i}=\tilde{w}_{i}(1)$, and $h_{i}(u)=\tilde{w}_{i}(u) \tilde{w}_{i}^{-1}$ for each $u \in k^{*}$ and $i \in I$. A set of defining relations for the simply-connected Kac-Moody group Λ_{u} is then:
(1) $x_{\alpha}(t) x_{\alpha}(u)=x_{\alpha}(t+u)$, for all roots $\alpha \in \Phi$ and all $t, u \in k$.
(2) If $\alpha, \beta \in \Phi$ is a prenilpotent pair of roots, that is, there exist $w, w^{\prime} \in W$ such that $w(\alpha) \in \Phi_{+}$, $w(\beta) \in \Phi_{+}, w^{\prime}(\alpha) \in \Phi_{-}$and $w^{\prime}(\beta) \in \Phi_{-}$, then for all $t, u \in k$:

$$
\left[x_{\alpha}(t), x_{\beta}(u)\right]=\prod_{\substack{i, j \in \mathbb{N} \\ i \alpha+j \beta \in \Phi}} x_{i \alpha+j \beta}\left(C_{i j \alpha \beta} t^{i} u^{j}\right)
$$

where the integers $C_{i j \alpha \beta}$ are uniquely determined by $i, j, \alpha, \beta, \Phi$, and the ordering of the terms on the right-hand side.
(3) $h_{i}(t) h_{i}(u)=h_{i}(t u)$ for all $t, u \in k^{*}$ and all $i \in I$.
(4) $\left[h_{i}(t), h_{j}(u)\right]=1$ for all $t, u \in k^{*}$ and $i, j \in I$.
(5) $h_{j}(u) x_{i}(t) h_{j}(u)^{-1}=x_{i}\left(u^{A_{i j}} t\right)$ for all $t \in k, u \in k^{*}$ and $i, j \in I$.
(6) $\tilde{w}_{i} h_{j}(u) \tilde{w}_{i}^{-1}=h_{j}(u) h_{i}\left(u^{-A_{i j}}\right)$ for all $u \in k^{*}$ and $i, j \in I$.
(7) $\tilde{w}_{i} x_{\alpha}(u) \tilde{w}_{i}^{-1}=x_{w_{i}(\alpha)}(\epsilon u)$ where $\epsilon \in\{ \pm 1\}$, for all $u \in k$.

By a result of P.-E. Caprace (cf. 3.5(2) of [5]), any two split Kac-Moody groups of the same type defined over the same field are isogenic. That is, if Λ is any split Kac-Moody group associated to the same generalised Cartan matrix A as Λ_{u}, and defined over the same field k, then there exists a surjective homomorphism $i: \Lambda_{u} \rightarrow \Lambda$ with $\operatorname{ker}(i) \leq Z\left(\Lambda_{u}\right)$. The Kac-Moody group Λ so constructed is sometimes called the incomplete Kac-Moody group (for completions of Λ, see Section 1.4.3 below).

A first example of an incomplete Kac-Moody group Λ over a finite field is $\Lambda=S L_{n}\left(\mathbb{F}_{q}\left[t, t^{-1}\right]\right)$, which is over the field \mathbb{F}_{q}, and is not simply-connected.

Again, for a complete and proper definition of incomplete Kac-Moody groups we encourage the reader to consult various papers of P.-E. Caprace and B. Rémy (cf. [19], [7]).

We now discuss several important subgroups of the Kac-Moody group Λ. For any version (simplyconnected or not), the unipotent subgroup of Λ is

$$
U=U_{+}=\left\langle U_{\alpha} \mid \alpha \in \Phi_{+}\right\rangle
$$

For Λ_{u} simply-connected, the torus

$$
T=\left\langle h_{i}(u) \mid i \in I, u \in k^{*}\right\rangle
$$

is isomorphic to the direct product of $|I|$ copies of k^{*}. In general, the torus T of Λ is a homomorphic image of the direct product of $|I|$ copies of k^{*}. For all Λ, we define N to be the subgroup of Λ generated by the torus T and by the elements $\left\{\tilde{w}_{i}\right\}_{i \in I}$ (where, in general as in the simply-connected case, $\tilde{w}_{i}=x_{\alpha_{i}}(1) x_{-\alpha_{i}}(1) x_{\alpha_{i}}(1)$ for all $i \in I$). The standard Borel subgroup $B=B_{+}$of Λ is defined by

$$
B=\left\langle T, U_{+}\right\rangle=\langle T, U\rangle
$$

The group B has decomposition $B=T \ltimes U_{+}=T \ltimes U$ (see [19]).
The subgroups B and N of Λ form a $B N$-pair (also known as a Tits system) with Weyl group W, and hence Λ has a Bruhat-Tits building X. (In fact, the group Λ has isomorphic twin buildings, associated to twin $B N$-pairs $\left(B_{+}, N\right)$ and $\left(B_{-}, N\right)$, but we need only concern ourselves with the positive pair.) The chambers of X correspond to the cosets of B in Λ, hence Λ acts naturally on X with quotient a single chamber. For each apartment Σ of X, the chambers in Σ are in bijection with the elements of the Weyl group W. Each root $\alpha \subset W$ corresponds to a "half-apartment". The construction of the building X for Λ of rank 2 is explained further in Section 1.4.2 below.
1.4.2. Rank 2. We now specialise to the cases considered in Theorem 1 above. Let A be a generalised Cartan matrix of the form $A=\left(\begin{array}{cc}2 & -m \\ -m & 2\end{array}\right)$, with $m \geq 2$. For $m>2$ such an A has rank 2 . If $m=2$ then A is affine, meaning that A is positive semidefinite but not positive definite. For all such A (affine and non-affine) the associated Weyl group W is

$$
W=\left\langle w_{1}, w_{2} \mid w_{1}^{2}, w_{2}^{2}\right\rangle
$$

That is, W is the infinite dihedral group. Let ℓ be the word length on W. The simple roots $\Pi=\left\{\alpha_{1}, \alpha_{2}\right\}$ are then given by, for $i=1,2$,

$$
\alpha_{i}=\left\{w \in W \mid \ell\left(w_{i} w\right)>\ell(w)\right\}=\left\{1, w_{3-i}, w_{3-i} w_{i}, w_{3-i} w_{i} w_{3-i}, \ldots\right\} .
$$

The set Φ of real roots is $\Phi=\left\{w \alpha_{i} \mid w \in W, i=1,2\right\}$.
Now let Λ be an incomplete Kac-Moody group with generalised Cartan matrix A, defined over a finite field \mathbb{F}_{q}, where $q=p^{a}$ with p prime. As Λ is a group with $B N$-pair, as described above, for $i=1,2$, the parabolic subgroup P_{i} of Λ is defined by

$$
P_{i}=B \sqcup B \tilde{w}_{i} B .
$$

Since $J_{i}=\left\{\alpha_{i}\right\}$ is a root system of type A_{1}, and thus is of finite type, now [19, 6.2] applies. Hence, the group P_{i} has a Levi decomposition $P_{i}=L_{i} \ltimes U_{i}$. Here $U_{i}=U \cap U^{w_{i}}$ is called a unipotent radical of P_{i}, and the group L_{i} is called a Levi complement of P_{i}. The Levi complement factors as $L_{i}=T M_{i}$, where T is the torus of Λ, and $M_{i}=\left\langle U_{\alpha_{i}}, U_{-\alpha_{i}}\right\rangle$, that is, $A_{1}(q) \cong M_{i} \triangleleft L_{i}$.

To describe the building X for Λ, we first describe its apartments. Let Σ be the Coxeter complex for the Weyl group W (the infinite dihedral group). That is, Σ is the one-dimensional simplicial complex homeomorphic to the line, with vertices the cosets in W of the subgroups $\left\langle w_{i}\right\rangle$, for $i=1,2$. Two vertices $w\left\langle w_{1}\right\rangle$ and $w^{\prime}\left\langle w_{2}\right\rangle$ of Σ are adjacent if and only if $w^{-1} w^{\prime}=w_{i}$ for $i=1$ or 2 . Observe that the set of real roots Φ, described above, is in bijection with the set of half-lines in Σ. The apartments of the building X are copies of the Coxeter complex Σ for W, and so X is a simplicial tree, with the roots corresponding to "half-apartments". The chambers of X are the edges of this tree. Since Λ has symmetric generalised Cartan matrix A and is defined over the finite field \mathbb{F}_{q}, the building X is a $(q+1)$-regular tree.
1.4.3. Completions of Λ. We are finally ready to describe the main object of our study: the locally compact topological Kac-Moody groups. In order to do this we will have to define a topological completion of the incomplete Kac-Moody group Λ. It turns out that there are several completions appearing in the literature. For example, Carbone-Garland [9] defined a representation-theoretic completion of Λ using the 'weight topology'. A different approach by Rémy and Ronan, appearing for instance in [20], is to use the action of Λ on the building X, as follows. The kernel K of the Λ-action on X is the centre $Z(\Lambda)$, which is a finite group when Λ is over a finite field (Rémy [19]). The closure of Λ / K in the automorphism group of X is then
a completion of Λ. For example, when $\Lambda=S L_{n}\left(\mathbb{F}_{q}\left[t, t^{-1}\right]\right)$, the centre $Z(\Lambda)$ is the finite group $\mu_{n}\left(\mathbb{F}_{q}\right)$ of nth roots of unity in \mathbb{F}_{q}, and the completion in this topology is $S L_{n}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right) / \mu_{n}\left(\mathbb{F}_{q}\right) \cong P S L_{n}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$. To avoid dealing with representation-theoretic constructions or with quotients, we are going to follow the completion in the building topology, defined by Caprace and Rémy in [8].

So, let Λ be an incomplete Kac-Moody group over a finite field, as defined in Section 1.4.1 above. We now describe the completion G of Λ which appears in Theorem 1 (for Λ with generalised Cartan matrix A as in Section 1.4.2 above).

Let $c_{+}=B_{+}$be the chamber of the Bruhat-Tits building X for Λ which is fixed by $B=B_{+}$. For each $n \in \mathbb{N}$, we define

$$
U_{+, n}=\left\{g \in U_{+} \mid g . c=c \text { for each chamber } c \text { such that } d\left(c, c_{+}\right) \leq n\right\}
$$

That is, $U_{+, n}$ is the kernel of the action of $U_{+}=U$ on $\operatorname{Ball}\left(c_{+}, n\right)$. We now define a function dist ${ }_{+}: \Lambda \times \Lambda \rightarrow$ \mathbb{R}_{+}by dist ${ }_{+}(g, h)=2$ if $h^{-1} g \notin U_{+}$, and dist $(g, h)=2^{-n}$ if $g^{-1} h \in U_{+}$and $n=\max \left\{k \in \mathbb{N} \mid g^{-1} h \in U_{+, k}\right\}$. It is not hard to see that dist ${ }_{+}$is a left-invariant metric on Λ (see [8]). Let G be the completion of Λ with respect to this metric. The group G is called the completion of Λ in the building topology, and we will refer to G as a topological Kac-Moody group. For example, when $\Lambda=S L_{n}\left(\mathbb{F}_{q}\left[t, t^{-1}\right]\right)$, the topological Kac-Moody group G is $G=S L_{n}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$.

Some properties of topological Kac-Moody groups that we will need are gathered in Proposition 9 below. We state these results only for G as in Theorem 1 above, although they hold more generally.

Proposition 9. Let G be a topological Kac-Moody group as in Theorem 1 above, with G being the completion in the building topology of an incomplete Kac-Moody group Λ.
(1) G is a locally compact, totally disconnected topological group.
(2) Let $\hat{B}, \hat{U}, \hat{P}_{i}$ and \hat{U}_{i} be the closures in G of the subgroups $B=B_{+}, U=U_{+}, P_{i}$ and U_{i} respectively of Λ. Then $\hat{B} \cong T \ltimes \hat{U}$ and $\hat{P}_{i} \cong L_{i} \ltimes \hat{U}_{i}$.
(3) (\hat{B}, N) is a $B N$-pair of G. The corresponding building is canonically isomorphic to X, and so by abuse of notation we will denote it by X as well. The kernel of the action of G on X is the centre $Z(G)$, and $Z(G)=Z(\Lambda)$.
Items (1) and (3) are established by Caprace-Rémy in [8], and item (2) in [8] and [7].
We will refer to \hat{B} as the (standard) Borel subgroup of G, and to \hat{P}_{1} and \hat{P}_{2} as the (maximal or standard) parabolic subgroups of G. Alternatively, we may say that \hat{B} is the Iwahori subgroup of G, and \hat{P}_{1} and \hat{P}_{2} are the parahoric subgroups of G, by analogy with terminology for $G=S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$. To simplify notation, when the context is clear we will write B, P_{1} and P_{2} for the Borel and maximal parabolic subgroups of the topological Kac-Moody group G, rather than respectively \hat{B}, \hat{P}_{1} and \hat{P}_{2}.
1.4.4. Cocompact lattices in G. Let G be as in Theorem 1 above, with Bruhat-Tits building the tree X. By definition, the vertices of X may be described by $V X=G / P_{1} \sqcup G / P_{2}$, and the edges of X by G / B (here, we are abusing notation to write B, P_{1} and P_{2} for the standard Borel/Iwahori and parabolic/parahoric subgroups of the completed group G). It follows that in the G-action on X, the stabiliser of each vertex of X is a conjugate of either P_{1} or P_{2}, and the stabiliser of each edge of X is a conjugate of B.

The action of G on the vertex set $V X$ thus satisfies the hypotheses of Proposition 8 above. Hence $\Gamma<G$ is discrete if and only if Γ acts on X with finite vertex stabilisers, and $\Gamma<G$ discrete is a cocompact lattice in G if and only if $\Gamma \backslash X$ is a finite graph. Thus $\Gamma<G$ is an edge-transitive lattice if and only if Γ is the fundamental group of an edge of groups \mathbb{A} as in the introduction, with A_{0}, A_{1} and A_{2} finite groups. Moreover, the covolume of such a Γ is the sum

$$
\mu(\Gamma \backslash G)=\frac{1}{\left|A_{1}\right|}+\frac{1}{\left|A_{2}\right|}
$$

In particular, if Γ^{\prime} is an edge-transitive lattice in G of minimal covolume (such as the lattices in $G=$ $S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$ constructed by Lubotzky in $\left.[17]\right)$, and $\Gamma=A_{1} *_{A_{0}} A_{2}$ is another edge-transitive cocompact lattice in G, then $\left|A_{i}\right| \leq\left|A_{i}^{\prime}\right|$ for $i=1,2$.

Note that, by construction, G acts without inversions on its Bruhat-Tits tree X. It follows from Proposition 6 above that if A is a finite subgroup of G, then A is contained in (a conjugate of) a standard parabolic/parahoric subgroup P_{i} of G.
1.5. Finite groups. In our quest for the cocompact lattices of Kac-Moody groups, we will need to look at the finite subgroups of G. The following celebrated result of L.E. Dickson and its corollary will be especially useful for us.

Theorem 10 (Dickson, 6.5.1 of [16]). Let $K=P S L_{2}(q)$, where $q=p^{a} \geq 5$ and p is a prime. Set $d=(2, q-1)$. Then K has subgroups of the following isomorphism types (in the indicated cases), and every subgroup of K is isomorphic to a subgroup of one of the following groups:
(1) Borel subgroups of K, which are Frobenius groups of order $q(q-1) / d$;
(2) Dihedral groups of orders $2(q-1) / d$ and $2(q+1) / d$;
(3) The groups $P G L_{2}\left(p^{b}\right)$ (if $2 b \mid a$) and $P S L_{2}\left(p^{b}\right)$ (if b is a proper divisor of a);
(4) The alternating group A_{5}, if 5 divides $|K|$;
(5) The symmetric group S_{4}, if 8 divides $|K|$; and
(6) The alternating group A_{4}.

Corollary 11. Let $K=S L_{2}(q)$, where $q=p^{a}$ with p a prime, and suppose A is a proper subgroup of K.
If $p=2$ and $q+1$ divides $|A|$, then either $A \cong C_{q+1}$, a cyclic group of order $q+1$, or $A \cong D_{2(q+1)}$, a dihedral group of order $2(q+1)$.

If p is odd and the image of A in $K / Z(K) \cong P S L_{2}(q)$ has order divisible by $q+1$, then $Z(K)=\langle-I\rangle \leq A$. Moreover, either A is a subgroup of K of order $2(q+1)$ such that $A / Z(K) \cong D_{q+1}$, a dihedral group of order $q+1$, or one of the following conditions hold:
(1) $q=5, A \cong S L_{2}(3)$,
(2) $q=7, A \cong 2 S_{4}$,
(3) $q=9, A \cong S L_{2}(5)$,
(4) $q=11, A \cong S L_{2}(3)$ or $A \cong S L_{2}(5)$,
(5) $q=19, A \cong S L_{2}(5)$,
(6) $q=23, A \cong 2 S_{4}$,
(7) $q=29, A \cong S L_{2}(5)$,
(8) $q=59, A \cong S L_{2}(5)$.

Proof. Suppose that $p=2$. Then $d=1$ and $S L_{2}(q)=P S L_{2}(q)$. Assume first that $q \geq 5$. Then if $q+1$ divides $|A|$, Dickson's Theorem asserts that both C_{q+1} and $D_{2(q+1)}$ are the obvious candidates for the role of A. If not, A would be one of the following groups: A_{4}, S_{4} or A_{5}. Then $q+1$ would divide 12,24 or 60 . Since q is a power of 2 and $q \geq 5$, this is not possible, proving the result. Otherwise $q \in\{2,4\}$, and the result follows immediately from the structure of $K=S L_{2}(2) \cong S_{3}$, and $K=S L_{2}(4) \cong A_{5}$.

Suppose now that p is odd. This time $d=2$ and the image of A in $P S L_{2}(q)$ is a group of order divisible by $q+1$. Since $|A|$ is even while K contains a unique involution $-I,\langle-I\rangle=Z(K) \leq A$. If $q \geq 5$, using the same argument as above, we obtain the desired conclusion. Otherwise $q=3$ and $K=S L_{2}(3) \cong Q_{8} C_{3}$, and the result follows immediately.

2. Embedding amalgams in G

Let $\Gamma=A_{1} *_{A_{0}} A_{2}$ be an amalgam of finite groups. In this section we describe two methods that we will use to determine whether Γ embeds in a Kac-Moody group G as in Theorem 1 above as an edgetransitive cocompact lattice. In Section 2.1 we present a special case of Bass' covering theory for graphs of groups (see [2]), and in Section 2.2 we prove Lemma 4 of the introduction, which generalises Lemma 3.1 of Lubotzky [17] on embedding amalgams into the group $G=S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$.
2.1. Coverings of graphs of groups. Lemma 12 below is a special case of Bass' covering theory for graphs of groups [2]. Coverings Φ of graphs of groups are defined in Section 2.6 of [2]. The notion of covering that we use in the statement of Lemma 12 below is a simplification of this definition, and is equivalent to the covering $\partial \Phi$ defined in Section 2.9 of [2]. As explained in Section 2.9 of [2], $\partial \Phi$ is a covering if and only if Φ is a covering (in the original sense of Section 2.6 of [2]). Moreover, given a (simplified) covering as below, it is not hard to construct a covering in the original sense. Hence we may work with this less complicated definition.

Lemma 12. Let

be a graph of finite groups, defined with respect to monomorphisms $\alpha_{i}: A_{0} \rightarrow A_{i}$ for $i=1,2$. Let G be as in Theorem 1 above and let \mathbb{G} be the graph of groups

induced by the action of G on its Bruhat-Tits tree X, where for $i=1,2$, the monomorphism $\phi_{i}: B \rightarrow P_{i}$ is inclusion. The following are equivalent.
(1) The amalgam $\Gamma=A_{1} *_{A_{0}} A_{2}$ embeds as a cocompact edge-transitive lattice in G.
(2) There is a covering of graphs of groups $\Phi: \mathbb{A} \rightarrow \mathbb{G}$. That is, there are monomorphisms

$$
\rho_{0}: A_{0} \hookrightarrow B \quad \text { and } \quad \rho_{i}: A_{i} \hookrightarrow P_{i} \quad \text { for } i=1,2
$$

such that:
(a) for some $\delta_{1} \in P_{1}$ and $\delta_{2} \in P_{2}$, the following diagram commutes:

where for $i=1,2$ and $g \in P_{i}, \operatorname{ad}\left(\delta_{i}\right)(g)=\delta_{i} g \delta_{i}^{-1}$; and
(b) for $i=1,2$ the map of cosets

$$
A_{i} / \alpha_{i}\left(A_{0}\right) \quad \longrightarrow \quad P_{i} / \phi_{i}(B)
$$

induced by

$$
g \mapsto \rho_{i}(g) \delta_{i}
$$

is a bijection.
Proof. A covering of graphs of groups induces a monomorphism of fundamental groups and an isomorphism of universal covers (see Proposition 2.7 of [2]). The equivalence between (1) and (2) in Lemma 12 then follows by Proposition 8 above applied to the action of G on X (see Section 1.4 above).
2.2. Generalisation of a method of Lubotzky. In [17], Lubotzky studied the lattices of $S L_{2}(K)$, for K a nonarchimedean local field. An important tool in his work is Lemma 3.1 of [17], in which he gives a sufficient condition for an amalgam of two finite subgroups of $S L_{2}(K)$ to be a cocompact lattice in G. In Lemma 4, stated in the introduction, we generalise this lemma, and also prove the converse of this generalisation. Our proof differs in some details from that of Lubotzky. For convenience we restate Lemma 4 here.

Lemma 13. Let q_{1} and q_{2} be positive integers and let X be the $\left(q_{1}+1, q_{2}+1\right)$-biregular tree. Let G be a locally compact group of automorphisms of X, which acts on X with compact open stabilisers and with fundamental domain an edge $\left(x_{1}, x_{2}\right)$, where for $i=1,2$ the vertex x_{i} of X has valence $q_{i}+1$.

Suppose for $i=1,2$ that A_{i} is a finite subgroup of the stabiliser $G_{x_{i}}$ such that:
(1) A_{i} acts transitively on the set of $q_{i}+1$ neighbours of x_{i} in X; and
(2) $\operatorname{Stab}_{A_{i}}\left(x_{3-i}\right)=A_{1} \cap A_{2}$.

Then $\Gamma=\left\langle A_{1}, A_{2}\right\rangle$, the group generated by A_{1} and A_{2}, is a cocompact lattice in G, with fundamental domain the edge $\left(x_{1}, x_{2}\right)$. Moreover, Γ is isomorphic to the free product with amalgamation $\Gamma \cong A_{1} *_{A_{1} \cap A_{2}} A_{2}$, and $\Gamma_{x_{i}}=A_{i}$.

Conversely, suppose Γ is a cocompact lattice in G with fundamental domain the edge $\left(x_{1}, x_{2}\right)$. Let $A_{i}=\Gamma_{x_{i}}$. Then $\Gamma \cong A_{1} *_{A_{1} \cap A_{2}} A_{2}$, and A_{i} is a finite subgroup of $G_{x_{i}}$ such that (1) and (2) hold.

Proof. Let Δ be the abstract free product with amalgamation $\Delta=A_{1} *_{A_{1} \cap A_{2}} A_{2}$ and let $\varphi: \Delta \rightarrow \Gamma$ be the homomorphism onto Γ. Let $a_{1}, \ldots, a_{q_{1}}$ (respectively, $b_{1}, \ldots, b_{q_{2}}$) be representatives of the nontrivial cosets of $A_{1} \cap A_{2}$ in A_{1} (respectively, A_{2}). A word $w \in \Delta$ then has normal form $w=a_{i_{1}} b_{j_{1}} \cdots a_{i_{t}} b_{j_{t}} c$ where $c \in A_{1} \cap A_{2}$, and possibly $a_{i_{1}}=1$ or $b_{i_{t}}=1$.

Let e be the edge $\left(x_{1}, x_{2}\right)$. We claim that $d(\varphi(w) e, e) \geq t$ for all $w \in \Delta$ with normal form as above. For $t=0$ we have $\varphi(w)=\varphi(c) \in A_{1} \cap A_{2}$, hence $\varphi(w)$ fixes e, and so $d(\varphi(w) e, e)=d(e, e)=0$. For $t=1$, if $a_{i_{1}}=1$ (respectively, $b_{i_{1}}=1$) then $d(\varphi(w) \cdot e, e)=1$ since the edge $\varphi(w) \cdot e$ will share the vertex x_{2} (respectively, x_{1}) with e. Otherwise, if neither $a_{i_{1}}$ nor $b_{i_{1}}$ is trivial, we have $d(\varphi(w) \cdot e, e)=2 \geq 1$.

For $t \geq 2$, assume inductively that for $w^{\prime}=a_{i_{2}} b_{i_{2}} \cdots a_{i_{t}} b_{i_{t}} c$, the distance $d\left(\varphi\left(w^{\prime}\right) e, e\right) \geq t-1$. Note that the edge path from e to $\varphi\left(w^{\prime}\right) e$ has the vertex x_{1} in its interior since $a_{i_{2}} \neq 1$. Applying the element $\varphi\left(b_{i_{1}}\right)$, which fixes x_{2} and does not fix e, we obtain $d\left(\varphi\left(b_{i_{1}}\right) \varphi\left(w^{\prime}\right) e, e\right) \geq(t-1)+1 \geq t$, and hence (whether or not $a_{i_{1}}$ is trivial) we conclude that $d(\varphi(w) e, e) \geq t$ as claimed.

In particular, we have shown that $\varphi(w) e \neq e$ unless $w \in A_{1} \cap A_{2}$. Suppose now that $\varphi(w)=1$. Then $d(\varphi(w) e, e)=0$ and so $w \in A_{1} \cap A_{2}$, but the map φ is injective on $A_{1} \cap A_{2}$, and thus $w=1$. Hence Δ is isomorphic to Γ, and we have that Γ is discrete. Suppose $g \in \Gamma_{x_{i}}$. If g fixes e then $g \in A_{1} \cap A_{2}$, and if g does not fix e then g is contained in some coset of $A_{1} \cap A_{2}$ in A_{i}. Hence $\Gamma_{x_{i}}=A_{i}$.

We claim that Γ acts transitively on the edges of X. By induction, every edge of X at distance $s \geq 1$ from e can be written as $g \cdot e$, where $g \in \Gamma$ is a word of length s with letters alternating between a_{i} and b_{j}. Hence Γ acts transitively on the edges of X. This completes the proof of one direction of the lemma.

For the converse, the isomorphism $\Gamma \cong A_{1} *_{A_{1} \cap A_{2}} A_{2}$ is a standard result of Bass-Serre theory. The inclusion $A_{i} \leq G_{x_{i}}$ holds because $\Gamma \leq G$. Properties (1) and (2) hold since Γ acts transitively on the set of edges of X, with fundamental domain the edge $\left(x_{1}, x_{2}\right)$.

3. Proof of Theorems 1 and 2 For $S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$

We are now ready to proceed with a proof of our main results. In this section, we provide a proof of Theorems 1 and 2 above for the case $G=S L_{2}(K)$, where $K=\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)$ with $q=p^{a}, p$ a prime. We first restate Theorems 1 and 2 for this case. Then in Proposition 14 below, we use the Levi decomposition of the parahoric subgroups P_{i} of G, together with finite group theory, to restrict the possible vertex groups A_{1} and A_{2} in a cocompact edge-transitive lattice $\Gamma=A_{1} *_{A_{0}} A_{2}$ in G. The remaining argument is subdivided into two cases: $p=2$, where we apply Lemma 12 above, and p odd, where we use Lemma 13.

Theorem 1^{\prime}. Let $G=S L_{2}(K)$ with $K=\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)$ where $q=p^{a}$ with p a prime.
(1) If $p=2$, then (up to isomorphism) there is only one edge-transitive cocompact lattice Γ in G, namely, the amalgam of cyclic groups $\Gamma=C_{q+1} * C_{q+1}$.
(2) If p is odd and $q \equiv 1(\bmod 4)$, then G does not contain any edge-transitive cocompact lattices unless $q=p \in\{5,29\}$, in which case $\Gamma=A_{1} *_{A_{0}} A_{2}$ where
(a) if $q=5, A_{1} \cong A_{2} \cong S L_{2}(3)$ and $A_{0} \cong C_{4}$; and
(b) if $q=29, A_{1} \cong A_{2} \cong S L_{2}(5)$ and $A_{0} \cong C_{4}$.
(3) If p is odd and $q \equiv 3(\bmod 4)$, the following are the only edge-transitive cocompact lattices Γ in G :
(a) for all such $q, \Gamma=A_{1} *_{A_{0}} A_{2}$ where for $i=1,2, A_{i}$ is a subgroup of order $2(q+1)$ isomorphic to the normaliser of a non-split torus in $S L_{2}(q)$, and $A_{0} \cong C_{2}$.
(b) If $q=7, \Gamma=A_{1} *_{A_{0}} A_{2}$ where $A_{1} \cong A_{2} \cong 2 S_{4}$ and $A_{0} \cong C_{6}$.
(c) If $q=11, \Gamma=A_{1} *_{A_{0}} A_{2}$ and one of the following holds:
(i) $A_{1} \cong A_{2} \cong S L_{2}(3)$ and $A_{0} \cong C_{2}$,
(ii) $A_{1} \cong A_{2} \cong S L_{2}(5)$ and $A_{0} \cong C_{10}$.
(d) If $q=19, \Gamma=A_{1} *_{A_{0}} A_{2}$ where $A_{1} \cong A_{2} \cong S L_{2}(5)$ and $A_{0} \cong C_{6}$.
(e) If $q=23, \Gamma=A_{1} *_{A_{0}} A_{2}$ where $A_{1} \cong A_{2} \cong 2 S_{4}$ and $A_{0} \cong C_{2}$.
(f) If $q=59, \Gamma=A_{1} *_{A_{0}} A_{2}$ where $A_{1} \cong A_{2} \cong S L_{2}(5)$ and $A_{0} \cong C_{2}$.

Proof. Suppose the amalgam of finite groups $\Gamma=A_{1} *_{A_{0}} A_{2}$ is a cocompact edge-transitive lattice in G. Since the Bruhat-Tits building X for G is a $(q+1)$-regular tree, it follows that the edge group A_{0} has index $q+1$ in both of the vertex groups A_{1} and A_{2}. By Lemma 12 or Lemma 13 above, for $i=1,2$ there are injective group homomorphisms $A_{i} \hookrightarrow P_{i}$, where P_{i} is a standard parahoric subgroup of G. Hence A_{1} and A_{2} are finite subgroups of G of order divisible by $(q+1)$. Since the action of G on its Bruhat-Tits tree X is not faithful if p is odd (it is faithful when $p=2$), we must take the kernel of the action $Z(G)$ into consideration. Thus what we are really looking for are finite subgroups A_{i} of G for $i=0,1,2$, such that when we look at their images \bar{A}_{i} in $G / Z(G) \cong P S L_{2}(K), \bar{A}_{0}$ has index $(q+1)$ in both \bar{A}_{1} and \bar{A}_{2}, and the images \bar{A}_{1} and \bar{A}_{2} in $G / Z(G)$ have orders divisible by $(q+1)$ as well.

Proposition 14. Let $G=S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right.$). If X is a finite subgroup of G such that $|X Z(G) / Z(G)|$ is divisible by $(q+1)$, then $X \geq Z(G)$ and X is isomorphic to a subgroup A of $S L_{2}(q)$ listed in the conclusions to Corollary 11 above.

Proof. By Proposition 6 above, each finite subgroup of G sits inside a standard parahoric subgroup of G, which is isomorphic to $P=S L_{2}\left(\mathbb{F}_{q}\left[\left[t^{-1}\right]\right]\right)$. Notice that $Z(G)=\langle-I\rangle$ is contained inside any standard parahoric subgroup of G.

The group P may be written as the semi-direct product, with respect to the conjugation action, of

$$
L \cong S L_{2}(q) \text { and } U=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in P \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod t^{-1}\right.\right\}
$$

Here, U is the principal congruence subgroup of P and is an infinite pro- p group. It contains a natural chain of subgroups

$$
U=U_{1}>U_{2}>\cdots>U_{i}>\cdots
$$

where

$$
U_{i}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in P \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod t^{-i}\right.\right\}
$$

We will need the following well-known facts.
Lemma 15. The chain of subgroups U_{i} has the following properties:
(1) $\bigcap_{i} U_{i}=\{1\}$.
(2) Each U_{i} is a normal subgroup of P. In particular, each U_{i} contains U_{i+1} as a normal subgroup, and each U_{i} is invariant under the conjugation action of L.
(3) For each i, the quotient group U_{i} / U_{i+1} is an elementary abelian p-group.
(4) The quotient U_{i} / U_{i+1} has the structure of an L-module, induced by the conjugation action of L on each U_{i}.
Lemma 16. Let $g \in G$ be an element of order p. Then g is G-conjugate to $\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$, for some $b \in \mathbb{F}_{q}\left(\left(t^{-1}\right)\right)$ with $b \neq 0$, and its centraliser $C_{G}(g)$ is an elementary abelian $p-$ group.
Proof. As is well known, as an algebraic group $G=S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$ is a group with a $B N$-pair of rank 1. Its standard Borel subgroup is \mathcal{B}, the group of upper triangular matrices in G, which in turn has a unipotent radical \mathcal{U}, the group of strictly upper triangular matrices.

If $g \in G$ is an element of order $p,\langle g\rangle$ is a closed unipotent subgroup of G. We may now apply the Borel-Tits Theorem [4], to conclude that $\langle g\rangle \leq \mathcal{B}^{h}$ for some $h \in G$ (in fact, $g \in \mathcal{U}^{h} \leq \mathcal{B}^{h}$), and $C_{G}(g) \leq N_{G}(\langle g\rangle) \leq \mathcal{B}^{h}$. Now simple matrix calculation finishes the proof.

We now use Lemmas 15 and 16 above, together with Corollary 11 above, to prove Proposition 14. Assume there is a finite subgroup X of P such that $(q+1)$ divides $|X Z(G) / Z(G)|$. Then in particular, $|X|$ is divisible by $(q+1)$. If $X \cap U=1$, then X is isomorphic to a subgroup of $L \cong S L_{2}(q)$. Using Corollary 11 and the fact that $Z(G)=Z(L)=\langle-I\rangle$ we obtain the desired conclusion.

We therefore assume by contradiction that $X \cap U \neq 1$, and so since $U=U_{1}$, we have that $X \cap U_{1} \neq 1$. By part (1) of Lemma 15, it follows that $X \cap U_{n}=1$ for some $n>1$. Choose the smallest such n. The group X is then isomorphic to a subgroup Y of $\bar{P}:=P / U_{n}$, with U_{n} a proper subgroup of U. Now $\bar{P}=\bar{L} \bar{U}$ where $\bar{L} \cong S L_{2}(q)$ and $\bar{U}=U / U_{n}$ is a (nontrivial) p-group. Since $Y \leq \bar{P}$ and $(q+1)||Y|$, and since $Y \cap \bar{U}$ is a p-group, we have that $Y / Y \cap \bar{U} \cong Y \bar{U} / \bar{U}$ is isomorphic to a finite subgroup of $S L_{2}(q)$ of order divisible by $(q+1)$.

Using Corollary 11 together with the Schur-Zassenhaus Theorem (cf. [1]) we obtain that Y must contain a subgroup Z such that either $Z \cong C_{q+1}$, or Z is non-abelian of order coprime to p and divisible by $q+1$ (if $q=9$, take $\left.Z \cong C_{10} \leq S L_{2}(5) \leq S L_{2}(9)\right)$. Also, $Z \cap \bar{U}=1$. Without loss of generality we may assume that $Z \leq \bar{L}$.

By the minimality of n, we have that $H:=X \cap U_{n-1} \neq 1$. Hence, H is a non-trivial normal subgroup of X. Since $H U_{n} \leq U_{n-1}$ and $H \cap U_{n}=1$, we have $H \cong H U_{n} / U_{n} \leq U_{n-1} / U_{n}$. Now Lemma 15 (4) implies that H is a non-trivial elementary abelian p-subgroup of X normalised by Z^{\prime} where $Z^{\prime} \cong Z$ is the preimage of Z in X.

Let $h \in H$ be any nontrivial element. Then h is a genuine element of order p of G. By Lemma 16 above, we may assume without loss of generality that $h \in \mathcal{U}$ (the group of strictly upper triangular matrices in $\left.G=S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)\right)$. Moreover $C_{G}(h)=\mathcal{U}$. But $H<C_{G}(h)$ since H is abelian, that is, $H<\mathcal{U}$. Hence $C_{G}(H)=\mathcal{U}$. Consider the normaliser $N_{G}(H)$. Since $C_{G}(H)$ is normal in $N_{G}(H)$, we have that \mathcal{U} is normal in $N_{G}(H)$, and thus $N_{G}(H) \leq N_{G}(\mathcal{U})$. But $N_{G}(\mathcal{U})=\mathcal{B}$. In particular, $Z^{\prime} \leq \mathcal{B}$. Since Z^{\prime} is either cyclic of order $q+1$, or is non-abelian of order co-prime to p, this is impossible.

Thus the assumption that $X \cap U \neq 1$ leads to a contradiction, and we have completed the proof of Proposition 14.

In order to complete the proof of Theorem 1^{\prime}, we subdivide the remaining argument into two cases: $p=2$ and p odd.

3.1. Case $\mathbf{p}=2$.

Proposition 17. If $p=2$, the appropriate conclusions of Theorem 1^{\prime} hold. That is, the only cocompact edge-transitive lattice in $G=S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$ is the free product $\Gamma=C_{q+1} * C_{q+1}$, where C_{q+1} is the cyclic group of order $q+1$.

Proof. Assume that $p=2$. Then by Proposition 14 and Corollary 11 above, the vertex groups A_{1} and A_{2} of Γ are either both isomorphic to C_{q+1}, or both isomorphic to the dihedral group $D_{2(q+1)}$ of order $2(q+1)$. We first show that the amalgam with vertex groups $D_{2(q+1)}$ is not a cocompact edge-transitive lattice in G. By Lemma 12 above, it suffices to prove the following proposition.

Proposition 18. Let \mathbb{A} be the edge of groups

$$
\mathbb{A}=D_{2(q+1)} \quad-\quad C_{2} \quad \longrightarrow \quad D_{2(q+1)}
$$

There is no covering of graphs of groups $\Phi: \mathbb{A} \rightarrow \mathbb{G}$, where \mathbb{G} is the edge of groups for $G=P_{1} *_{B} P_{2}$.
Proof. Assume by contradiction that such a covering $\Phi: \mathbb{A} \rightarrow \mathbb{G}$ exists. Recall that the standard parahoric subgroups of G are $P_{1}=S L_{2}\left(\mathbb{F}_{q}\left[\left[t^{-1}\right]\right]\right)$ and

$$
P_{2}=\left\{\left.\left(\begin{array}{cc}
a & t b \\
t^{-1} c & d
\end{array}\right) \right\rvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in P_{1}\right\},
$$

and that the Iwahori subgroup of G is

$$
B=P_{1} \cap P_{2}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in P_{1} \right\rvert\, c \equiv 0 \quad \bmod t^{-1}\right\}
$$

Let the edge group $A_{0} \cong C_{2}$ be generated by an involution s. The vertex groups of \mathbb{A} may then be given by the presentations

$$
A_{i}=\left\langle s, t_{i} \mid s^{2}=t_{i}^{2}=\left(s t_{i}\right)^{q+1}=1\right\rangle \cong D_{2(q+1)}
$$

for $i=1,2$.
Let $\rho_{0}: A_{0} \hookrightarrow B$ and $\rho_{i}: A_{i} \hookrightarrow P_{i}(i=1,2)$ be the monomorphisms as in Lemma 12. It follows that the elements $\rho_{0}(s) \in B, \rho_{1}\left(t_{1}\right) \in P_{1}$ and $\rho_{2}\left(t_{2}\right) \in P_{2}$ must all be involutions. By condition (2a) in Lemma 12, we have that for $i=1,2$

$$
\begin{equation*}
\rho_{i}(s)=\delta_{i} \rho_{0}(s) \delta_{i}^{-1} \tag{1}
\end{equation*}
$$

Now applying condition (2b) of Lemma 12, we observe that for $i=1,2$, the elements $1, t_{i}$ and $s t_{i}$ represent three distinct cosets of $A_{0}=\langle s\rangle$ in $A_{i}=\left\langle s, t_{i}\right\rangle$. Hence the elements $\delta_{i}, \rho_{i}\left(t_{i}\right) \delta_{i}$ and $\rho_{i}(s) \rho_{i}\left(t_{i}\right) \delta_{i}$ must represent three distinct cosets of B in P_{i}. Let

$$
\gamma_{i}=\delta_{i}^{-1} \rho_{i}\left(t_{i}\right) \delta_{i}
$$

Then γ_{i} is an involution of P_{i}, but $\gamma_{i} \notin B$. Similarly, applying Equation (1) above, we have that

$$
\begin{equation*}
\left(\rho_{i}\left(t_{i}\right) \delta_{i}\right)^{-1} \rho_{i}(s) \rho_{i}\left(t_{i}\right) \delta_{i}=\delta_{i}^{-1} \rho_{i}\left(t_{i}\right) \delta_{i} \rho_{0}(s) \delta_{i}^{-1} \rho_{i}\left(t_{i}\right) \delta_{i}=\gamma_{i} \rho_{0}(s) \gamma_{i} \tag{2}
\end{equation*}
$$

is an involution of $P_{i}-B$.
We next record the form of involutions of $B, P_{1}-B$ and $P_{2}-B$.
Lemma 19. The involutions of the edge group B are as follows:

$$
\begin{aligned}
&\left\{g \in B \mid g^{2}=\right.1\}=\left\{\left.\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \right\rvert\, b \in \mathbb{F}_{q}\left[\left[t^{-1}\right]\right], \quad b \neq 0\right\} \cup\left\{\left(\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right)\left|c \in \mathbb{F}_{q}\left[\left[t^{-1}\right]\right], \quad c \neq 0, \quad t^{-1}\right| c\right\} \\
& \cup\left\{\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right)\left|a, b, c \in \mathbb{F}_{q}\left[\left[t^{-1}\right]\right], \quad b \neq 0, \quad c \neq 0, \quad t^{-1}\right| c, \quad a^{2}+b c=1\right\}
\end{aligned}
$$

The involutions of the vertex groups P_{1} and P_{2} which are not contained in the edge group B are as follows:
(1) $\left\{g \in P_{1}-B \mid g^{2}=1\right\}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right) \right\rvert\, c \in \mathbb{F}_{q}\left[\left[t^{-1}\right]\right], \quad c \neq 0, \quad t^{-1} \nmid c\right\} \\
& \cup\left\{\left.\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{F}_{q}\left[\left[t^{-1}\right]\right], \quad b \neq 0, \quad c \neq 0, \quad t^{-1} \nmid c, \quad a^{2}+b c=1\right\}
\end{aligned}
$$

(2) $\left\{g \in P_{2}-B \mid g^{2}=1\right\}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \right\rvert\, \quad b=b_{-1} t+b_{0}+b_{1} t^{-1}+\cdots, \quad b_{-1} \neq 0\right\} \\
& \cup\left\{\left.\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right) \right\rvert\, a, c \in \mathbb{F}_{q}\left[\left[t^{-1}\right]\right], b=b_{-1} t+b_{0}+b_{1} t^{-1}+\cdots, b_{-1} \neq 0, c \neq 0, t^{-1} \nmid c, a^{2}+b c=1\right\} .
\end{aligned}
$$

Continuing with the proof of Proposition 18, suppose first that

$$
\rho_{0}(s)=\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \in B
$$

with $b \neq 0$. Noting that involutions of P_{2} have diagonal entries equal, we may let

$$
\gamma_{2}=\left(\begin{array}{ll}
e & f \\
g & e
\end{array}\right) \in P_{2}-B
$$

Using $e^{2}+f g=1$, we compute

$$
\gamma_{2} \rho_{0}(s) \gamma_{2}=\left(\begin{array}{cc}
1+b e g & b e^{2} \\
b g^{2} & 1+b e g
\end{array}\right)
$$

Now $b, e \in \mathbb{F}_{q}\left[\left[t^{-1}\right]\right]$ hence $b e^{2} \in \mathbb{F}_{q}\left[\left[t^{-1}\right]\right]$. But this contradicts $\gamma_{2} \rho_{0}(s) \gamma_{2} \in P_{2}-B$. So $\rho_{0}(s)$ cannot be upper triangular. A similar computation using γ_{1} shows that $\rho_{0}(s)$ cannot be lower triangular.

We are left with the possibility that

$$
\rho_{0}(s)=\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right) \in B
$$

For $i=1,2$ let

$$
\gamma_{i}=\left(\begin{array}{ll}
e_{i} & f_{i} \\
g_{i} & e_{i}
\end{array}\right) \in P_{i}-B
$$

We compute

$$
\gamma_{i} \rho_{0}(s) \gamma_{i}=\left(\begin{array}{cc}
a+b e_{i} g_{i}+c e_{i} f_{i} & b e_{i}^{2}+c f_{i}^{2} \\
b g_{i}^{2}+c e_{i}^{2} & a+b e_{i} g_{i}+c e_{i} f_{i}
\end{array}\right)
$$

Since $\gamma_{1} \rho_{0}(s) \gamma_{1} \in P_{1}-B$, we have that $t^{-1} \nmid b g_{1}^{2}+c e_{1}^{2}$. As $\rho_{0}(s) \in B$, we have $t^{-1} \mid c$, so t^{-1} cannot divide b. Since $b \in \mathbb{F}_{q}\left[\left[t^{-1}\right]\right]$, it follows that

$$
b=b_{0}+b_{1} t^{-1}+\cdots
$$

with $b_{0} \neq 0$. Now $\gamma_{2} \rho_{0}(s) \gamma_{2} \in P_{2}-B$, so

$$
b e_{2}^{2}+c f_{2}^{2}=k_{-1} t+\cdots
$$

with the coefficient $k_{-1} \neq 0$. Since $b, e_{2} \in \mathbb{F}_{q}\left[\left[t^{-1}\right]\right]$, the leading term $k_{-1} t$ must come from $c f_{2}^{2}$. Now $\gamma_{2} \in P_{2}-B$ so $f_{2}=l_{-1} t+\cdots$ with $l_{-1} \neq 0$. Hence

$$
c=m_{1} t^{-1}+\cdots
$$

where $m_{1} l_{-1}^{2}=k_{-1}$, in particular $m_{1} \neq 0$. We now have

$$
1=a^{2}+b c=\left(a_{0}+a_{1} t^{-1}+\cdots\right)^{2}+\left(b_{0}+b_{1} t^{-1}+\cdots\right)\left(m_{1} t^{-1}+\cdots\right)=a_{0}^{2}+a_{1}^{2} t^{-2}+\cdots+b_{0} m_{1} t^{-1}+\cdots
$$

and the right-hand side can never equal 1 , a contradiction.
We conclude that there is no covering of graphs of groups $\Phi: \mathbb{A} \rightarrow \mathbb{G}$.
Since the amalgam of dihedral groups $D_{2(q+1)}$ cannot embed as a cocompact edge-transitive lattice in G, the only possibility remaining is the amalgam of cyclic groups $\Gamma=C_{q+1} * C_{q+1}$. Lubotzky proves that this amalgam does embed as a cocompact lattice in G (Theorem 3.3 of [17]); alternatively one may easily construct a covering of graphs of groups as in Lemma 12 above. This completes the proof of Proposition 17.

We remark that Proposition 17 above could have been proved using different results. For example, Lubotzky showed in [17] that the free product $\Gamma=C_{q+1} * C_{q+1}$ is the cocompact lattice of minimal covolume in G (when $p=2$). By the discussion of covolumes in Section 1.4.4 above, it follows that an amalgam with vertex groups $D_{2(q+1)}$ cannot embed in G, since $\left|D_{2(q+1)}\right|>\left|C_{q+1}\right|$. Now, Lubotzky's result relied upon Theorem 7 above. It follows (with some work) from Theorem 7 that a cocompact lattice Γ in G cannot contain involutions, which also rules out the amalgam with vertex groups $D_{2(q+1)}$.

3.2. Case p odd.

Proposition 20. If p is odd, the appropriate conclusions of Theorem 1^{\prime} hold.
Proof. Notice that in this case $Z(G) \cong C_{2}$ and $Z(G) \leq P_{i}$. In fact, $Z(G)$ is the unique subgroup of P_{i} of order 2. Now Proposition 14 together with Corollary 11 imply that $A_{1} \cap A_{2}$ contains $Z(G)$, and that for $i=1,2$ both of the A_{i} are isomorphic to one of the subgroups listed in the conclusions to Corollary 11.

Suppose first that $q \equiv 3(\bmod 4)$. If A_{i} is isomorphic to a normaliser of a non-split torus in $S L_{2}(q)$, then just as Lubotzky in the proof of Lemma 3.5 of [17], we may conclude that $\Gamma=A_{1} * A_{0} A_{2}$ with $A_{0}=Z(G)$ is a cocompact edge-transitive lattice in G. In fact, if $p \notin\{7,11,19,23,59\}$, Lubotzky shows that Γ is the cocompact lattice of minimal covolume. For $p \in\{7,11,19,23,59\}$, again Lubotzky's argument shows that all the possibilities listed in Theorem 1^{\prime} hold, and in fact unless $p=11$ and $A_{i} \cong S L_{2}(3)$, they all are the cocompact lattices of minimal covolume in G.

Assume now that $q \equiv 1(\bmod 4)$, and that A_{i} has order $2(q+1)$ and is such that $A / Z(H) \cong D_{q+1}$. This time the argument of Lemma 3.5 [17] will not work, because as was shown in [18], A_{i} does not act
transitively on the neighbours of x_{i}. In fact, now Lemma 13 above implies that G does not contain edgetransitive cocompact lattices unless possibly one of the following holds: $q=5$ and $A_{1} \cong A_{2} \cong S L_{2}(3)$, or $q \in\{9,29\}$ and $A_{1} \cong A_{2} \cong S L_{2}(5)$. If $q=5$, then indeed $A_{i} \cong S L_{2}(3)$ acts transitively on the neighbours of x_{i}, as $\left|A_{i} \cap \operatorname{Stab}_{G}\left(x_{3-i}\right)\right|=4=\left|A_{1} \cap A_{2}\right|$, and so $\left|A_{i}: A_{i} \cap \operatorname{Stab}_{G}\left(x_{3-i}\right)\right|=6=q+1$, which means the conditions of Lemma 13 are satisfied. The obtained cocompact lattice is yet another from the series of examples of Lubotzky of lattices of minimal covolume. Similarly, if $q=29, A_{i} \cong S L_{2}(5)$ acts transitively on the neighbours of x_{i} as $\left|A_{i} \cap \operatorname{Stab}_{G}\left(x_{3-i}\right)\right|=4=\left|A_{1} \cap A_{2}\right|$, and so $\left|A_{i}: A_{i} \cap S t_{G}\left(x_{3-i}\right)\right|=30=q+1$, and again the resulting lattice is the one of minimal covolume.

Finally, suppose $q=9$ and $A_{i} \cong S L_{2}(5)$. Assume $\Gamma=A_{1} *_{A_{1} \cap A_{2}} A_{2}$ is a cocompact edge-transitive lattice of G. Take $u \in A_{1}$ of order 3. By Lemma $16, u$ is conjugate to an element of \mathcal{U}, and so without loss of generality we may assume that $u \in \mathcal{U}$. And so $u=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$ for some $b \in \mathbb{F}_{q}\left(\left(t^{-1}\right)\right)$. Consider a sequence of elements $\left\{g_{n}\right\} \subseteq \mathcal{B}$ with $g_{n}:=\left(\begin{array}{cc}t^{-n} & 0 \\ 0 & t^{n}\end{array}\right)$. Then $g_{n} u g_{n}^{-1}=\left(\begin{array}{cc}1 & t^{-2 n} b \\ 0 & 1\end{array}\right)$. Clearly, as $n \rightarrow \infty, g_{n} u g_{n}^{-1} \rightarrow 1_{G}$. In particular, u^{G} is not closed, which contradicts Theorem 7 above. Hence Γ is not a cocompact lattice in G. We have now completed the proof of Proposition 20.

A combination of Propositions 17 and 20 now completes the proof of Theorem 1^{\prime}.

4. Proof of the Main Result for Kac-Moody Groups

In this section we give a proof of our main result in its general setting. Let G be a topological Kac-Moody group of rank 2 with symmetric Cartan matrix $\left(\begin{array}{cc}2 & -m \\ -m & 2\end{array}\right), m \geq 2$, defined over a field $\mathbb{F}=\mathbb{F}_{q}$ with $q=p^{a}$, where p is a prime. Suppose Γ is a cocompact edge-transitive lattice in G with quotient a single edge. Since G naturally acts on its Bruhat-Tits building X, which in this case is a $(q+1)$-regular tree, we may apply Lemma 13 to conclude that $\Gamma=A_{1} *_{A_{0}} A_{2}$ where A_{1} and A_{2} are finite groups of order divisible by $(q+1)$, since the edge group A_{0} has index $(q+1)$ in both A_{1} and A_{2}. Again the action of G on its Bruhat-Tits tree does not have to be faithful, and so we must take the kernel of the action $Z(G)$ into consideration. Thus what we are really looking for are finite subgroups A_{i} of G for $i=0,1,2$, such that when we look at their images \bar{A}_{i} in $G / Z(G), \bar{A}_{0}$ has index $(q+1)$ in both \bar{A}_{1} and \bar{A}_{2}, and both \bar{A}_{1} and \bar{A}_{2} are finite subgroups of $G / Z(G)$ of order divisible by $(q+1)$.

We first show in Section 4.1 below that Γ does not contain p-elements (Proposition 5 of the introduction). We will then use this to prove Proposition 40 below, which restricts the possible finite subgroups \bar{A}_{1} and \bar{A}_{2}, in analogy with Proposition 14 for the case $G=S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$ in Section 3 above.
4.1. Cocompact lattices do not contain \mathbf{p}-elements. In the section we prove the following result, which was stated as Proposition 5 of the introduction.

Proposition 21. If Γ is a cocompact lattice of G, Γ does not contain p-elements.
Since $|Z(G)| \mid(q-1)^{2}$, while we are talking about p-elements, without loss of generality we may assume that $Z(G)=1$, i.e., G is simple. To begin the proof, assume there exists $x \in \Gamma$ with $x^{p}=1 \neq x$. Since x is an element of finite order, by the celebrated result of Serre (Proposition 6 above), x is contained in a parabolic/parahoric subgroup of G. Hence, without loss of generality we may suppose that $x \in \hat{B}_{+}$, a Borel (Iwahori) subgroup of G. In fact, as $\hat{B}_{+}=H \hat{U}_{+}$(see Proposition 9 above), we have $x \in \hat{U}_{+}$. We now, in Sections 4.1.1-4.1.3 below, prove the following important lemma:

Lemma 22. Let x be a p-element of \hat{U}_{+}. Then x fixes an end of X.
In Section 4.2 we will use Lemma 22 and its proof to establish a contradiction, and so complete the proof of Proposition 21 above.
4.1.1. Real roots and the structure of U_{+}. In this section we record several results concerning the real roots and associated root groups, and the structure of U_{+}.

Recall that the Weyl group W of G is the infinite dihedral group. The discussion in Section 1.4.2 above then implies that the set Φ^{+}of positive real roots is the disjoint union of the sets

$$
\Phi_{+}^{1}:=\left\{\alpha_{1}, w_{1} \alpha_{2}, w_{1} w_{2} \alpha_{1}, w_{1} w_{2} w_{1} \alpha_{2}, \ldots,\left(w_{1} w_{2}\right)^{n} \alpha_{1},\left(w_{1} w_{2}\right)^{n} w_{1} \alpha_{2}, \ldots\right\}
$$

and

$$
\Phi_{+}^{2}:=\left\{\alpha_{2}, w_{2} \alpha_{1}, w_{2} w_{1} \alpha_{2}, w_{2} w_{1} w_{2} \alpha_{1}, \ldots,\left(w_{2} w_{1}\right)^{n} \alpha_{2},\left(w_{2} w_{1}\right)^{n} w_{2} \alpha_{1}, \ldots\right\}
$$

Each real root may be identified with a half-apartment (half-line) of the standard apartment Σ. These identifications, for the positive real roots, are depicted in Figure 1 below.

Figure 1. The sets of positive real roots Φ_{+}^{1} and Φ_{+}^{2}, with each such root identified with a half-apartment of the standard apartment Σ.

We note that since the generalised Cartan matrix A is symmetric, for any two roots α and α^{\prime} in Φ_{+}^{1}, the root groups U_{α} and $U_{\alpha^{\prime}}$ commute. Similarly, for any two $\beta, \beta^{\prime} \in \Phi_{+}^{2}, U_{\beta}$ and U_{β}^{\prime} commute. For $i=1,2$ let V_{i} be the abelian subgroup of U_{+}defined by

$$
V_{i}:=\left\langle U_{\alpha} \mid \alpha \in \Phi_{+}^{i}\right\rangle .
$$

Lemma 23. U_{+}is the free product of V_{1} and V_{2}.
Proof. By Proposition 4 of Tits [24], the group U_{+}is an amalgamated sum of V_{1} and V_{2}. But $V_{1} \cap V_{2}$ is trivial since there are no prenilpotent pairs of roots $\alpha \in \Phi_{+}^{1}$ and $\beta \in \Phi_{+}^{2}$. Hence $U_{+}=V_{1} * V_{2}$.

For any positive integer n, denote by $\left(w_{1}, w_{2} ; n\right)$ the element $w_{1} w_{2} w_{1} \cdots$ of W which has n letters alternating between w_{1} and w_{2}. Similarly, denote by $\left(w_{2}, w_{1} ; n^{\prime}\right)$ the element $w_{2} w_{1} w_{2} \cdots$ (n^{\prime} letters). Put $\left(w_{1}, w_{2} ; 0\right)=\left(w_{2}, w_{1} ; 0\right)=1$. Then every $w \in W$ is of the form $\left(w_{1}, w_{2} ; n\right)$ or $\left(w_{2}, w_{1} ; n^{\prime}\right)$ for some integer $n \geq 0$ or $n^{\prime} \geq 0$. For $k \geq 0$ and $k^{\prime} \geq 0$, define

$$
i_{k}:=\left\{\begin{array}{ll}
1 & \text { if } k \text { even } \\
2 & \text { if } k \text { odd }
\end{array} \quad \text { and } \quad i_{k^{\prime}}^{\prime}:=\left\{\begin{aligned}
2 & \text { if } k^{\prime} \text { even } \\
1 & \text { if } k^{\prime} \text { odd } .
\end{aligned}\right.\right.
$$

Now for $w=\left(w_{1}, w_{2} ; n\right)$ and $w^{\prime}=\left(w_{2}, w_{1} ; n^{\prime}\right)$, define

$$
U_{w}:=\left\langle U_{\left(w_{1}, w_{2} ; k\right) \alpha_{i_{k}}} \mid 0 \leq k \leq n\right\rangle \quad \text { and } \quad U_{w^{\prime}}:=\left\langle U_{\left(w_{2}, w_{1} ; k^{\prime}\right) \alpha_{i_{k^{\prime}}^{\prime}}} \mid 0 \leq k^{\prime} \leq n^{\prime}\right\rangle
$$

The next result follows from Lemma 23 above.
Corollary 24. If $w=\left(w_{1}, w_{2} ; n\right)$ and $w^{\prime}=\left(w_{2}, w_{1} ; n^{\prime}\right)$, then $\left\langle U_{w}, U_{w^{\prime}}\right\rangle=U_{w} * U_{w^{\prime}}$.
We also note that:

Lemma 25. Let $w=\left(w_{1}, w_{2} ; n\right)$. Then U_{w} is the direct product of the groups $U_{\left(w_{1}, w_{2} ; k\right) \alpha_{i_{k}}}, 0 \leq k \leq n$. Similarly for $w^{\prime}=\left(w_{2}, w_{1} ; n^{\prime}\right)$.
4.1.2. Action of root groups on X. The group U_{+}acts faithfully on X (Corollary on p. 34 of [7]). We now determine in some detail how the individual root groups act on the set of edges of the tree X.

We first introduce some convenient notation for the edges of X. We will say that an edge of X is a left-hand edge if it is closer to the vertex P_{1} than to the vertex P_{2}, and a right-hand edge if it is closer to P_{2} than to P_{1}. Then every edge of X except for B is either left-hand or right-hand. See Figure 2 below.

Figure 2. $\operatorname{Ball}(B, 3)$ in the tree X, in the case $p=2=q$. The edges of X as well as the vertices of the standard apartment Σ are labelled.

By Lemma 9.1 of [9], the set of left-hand edges adjacent to the vertex P_{1} is given by $\left\{x_{1}\left(l_{1}\right) w_{1} B \mid l_{1} \in \mathbb{F}_{q}\right\}$. To simplify notation, we denote by $\left(l_{1}\right)$ the left-hand edge $x_{1}\left(l_{1}\right) w_{1} B$. Similarly, the set of right-hand edges adjacent to P_{2} is $\left\{x_{2}\left(r_{1}\right) w_{2} B \mid r_{1} \in \mathbb{F}_{q}\right\}$, and we write $\left(r_{1}\right)$ for $x_{2}\left(r_{1}\right) w_{2} B$.

By conjugating, for each $l_{1} \in \mathbb{F}_{q}$ the set of left-hand edges in $\operatorname{Ball}(B, 2)-\operatorname{Ball}(B, 1)$ which are adjacent to the edge $x_{1}\left(l_{1}\right) w_{1} B$ is given by $\left\{x_{1}\left(l_{1}\right) w_{1} x_{2}\left(l_{2}\right) w_{2} B \mid l_{1}, l_{2} \in \mathbb{F}_{q}\right\}$. Denote by (l_{1}, l_{2}) the edge $x_{1}\left(l_{1}\right) w_{1} x_{2}\left(l_{2}\right) w_{2} B$. Similarly, denote by $\left(r_{1}, r_{2}\right)$ the right-hand edge $x_{2}\left(r_{1}\right) w_{2} x_{1}\left(r_{2}\right) w_{1} B$, which is adjacent to $x_{2}\left(r_{1}\right) w_{2} B$.

Continuing in this way, for each integer $n \geq 1$ the set of left-hand edges in $\operatorname{Ball}(B, n)-\operatorname{Ball}(B, n-1)$ is the set $\left\{\left(l_{1}, \ldots, l_{n}\right) \mid l_{j} \in \mathbb{F}_{q}\right\}$, where $\left(l_{1}, \ldots, l_{n}\right)$ denotes the edge $x_{1}\left(l_{1}\right) w_{1} \ldots x_{i}\left(l_{n}\right) w_{i} B$, with $i=2$ if n is even and $i=1$ if n is odd. Similarly for the set of right-hand edges in $\operatorname{Ball}(B, n)-\operatorname{Ball}(B, n-1)$. The standard apartment Σ then consists of the edge B together with all left-hand edges $(0, \ldots, 0)$ and all right-hand edges $(0, \ldots, 0)$.

Having established this notation, we will now show that root groups fix certain combinatorial balls in X. Lemma 26 below is a sharpening (for our case) of Lemmas 5 and 6 of Caprace-Rémy [8], which state that if α is a real root such that the distance from the base chamber B to the half-apartment determined by $-\alpha$ is at least $\left(4^{n+1}-1\right) / 3$, then the root group U_{α} fixes $\operatorname{Ball}(B, n+1)$.

Lemma 26. Let $w P_{i}$ be a vertex of the standard apartment Σ. If α is a real root such that α contains the vertex $w P_{i}$, and such that the distance from $-\alpha$ to the vertex $w P_{i}$ is at least n, then U_{α} fixes $\operatorname{Ball}\left(w P_{i}, n\right)$.
Proof. It suffices to show that if the distance from $-\alpha$ to $w P_{i}$ is exactly n, then U_{α} fixes $\operatorname{Ball}\left(w P_{i}, n\right)$. For all real roots α, the root group U_{α} is a conjugate of either $U_{\alpha_{1}}$ or $U_{\alpha_{2}}$ by an element of W. Lemma 26 then follows from Lemma 27 below, which considers the case $\alpha=\alpha_{1}$.

Lemma 27. Let $n \geq 0$ be an integer, and put $i=2$ if n is even and $i=1$ if n is odd. Then $U_{\alpha_{1}}$ fixes $\operatorname{Ball}\left(\left(w_{2}, w_{1} ; n\right) P_{i}, n+1\right)$.
Proof. The proof is by induction on n. We first show that $U_{\alpha_{1}}$ fixes $\operatorname{Ball}\left(P_{2}, 1\right)$. Since $U_{\alpha_{1}}$ fixes the edges B and $w_{2} B$, it suffices to show that for all $t \in \mathbb{F}_{q}$ and for all $0 \neq r_{1} \in \mathbb{F}_{q}, x_{1}(t) x_{2}\left(r_{1}\right) w_{2} B=x_{2}\left(r_{1}\right) w_{2} B$. For this, note that

$$
w_{2} x_{1}(t) w_{2}=x_{w_{2} \alpha_{1}}(\epsilon t) \text { and } w_{2} x_{2}\left(r_{1}\right) w_{2}=x_{-\alpha_{2}}\left(\epsilon^{\prime} r_{1}\right)
$$

for some $\epsilon, \epsilon^{\prime} \in\{ \pm 1\}$. Hence $x_{1}(t)$ fixes $x_{2}\left(r_{1}\right) w_{2} B$ if and only if $x_{w_{2} \alpha_{1}}(\epsilon t)$ fixes $x_{-\alpha_{2}}\left(\epsilon^{\prime} r_{1}\right) B$.
Since $r_{1} \neq 0$, the element $x_{-\alpha_{2}}\left(\epsilon^{\prime} r_{1}\right) \in U_{-\alpha_{2}}$ does not fix any edge in $\operatorname{Ball}\left(P_{2}, 1\right)$ except for $w_{2} B$. Thus $x_{-\alpha_{2}}\left(\epsilon^{\prime} r_{1}\right) B$ is an edge in $\operatorname{Ball}\left(P_{2}, 1\right)$ other than B and $w_{2} B$. Thus for some $0 \neq r_{1}^{\prime} \in \mathbb{F}_{q}$, we have $x_{-\alpha_{2}}\left(\epsilon^{\prime} r_{1}\right) B=x_{\alpha_{2}}\left(r_{1}^{\prime}\right) w_{2} B$. We then compute

$$
\begin{aligned}
x_{w_{2} \alpha_{1}}(\epsilon t) x_{-\alpha_{2}}\left(\epsilon^{\prime} r_{1}\right) B & =x_{w_{2} \alpha_{1}}(\epsilon t) x_{\alpha_{2}}\left(r_{1}^{\prime}\right) w_{2} B \\
& =x_{\alpha_{2}}\left(r_{1}^{\prime}\right) x_{w_{2} \alpha_{1}}(\epsilon t) w_{2} B \\
& =x_{\alpha_{2}}\left(r_{1}^{\prime}\right) w_{2} x_{\alpha_{1}}(t) B \\
& =x_{\alpha_{2}}\left(r_{1}^{\prime}\right) w_{2} B \\
& =x_{-\alpha_{2}}\left(\epsilon^{\prime} r_{1}\right) B .
\end{aligned}
$$

Thus $U_{\alpha_{1}}$ fixes $\operatorname{Ball}\left(P_{2}, 1\right)$.
Assume inductively that $U_{\alpha_{1}}$ fixes $\operatorname{Ball}\left(\left(w_{2}, w_{1} ; n\right) P_{i}, n+1\right)$, where $i=2$ if n is even and $i=1$ if n is odd. To prove that $U_{\alpha_{1}}$ fixes $\operatorname{Ball}\left(\left(w_{2}, w_{1} ; n+1\right) P_{3-i}, n+2\right)$, suppose first that n is even, with $n=2 k$ say. Then the inductive assumption is equivalent to the positive root group $\left(w_{1} w_{2}\right)^{k} U_{\alpha_{1}}\left(w_{2} w_{1}\right)^{k}=U_{\left(w_{1} w_{2}\right)^{k} \alpha_{1}}$ fixing $\operatorname{Ball}\left(P_{2}, n+1\right)$. We will show that $U_{\left(w_{2} w_{1}\right)^{k} w_{2} \alpha_{1}}$ fixes $\operatorname{Ball}\left(P_{1}, n+2\right)$, hence $U_{\alpha_{1}}$ fixes $\operatorname{Ball}\left(\left(w_{2}, w_{1} ; n+\right.\right.$ 1) $\left.P_{1}, n+2\right)$ as required.

We first prove that $U_{\left(w_{2} w_{1}\right)^{k} w_{2} \alpha_{1}}$ fixes all left-hand edges $\left(l_{1}, \ldots, l_{n+2}\right)$. Given $\left(l_{1}, \ldots, l_{n+2}\right)$, there are constants $l_{1}^{\prime}, \ldots, l_{n+2}^{\prime} \in \mathbb{F}_{q}$ such that

$$
x_{1}\left(l_{1}\right) w_{1} x_{2}\left(l_{2}\right) w_{2} \cdots x_{2}\left(l_{n+2}\right) w_{2} B=x_{-\alpha_{1}}\left(l_{1}^{\prime}\right) x_{2}\left(l_{2}^{\prime}\right) w_{2} x_{1}\left(l_{3}^{\prime}\right) w_{1} \cdots x_{2}\left(l_{n+2}^{\prime}\right) w_{2} B
$$

Now the edge $x_{1}\left(l_{3}^{\prime}\right) w_{1} \cdots x_{2}\left(l_{n+2}^{\prime}\right) w_{2} B$ is in $\operatorname{Ball}\left(P_{2}, n+1\right)$ hence by inductive assumption is fixed by $U_{\left(w_{1} w_{2}\right)^{k} \alpha_{1}}$. We then compute that for all $t \in \mathbb{F}_{q}$,

$$
\begin{aligned}
x_{\left(w_{2} w_{1}\right)^{k} w_{2} \alpha_{1}}(t) \cdot\left(l_{1}, l_{2}, \ldots, l_{n+2}\right) & =x_{\left(w_{2} w_{1}\right)^{k} w_{2} \alpha_{1}}(t) x_{-\alpha_{1}}\left(l_{1}^{\prime}\right) x_{\alpha_{2}}\left(l_{2}^{\prime}\right) w_{2} x_{\alpha_{1}}\left(l_{3}^{\prime}\right) w_{1} \cdots x_{\alpha_{2}}\left(l_{n+2}^{\prime}\right) w_{2} B \\
& =x_{-\alpha_{1}}\left(l_{1}^{\prime}\right) x_{\alpha_{2}}\left(l_{2}^{\prime}\right) x_{\left(w_{2} w_{1}\right)^{k} w_{2} \alpha_{1}}(t) w_{2} x_{\alpha_{1}}\left(l_{3}^{\prime}\right) w_{1} \cdots x_{\alpha_{2}}\left(l_{n+2}^{\prime}\right) w_{2} B \\
& =x_{-\alpha_{1}}\left(l_{1}^{\prime}\right) x_{\alpha_{2}}\left(l_{2}^{\prime}\right) w_{2} x_{\left(w_{1} w_{2}\right)^{k} \alpha_{1}}(\epsilon t) x_{\alpha_{1}}\left(l_{3}^{\prime}\right) w_{1} \cdots x_{\alpha_{2}}\left(l_{n+2}^{\prime}\right) w_{2} B \\
& =x_{-\alpha_{1}}\left(l_{1}^{\prime}\right) x_{\alpha_{2}}\left(l_{2}^{\prime}\right) w_{2} x_{\alpha_{1}}\left(l_{3}^{\prime}\right) w_{1} \cdots x_{\alpha_{2}}\left(l_{n+2}^{\prime}\right) w_{2} B \\
& =\left(l_{1}, l_{2} \ldots, l_{n+2}\right) .
\end{aligned}
$$

Thus $U_{\left(w_{2} w_{1}\right)^{k} w_{2} \alpha_{1}}$ fixes all left-hand edges $\left(l_{1}, \ldots, l_{n+2}\right)$.
We now show that $U_{\left(w_{2} w_{1}\right)^{k} w_{2} \alpha_{1}}$ fixes all right-hand edges $\left(r_{1}, \ldots, r_{n+1}\right)$. For this, the inductive assumption implies that for all $t \in \mathbb{F}_{q}$,

$$
\begin{aligned}
x_{\left(w_{2} w_{1}\right)^{k} w_{2} \alpha_{1}}(t) \cdot\left(r_{1}, \ldots, r_{n+1}\right) & =x_{\left(w_{2} w_{1}\right)^{k} w_{2} \alpha_{1}}(t) x_{\alpha_{2}}\left(r_{1}\right) w_{2} \cdots x_{\alpha_{2}}\left(r_{n+1}\right) w_{2} B \\
& =x_{\alpha_{2}}\left(r_{1}\right) x_{\left(w_{2} w_{1}\right)^{k} w_{2} \alpha_{1}}(t) w_{2} x_{\alpha_{1}}\left(r_{2}\right) w_{1} \cdots x_{\alpha_{2}}\left(r_{n+1}\right) w_{2} B \\
& =x_{\alpha_{2}}\left(r_{1}\right) w_{2} x_{\left(w_{1} w_{2}\right)^{k} \alpha_{1}}(\epsilon t) x_{\alpha_{1}}\left(r_{2}\right) w_{1} \cdots x_{\alpha_{2}}\left(r_{n+1}\right) w_{2} B \\
& =x_{\alpha_{2}}\left(r_{1}\right) w_{2} x_{\alpha_{1}}\left(r_{2}\right) w_{1} \cdots x_{\alpha_{2}}\left(r_{n+1}\right) w_{2} B \\
& =\left(r_{1}, \ldots, r_{n+1}\right) .
\end{aligned}
$$

Thus $U_{\left(w_{2} w_{1}\right)^{k} w_{2} \alpha_{1}}$ fixes all right-hand edges $\left(r_{1}, \ldots, r_{n+1}\right)$.
Since $U_{\left(w_{2} w_{1}\right)^{k} w_{2} \alpha_{1}}$ fixes all left-hand edges $\left(l_{1}, \ldots, l_{n+2}\right)$ and all right-hand edges $\left(r_{1}, \ldots, r_{n+1}\right)$, it fixes $\operatorname{Ball}\left(P_{1}, n+2\right)$. This completes the proof of the inductive step for n even. The proof of the inductive step for n odd is similar. This completes the proof that $U_{\alpha_{1}}$ fixes $\operatorname{Ball}\left(\left(w_{2}, w_{1} ; n\right) P_{i}, n+1\right)$ for all $n \geq 0$.

Now that we have determined that certain combinatorial balls are fixed by root groups, we consider how these root groups act elsewhere on the tree X. For this, we first discuss how the root groups U_{α} for $\alpha \in \Phi_{+}^{1}$ act on left-hand edges, and how the root groups U_{β} for $\beta \in \Phi_{+}^{2}$ act on right-hand edges.

Lemma 28. Let $\left(l_{1}, \ldots, l_{n}\right)$ be a left-hand edge. Then for all $0 \leq k \leq n-1$, there is an $\epsilon \in\{ \pm 1\}$ such that for all $t \in \mathbb{F}_{q}$,

$$
x_{\left(w_{1}, w_{2} ; k\right) \alpha_{i_{k}}}(t) \cdot\left(l_{1}, \ldots, l_{n}\right)=\left(l_{1}, \ldots, l_{k}, l_{k+1}+\epsilon t, l_{k+2}, \ldots, l_{n}\right)
$$

Similarly for the action of $U_{\left(w_{2}, w_{1} ; k\right) \alpha_{i_{k}^{\prime}}}$ on right-hand edges.
Proof. It suffices to show by induction on $k \geq 0$ that for any $l_{1}, \ldots, l_{k} \in \mathbb{F}_{q}$,

$$
\begin{equation*}
x_{\left(w_{1}, w_{2} ; k\right) \alpha_{i_{k}}}(t) x_{1}\left(l_{1}\right) w_{1} x_{2}\left(l_{2}\right) w_{2} \cdots x_{i_{k}}\left(l_{k}\right)=x_{1}\left(l_{1}\right) w_{1} x_{2}\left(l_{2}\right) w_{2} \cdots x_{i_{k}}\left(l_{k+1}+\epsilon t\right) \tag{3}
\end{equation*}
$$

In the case $k=0, x_{1}(t) x_{1}\left(l_{1}\right)=x_{1}\left(l_{1}+t\right)$ and we are done. For $k=1$, since $U_{\alpha_{1}}$ and $U_{w_{1} \alpha_{2}}$ commute, there is an $\epsilon \in\{ \pm 1\}$ such that

$$
\begin{aligned}
x_{w_{1} \alpha_{2}}(t) x_{1}\left(l_{1}\right) w_{1} x_{2}\left(l_{2}\right) & =x_{1}\left(l_{1}\right) x_{w_{1} \alpha_{2}}(t) w_{1} x_{2}\left(l_{2}\right) \\
& =x_{1}\left(l_{1}\right) w_{1} x_{2}(\epsilon t) x_{2}\left(l_{2}\right) \\
& =x_{1}\left(l_{1}\right) w_{1} x_{2}\left(l_{2}+\epsilon t\right) .
\end{aligned}
$$

For $k \geq 2$ we compute that for some $\epsilon, \epsilon^{\prime} \in\{ \pm 1\}$,

$$
\begin{aligned}
x_{\left(w_{1}, w_{2} ; k\right) \alpha_{i_{k}}}(t) x_{1}\left(l_{1}\right) w_{1} x_{2}\left(l_{2}\right) w_{2} & =w_{1} x_{\left(w_{2}, w_{1} ; k-1\right) \alpha_{i^{\prime}}{ }_{(k-1)^{\prime}}}(\epsilon t) w_{1} x_{1}\left(l_{1}\right) w_{1} x_{2}\left(l_{2}\right) w_{2} \\
& =w_{1} x_{\left(w_{2}, w_{1} ; k-1\right) \alpha_{i^{\prime}{ }_{(k-1)^{\prime}}}(\epsilon t) x_{-1}\left(\epsilon^{\prime} l_{1}\right) x_{2}\left(l_{2}\right) w_{2}} \\
& =w_{1} x_{-1}\left(\epsilon^{\prime} l_{1}\right) x_{2}\left(l_{2}\right) x_{\left(w_{2}, w_{1} ; k-1\right) \alpha_{i_{(k-1)}^{\prime}}}(\epsilon t) w_{2} \\
& =x_{1}\left(l_{1}\right) w_{1} x_{2}\left(l_{2}\right) w_{2} x_{\left(w_{1}, w_{2} ; k-2\right) \alpha_{i_{k-2}}}(t) .
\end{aligned}
$$

The result then follows by induction.
We now describe the action on certain left-hand edges of certain root groups U_{β}, where $\beta \in \Phi_{+}^{2}$. We first discuss the action of $U_{\alpha_{2}}$ on left-hand edges $\left(l_{1}, l_{2}\right)$. For this, the following formula will be needed.

Lemma 29. For $a, t \in \mathbb{F}_{q}$ with $a \neq 0$, the following statement holds:

$$
x_{1}(a) w_{1} x_{2}(t) w_{2} B=x_{-1}\left(a^{-1}\right) x_{2}\left((-a)^{-m} t\right) w_{2} B .
$$

Here $-m$ is the off-diagonal entry in the generalised Cartan matrix A for G.
Proof. To show that $x_{1}(a) w_{1} x_{2}(t) w_{2} B=x_{-1}\left(a^{-1}\right) x_{2}\left((-a)^{-m} t\right) w_{2} B$ is equivalent to showing that

$$
w_{2} x_{2}\left(-(-a)^{-m} t\right) x_{-1}\left(-a^{-1}\right) x_{1}(a) w_{1} x_{2}(t) w_{2} \in B
$$

Now, denote by $x:=x_{-1}\left(-a^{-1}\right) x_{1}(a) w_{1}$. Clearly $x \in L_{1}$, and in fact, $x \in M_{1}$. As M_{1} is a homomorphic image of $S L_{2}(q)$, i.e., is isomorphic to either $S L_{2}(q)$ or to $P S L_{2}(q)$ under the natural identification $\left(\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right) \rightarrow x_{1}(r),\left(\begin{array}{cc}1 & 0 \\ r & 1\end{array}\right) \rightarrow x_{-1}(r)$ and $\left(\begin{array}{cc}s & 0 \\ 0 & s^{-1}\end{array}\right) \rightarrow h_{1}(s)$, by explicit calculation we obtain that $x=x_{1}(-a) h_{1}(-a)$.

Thus $(*)$ is equivalent to proving that

$$
w_{2} x_{2}\left(-(-a)^{-m} t\right) x_{1}(-a) h_{1}(-a) x_{2}(t) w_{2} \in B \quad(* *)
$$

But $h_{1}(-a) x_{2}(t) w_{2}=h_{1}(-a) x_{2}(t) h_{1}(-a)^{-1} h_{1}(-a) w_{2}=x_{2}\left((-a)^{-m} t\right) h_{1}(-a) w_{2}=x_{2}\left((-a)^{-m} t\right) w_{2} h$ for some $h \in H$. Since $H \leq B,(* *)$ is equivalent to

$$
w_{2} x_{2}\left(-(-a)^{-m} t\right) x_{1}(-a) x_{2}\left((-a)^{-m} t\right) w_{2} \in B
$$

which is the same as

$$
x_{2}\left(-(-a)^{-m} t\right) x_{1}(-a) x_{2}\left((-a)^{-m} t\right)=x_{1}(-a)^{x_{2}\left(-(-a)^{-m} t\right)} \in B^{w_{2}}
$$

Notice that $x_{1}(-a) \in U_{2}$, while $x_{2}\left(-(-a)^{-m} t\right) \in P_{2}$. But $U_{2} \triangleleft P_{2}$, and so $x_{1}(-a)^{x_{2}\left(-(-a)^{-m} t\right)} \in U_{2}$. Therefore it remains to show that $U_{2} \leq B^{w_{2}}$. Now, $B=H U_{+}$, and so $B^{w_{2}}=H^{w_{2}} U_{+}^{w_{2}}$. Hence if we can show that $U_{2} \leq U_{+}^{w_{2}}$, we will be done. Recall that $U_{+}=\left\langle U_{\alpha} \mid \alpha \in \Phi_{+}^{1} \cup \Phi_{+}^{2}\right\rangle$. Therefore

$$
U_{+}^{w_{2}}=\left\langle U_{\alpha} \mid \alpha \in w_{2}\left(\Phi_{+}^{1} \cup \Phi_{+}^{2}\right)\right\rangle=\left\langle U_{\alpha} \mid \alpha \in \Phi_{+}^{1} \cup\left(\Phi_{+}^{2}-\left\{\alpha_{2}\right\}\right) \cup\left\{-\alpha_{2}\right\}\right\rangle
$$

i.e., $U_{+}^{w_{2}}=U_{2} U_{-\alpha_{2}}$ which finishes the proof.

We may now describe the action of $U_{\alpha_{2}}$ on the set of left-hand edges $\left(l_{1}, l_{2}\right)$:
Corollary 30. There is an automorphism ϕ of the additive group $\left(\mathbb{F}_{q},+\right)$ such that for all $t \in F_{q}$ and all left-hand edges $\left(l_{1}, l_{2}\right)$,

$$
x_{2}(t) \cdot\left(l_{1}, l_{2}\right)= \begin{cases}\left(l_{1}, l_{2}+\phi(t)\right) & \text { if } l_{1} \neq 0 \\ \left(l_{1}, l_{2}\right) & \text { if } l_{1}=0\end{cases}
$$

Proof. Consider $x_{2}(t) \cdot\left(l_{1}, l_{2}\right)$, where $l_{1} \neq 0$. As $\left(l_{1}, l_{2}\right)=x_{1}\left(l_{1}\right) w_{1} x_{2}\left(l_{2}\right) w_{2} B$, using the previous lemma we have

$$
x_{2}(t) x_{1}\left(l_{1}\right) w_{1} x_{2}\left(l_{2}\right) w_{2} B=x_{2}(t) x_{-\alpha_{1}}\left(l_{1}^{-1}\right) x_{2}\left(\left(-l_{1}\right)^{-m} l_{2}\right) w_{2} B=x_{-\alpha_{1}}\left(l_{1}^{-1}\right) x_{2}\left(t+\left(-l_{1}\right)^{-m} l_{2}\right) w_{2} B .
$$

Again using the previous lemma, we obtain that

$$
x_{-\alpha_{1}}\left(l_{1}^{-1}\right) x_{2}\left(t+\left(-l_{1}\right)^{-m} l_{2}\right) w_{2} B=x_{1}\left(l_{1}\right) w_{1} x_{2}\left(l_{2}+\left(-l_{1}\right)^{m} t\right) w_{2} B
$$

Since for each $l_{1} \in \mathbb{F}_{q}^{*}$, the map $\phi(t):=\left(-l_{1}\right)^{m} t$ is an automorphism of the additive group $\left(\mathbb{F}_{q},+\right)$ as required, we obtain the desired result. The fact that $x_{2}(t)$ fixes $\left(0, l_{2}\right)$ is a consequence of Lemma 26 above.

Corollary 31. The action of $U_{w_{1} \alpha_{2}}$ on the set of left-hand edges $\left\{\left(l_{1}, l_{2}\right)\right\}$ commutes with that of $U_{\alpha_{2}}$.
Proof. By Lemma 26 above, the group $U_{\alpha_{2}}$ fixes each edge ($0, l_{2}$). The corollary then follows by Lemmas 28 and Corollary 30 above.

We will in fact need the following generalisation of Corollary 30 above. The proof of the following lemma is similar to that of Corollary 30.

Lemma 32. For each $n \geq 0$ and $0 \leq k \leq n$, let $N=n+(n+1+k)$ and $\alpha^{\prime}=\left(w_{2}, w_{1} ; k\right) \alpha_{i^{\prime}}$, where $i^{\prime}=2$ if k is even and $i^{\prime}=1$ if k is odd. Then there is an automorphism ϕ of the additive group $\left(\mathbb{F}_{q},+\right)$ such that for all $t \in \mathbb{F}_{q}$ and all left-hand edges $\left(0, \ldots, 0, l_{n+1}, l_{n+2}, \ldots, l_{N}, l_{N+1}\right)$,

$$
x_{\alpha^{\prime}}(t) \cdot\left(0, \ldots, 0, l_{n+1}, l_{n+2}, \ldots, l_{N}, l_{N+1}\right)= \begin{cases}\left(0, \ldots, 0, l_{n+1}, l_{n+2}, \ldots, l_{N}, l_{N+1}+\phi(t)\right) & \text { if } l_{n+1} \neq 0 \\ \left(0, \ldots, 0, l_{n+1}, l_{n+2}, \ldots, l_{N}, l_{N+1}\right) & \text { if } l_{n+1}=0\end{cases}
$$

Corollary 33. In the notation of Lemma 32 above, the action of $U_{\alpha^{\prime}}$ on the set of left-hand edges

$$
\left\{\left(0, \ldots, 0, l_{n+1}, l_{n+2}, \ldots, l_{N}, l_{N+1}\right) \mid l_{j} \in \mathbb{F}_{q}\right\}
$$

commutes with that of each root group $U_{\left(w_{1}, w_{2} ; j\right) \alpha_{i_{j}}}$, for $n<j \leq N$.
4.1.3. Proof of Lemma 22. We are now ready to prove Lemma 22 above, which says that a p-element of \hat{U}_{+} must fix an end of the tree X. Let $x \in \hat{U}_{+}$with $x^{p}=1 \neq x$. Assume by contradiction that x does not fix any end of X. Then there is a smallest integer $n \geq 0$ such that no edge in $\operatorname{Ball}(B, n+1)-\operatorname{Ball}(B, n)$ is fixed by x. We first consider the case $n=0$, and then generalise the argument for this case to the cases $n \geq 1$.

Suppose $n=0$. Then every edge in $\operatorname{Ball}(B, 1)$ except for B is moved by x. For $i=1,2$, consider the restriction of x to $\operatorname{Ball}\left(P_{i}, 1\right)$. By Lemma 26 above, the only positive root group which acts nontrivially on $\operatorname{Ball}\left(P_{i}, 1\right)$ is $U_{\alpha_{i}}$. Hence for $i=1,2$, there is a $0 \neq t_{i} \in \mathbb{F}_{q}$ such that

$$
\left.x\right|_{\operatorname{Ball}\left(P_{i}, 1\right)}=\left.x_{i}\left(t_{i}\right)\right|_{\operatorname{Ball}\left(P_{i}, 1\right)} .
$$

Now consider the restriction of x to $\operatorname{Ball}(B, 2)$. By Lemma 26 above,

$$
\left.x\right|_{\operatorname{Ball}(B, 2)}=\left.y\right|_{\operatorname{Ball}(B, 2)} \text { for some } y \in\left\langle U_{\alpha_{1}}, U_{\alpha_{2}}, U_{w_{1} \alpha_{2}}, U_{w_{2} \alpha_{1}}\right\rangle
$$

By Lemma 24 above,

$$
\left\langle U_{\alpha_{1}}, U_{\alpha_{2}}, U_{w_{1} \alpha_{2}}, U_{w_{2} \alpha_{1}}\right\rangle=\left\langle U_{\alpha_{1}}, U_{w_{1} \alpha_{2}}\right\rangle *\left\langle U_{\alpha_{2}}, U_{w_{2} \alpha_{1}}\right\rangle=U_{w_{1}} * U_{w_{2}}
$$

Hence the element y can be written uniquely as a word in letters alternating between nontrivial elements of $U_{w_{1}}$ and nontrivial elements of $U_{w_{2}}$. Moreover, for $i=1,2$ by Lemma 25 above each nontrivial element of $U_{w_{i}}$ can be written uniquely as a product $x_{i}\left(s_{i}\right) x_{w_{i} \alpha_{3-i}}\left(s_{i}^{\prime}\right)$, with $s_{i}, s_{i}^{\prime} \in \mathbb{F}_{q}$ and at least one of s_{i} and s_{i}^{\prime} nonzero. Thus there is a canonical word for y with letters in $U_{\alpha_{1}}, U_{\alpha_{2}}, U_{w_{1} \alpha_{2}}$ and $U_{w_{2} \alpha_{1}}$.

Let $z \in U_{\alpha_{1}} * U_{\alpha_{2}}$ be the element obtained by deleting from this canonical word for y all nontrivial elements of $U_{w_{1} \alpha_{2}}$ and $U_{w_{2} \alpha_{1}}$. Note that z is well-defined, and that z can be written uniquely as a word

$$
z=x_{1}\left(t_{1,1}\right) x_{2}\left(t_{2,1}\right) x_{1}\left(t_{1,2}\right) x_{2}\left(t_{2,2}\right) \cdots x_{1}\left(t_{1, m}\right) x_{2}\left(t_{2, m}\right)
$$

where for $i=1,2$ and $1 \leq j \leq m$ we have $t_{i, j} \in \mathbb{F}_{q}$, with possibly $t_{1,1}=0$ and possibly $t_{2, m}=0$, but all other $t_{i, j} \neq 0$. By definition of the elements y and z, and using Lemma 26 above again, for $i=1,2$

$$
\left.z\right|_{\operatorname{Ball}\left(P_{i}, 1\right)}=\left.y\right|_{\operatorname{Ball}\left(P_{i}, 1\right)}=\left.x\right|_{\operatorname{Ball}\left(P_{i}, 1\right)}=\left.x_{i}\left(t_{i}\right)\right|_{\operatorname{Ball}\left(P_{i}, 1\right)} .
$$

Hence for $i=1,2$

$$
t_{i, 1}+t_{i, 2}+\cdots+t_{i, m}=t_{i} \neq 0
$$

Denote the set of left-hand edges in $\operatorname{Ball}(B, 2)-\operatorname{Ball}(B, 1)$ by

$$
E:=\left\{\left(l_{1}, l_{2}\right) \mid l_{1}, l_{2} \in \mathbb{F}_{q}\right\}
$$

By Lemma 26, the root group $U_{w_{2} \alpha_{1}}$ fixes each edge in E. The root group $U_{w_{1} \alpha_{2}}$ commutes with $U_{\alpha_{1}}$. By Corollary 31 above, the action of $U_{w_{1} \alpha_{2}}$ on E commutes with the action of $U_{\alpha_{2}}$ on E. Therefore there is a $t \in \mathbb{F}_{q}$ such that

$$
\left.x\right|_{E}=\left.y\right|_{E}=\left.x_{w_{1} \alpha_{2}}(t) z\right|_{E} .
$$

Moreover,

$$
\left.x^{p}\right|_{E}=\operatorname{id}_{E}=\left.\left(x_{w_{1} \alpha_{2}}(t)\right)^{p} z^{p}\right|_{E}=\left.z^{p}\right|_{E}
$$

That is, z^{p} fixes each edge in E. The following lemma shows that this is impossible, and we thus obtain a contradiction. Hence in the case $n=0, x$ must fix an end of X.

Lemma 34. Let

$$
z=x_{1}\left(t_{1,1}\right) x_{2}\left(t_{2,1}\right) x_{1}\left(t_{1,2}\right) x_{2}\left(t_{2,2}\right) \cdots x_{1}\left(t_{1, m}\right) x_{2}\left(t_{2, m}\right)
$$

as above, with

$$
t_{i, 1}+t_{i, 2}+\cdots+t_{i, m}=t_{i}
$$

for $i=1,2$. Then z^{p} fixes each edge in the set of left-hand edges

$$
E=\left\{\left(l_{1}, l_{2}\right) \mid l_{1}, l_{2} \in \mathbb{F}_{q}\right\}
$$

if and only if $t_{2}=0$.

Proof. Let $\left(l_{1}, l_{2}\right) \in E$. We first compute $z \cdot\left(l_{1}, l_{2}\right)$. To simplify notation, we assume that the automorphism ϕ in Corollary 30 above is the identity. For each $1 \leq j \leq m$, let $\left(L_{1, j}, L_{2, j}\right) \in E$ be the edge

$$
\left(L_{1, j}, L_{2, j}\right)=x_{1}\left(t_{1, j}\right) x_{2}\left(t_{2, j}\right) \cdots x_{1}\left(t_{1, m}\right) x_{2}\left(t_{2, m}\right) \cdot\left(l_{1}, l_{2}\right)
$$

Then for $1 \leq j \leq m$,

$$
L_{1, j}=t_{1, j}+\cdots+t_{1, m}+l_{1} .
$$

Putting $L_{1, m+1}=l_{1}$ and $L_{2, m+1}=l_{2}$, for $1 \leq j \leq m$

$$
L_{2, j}= \begin{cases}L_{2, j+1} & \text { if } L_{1, j+1}=0 \\ t_{2, j}+L_{2, j+1} & \text { if } L_{1, j+1} \neq 0 .\end{cases}
$$

Defining $t_{m+1}=0$, it follows that for $1 \leq j \leq m$,

$$
L_{2, j}= \begin{cases}L_{2, j+1} & \text { if } t_{1, j+1}+\cdots+t_{1, m}=-l_{1} \\ t_{2, j}+L_{2, j+1} & \text { if } t_{1, j+1}+\cdots+t_{1, m} \neq-l_{1}\end{cases}
$$

Thus

$$
z \cdot\left(l_{1}, l_{2}\right)=\left(L_{1,1}, L_{2,1}\right)=\left(t_{1,1}+\cdots+t_{1, m}+l_{1}, L_{2,1}\right)=\left(l_{1}+t_{1}, L_{2,1}\right)
$$

where

$$
L_{2,1}=l_{2}+t_{2}-\left(\sum_{t_{1, j+1}+\cdots+t_{1, m}=-l_{1}} t_{2, j}\right)
$$

Using this computation and the fact that $p t_{1}=p t_{2}=0$, we determine that for all $\left(l_{1}, l_{2}\right) \in E$,

$$
z^{p} \cdot\left(l_{1}, l_{2}\right)=\left(l_{1}, l_{2}^{\prime}\right)
$$

where

$$
l_{2}^{\prime}=l_{2}-\left(\sum_{t_{1, j+1}+\cdots+t_{1, m}=-l_{1}} t_{2, j}+\sum_{t_{1, j+1}+\cdots+t_{1, m}=-\left(l_{1}+t_{1}\right)} t_{2, j}+\cdots+\sum_{t_{1, j+1}+\cdots+t_{1, m}=-\left(l_{1}+(p-1) t_{1}\right)} t_{2, j}\right)
$$

Now z^{p} fixes each edge in E if and only if $l_{2}^{\prime}=l_{2}$. In this case, for each $l_{1} \in \mathbb{F}_{q}$,

$$
\left(\sum_{t_{1, j+1}+\cdots+t_{1, m}=-l_{1}} t_{2, j}\right)+\left(\sum_{t_{1, j+1}+\cdots+t_{1, m}=-\left(l_{1}+t_{1}\right)} t_{2, j}\right)+\cdots+\left(\sum_{t_{1, j+1}+\cdots+t_{1, m}=-\left(l_{1}+(p-1) t_{1}\right)} t_{2, j}\right)=0 .
$$

Recall that $q=p^{a}$, and choose a set of representatives $\left\{l_{1,1}, \ldots, l_{1, a}\right\} \subset \mathbb{F}_{q}$ of the orbits of the map $l \mapsto l+t_{1}$. By adding together the previous equation for each of $l_{1}=l_{1,1}, \ldots, l_{1}=l_{1, a}$, we obtain

$$
\sum_{l \in \mathbb{F}_{q}}\left(\sum_{t_{1, j+1}+\cdots+t_{1, m}=-l} t_{2, j}\right)=0
$$

Each sum $t_{1, j+1}+\cdots+t_{1, m}$ appears exactly once on the left-hand side, therefore z^{p} fixes each edge in E if and only if

$$
t_{2,1}+\cdots+t_{2, m}=0
$$

But $t_{2,1}+\cdots+t_{2, m}=t_{2}$, so we are done.
Before considering the cases $n \geq 1$, we note the following corollary to Lemma 34 above.
Corollary 35. Let z be as in Lemma 34 above. Then z^{p} fixes $\operatorname{Ball}(B, 2)$ if and only if $t_{1}=t_{2}=0$.
Proof. Since $p t_{1}=p t_{2}=0$, by considering the action of $U_{\alpha_{1}}$ and $U_{\alpha_{2}}$ on $\operatorname{Ball}(B, 1)$ we see that z^{p} fixes $\operatorname{Ball}(B, 1)$ for all values of t_{1} and t_{2}. A similar argument to that used for Lemma 34 above shows that z^{p} fixes the set of right-hand edges

$$
\left\{\left(r_{1}, r_{2}\right) \mid r_{1}, r_{2} \in \mathbb{F}_{q}\right\}
$$

if and only if $t_{1}=0$. Hence z^{p} fixes the set of edges in $\operatorname{Ball}(B, 2)-\operatorname{Ball}(B, 1)$ if and only if $t_{1}=t_{2}=0$, as required.

We now generalise the argument for $n=0$ to the cases $n \geq 1$. Recall that we chose n to be the smallest integer such that no edge in $\operatorname{Ball}(B, n+1)-\operatorname{Ball}(B, n)$ is fixed by x. By the minimality of n and the assumption $n \geq 1$, there is an edge in $\operatorname{Ball}(B, n)-\operatorname{Ball}(B, n-1)$ which is fixed by x. The next lemma follows from the proof of Lemma 14.1 in [9].
Lemma 36. For any left-hand edge $\left(l_{1}, \ldots, l_{n}\right)$ in X, there is an element $u \in U_{+}$such that $u \cdot\left(l_{1}, \ldots, l_{n}\right)$ is the left-hand edge $(0, \ldots, 0)$. For any right-hand edge $\left(r_{1}, \ldots, r_{n}\right)$ in X, there is a $v \in U_{+}$such that $v \cdot\left(r_{1}, \ldots, r_{n}\right)$ is the right-hand edge $(0, \ldots, 0)$. Moreover, v can be chosen to fix all left-hand edges in the standard apartment Σ.

Using Lemma 36, we may assume without loss of generality that x fixes the left-hand edge $\left(l_{1}, \ldots, l_{n}\right)=$ $(0, \ldots, 0)$. Let $w P_{i}=\left(w_{1}, w_{2} ; n\right) P_{i}$ be the vertex of Σ at distance n from P_{1} on the left-hand side, and let $\alpha=\left(w_{1}, w_{2} ; n\right) \alpha_{i}$ (here $i=1$ if n is even and $i=2$ if n is odd). Then by Lemma 26 above,

$$
\left.x\right|_{\operatorname{Ball}\left(w P_{i}, 1\right)}=\left.x_{\alpha}(t)\right|_{\operatorname{Ball}\left(w P_{i}, 1\right)} \text { for some } 0 \neq t \in \mathbb{F}_{q} .
$$

Let $0 \leq k \leq n$ be the largest integer such that x fixes a right-hand edge in $\operatorname{Ball}(B, k)-\operatorname{Ball}(B, k-1)$. If $k \geq 1$ then by Lemma 36 above, we may assume that x fixes the right-hand edge $(0, \ldots, 0)$ in $\operatorname{Ball}(B, k)-$ $\operatorname{Ball}(B, k-1)$. Let $w^{\prime} P_{i^{\prime}}=\left(w_{2}, w_{1} ; k\right) P_{i^{\prime}}$ be the vertex of Σ at distance k from P_{2} on the right-hand side, and let $\alpha^{\prime}=\left(w_{2}, w_{1} ; k\right) \alpha_{i^{\prime}}$ (here $i^{\prime}=2$ if k is even and $i^{\prime}=1$ if k is odd). Then by Lemma 26 above,

$$
\left.x\right|_{\operatorname{Ball}\left(w^{\prime} P_{i^{\prime}}, 1\right)}=\left.x_{\alpha^{\prime}}\left(t^{\prime}\right)\right|_{\operatorname{Ball}\left(w^{\prime} P_{i^{\prime}}, 1\right)} \text { for some } 0 \neq t^{\prime} \in \mathbb{F}_{q}
$$

Note that the distance from $w P_{i}=\left(w_{1}, w_{2} ; n\right) P_{i}$ to $w^{\prime} P_{i^{\prime}}=\left(w_{2}, w_{1} ; k\right) P_{i^{\prime}}$ is exactly $n+1+k$. Let $N=n+(n+1+k)$, and consider the restriction of x to $\operatorname{Ball}(B, N+1)$. (In the case $n=0$ above, $k=0$ and thus $N=1$.) Then as in the case $n=0$ above,

$$
\left.x\right|_{\operatorname{Ball}(B, N+1)}=\left.y\right|_{\operatorname{Ball}(B, N+1)} \text { for some } y \in U_{\left(w_{1}, w_{2} ; N\right)} * U_{\left(w_{2}, w_{1} ; N\right)} .
$$

Note that $U_{\alpha} \leq U_{\left(w_{1}, w_{2} ; N\right)}$ and $U_{\alpha^{\prime}} \leq U_{\left(w_{2}, w_{1} ; N\right)}$. Let $z \in U_{\alpha} * U_{\alpha^{\prime}}$ be the element obtained by deleting from the word for y all letters except those in U_{α} or $U_{\alpha^{\prime}}$. By definition of the elements y and z, and using Lemma 26 above again,

$$
\left.z\right|_{\operatorname{Ball}\left(w P_{i}, 1\right)}=\left.y\right|_{\operatorname{Ball}\left(w P_{i}, 1\right)}=\left.x\right|_{\operatorname{Ball}\left(P_{i}, 1\right)}=\left.x_{\alpha}(t)\right|_{\operatorname{Ball}\left(w P_{i}, 1\right)}
$$

and similarly for $\operatorname{Ball}\left(w^{\prime} P_{i^{\prime}}, 1\right)$ and $x_{\alpha^{\prime}}\left(t^{\prime}\right)$.
Consider the following set of left-hand edges in $\operatorname{Ball}(B, N+1)-\operatorname{Ball}(B, N)$:

$$
E:=\left\{\left(0, \ldots, 0, l_{n+1}, l_{n+2}, \ldots, l_{N}, l_{N+1}\right) \mid l_{j} \in \mathbb{F}_{q}\right\}
$$

Since x fixes the left-hand edge $\left(l_{1}, \ldots, l_{n}\right)=(0, \ldots, 0)$, the element x preserves E. Moreover, since x fixes the left-hand edge $\left(l_{1}, \ldots, l_{n}\right)=(0, \ldots, 0)$, which is not fixed by each of $U_{\alpha_{1}}, U_{w_{1} \alpha_{2}}, \ldots, U_{\left(w_{1}, w_{2} ; n-1\right) \alpha_{i_{n-1}}}$,

$$
\left.x\right|_{E}=\left.y^{\prime}\right|_{E} \text { for some } y^{\prime} \in\left\langle U_{\left(w_{1}, w_{2} ; n\right) \alpha_{i}}, \ldots, U_{\left(w_{1}, w_{2} ; N\right) \alpha_{i_{N}}}\right\rangle * U_{\left(w_{2}, w_{1} ; N\right)} .
$$

Also, x fixes the right-hand edge $(0, \ldots, 0)$, which is not fixed by each of $U_{\alpha_{2}}, U_{w_{2} \alpha_{1}}, \ldots, U_{\left(w_{2}, w_{1} ; k-1\right) \alpha_{i_{k-1}^{\prime}}}$, So

$$
\left.x\right|_{E}=\left.y^{\prime \prime}\right|_{E} \text { for some } y^{\prime \prime} \in\left\langle U_{\left(w_{1}, w_{2} ; n\right) \alpha_{i}}, \ldots, U_{\left(w_{1}, w_{2} ; N\right) \alpha_{i_{N}}}\right\rangle *\left\langle U_{\left(w_{2}, w_{1} ; k\right) \alpha_{i_{k}^{\prime}}}, \ldots, U_{\left(w_{2}, w_{1} ; N\right) \alpha_{i_{N}^{\prime}}}\right\rangle .
$$

Now by Lemma 26 above, for all $j \geq k+1$ the root group $U_{\left(w_{2}, w_{1} ; j\right) \alpha_{i_{j}^{\prime}}}$ fixes $\operatorname{Ball}\left(w P_{i}, n+1+(k+1)\right)$. Thus for all $j \geq k+1$, the root group $U_{\left(w_{2}, w_{1} ; j\right) \alpha_{i_{j}^{\prime}}}$ fixes each edge in E. Hence, recalling that $U_{\alpha^{\prime}}=U_{\left(w_{2}, w_{1} ; k\right) \alpha_{i^{\prime}}}$, we have that

$$
\left.x\right|_{E}=\left.y^{\prime \prime \prime}\right|_{E} \text { for some } y^{\prime \prime \prime} \in\left\langle U_{\left(w_{1}, w_{2} ; n\right) \alpha_{i}}, \ldots, U_{\left(w_{1}, w_{2} ; N\right) \alpha_{i_{N}}}\right\rangle * U_{\alpha^{\prime}} .
$$

Next, for each $n<j \leq N$, the root group $U_{\left(w_{1}, w_{2} ; j\right) \alpha_{i_{j}}}$ commutes with $U_{\alpha}=U_{\left(w_{1}, w_{2} ; n\right) \alpha_{i}}$. By Corollary 33 above, for each $n<j \leq N$ the action of the root group $U_{\left(w_{1}, w_{2} ; j\right) \alpha_{i_{j}}}$ on E commutes with that of $U_{\alpha^{\prime}}$ on E.

We conclude that there is a p-element $z^{\prime} \in U_{+}$, which commutes with z on E, such that

$$
\left.x\right|_{E}=\left.y\right|_{E}=\left.y^{\prime}\right|_{E}=\left.y^{\prime \prime}\right|_{E}=\left.y^{\prime \prime \prime}\right|_{E}=\left.z^{\prime} z\right|_{E}
$$

hence

$$
\left.x^{p}\right|_{E}=\operatorname{id}_{E}=\left.\left(z^{\prime}\right)^{p} z^{p}\right|_{E}=\left.z^{p}\right|_{E}
$$

That is, z^{p} fixes each edge in E. The proof that this is impossible with $t^{\prime} \neq 0$ is similar to the case $n=0$ above.

This completes the proof of Lemma 22. That is, we have shown that a p-element of \hat{U}_{+}must fix an end of the tree X.
4.1.4. Completing the proof of Proposition 21. We now show how Lemma 22 may be used to complete the proof of Proposition 21. Since each real root α determines a half-line (half-apartment) in the standard apartment Σ of X, each real root α determines one of two possible ends of X. Denote by e_{1} the end of X determined by α_{1}, and by e_{2} the end of X determined by α_{2}. Then by definition of Φ_{+}^{1} and Φ_{+}^{2}, each root in Φ_{+}^{1} determines the end e_{1}, and each root in Φ_{+}^{2} the end e_{2}. Define the group $-V_{2}$ by

$$
-V_{2}:=\left\langle U_{\alpha} \mid-\alpha \in \Phi_{+}^{2}\right\rangle
$$

Then the groups V_{1} and $-V_{2}$ fix the end e_{1}.
Following the notation in Section 14 of [9], we put

$$
\mathcal{U}:=\widehat{V_{1} \cup-V_{2}}
$$

and

$$
\mathcal{B}_{\mathcal{I}}:=\bigcap_{w \in W} w \hat{B} w^{-1}
$$

Note that $\mathcal{B}_{\mathcal{I}}$ fixes the standard apartment Σ pointwise.
Now take $g \in G$ such that g induces the element $\tau:=w_{1} w_{2} \in W$. The element τ acts as a translation along the standard apartment Σ, with translation length two edges (chambers), and with attracting fixed point e_{1} and repelling fixed point e_{2}. Let R be the subgroup of G generated by g (in [9], the group generated by g was called T, but for us T is already a fixed maximal split torus). Finally define \mathcal{B} be the stabiliser in G of the end e_{1}.

Proposition 37 (Theorem 14.1, [9]). The group R normalises both \mathcal{U} and $\mathcal{B}_{\mathcal{I}}$, and

$$
\mathcal{B}=\mathcal{B}_{\mathcal{I}} \mathcal{U} R=\mathcal{B}_{\mathcal{I}} R \mathcal{U}=\mathcal{U} R \mathcal{B}_{\mathcal{I}}=\mathcal{U B}_{\mathcal{I}} R
$$

Proof. Although Carbone-Garland used a different completion of the Kac-Moody group Λ, their proof goes through in the building topology.

We next consider the structure of $\mathcal{B}_{\mathcal{I}}$.
Lemma 38. Let $b \in \mathcal{B}_{\mathcal{I}}$ be an element of finite order. Then the order of b divides $p-1$.
Proof. From the definition of $\mathcal{B}_{\mathcal{I}}$, we have $b \in \hat{B}^{w}$ for every $w \in W$. By Proposition 9 above, $\hat{B}=T \ltimes \hat{U}_{+}$. For all $w \in W, \hat{B}^{w}=T \ltimes \hat{U}_{+}^{w}$ as W normalises T. Thus $b \in T \ltimes \hat{U}_{+}^{w}$ for every $w \in W$. As $|T| \mid(q-1)^{2}$ and $\exp (T)=q-1, y:=b^{p-1} \in \hat{U}_{+}^{w}$ for every $w \in W$. In particular, y is an element of \hat{U}_{+}which fixes the standard apartment Σ. Since for every $u \in \hat{U}_{+}$either u is a p-element, or its order is infinite, it remains to show that y is not a p-element.

Assume by contradiction that $y^{p}=1 \neq y$. Since y is in \hat{U}_{+}, there is a sequence of elements y_{n} in U_{+}such that $\lim _{n \rightarrow \infty} y_{n}=y$. Without loss of generality, we may assume that y_{n} agrees with y on $\operatorname{Ball}(B, n)$. Then by Lemma 26 above, without loss of generality, y_{n} is an element of the free product of

$$
U_{\left(w_{1}, w_{2} ; n-1\right)}=\left\langle U_{\alpha_{1}}, U_{w_{1} \alpha_{2}}, \ldots, U_{\left(w_{1}, w_{2} ; n-1\right) \alpha_{i_{n-1}}}\right\rangle
$$

and

$$
U_{\left(w_{2}, w_{1} ; n-1\right)}=\left\langle U_{\alpha_{2}}, U_{w_{2} \alpha_{1}}, \ldots, U_{\left(w_{2}, w_{1} ; n-1\right) \alpha_{i_{n-1}^{\prime}}}\right\rangle
$$

Since $y^{p}=1$, y_{n}^{p} fixes $\operatorname{Ball}(B, n)$. Put $z_{n}=y_{n}^{p}$. We claim that $z_{n}=1$. We first consider the case $n=1$. Then $y_{1} \in U_{\alpha_{1}} * U_{\alpha_{2}}$, so y_{1} has the same form as the element z in Lemma 34 above. Now y_{1} fixes the intersection of the standard apartment with $\operatorname{Ball}(B, 1)$, so we have $t_{1}=t_{2}=0$ in this case. Hence by

Corollary 35 above, the element $z_{1}=y_{1}^{p}$ fixes $\operatorname{Ball}(B, 2)$. But by Lemma 28 and Corollary 30 above, if the element z_{1} of $U_{\alpha_{1}} * U_{\alpha_{2}}$ fixes every edge in $\operatorname{Ball}(B, 2)$, then z_{1} fixes every edge in X. Thus, as \hat{U}_{+}acts faithfully, $z_{1}=1$. The proof that $z_{n}=1$ for $n>1$ is similar, using the analogous results for actions of root groups on larger balls in X.

We now have that $1=z_{n}=y_{n}^{p}$, so each y_{n} is a p-element of U_{+}. By Lemma 23 above, U_{+}is the free product of V_{1} and V_{2}, hence any finite order element of U_{+}is contained in a U_{+}-conjugate of either V_{1} or V_{2}. Without loss of generality, pass to a subsequence of the y_{n} so that each y_{n} is an element of $u_{n} V_{1} u_{n}^{-1}$ for some $u_{n} \in U_{+}$. Now y_{n} fixes the intersection of $\operatorname{Ball}(B, n)$ with the standard apartment Σ. Thus the root groups in $u_{n} V_{1} u_{n}^{-1}$ include the first n root groups in V_{1}. Therefore y is in \hat{V}_{1}. But by the definition of the building topology, if $y \in \hat{V}_{1}$ fixes the standard apartment, then $y=1$, a contradiction.

Now consider our element $x \in \hat{U}_{+} \cap \Gamma$ of order p. By Lemma 22 above, x fixes an end of X. By Lemma 36 above, the completed group \hat{U}_{+}acts transitively on the set of left-hand ends of X (where a left-hand end is one corresponding to a ray emanating from P_{1} and containing only left-hand edges). Thus we may assume without loss of generality that x fixes the end e_{1}, that is, $x \in \mathcal{B}$.

Using the decomposition given in Proposition 37 above, $x=u b r$ for some $u \in \mathcal{U}, b \in \mathcal{B}_{\mathcal{I}}$ and $r \in R$. The group R is infinite cyclic, normalises $\mathcal{B}_{\mathcal{I}}$ and \mathcal{U}, and has trivial intersection with $\mathcal{B}_{\mathcal{I}}$ and \mathcal{U} (recall that $Z(G)=1$). Since $x^{p}=1$, we may thus assume that $r=1$, so that $x=u b$. In fact, since $x \in \hat{U}_{+}, u \in \hat{V}_{1}$. Now for $y \in G$ define

$$
f_{n}(y):=g^{n} y g^{-n}
$$

where $\langle g\rangle=R$. Then for all $n \in \mathbb{N}$,

$$
f_{n}(x)=f_{n}(u) f_{n}(b)
$$

To complete our proof, we consider the limit of this expression as $n \rightarrow \infty$.
Lemma 39. For each $u \in \hat{V}_{1}, \lim _{n \rightarrow \infty} f_{n}(u)=1_{G}$.
Proof. For $n \in \mathbb{N}$, let $g^{n} \widehat{V_{1} g^{-n}}$ be the closure of the group $g^{n} V_{1} g^{-n}$ in the building topology. Since conjugation by g is a homeomorphism, we have

$$
\begin{equation*}
g^{n} \widehat{V_{1} g^{-n}}=g^{n} \hat{V}_{1} g^{-n} \tag{4}
\end{equation*}
$$

By Lemma 26 above, if $-\alpha$ is a real root such that the distance from a vertex (either P_{1} or P_{2}) of the base chamber B to the half-apartment determined by $-\alpha$ is at least $n+1$, then the root group U_{α} fixes $\operatorname{Ball}(B, n)$. For each $\alpha \in \Phi_{+}^{1}$, consider the group

$$
f_{n}\left(U_{\alpha}\right)=g^{n} U_{\alpha} g^{-n}=U_{\tau^{n} \alpha} .
$$

The root $-\tau^{n} \alpha$ is by definition the complement of the root $\tau^{n} \alpha=\left(w_{1} w_{2}\right)^{n} \alpha \in \Phi_{+}^{1}$. Since $\alpha \in \Phi_{+}^{1}$ and τ acts by translation by two edges with repelling fixed point e_{2}, the distance from $-\tau^{n} \alpha$ to the edge B is thus at least $2 n \geq n+1$. Hence for each $\alpha \in \Phi_{+}^{1}$ and each $n \in \mathbb{N}$, the group $f_{n}\left(U_{\alpha}\right)$ fixes $\operatorname{Ball}(B, n)$ pointwise. Therefore for each $n \in \mathbb{N}$, the group $f_{n}\left(V_{1}\right)$ fixes $\operatorname{Ball}(B, n)$ pointwise.

By Equation (4) above and the definition of the building topology, it follows that for each $n \in \mathbb{N}$ the group $f_{n}\left(\hat{V}_{1}\right)=g^{n} \hat{V}_{1} g^{-n}$ fixes $\operatorname{Ball}(B, n)$ pointwise. Hence for all $u \in \hat{V}_{1}, f_{n}(u) \rightarrow 1_{G}$ as required.

Since $x=u b$ with $u \in \hat{V}_{1}$, Lemma 39 above implies that

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} f_{n}(b)
$$

Now, $b \in \mathcal{B}_{\mathcal{I}}$ and $\mathcal{B}_{\mathcal{I}}$ is a closed subgroup of \mathcal{B} normalised by R. Therefore, $\lim _{n \rightarrow \infty} f_{n}(b) \in \mathcal{B}_{\mathcal{I}}$. Recall that by Lemma 38 above, if $y \in \mathcal{B}_{\mathcal{I}}$ is an element of finite order, then $o(y) \mid(q-1)$. Now, as $o(x)=p$, $o\left(f_{n}(x)\right)=p$ for all $n \in \mathbb{N}$. And so $o\left(\lim _{n \rightarrow \infty} f_{n}(x)\right)$ divides p. That is, $o\left(\lim _{n \rightarrow \infty} f_{n}(x)\right)$ is either 1 or p. But since $\lim _{n \rightarrow \infty} f_{n}(x)$ is in $\mathcal{B}_{\mathcal{I}}$, we may conclude that

$$
\lim _{n \rightarrow \infty} f_{n}(x)=1_{G}
$$

This contradicts Theorem 7 above. We conclude that a cocompact lattice Γ of G does not contain p-elements.
4.2. Completing the proof of the Main Theorem. Before we continue with the proof, let us recall that if P is a maximal parabolic/parahoric subgroup of G, then P has Levi decomposition $P=L U$, where U is an infinite pro- p group, while $L=T M$ where $T \leq P$ is a torus of G and $A_{1}(q) \cong M \triangleleft L$.

Proposition 40. Let X be a finite subgroup of G which is contained in a cocompact lattice, and such that $|X Z(G) / Z(G)|$ is divisible by $(q+1)$. Then X is contained in a maximal parabolic/parahoric subgroup P of G. Moreover, X is isomorphic to a subgroup $T_{0} H$ of a Levi complement L of P, where $T_{0} \leq N_{T}(H)$ and $H \leq M$.

For $p=2, H \cong C_{q+1}$.
Let p be an odd prime. If $A_{1}(q)$ is universal, that is, if $M \cong S L_{2}(q)$, then H is a subgroup listed in the conclusions to Corollary 11. Otherwise $M \cong P S L_{2}(q)$ and $H \cong A /\langle-I\rangle$ where A is a conclusion to Corollary 11. But if $p=3$ and $q=9, H / Z(H) \not \not 二 A_{5}$.

Proof. By a celebrated result of Serre (Proposition 6 above), each finite subgroup of G sits inside a standard parabolic/parahoric subgroup P of G. Since X is a subgroup of a cocompact lattice of G, by Proposition 21, X does not contain any p-elements. Hence, without loss of generality, $X \leq L$ and $(|X|, p)=1$. The desired result now follows immediately from Corollary 11.

We are now about to finish the proof of our main result. Clearly, if $p=2$, it follows immediately by Proposition 40 and Lemma 13. Suppose now that p is odd.

First, let $q \equiv 3(\bmod 4)$. By Lemma 13 , we conclude that $\Gamma=A_{1} *_{A_{0}} A_{2}$ where for $i=1,2, A_{i}$ is a finite subgroup of G and conditions (1) and (2) of Lemma 13 hold. Invoking Proposition 40, we obtain a list of suitable candidates for the role of the A_{i} 's, that is, $A_{i}=A_{0} H_{i}$ with $A_{0} \leq N_{T}\left(H_{i}\right)$ and $H_{i} \cong H$ as above. Now, just as Lubotzky in the proof of Lemma 3.5 of [17], we conclude that $\Gamma=A_{1} * A_{0} A_{2}$ with $A_{0} \leq N_{T}\left(H_{i}\right)$ is a cocompact edge-transitive lattice in G.

Assume though that $q \equiv 1(\bmod 4)$ and H_{i} is again isomorphic H in the statement of Proposition 40. Suppose first that H_{i} is isomorphic to a normaliser of a non-split torus in $M_{i} \cong A_{1}(q)$. This time the argument of [19; Lemma 3.5] will not work, as was already shown in [20]. Let us briefly explain the reason. In its action on the tree, we assume that P_{i} fixes a vertex x_{i}. Now, L_{i} and thus A_{i} act on the set of neighbours Ω_{i} of x_{i}. Since $A_{0} \leq T, A_{i}=A_{0} H_{i}$ intersects a one-point stabiliser B_{i} of L_{i} in a subgroup of index $4 / d$, that is,

$$
\left|A_{i}: A_{i} \cap B_{i}\right|=\left|A_{0} H_{i}: A_{0} H_{i} \cap T \operatorname{Stab}_{M_{i}}\left(x_{j}\right)\right|=\left|H_{i}: H_{i} \cap T\right|=4 / d
$$

where $d=2$ if $M_{i} \cong S L_{2}(q)$ and $d=1$ if $M_{i} \cong P S L_{2}(q)$. Hence, the length of the orbit of A_{i} in its action on Ω_{i} is at most $\frac{2(q+1) / d}{4 / d}=\frac{q+1}{2}$. That is A_{i} is not transitive on Ω_{i}. Now Lemma 12 implies that G does not contain edge-transitive cocompact lattices unless possibly one of the following holds: $q=5$ and $B_{1} \cong B_{2} \cong A_{1}(3)$, or $q=29$ and $B_{1} \cong B_{2} \cong A_{1}(5)$. If $q=5$, then indeed A_{i} acts transitively on the neighbours of x_{i} as $\left|A_{1} \cap \operatorname{Stab}_{G}\left(x_{3-i}\right)\right|=4=\left|A_{1} \cap A_{2}\right|$, and so $\left|A_{i}: A_{1} \cap \operatorname{Stab}_{G}\left(x_{3-i}\right)\right|=6=q+1$, which means the conditions of Lemma 12 are satisfied. Similarly, if $q=29, A_{i}$ acts transitively on the neighbours of x_{i} as $\left|A_{1} \cap S t_{G}\left(x_{3-i}\right)\right|=4=\left|A_{1} \cap A_{2}\right|$, and so $\left|A_{i}: A_{1} \cap S t_{G}\left(x_{3-i}\right)\right|=30=q+1$, proving the result.

This completes the proof of Theorems 1 and 2 in the general case.

5. Refinements of Main Results and Volumes of Cocompact Lattices

In this section we prove Theorem 3 of the introduction, on the minimal covolume of cocompact lattices in G. The main results are Lemmas 43 and 45 below, which show that a cocompact lattice of minimal covolume in G is edge-transitive. While proving these, we will be able to refine the statements of our main results. We will restrict ourselves to the generic cases: either $p=2$, or if p is odd, to $q \geq 60$ or even $q \geq 300$. Of course our discussion can be carried out in the same fashion for the case when p is odd and $q \leq 300$, but we decided to skip it in order to have "cleaner" statements.

As before, for $i=1,2$, let P_{i} be the stabiliser of a vertex in G, that is, a maximal parabolic/parahoric subgroup of G. Recall that $P_{1} \cong P_{2}$, and if L_{i} is a Levi complement of P_{i}, then $L_{i}=T M_{i}$ where $T \leq B \leq$ $P_{1} \cap P_{2}$ is a torus of G, and $A_{1}(q) \cong M_{i} \triangleleft L_{i}$. Now M_{i} is normalised by T, and $T \cap M_{i}$ induces what are
called inner-diagonal automorphisms on $M_{i} \cong A_{1}(q)$. However, there are clearly various possibilities for the action of elements of $T-T \cap M_{i}$ on M_{i}. In particular there are two obvious cases:

Case 1: For $i=1,2,\left[T / T \cap M_{i}, M_{i}\right]=1$, and Case 2: For $i=1,2,\left[T / T \cap M_{i}, M_{i}\right] \neq 1$.
In fact, we are going to organise our discussion based on this fairly trivial observation.
5.1. Case 1. In this case $L_{i}=M_{i} \circ T_{i}$, that is, L_{i} is a central (commuting) product of M_{i} and $T_{i}=C_{T}\left(M_{i}\right)$. It is possible but not necessary that $T_{i} \cap M_{i}=1$.

Examples. Let G correspond to the generalised Cartan matrix $A=\left(\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right)$.
(1) Let $p=2$ and $G=G_{u}$, the universal version of the group. Then G is a central extension of $S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$ by \mathbb{F}_{q}^{\times}, and so $L_{i} \cong C_{q-1} \times P S L_{2}(q)$ with $T_{i} \cap M_{i}=1$ and $\left|T_{i}\right|=q-1$.
(2) Let p be an odd prime, and $G \cong S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$. Then $L_{i} \cong S L_{2}(q)$ with $T_{i}=T \cap M_{i}=\langle-I\rangle \cong C_{2}$.

Let Γ be an edge-transitive cocompact lattice of G. Then Γ is one of the conclusions of Theorem 1 . Therefore up to isomorphism $\Gamma=A_{1} *_{A_{0}} A_{2}$ where for $i=1,2, A_{i}=A_{0} \circ H_{i}$ with $A_{i} \leq P_{i}, H_{i} \leq M_{i}$, $A_{0} \leq N_{T}\left(H_{i}\right)$ and H_{i} is as described by Theorem 1 .

If $p=2, A_{0} \leq C_{T}\left(H_{i}\right)=C_{T}\left(M_{i}\right)=T_{i}$. If p is odd, then $q \equiv 3 \bmod 4$, and H_{i} is a normaliser of a non-split torus in $M_{i} \cong A_{1}(q)$. Because of the structure of H_{i}, we have $A_{0} \cap H_{i}=A_{0} \cap M_{i}=Z\left(H_{i}\right)=Z\left(M_{i}\right)$. Furthermore, $N_{L_{i}}\left(H_{i}\right) \leq T_{i} H_{i}$ and $T_{i} \cap H_{i}=Z\left(H_{i}\right)$. Therefore, $A_{0}=A_{0} \cap T \leq T_{i}$.

Hence, in both cases discussed above, $A_{0} \leq T_{1} \cap T_{2}$, and so $\left[A_{0}, M_{1}\right]=\left[A_{0}, M_{2}\right]=1$. As $\left\langle M_{1}, M_{2}\right\rangle=\Lambda$, $A_{0} \leq Z(\Lambda)=Z(G)$. In particular, our main results can be made more precise in the following way:
Theorem 41. Let G be a topological Kac-Moody group of rank 2 defined over a field \mathbb{F}_{q} of order $q=p^{a}$ where p is a prime, with symmetric generalised Cartan matrix $\left(\begin{array}{cc}2 & -m \\ -m & 2\end{array}\right)$, $m \geq 2$. Suppose that either $p=2$, or p is odd and $q \geq 60$. Suppose further that for a standard parabolic/parahoric P_{i} of G, its Levi complement $L_{i}=T_{i} \circ M_{i}$ where $M_{i} \cong A_{1}(q), T_{i}=C_{T}\left(M_{i}\right)$ and $T \leq P_{1} \cap P_{2}$ is a torus of G. Let Γ be an edge-transitive cocompact lattice in G. Then one of the following holds:

If $p=2, \Gamma=A_{1} *_{A_{0}} A_{2}$ where for $i=1,2, A_{i}=A_{0} \times H_{i}$ with $H_{i} \cong C_{q+1}$ and A_{0} a cyclic subgroup of $Z(G)$.

Suppose now that p is an odd prime.
If $q \equiv 1(\bmod 4)$, then G does not contain any edge-transitive cocompact lattices.
If $q \equiv 3(\bmod 4)$, and Γ is an edge-transitive cocompact lattice in G, then $\Gamma=A_{1} *_{A_{0}} A_{2}$ where for $i=1,2$:
(1) $A_{i}=A_{0} \circ H_{i}$, with H_{i} isomorphic to the normaliser of a non-split torus in $A_{1}(q)$; and
(2) $A_{0} \leq Z(G)$.

An interesting and unusual consequence is the following observation.
Corollary 42. Let G be a group as in Theorem 41 above. Suppose further that $q \equiv 3 \bmod 4$. If $M_{i} \cong$ $S L_{2}(q)$, then $Z(G) \neq 1$.
Proof. If $M_{i} \cong S L_{2}(q)$, as discussed above $A_{0} \geq Z\left(M_{i}\right) \cong C_{2}$. But $A_{0} \leq Z(G)$, proving the result.
Let us now discuss the question of covolumes. As described in Section 1.4, the covolume of an edgetransitive lattice $\Gamma=A_{1} *_{A_{0}} A_{2}$ in G may be calculated as follows:

$$
\mu(\Gamma \backslash G)=\frac{1}{\left|A_{1}\right|}+\frac{1}{\left|A_{2}\right|}=\frac{1}{(q+1)\left|A_{0}\right|}+\frac{1}{(q+1)\left|A_{0}\right|}=\frac{2}{(q+1)\left|A_{0}\right|}
$$

In all conclusions to Theorem 41, the edge group A_{0} satisfies $A_{0} \leq Z(G)$. Now, among all the edgetransitive cocompact lattices in G, choose $\Gamma^{\prime}=A_{1}^{\prime} *_{A_{0}^{\prime}} A_{2}^{\prime}$ such that $\left|A_{0}^{\prime}\right|$ is as large as possible. Then $A_{0}^{\prime}=Z(G)$, and so for any other edge-transitive lattice $\Gamma=A_{1} *_{A_{0}} A_{2}$ in G, since $\left|A_{0}\right| \leq|Z(G)|$ we have

$$
\mu(\Gamma \backslash G) \geq \mu\left(\Gamma^{\prime} \backslash G\right)=\frac{2}{(q+1)|Z(G)|}
$$

And so among all the edge-transitive cocompact lattices in G, the lattice Γ^{\prime} with edge group $A_{0}^{\prime}=Z(G)$ has the smallest possible covolume.

Now take Γ to be a cocompact, not necessarily edge-transitive, lattice in G. What happens then?
Lemma 43. Let G be as in Theorem 41 with $q \not \equiv 1 \bmod 4$. In fact, if p is odd, suppose that $q \geq 300$. If Γ is a cocompact lattice of G of minimal covolume, then Γ is edge-transitive.

Combined with the discussion above, Lemma 43 proves Theorem 3 for this case.
Proof of Lemma 43. Since $Z(G)$ is finite, without loss of generality we may assume that $Z(G)=1$. This together with Corollary 42 implies that $M_{i} \cong P S L_{2}(q)$ and $T_{i} \cap M_{i}=1$. Moreover, $\left|T_{i}\right|$ is odd. If not, there exists $g \in T_{i}$ of order 2 (in particular, p is odd). Without loss of generality let $g \in T_{1}$. Then $\left[g, M_{2}\right] \neq 1$, for otherwise $g \in C_{G}\left(\left\langle M_{1}, M_{2}\right\rangle\right)=C_{G}(\Lambda) \leq Z(G)=1$, a contradiction. Since $g \in T$, it normalises the root subgroups $U_{ \pm \alpha_{i}}, i=1,2$. In particular, it normalises $U_{\alpha_{2}}$ and $U_{-\alpha_{2}}$, and so acts on M_{2} as an element of the split torus, which is a contradiction as $M_{2} \cong P S L_{2}(q)$ and its split torus is of odd order. It follows immediately that $|T|$ is odd too.

Let Γ be a cocompact lattice of G of minimal covolume. Since Γ is cocompact, the fundamental domain E for Γ contains at least two vertices x_{1} and x_{2} (connected by at least one edge) such that $G_{x_{i}}$ is G-conjugate to P_{i} for $i=1,2$. By Proposition 8,

$$
\mu(\Gamma \backslash G)=\sum_{s \in E} \frac{1}{\left|\Gamma_{s}\right|} \geq \frac{1}{\left|\Gamma_{x_{1}}\right|}+\frac{1}{\left|\Gamma_{x_{2}}\right|}(*)
$$

Since Γ is discrete, $\left|\Gamma_{x_{i}}\right|$ is finite, and so by Proposition 6, without loss of generality we may assume that $\Gamma_{x_{i}} \leq P_{i}$. But Γ is cocompact, and so Proposition 21 implies that in fact, we may suppose that $\Gamma_{x_{i}}$ is a subgroup of $T_{i} \circ M_{i}$ of order coprime to p. Since Γ is a lattice of minimal covolume, by the discussion before this lemma, $\left|\Gamma_{x_{i}}\right| \geq(q+1)$ for some $i \in\{1,2\}$. In fact, if $\left|\Gamma_{x_{i}}\right|<q+1$, then $\left|\Gamma_{x_{j}}\right|>q+1$ where $\{i, j\}=\{1,2\}$.

Let D_{i} denote a projection of $\Gamma_{x_{i}}$ on T_{i} and H_{i} a projection of $\Gamma_{x_{i}}$ on M_{i}. If $D_{i}=1$ for $i \in\{1,2\}$, then $\Gamma_{x_{i}} \leq M_{i}$. Choose i so that $\left|\Gamma_{x_{i}}\right| \geq q+1$. Hence, $\Gamma_{x_{i}}$ is a subgroup of M_{i} whose order is at least $q+1$ and is co-prime to p. If $\left|\Gamma_{x_{i}}\right|>q+1$, Dickson's Theorem and its corollary give us that q is odd, $\Gamma_{x_{i}}$ is a normaliser of a torus in M_{i} and $M_{i} \cong S L_{2}(q)$, a contradiction. Therefore $\left|\Gamma_{x_{i}}\right|=q+1$ for $i=1,2$. By Theorem 41, $\Gamma_{x_{i}}$ is isomorphic to C_{q+1} if $p=2$, and a normaliser of a non-split torus in M_{i} if p is odd. And so it acts transitively on the set of neighbours of x_{i} and all the conditions of Lemma 4 hold. Thus Γ is edge-transitive, proving the result. Therefore, without loss of generality, we may assume that $D_{1} \neq 1$. Now, if $H_{i}=1$ for at least one of $i \in\{1,2\}$, then the corresponding $\Gamma_{x_{i}} \leq T_{i} \leq T$. And so a subgroup generated by $\Gamma_{x_{1}}$ and $\Gamma_{x_{2}}$ is finite. This argument eventually contradicts the cocompactness of Γ. Hence, $H_{1} \neq 1 \neq H_{2}$.

Assume first that $\Gamma_{x_{1}} \cap T_{1}=1$. As $D_{1} \neq 1$, there exists a non-trivial element $g \in \Gamma_{x_{1}}-M_{1}$ of odd order which induces an inner-diagonal automorphism on M_{1}. Denote by $M_{x_{1}}:=\Gamma_{x_{1}} \cap M_{1}$. Then $\left\langle g, M_{x_{1}}\right\rangle \leq \Gamma_{x_{1}}$. Since $H_{1} \neq 1$ and $\left(\left|\Gamma_{x_{1}}\right|, p\right)=1$, Dickson's Theorem and its corollary imply that either $M_{x_{1}}=1$, or $M_{x_{1}} \neq 1$ and is either contained in the normaliser of a split torus of M_{1}, or p is odd and $M_{x_{1}}$ is isomorphic to a non-abelian subgroup K of S_{4} or A_{5}. In the former case $\left|\Gamma_{x_{1}}\right| \leq\left|T_{1}\right| \leq q-1$. In the latter one, if p is odd and $M_{x_{1}}$ is isomorphic to a non-abelian subgroup K of S_{4} or A_{5}, then since g normalises but not centralises $M_{x_{1}}\left(C_{M_{1}}(K)=1\right),\left|\Gamma_{x_{1}}\right| \leq 60<q+1$. Finally, if $M_{x_{1}}$ is contained in a normaliser of a split torus of M_{1}, since $\Gamma_{x_{1}} \cap T_{1}=1$, $m_{r}\left(\Gamma_{x_{1}}\right)=1$ for all primes r. Hence $\left|\Gamma_{x_{1}}\right| \leq q-1$. Therefore, $\Gamma_{x_{1}} \cap T_{1}=1$ implies $\left|\Gamma_{x_{1}}\right|<q+1$. As an immediate consequence we obtain that $\left|\Gamma_{x_{2}}\right|>q+1$ and consider $\Gamma_{x_{2}} \cap T_{2}$. Going through the same arguments for $i=2$, we obtain that $\Gamma_{x_{2}} \cap T_{2} \neq 1$. Therefore, we always have $\Gamma_{x_{i}} \cap T_{i} \neq 1$ for some $i \in\{1,2\}$.

Without loss of generality we may assume that $\Gamma_{x_{1}} \cap T_{1} \neq 1$ and choose a non-trivial element y_{1} with $\left\langle y_{1}\right\rangle=\Gamma_{x_{1}} \cap T_{1}$. Since $y_{1} \in T_{1} \leq T, y_{1} \in L_{2}$. Consider the action of y_{1} on M_{2}. If $\left[y_{1}, M_{2}\right]=1$, as $\left[y_{1}, M_{1}\right]=1, y_{1} \in Z(\Lambda) \leq Z(G)=1$, a contradiction. Therefore y_{1} acts non-trivially on M_{2}. Since T normalises $U_{\alpha_{2}}$ and $U_{-\alpha_{2}}, y_{1}$ acts on M_{2} as an element of odd order of the split torus. Now consider $Y_{1}:=\left\langle\Gamma_{x_{2}}, y_{1}\right\rangle$. Since $Y_{1} \leq L_{2}$ and $Y_{1} \leq \Gamma, Y_{1}$ is a finite group of order prime to p. Therefore $\Gamma_{x_{2}}$ acts of M_{2} in one of the following ways: either as a subgroup of $N_{M_{2}}(T)$, or as a non-abelian subgroup K_{2} of either S_{4}
or A_{5} (in the latter case p is odd, $o\left(y_{1}\right)$ is either 3 or 5 , and $\Gamma_{x_{1}} \cap T_{1}=\left\langle y_{1}\right\rangle$). Notice, that as $T \leq P_{1} \cap P_{2}$, $\Gamma \cap T \leq \Gamma_{x_{i}}$ for $i=1,2$.

Let us first deal with the latter case. If $\Gamma_{x_{2}} \cap T_{2}=1,\left|\Gamma_{x_{2}}\right| \leq 60$. Now, $\left|\Gamma_{x_{1}}\right| \leq o\left(y_{1}\right)(q+1)$ with $o\left(y_{1}\right) \in\{3,5\}$. Since Γ is a lattice of minimal covolume, equation $(*)$ implies that $q \leq 107$, a contradiction. Thus $\Gamma_{x_{2}} \cap T_{2} \neq 1$. Hence there exists an element $y_{2} \in \Gamma_{x_{2}} \cap T_{2}$ of odd order with $\left\langle y_{2}\right\rangle \Gamma_{x_{2}} \cap T_{2}$. Using the same reasoning for y_{2} as for y_{1}, we conclude that y_{2} must act non-trivially on M_{1} and $\Gamma_{x_{1}}$ must act on M_{1} either as a subgroup of $N_{M_{1}}(T)$, or as a non-abelian subgroup K_{1} of S_{4} or A_{5} (in the latter case p is odd and $o\left(y_{2}\right)$ is either 3 or 5). In the latter case, the minimality of covolume together with formula (*) give us that

$$
\frac{2}{q+1} \geq \frac{2}{5 \cdot 60}
$$

implying that $q<300$, a contradiction. In the former one (i.e., $\Gamma_{x_{1}}$ acts on M_{1} as a subgroup of $N_{M_{1}}(T)$) the fact that $\Gamma \cap T \leq \Gamma_{x_{i}}$ for $i=1,2$ implies that we can see all the torus involved in $\Gamma_{x_{i}}$ in $\left\langle y_{2}\right\rangle \times K_{2}$, and so $\left|\Gamma_{x_{2}}\right| \leq 5^{2} \cdot 2$. This together with $(*)$ and the minimality implies that $q \leq 85$, a contradiction.

Therefore, $\Gamma_{x_{2}} \leq N_{L_{2}}(T)$. Again going through the same argument, we obtain similar conclusion for $\Gamma_{x_{1}}: \Gamma_{x_{1}} \leq N_{L_{1}}(T)$. As a result we have that if Γ is a cocompact lattice of minimal covolume which is not edge-transitive, $\Gamma \leq N$. But this is impossible, since N does not act cocompactly on X (its action preserves the standard apartment Σ, and so it has orbits which are at arbitrary distance from Σ). We conclude that a cocompact lattice of minimal covolume must be edge-transitive.
5.2. Case 2. In this case T induces non-trivial outer-diagonal automorphisms on M_{i} for some i. Since $P_{1} \cong P_{2}, L_{1} \cong L_{2}$. As $M_{i} \cong A_{1}(q), p$ is odd, for if $p=2, A_{1}(q)=S L_{2}(q)=P S L_{2}(q)$ does not admit outerdiagonal automorphisms. Moreover, L_{i} is isomorphic to a homomorphic image of $G L_{2}(q)$. In particular, $L_{i}=T_{i} M_{i}\left\langle t_{i}\right\rangle$ where $T_{i}=C_{T}\left(M_{i}\right), T_{i} / T_{i} \cap M_{i}$ is a cyclic group of odd order and $t_{i} \in T$ is an involution with $L_{i} / T_{i} \cong P G L_{2}(q)$.

Since $q \geq 60$, there is not much more we can say about the edge-transitive lattices than we already did in the statement of Theorem 1.

However, as in the previous case, we will investigate the issue of the minimality of covolumes. Recall, that p is odd, $q \equiv 3 \bmod 4$ and $q \geq 60$. As described in Section 1.4 and using the conclusion of Theorem 1, the covolume of an edge-transitive lattice $\Gamma=A_{1} *_{A_{0}} A_{2}$ in G may be calculated as follows:

$$
\mu(\Gamma \backslash G)=\frac{1}{\left|A_{1}\right|}+\frac{1}{\left|A_{2}\right|}=\frac{1}{(q+1)\left|A_{0}\right|}+\frac{1}{(q+1)\left|A_{0}\right|}=\frac{2}{(q+1)\left|A_{0}\right|}
$$

where $A_{0} \leq N_{T}\left(H_{i}\right)$ for $i=1,2$ and H_{i} is the normaliser of a non-split torus of M_{i}. Assume there exists $i \in\{1,2\}$ and $t \in A_{0} \cap T_{i}$ of odd order. Then $\left[t, M_{i}\right]=1$. Moreover, as $o(t) \mid(q-1),\left[t, H_{j}\right]=1$ where $\{i, j\}=\{1,2\}$. But $t \in T$ and hence normalises M_{j}. Now the local structure of $A_{1}(q)$ implies that $\left[t, M_{j}\right]=1$. Therefore, $t \in C_{T}\left(\left\langle M_{1}, M_{2}\right\rangle\right) \leq Z(G)$.

Remark 44. Notice that as $t_{i} \in T$ acts non-trivially on M_{i}, we have $2 \leq|T|_{2} \leq 4$ and $|Z(G)|_{2} \in\{1,2\}$.
Now, among all the edge-transitive cocompact lattices in G, choose $\Gamma^{\prime}=A_{1}^{\prime} * A_{0}^{\prime} A_{2}^{\prime}$ such that $\left|A_{0}^{\prime}\right|$ is as large as possible. Clearly, if $t \in T$ of order 2 , then $t \in N_{T}\left(H_{i}\right), i=1,2$, and so it is possible for $t \in A_{0}^{\prime}$. Thus $\left|A_{0}^{\prime}\right|=|Z(G)| 2 d$ if $|Z(G)|$ is odd (where $d=1$ or 2 depending on the group), and $\left|A_{0}^{\prime}\right|=|Z(G)| 2$ if $|Z(G)|$ is even.

Therefore, for any other edge-transitive lattice $\Gamma=A_{1} * A_{0} A_{2}$ in G, we have

$$
\mu(\Gamma \backslash G) \geq \mu\left(\Gamma^{\prime} \backslash G\right)=\frac{2}{2(q+1)|Z(G)| \delta}
$$

where $\delta \in\{1, d\}$ as described above. And so among all the edge-transitive cocompact lattices in G, the lattice Γ^{\prime} with edge group A_{0}^{\prime} of order $2(q+1)|Z(G)| \delta$ has the smallest possible covolume.

Now take Γ to be a cocompact, not necessarily edge-transitive, lattice in G. What happens then? Again, to avoid small cases, we assume that q is large enough.

Lemma 45. Let G be a topological Kac-Moody group of rank 2 defined over a field \mathbb{F}_{q} of order $q=p^{a}$ where p is an odd prime, with symmetric generalised Cartan matrix $\left(\begin{array}{cc}2 & -m \\ -m & 2\end{array}\right)$, $m \geq 2$. Suppose further that $q \not \equiv 1 \bmod 4$ and $q \geq 300$. Finally, assume also that for a standard parabolic/parahoric P_{i} of G, its Levi complement L_{i} is a non-trivial non-abelian homomorphic image of $G L_{2}(q)$, i.e., $L_{i} / Z\left(L_{i}\right) \cong P G L_{2}(q)$.

If Γ is a cocompact lattice of G of minimal covolume, then Γ is edge-transitive.
Again, the discussion above together with Lemma 45 proves Theorem 3 for this case.
Proof of Lemma 45. Since $Z(G)$ is finite, without loss of generality we may assume that $Z(G)=1$. Let Γ be a cocompact lattice of G of minimal covolume. Since Γ is cocompact, the fundamental domain E for Γ contains at least two vertices x_{1} and x_{2} (connected by at least one edge) such that $G_{x_{i}}$ is G-conjugate to P_{i} for $i=1,2$. By Proposition 8,

$$
\mu(\Gamma \backslash G)=\sum_{s \in E} \frac{1}{\left|\Gamma_{s}\right|} \geq \frac{1}{\left|\Gamma_{x_{1}}\right|}+\frac{1}{\left|\Gamma_{x_{2}}\right|} \quad(* *)
$$

Since Γ is discrete, $\left|\Gamma_{x_{i}}\right|$ is finite, and so by Proposition 6, without loss of generality we may assume that $\Gamma_{x_{i}} \leq P_{i}$. But Γ is cocompact, and so Proposition 21 implies that in fact, we may suppose that $\Gamma_{x_{i}}$ is a subgroup of L_{i} of order coprime to p. Since Γ is a lattice of minimal covolume, by the discussion before this lemma, $\left|\Gamma_{x_{i}}\right| \geq 2(q+1) \delta$ for some $i \in\{1,2\}$. In fact, if $\left|\Gamma_{x_{i}}\right|<2(q+1) \delta$, then $\left|\Gamma_{x_{j}}\right|>2(q+1) \delta$ where $\{i, j\}=\{1,2\}$.

Let D_{i} denote a projection of $\Gamma_{x_{i}}$ on T_{i} and H_{i} a projection of $\Gamma_{x_{i}}$ on $M_{i}\left\langle t_{i}\right\rangle$. If $D_{i} \leq Z\left(M_{i}\right)$ for $i \in\{1,2\}$, then $\Gamma_{x_{i}} \leq M_{i}$. Choose i so that $\left|\Gamma_{x_{i}}\right| \geq 2(q+1) \delta$. Then $\Gamma_{x_{i}}$ is a subgroup of $M_{i}\left\langle t_{i}\right\rangle$ whose order is at least $2(q+1) \delta$ and is co-prime to p. Using Dickson's Theorem and its corollary we obtain that equality holds and $\Gamma_{x_{i}}$ is a normaliser of a torus in $M_{i}\left\langle t_{i}\right\rangle$. But now all the conditions of Lemma 4 holds, and so Γ is edge-transitive, proving the result. Therefore, without loss of generality, we may assume that $D_{1} \neq 1$. Now, if $H_{i}=1$ for at least on of $i \in\{1,2\}$, then $\Gamma_{x_{i}} \leq T_{i} \leq T$. And so a subgroup generated by $\Gamma_{x_{1}}$ and $\Gamma_{x_{2}}$ is finite. This argument eventually contradicts the cocompactness of Γ. Hence, $H_{1} \neq 1 \neq H_{2}$.

Assume first that $\Gamma_{x_{1}} \cap T_{1} \leq Z\left(M_{1}\right)$. Then $\Gamma_{x_{1}}$ is isomorphic to a subgroup of $M_{1}\left\langle t_{1}\right\rangle$. As its order must be co-prime to p, we obtain that $\left|\Gamma_{x_{1}}\right| \leq 2(q+1) \delta$. If $\Gamma_{x_{2}} \cap T_{2} \leq Z\left(M_{2}\right)$, similarly $\left|\Gamma_{x_{2}}\right| \leq 2(q+1) \delta$, and again we will obtain minimality when $\left|\Gamma_{x_{i}}\right|=2(q+1) \delta$ for $i=1,2$, which in turn using Lemma 4 will give us that Γ has to be edge-transitive. Thus without loss of generality there exists $y_{1} \in \Gamma_{x_{1}} \cap T_{1}$ of odd order. Repeating the discussion of our proof of Lemma 45 we obtain the desired result.

References

[1] J. Alperin and R. Bell, Groups and Representations, (1991), Springer-Verlag, New York.
[2] H. Bass, Covering theory for graphs of groups, J. Pure Appl. Algebra 89 (1993), 3-47.
[3] H. Bass and R. Kulkarni, Uniform tree lattices, J. Amer. Math. Soc. 3 (1990), 843-902.
[4] A. Borel and J. Tits, Elements unipotents et sous-groupes paraboliques de groupes reductifs, Invent. Math. 12 (1971), 95-104.
[5] P.-E. Caprace, On 2-spherical Kac-Moody groups and their central extensions, Forum Math. 19 (2007), 763-781.
[6] P.-E. Caprace and N. Monod, A lattice in more than two Kac-Moody groups is arithmetic, preprint (2008), arXiv:0812.1383v1.
[7] P.-E. Caprace and B. Rémy, Groups with a root group datum, preprint (2008).
[8] P.-E. Caprace and B. Rémy, Simplicity and superrigidity of twin building lattices, Invent. Math. 176 (2009) $169-221$.
[9] L. Carbone and H. Garland, Existence of lattices in Kac-Moody groups over finite fields, Commun. Contemp. Math. 5 (2003), 813-867.
[10] R. W. Carter, Kac-Moody groups and their automorphisms, in Groups, combinatorics and geometry (Durham, 1990), 218-228, London Math. Soc. Lecture Note Ser., 165, Cambridge Univ. Press, Cambridge, 1992.
[11] D. Djoković and G. Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory Ser. B 29 (1980), 195-230.
[12] J. Dymara and T. Januszkiewicz, Cohomology of buildings and their automorphism groups, Invent. math. 150 (2002), 579-627.
[13] P. Fan, Amalgams of prime index, J. Algebra 98 (1986), 375-421.
[14] I. M. Gelfand, M. I. Graev and I. Piatetsky-Shapiro, Representation theory and automorphic functions, Saunders, San Francisco (1969).
[15] D. M. Goldschmidt, Automorphisms of trivalent graphs, Ann. of Math. 111 (1980), 377-406.
[16] D. Gorenstein, R. Lyons, R. Solomon, The Classification of Finite Simple Groups, Number 3, Part I. Mathematical Surveys and Monographs 40, American Mathematical Society, Providence, RI (1998).
[17] A. Lubotzky, Lattices of minimal covolume in $S L_{2}$: a nonarchimedean analogue of Siegel's theorem $\mu \geq \pi / 21$, J. Amer. Math. Soc. 3 (1990), 961-975.
[18] A. Lubotzky and Th. Weigel, Lattices of minimal covolume in $S L_{2}$ over local fields, Proc. London Math. Soc. 78 (1999), 283-333.
[19] B. Rémy, Groupes de Kac-Moody déployés et presques déployés, Astérisque 277, Soc. Math. France, 2002.
[20] B. Rémy and M. Ronan, Topological groups of Kac-Moody type, right-angled twinnings and their lattices, Comment. Math. Helv. 81 (2006), 191-219.
[21] J.-P. Serre, Trees, (2003), Springer-Verlag, Berlin.
[22] _ Cohomologie des groupes discrets, Ann. of Math. Studies, no. 70, Princeton Univ. Press, Princeton, N.J., 1971, 77-169.
[23] C. L. Siegel, Some remarks on discontinuous groups, Ann. of Math. 46 (1945), 708-718.
[24] J. Tits, Ensembles ordonnés, immeubles et sommes amalgamées, Bull. Soc. Math. Belg. Sér. A 38 (1986), $367-387$.
$[25]$ _, Uniqueness and presentation of Kac-Moody groups over fields, J. Algebra 105 (1987), 542-573.
Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, UK
E-mail address: I.Korchagina@warwick.ac.uk
Department of Mathematics, Malott Hall, Cornell University, Ithaca, NY 14853-4201, USA
E-mail address: athomas@math.cornell.edu

[^0]: Date: July 15, 2009.
 The first author is supported by an EPSRC Grant No. EP/EO49508. The second author is supported in part by NSF Grant No. DMS-0805206.

