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Abstract
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1 Introduction

Classically, starting with the vector representation V of glN and taking its tensor powers

V ⊗n one gets a sequence of the corresponding endomorphism algebras. In the limiting

case N → ∞, the sequence of the endomorphism algebras stabilizes and admits a precise

description: this is a sequence of the group algebras of the symmetric groups Sn.

In a quantum version of the Schur–Weyl duality, the Lie algebra glN is replaced by

the quantized enveloping algebra Uq(glN), and the corresponding stable sequence of the

endomorphism algebras is a sequence of the Hecke algebras Hn(q). Similarly, the endomor-

phism algebras associated with the representations of the polynomial current and loop Lie

algebras and their quantizations lead to sequences of group algebras of affine extensions

of the symmetric groups and the sequences of affine Hecke algebras and their degenerate

versions.

It is these sequences of algebras which we take as a starting point of our approach.

We use them to construct certain categories (which we call the Schur–Weyl categories)

modeling the parts of the corresponding representation categories generated by the vector

representations. Each of the Schur–Weyl categories possesses a universal property : as a

monoidal category, it is generated by a single object and a collection of endomorphisms.

This property leads to a simple characterization of monoidal functors from these categories

thus allowing us to reformulate the Schur–Weyl dualities as the existence and fullness

properties of functors from the Schur–Weyl categories to the appropriate representation

categories.

As another application of the universal property, we show that a localized category

associated with the (degenerate) affine Hecke algebras is equivalent to a localized category

associated with the (semi-) affine symmetric group algebras. Moreover, motivated by

the work [23] we construct actions of the Schur–Weyl categories corresponding to the

(degenerate) affine Hecke algebras on certain (infinitesimal) braided categories containing

Hecke objects.

We will now explain our approach in more detail by using the classical Schur–Weyl

duality as a model example. One consequence of this duality is the fact that there are no

non-zero homomorphisms between the m-th and n-th tensor powers of the N -dimensional

vector representation V of the general linear Lie algebra glN for m 6= n:

HomglN (V ⊗m, V ⊗n) = 0.

Moreover, the natural homomorphism

k[Sn] → EndglN (V ⊗n)

from the group algebra of the symmetric group is surjective (it is also injective if n 6 N)

[15], [25] and [26]. Here and throughout the paper k denotes a field, and vector spaces and

algebras are considered over k, unless stated otherwise.
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At this point we want to shift the emphasis from the Lie algebra glN to the sequence

of the symmetric group algebras

k[S∗] = {k[Sn] | n > 0}

and to regard this sequence as the primary object of the duality. The sequence k[S∗] comes

equipped with the algebra homomorphisms

µm,n : k[Sm]⊗ k[Sn] → k[Sm+n], (1.1)

induced by the natural inclusions Sm × Sn ↪→ Sm+n. The homomorphisms µm,n satisfy

a certain associativity property which we describe below in Sec. 2. The collection k[S∗]
together with these homomorphisms is an example of what we call a multiplicative sequence

of algebras .

We can use the multiplicative sequence k[S∗] to define a k-linear monoidal category S
whose objects [n] are parameterized by the natural numbers n > 0 with no morphisms be-

tween the objects corresponding to different numbers and with the endomorphism algebra

EndS([n]) of the n-th object being k[Sn]. The tensor product on objects is defined by the

addition of natural numbers, [m]⊗ [n] = [m + n], while on the morphisms it is defined by

the algebra homomorphisms (1.1). The category S possesses a universal property: it is a

free symmetric monoidal k-linear category generated by one object X = [1].

We denote by S the category of k-linear functors from the opposite category S op
to the

category of vector spaces. Then S is a free symmetric abelian monoidal k-linear category

generated by one object. More explicitly, S is the direct sum of the categories of right

modules ⊕nMod−k[Sn]. The classical Schur–Weyl duality implies that the symmetric

monoidal functor from S to the category of representations of glN sending the generator

X to V is full (surjective on morphisms). In other words, the universal enveloping algebra

of glN is Tannaka–Krein dual to the symmetric monoidal functor from S to the category

of vector spaces, sending the generator X to V .

This construction can be generalized as follows. Let A be a unital associative algebra.

One can start with a free symmetric monoidal category S(A) generated by one object X and

with A as the algebra of its endomorphisms. The corresponding multiplicative sequence

of algebras is now the sequence of cross-products A⊗n ∗ Sn. We can associate with an

N -dimensional vector space V the symmetric monoidal functor from S(A) to the category

of vector spaces which sends the generator X to V ⊗ A, considered as a vector space. Its

Tannaka–Krein dual is the universal enveloping algebra of the Lie algebra EndA(V ⊗ A)

of A-linear endomorphisms of V ⊗ A. Two examples of this situation will be particularly

important for us due to their interesting quantizations. Namely, these are the cases where

A is the algebra of polynomials in one variable, or its Laurent version. Then the Tannaka–

Krein duals are respectively the universal enveloping algebras of the polynomial current Lie
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algebra glN [t] and of the Lie algebra of Laurent polynomials glN [t, t−1]. The corresponding

(Schur–Weyl dual) multiplicative sequences of algebras are the sequences of group algebras

of affine symmetric (semi-)groups.

More examples come via the Schur–Weyl duality from quantizations of the general

linear Lie algebras or their current deformations. Namely, the multiplicative sequence of

Hecke algebras arises from the endomorphism algebras of the tensor powers of the vector

representation of the quantized enveloping algebra Uq(glN). This gives rise to a monoidal

category which we call the Hecke category . Furthermore, the quantum loop algebras and

Yangians are respective quantizations of the algebras U(glN [t, t−1]) and U(glN [t]). The

Schur–Weyl dual sequence associated with the quantum loop algebras is formed by the

affine Hecke algebras, while the dual sequence for the Yangians is formed by the sequence

of degenerate affine Hecke algebras.

Now we outline the contents of the paper. We start by defining multiplicative sequences

of algebras and the corresponding Schur–Weyl categories and list their basic properties

(Sec. 2). In particular, we analyze a condition on an embedding of multiplicative sequences

which guarantees that the right adjoint to the monoidal functor induced by the embedding

(the restriction functor along the embedding) is also monoidal. This will be used later to

construct fiber functors (i.e. monoidal functors to vector spaces) for the Schur–Weyl cate-

gories of (degenerate) affine Hecke algebras. We also study presentations of multiplicative

sequences in terms of generators and relations and corresponding freeness properties of the

Schur–Weyl categories.

In the subsequent sections we consider the families of multiplicative sequences of alge-

bras which are Schur–Weyl dual to the general linear Lie algebra, its polynomial current

versions and their quantum deformations: the quantized enveloping algebra, the Yangian

and the quantum loop algebra. One of the advantages of our approach is a natural and

unifying construction of the actions of the Hecke algebras (or their affine and degenerate

versions) on tensor powers of the corresponding (polynomially extended) vector represen-

tation. In the case of the Yangians this action does not appear to have been previously

described in the literature; cf. [1], [10]. In the quantum loop algebra case, the action of

the affine Hecke algebras on the tensor powers of the vector representation provides an

alternative to the construction previously given in [14, Theorem 4.9].

In the last section we prove equivalences of certain localized categories and construct

categorical actions of the Schur–Weyl categories.

The work on the paper began while the first author was visiting the University of

Sydney and it was completed during his visit to Max Planck Institut für Mathematik

(Bonn) in 2010. He would like to thank these institutions for hospitality and excellent

working conditions. We would also like to thank the Australian Research Council and

Max Planck Gesellschaft for supporting these visits.
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2 Sequences of algebras and monoidal categories

Throughout the paper we will freely use the standard language of categories and functors;

see e.g. [21]. All categories and functors will be linear over the ground field k, unless

stated otherwise. All monoidal functors will be understood as strong monoidal. The set

(or vector space) of morphisms between objects X, Y of a category C will be denoted by

C(X,Y ) and the endomorphism algebra C(X, X) of X ∈ C will be denoted by EndC(X).

2.1 Multiplicative sequences of algebras and monoidal categories

We will deal with sequences of associative unital algebras A∗ = {An | n > 0} equipped

with collections of (unital) algebra homomorphisms

µm,n : Am ⊗ An → Am+n, m, n > 0,

satisfying the following associativity axiom: for any l, m, n > 0 the following diagram

commutes:

Al ⊗ Am ⊗ An

µ l,m⊗I
//

I⊗µm,n

��

Al+m ⊗ An

µ l+m,n

��
Al ⊗ Am+n

µ l,m+n // Al+m+n.

We call such a sequence multiplicative and we will always assume that A0 = k. A model

example of a multiplicative sequence of algebras is provided by the following construction.

Let C be a (strict) monoidal category such that EndC(I) = k, where I denotes the unit ob-

ject of C. Given an object X of C, the sequence A∗ with An = EndC(X⊗n) is multiplicative

with respect to the homomorphisms µm,n given by the tensor product on morphisms

EndC(X⊗m)⊗ EndC(X⊗n) → EndC(X⊗m+n).

Moreover, any multiplicative sequence can be obtained in this way. Indeed, starting with

a multiplicative sequence A∗, define the category C(A∗) with objects [n] parameterized by

natural numbers, with no morphisms between different objects and with the endomorphism

algebras EndC(A∗)([n]) = An. Define tensor product on the objects of C(A∗) by [m]⊗ [n] =

[m + n]. The multiplicative structure of the sequence A∗ yields the tensor product on

morphisms.

Let f∗ = {fn | n > 0} be a sequence of algebra homomorphisms fn : An → Bn

between the corresponding algebras of two multiplicative sequences A∗ and B∗. We call f∗ a

homomorphism of multiplicative sequences if for any m,n the following diagram commutes:

Am ⊗ An
fm⊗fn //

µm,n

��

Bm ⊗Bn

µm,n

��
Am+n

fm+n // Bm+n.
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We will say that f∗ is an epimorphism, if all homomorphisms fn are surjective.

Note that the construction of the category C(A∗) is functorial with respect to homo-

morphisms of multiplicative sequences: a homomorphism f∗ : A∗ → B∗ defines a monoidal

functor C(f∗) : C(A∗) → C(B∗).
Now we denote by C(A∗) the category Funct

(C(A∗)op,Vect
)

of k-linear functors from

the opposite category C(A∗)op to the category of vector spaces over k. As a category, C(A∗)
is the direct sum of categories of right modules ⊕nMod−An. The monoidal structure on

C(A∗) (induced by the monoidal structure on C(A∗) via Day’s convolution) is given by

M ⊗A∗ N = (M ⊗N)⊗Am⊗An Am+n. (2.1)

Here M is an Am-module, N is an An-module, and Am+n is considered as a left Am ⊗An-

module via the homomorphism µm,n. We call the monoidal category C(A∗) the Schur–Weyl

category corresponding to the multiplicative sequence of algebras A∗. The subscript A∗ of

the tensor product sign in (2.1) will usually be omitted, if no confusion is possible as to

what multiplicative sequence is used or what monoidal category is considered.

Suppose that C is a k-linear category and C is an abelian category together with a

fully-faithful k-linear functor F : C → C. We call C an abelian envelope of C if any object

of C is a subquotient of a direct sum of objects from the image of F .

Lemma 2.1. The category C(A∗) is an abelian envelope of C(A∗).

Proof. By its definition, the category C(A∗) is abelian. The category C(A∗) is fully and

faithfully embedded into C(A∗) via the Yoneda functor Y 7→ C(A∗)(−, Y ). Explicitly, the

image of [n] via this embedding is An considered as a module over itself. It is clear that

any object in Mod−An is a quotient of a direct sum of copies of An.

Note that the construction of C(A∗) is functorial with respect to homomorphisms of

multiplicative sequences: a homomorphism f∗ : A∗ → B∗ of multiplicative sequences

defines a functor

C(f∗) : C(A∗) → C(B∗), C(f∗)(M) = M ⊗Am Bm,

if M is an Am-module. Moreover, this functor is monoidal:

C(f∗)(M ⊗A∗ N) (M ⊗A∗ N)⊗Am+n Bm+n

��
(M ⊗N)⊗Am⊗An Bm+n

��
C(f∗)(M)⊗B∗ C(f∗)(N)

(
(M ⊗Am Bm)⊗ (N ⊗An Bn)

)⊗Bm⊗Bn Bm+n.
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The following results will be important for proving monoidality of the right adjoint

of C(f∗). We start with a technical definition. We will say that an algebra A admits a

multiplicative decomposition A = BC, if B and C are subalgebras of A and any element of

A can be uniquely written as a product of elements of B and C, i.e. the multiplication in

A induces the isomorphism of vector spaces B ⊗ C → A.

Lemma 2.2. Let A be an algebra with multiplicative decomposition A = BC and let A′ ⊂ A

be a subalgebra with multiplicative decomposition A′ = BC ′, where C ′ ⊂ C is a subalgebra.

Then for any A′-module M the natural homomorphism

M ⊗C′ C → M ⊗A′ A, m⊗ c 7→ m⊗ c, (2.2)

induced by the embedding C ⊂ A, is an isomorphism of C-modules.

Proof. Define the inverse to the homomorphism (2.2) as follows. For a ∈ A write a = bc

for unique b ∈ B and c ∈ C. Define the image of the element m⊗ a = m⊗ bc ∈ M ⊗A′ A

to be mb ⊗ c ∈ M ⊗C′ C. It is straightforward to check that this is a well-defined map,

which is inverse to the map (2.2).

The next theorem gives a sufficient condition which guarantees that the restriction

functor along an embedding of multiplicative sequences of algebras is monoidal.

Theorem 2.3. Suppose that Cn ⊂ An, n = 0, 1, . . . , is an embedding of multiplicative

sequences of algebras satisfying the condition that for each n the algebra An admits a

multiplicative decomposition An = A⊗nCn for a certain algebra A. Then the restriction

functor C(A∗) → C(C∗) along the embedding C∗ ⊂ A∗ is monoidal.

Proof. Note that the algebra Am ⊗ An has a multiplicative decomposition

Am ⊗ An = (A⊗mCm)⊗ (A⊗nCn) = A⊗(m+n)(Cm ⊗ Cn).

Thus, by Lemma 2.2 the natural morphism

M ⊗C∗ N = (M ⊗N)⊗Cm⊗Cn Cm+n → (M ⊗N)⊗Am⊗An Am+n = M ⊗A∗ N

is an isomorphism. The coherence condition for this isomorphism is straightforward from

its definition; cf. [21, Ch. VII].

2.2 Generators and relations

We start by defining free multiplicative sequences of algebras. Let V = {Vl | l > 1} be a

collection of vector spaces Vl parameterized by positive integers. Define another collection

of vector spaces {M(V )m | m > 1} by

M(V )m =
m⊕

l=1

( m−l⊕
i=0

Vl(i)
)
,
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where Vl(i) = {v(i) | v(i) ∈ Vl} is a copy of the space Vl labeled by the index i. The

components M(V )m are connected by linear maps

αm,n : M(V )m ⊕M(V )n → M(V )m+n,

where for any 1 6 l 6 m, 1 6 k 6 n and 0 6 i 6 m− l, 0 6 j 6 n− k we have

αm,n(v(i), w(j)) = v(i) + w(m + j), v ∈ Vl, w ∈ Vk.

By the definition of these maps, the following diagram commutes:

M(V )l ⊕M(V )m ⊕M(V )n

αl,m⊕I
//

I⊕αm,n

��

M(V )l+m ⊕M(V )n

αl+m,n

��
M(V )l ⊕M(V )m+n

αl,m+n // M(V )l+m+n.

Now let T
(
M(V )m

)
denote the tensor algebra of the vector space M(V )m. Denote by Jm

the two-sided ideal of T
(
M(V )m

)
generated by all elements of the form v(i)w(j)−w(j)v(i),

where v ∈ Vl, w ∈ Vk with 1 6 l 6 m, 1 6 k 6 n, and the indices i and j satisfy the

conditions 0 6 i 6 m− l, 0 6 j 6 n− k and

{i + 1, i + 2, . . . , i + l} ∩ {j + 1, j + 2, . . . , j + k} = ∅.

For m > 1 denote by A(V )m the quotient algebra T
(
M(V )m

)
/Jm and set A(V )0 = k. By

the definition of the maps αm,n, the difference

αm,n(x, 0)− αm,n(0, y)

belongs to Jm+n for any x ∈ M(V )m and y ∈ M(V )n. Hence, the natural homomorphisms

T (αm,n) : T
(
M(V )m ⊕M(V )n

) → T
(
M(V )m+n

)
/Jm+n

induced by the linear maps αm,n factor through T
(
M(V )m

) ⊗ T
(
M(V )n

)
. Moreover, the

kernel of the homomorphism

T
(
M(V )m

)⊗ T
(
M(V )n

) → T
(
M(V )m+n

)
/Jm+n

contains Jm ⊗ 1 + 1⊗ Jn. Thus we have the algebra homomorphisms

µm,n : A(V )m ⊗ A(V )n → A(V )m+n

which turn A(V )∗ = {A(V )m | m > 0} into a multiplicative sequence. The sequence A(V )∗
is the free multiplicative sequence of algebras generated by the collection V of vector spaces

in the sense that given any multiplicative sequence of algebras A∗ = {An | n > 0}, the
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homomorphisms of multiplicative sequences A(V )∗ → A∗ are in one-to-one correspondence

with the sequences of vector space homomorphisms Vl → Al, l > 1.

Now we will use free multiplicative sequences to give the definition of a multiplicative

sequence of algebras A∗ generated by a family {ai}i∈I of elements ai ∈ An(i), n(i) > 1. To

this end, we let {âi}i∈I be a set equipped with the degree function deg âi = n(i). We will

use this set to span a collection V of vector spaces over the field k by setting

Vl = span of {âi | deg âi = l}. (2.3)

We will say that a multiplicative sequence of algebras A∗ is generated by a family {ai}i∈I

of elements ai ∈ An(i) if there is an epimorphism of multiplicative sequences A(V )∗ → A∗
such that âi 7→ ai for all i ∈ I.

Consider the collection of vector spaces K∗ = {Kn | n > 1}, where Kn is the kernel of

the epimorphism A(V )n → An. Suppose that {pj}j∈J is a set of elements in the kernels,

pj ∈ Km(j). Let P = {Pl | l > 1} be the collection of vector spaces spanned by this set so

that

Pl = span of {pj | deg pj = l}.
We will say that a multiplicative sequence of algebras A∗ is generated by a set {ai}i∈I of

elements ai ∈ An(i) subject to the relations

pj

({ai}i∈I

)
= 0, j ∈ J, (2.4)

if for any n > 1 the two-sided ideal Kn of A(V )n is generated by M(P )n.

Furthermore, using free multiplicative sequences in a similar way, we can now give

the definition of a monoidal category C generated by its object X and a family {ai}i∈I of

endomorphisms ai ∈ EndC(X⊗n(i)) subject to relations

pj

({ai}i∈I

)
= 0, j ∈ J. (2.5)

Namely, exactly as above, we let {âi}i∈I be a set with the degree function deg âi = n(i) and

introduce a collection V = {Vl | l > 1} of vector spaces by (2.3). The homomorphism of

multiplicative sequences A(V )n → EndC(X⊗n), âi 7→ ai, allows us to think of the elements

of A(V )∗ as endomorphisms of the tensor powers of X. In particular, it allows us to say

that the endomorphisms ai satisfy a relation p
({ai}i∈I

)
= 0, where p ∈ A(V )∗.

We will say that a monoidal category C is generated by its object X and a set {ai}i∈I of

endomorphisms ai ∈ EndC(X⊗n(i)) subject to the relations (2.5), if for any monoidal cate-

gory D the assignment F 7→ (F (X), F (ai)i∈I) defines an equivalence between the category

of monoidal functors C → D and the category whose objects are collections (Y, {bi}i∈I),

where Y is an object of D and {bi}i∈I is a set of endomorphisms bi ∈ EndD(Y ⊗n(i)) such

that pj

({bi}i∈I

)
= 0 for all j ∈ J.

10



Theorem 2.4. Let A∗ be a multiplicative sequence of algebras generated by a set {ai}i∈I

of elements ai ∈ An(i) subject to certain relations (2.4). Then, as a monoidal category,

the Schur–Weyl category C(A∗) is generated by the object X = [1] and the set {ai}i∈I of

endomorphisms ai ∈ EndC(A∗)(X
⊗n(i)) subject to the relations (2.5).

Proof. Suppose that D is a monoidal category and consider the category of monoidal func-

tors C(A∗) → D. This functor category is equivalent to the category with the objects

(Y, g∗), where Y is an object of D and g∗ = {gn | n > 0} is a homomorphism of multiplica-

tive sequences

gn : An → EndD(Y ⊗n), n > 0. (2.6)

Now if the multiplicative sequence of algebras A∗ is generated by a set {ai}i∈I of elements

ai ∈ An(i) subject to the relations (2.4), then the homomorphisms (2.6) are in a one-to-one

correspondence with the families of endomorphisms {bi}i∈I with bi ∈ EndD(Y ⊗n(i)) such

that pj

({bi}i∈I

)
= 0 for all j ∈ J .

3 Symmetric groups and general linear Lie algebras

We start with the simplest case of the classical Schur–Weyl duality, namely the duality

between the symmetric groups and the general linear Lie algebras.

3.1 Symmetric groups and their group algebras

Consider the standard presentation of the group Sn of permutations of the set {1, . . . , n}
so that Sn is generated by the elements t1, . . . , tn−1 subject to the relations:

t2i = 1, titi+1ti = ti+1titi+1, titj = tjti for |i− j| > 1. (3.1)

The assignments

ti ⊗ 1 7→ ti, 1⊗ tj 7→ tj+m,

define natural algebra homomorphisms

µm,n : k[Sm]⊗ k[Sn] → k[Sm+n]

which satisfy the associativity axiom; see Sec. 2.1. Thus we get a multiplicative sequence

of algebras k[S∗] = {k[Sn] | n > 0}.
Proposition 3.1. The multiplicative sequence k[S∗] is generated by the element t ∈ k[S2]

subject to the relations t2 = 1 in k[S2] and

µ2,1(t⊗ 1)µ1,2(1⊗ t)µ2,1(t⊗ 1) = µ1,2(1⊗ t)µ2,1(t⊗ 1)µ1,2(1⊗ t) in k[S3].

Proof. This follows from the presentation of Sn; the element t = t1 is the non-identity

element of S2.
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3.2 The free symmetric category

As an immediate consequence of Theorem 2.4 and Proposition 3.1 we have the following

universal property of the category C(k[S∗]).

Theorem 3.2. The abelian monoidal category S = C(k[S∗]) is generated by an object X

and an automorphism c : X ⊗X → X ⊗X subject to the relations

c2 = 1, (c⊗ 1X)(1X ⊗ c)(c⊗ 1X) = (1X ⊗ c)(c⊗ 1X)(1X ⊗ c). (3.2)

We will call X and c satisfying (3.2), an involutive Yang–Baxter object and an involutive

Yang–Baxter operator, respectively. Theorem 3.2 states that S is a free abelian monoidal

category generated by an involutive Yang–Baxter object.

We also formulate another universal property of S, which will be used in the next

section. Let cm,n ∈ Sm+n be the (m,n)-shuffle preserving the orders of the first m and last

n letters. That is, under this permutation,

i 7→ i + n, i = 1, . . . , m, j 7→ j −m, j = m + 1, . . . , m + n.

The collection {cm,n | m,n > 0} of the isomorphisms cm,n : X⊗m ⊗ X⊗n → X⊗n ⊗ X⊗m

defines a symmetry on the category S; see [21]. The following freeness property of the

category S is well-known; see [18].

Proposition 3.3. The category S is a free abelian symmetric monoidal category generated

by one object.

3.3 Fiber functors and general linear Lie algebras

As before, we let Vect denote the category of vector spaces over k. A monoidal k-linear

functor from a certain category to Vect will be called a fiber functor . Due to the freeness

property of S as monoidal category, fiber functors S → Vect correspond to involutive Yang–

Baxter operators. There are quite a number of them forming algebraic moduli spaces; see

[8]. However, symmetric fiber functors are labeled by vector spaces (the associated Yang–

Baxter operator is the standard permutation of the tensor factors in the tensor square).

Thus, up to monoidal isomorphisms, symmetric fiber functors correspond to non-negative

integers (the dimensions of the corresponding vector spaces). Denote by FN : S → Vect

the (isomorphism class of the) symmetric fiber functor labeled by N .

Now the classical Schur–Weyl duality can be interpreted as follows.

12



Proposition 3.4. The functor FN factors through the category Rep(glN) of representations

of the general linear Lie algebra glN

S FN //

SWN $$IIIIIIIIII Vect

Rep(glN)

99ssssssssss

(3.3)

via a full monoidal functor SWN : S → Rep(glN) and the forgetful functor Rep(glN) →
Vect.

Proof. Let V be the N -dimensional vector representation of glN . By the classical Schur–

Weyl duality we have the homomorphisms

k[Sn] → EndglN (V ⊗n) (3.4)

which extend to a monoidal functor SWN : S → Rep(glN) sending the generator X of S to

V , so that SWN(X⊗n) = V ⊗n. Hence the functor SWN fits into the commutative diagram

(3.3). The fullness of SWN follows from the surjectivity of the homomorphisms (3.4).

We will call SWN the Schur–Weyl functor . In what follows we will consider its quantum

and affine analogues and establish similar properties.

4 Hecke algebras and quantized enveloping algebras

4.1 Braid groups and Hecke algebras

Recall that the braid group Bn is the group generated by elements t1, . . . , tn−1 subject to

the relations

titi+1ti = ti+1titi+1, titj = tjti for |i− j| > 1.

The assignments

ti ⊗ 1 7→ ti, 1⊗ tj 7→ tj+m,

define homomorphisms of group algebras

k[Bm]⊗ k[Bn] → k[Bm+n].

These homomorphisms satisfy the associativity axiom so that we get a multiplicative se-

quence k[B∗] = {k[Bn] | n > 0} as defined in Sec. 2.1. The following proposition is

immediate from the presentations of the braid groups.

13



Proposition 4.1. The multiplicative sequence k[B∗] is generated by the element t ∈ k[B2]

subject to the relation

µ2,1(t⊗ 1)µ1,2(1⊗ t)µ2,1(t⊗ 1) = µ1,2(1⊗ t)µ2,1(t⊗ 1)µ1,2(1⊗ t) in k[B3].

Theorem 2.4 and Proposition 4.1 imply a description of the monoidal category associ-

ated with the multiplicative sequence k[B∗].

Theorem 4.2. The abelian monoidal category B = C(k[B∗]) is generated by an object X

and an automorphism c : X ⊗X → X ⊗X such that

(c⊗ 1X)(1X ⊗ c)(c⊗ 1X) = (1X ⊗ c)(c⊗ 1X)(1X ⊗ c). (4.1)

An automorphism c satisfying (4.1) will be called a Yang–Baxter operator, and the

corresponding object X – a Yang–Baxter object. Theorem 4.2 states that B is a free

monoidal category generated by a Yang–Baxter object.

Let cm,n ∈ Bm+n be the braid whose geometric presentation in terms of strands is

illustrated below; the first m strands pass on top of the remaining n strands:

?????????????????

. . .

?????????????????

. . .
����

���

��������

. . .
����

���

��������

. . .

The collection {cm,n | m,n > 0} of the isomorphisms cm,n : X⊗m ⊗ X⊗n → X⊗n ⊗ X⊗m

defines a braiding on the category B. The following freeness property of the category B is

well-known; see [18].

Proposition 4.3. The category B is a free abelian braided monoidal category generated by

one object.

Suppose that q is a nonzero element of the field k. The Hecke algebra Hn(q) is the

quotient of the group algebra k[Bn] by the ideal generated by the elements (ti−q)(ti +q−1)

with i = 1, . . . , n− 1. Equivalently, Hn(q) is the associative algebra generated by elements

t1, . . . , tn−1 subject to the relations

(ti − q)(ti + q−1) = 0, titi+1ti = ti+1titi+1, titj = tjti for |i− j| > 1.

By taking the quotients of the group algebras k[Bn] and using the multiplicative struc-

ture on k[B∗] we get a multiplicative sequence of algebras H∗(q) = {Hn(q) | n > 0}. Using

the presentation of Hn(q) we come to the following.
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Proposition 4.4. The multiplicative sequence H∗(q) is generated by an element t ∈ H2(q)

subject to the relations

(ti − q)(ti + q−1) = 0 in H2(q),

µ2,1(t⊗ 1)µ1,2(1⊗ t)µ2,1(t⊗ 1) = µ1,2(1⊗ t)µ2,1(t⊗ 1)µ1,2(1⊗ t) in H3(q).

We call the categoryH(q) = C(H∗(q)) associated with the multiplicative sequence H∗(q)
the Hecke category. The next theorem implied by Theorem 2.4 and Proposition 4.4 provides

its description as a monoidal category.

Theorem 4.5. The Hecke category is generated as a monoidal category by an object X

and an automorphism c : X ⊗X → X ⊗X subject to the relations

(c− q)(c + q−1) = 0, (c⊗ 1X)(1X ⊗ c)(c⊗ 1X) = (1X ⊗ c)(c⊗ 1X)(1X ⊗ c). (4.2)

An automorphism c satisfying (4.2) will be called a Hecke Yang–Baxter operator, and

the corresponding object X – a Hecke Yang–Baxter object. Theorem 4.5 states that H(q) is

a free abelian monoidal category generated by a Hecke Yang–Baxter object. The following

proposition is analogous to Proposition 3.3 and whose proof we also omit.

Proposition 4.6. The category H(q) is a free abelian braided monoidal category generated

by a Hecke Yang–Baxter object.

4.2 Fiber functors and quantized enveloping algebras

Let V be an N -dimensional vector space with the basis e1, . . . , eN . Following [17], define

the linear operator R : V ⊗2 → V ⊗2 by

R(ei ⊗ ej) =





ej ⊗ ei if i < j,

q ej ⊗ ei if i = j,

ej ⊗ ei + (q − q−1) ei ⊗ ej if i > j.

(4.3)

Label the copies of V in the tensor product V ⊗n by 1, . . . , n, respectively. Let R l,l+1

denote the operator in this tensor product space which acts as R in the tensor product of

the copies of V labeled by l and l + 1 and acts as the identity operator in the remaining

copies of V . By the results of [17], the mapping tl 7→ R l,l+1 defines a representation of

the Hecke algebra Hn(q) in V ⊗n and the image of Hn(q) in the endomorphism algebra of

V ⊗n commutes with the image of an action of the quantized enveloping algebra Uq(glN)

associated with glN . Thus we get a monoidal functor JN : H(q) → Uq(glN)-Mod sending

the generator X of H(q) to V , so that JN(X⊗n) = V ⊗n. We call JN the Jimbo functor . It

is a quantum analogue of the Schur–Weyl functor SWN ; cf. Sec. 3.3. The following is a

respective analogue of Proposition 3.4, where FN : H(q) → Vect denotes the fiber functor

labeled by N .
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Proposition 4.7. The functor FN factors through the category Uq(glN)-Mod of represen-

tations of the quantized enveloping algebra

H(q)
FN //

JN &&NNNNNNNNNNN Vect

Uq(glN)-Mod

88qqqqqqqqqqq

via a monoidal functor JN : H(q) → Uq(glN)-Mod and the forgetful functor

Uq(glN)-Mod → Vect.

As follows from [17], the Jimbo functor JN is full under some additional conditions

(k = C and q is not a root of unity). On the other hand, if k and q are arbitrary, then an

analogous property of JN can be established by replacing the quantized enveloping algebra

with an appropriate integral version; see [12].

5 Affine symmetric groups and loop algebras

Let A be a unital associative algebra. Define the sequence of algebras SAn = A⊗n ∗ Sn

which are the cross-products of the symmetric group algebras with the tensor powers of

A with respect to the natural permutation actions of Sn on A⊗n. As a vector space, the

cross-product A⊗n∗Sn coincides with the tensor product A⊗n⊗k[Sn]. However, the algebra

structure of A⊗n ∗ Sn is different to the tensor product algebra. We will emphasize this

fact by using the notation (a1 ⊗ · · · ⊗ an) ∗ σ for the element of A⊗n ∗ Sn corresponding to

(a1⊗ · · · ⊗ an)⊗ σ ∈ A⊗n⊗ k[Sn]. The multiplication in A⊗n ∗Sn is given by the following

rule:

(
(a1 ⊗ · · · ⊗ an) ∗ σ

)(
(b1 ⊗ · · · ⊗ bn) ∗ τ

)
=

(
a1bσ−1(1) ⊗ · · · ⊗ anbσ−1(n)

) ∗ στ. (5.1)

The multiplicative structure on the sequence of symmetric group algebras extends to a

multiplicative structure on SAn:

µm,n : SAm ⊗ SAn → SAm+n, m, n > 0

with

µm,n

(
((a1 ⊗ · · · ⊗ am) ∗ σ)⊗ ((b1 ⊗ · · · ⊗ bn) ∗ τ)

)

= (a1 ⊗ · · · ⊗ am ⊗ b1 ⊗ · · · ⊗ bn) ∗ µm,n(σ ⊗ τ).

16



Proposition 5.1. The multiplicative sequence SA∗ is generated by t ∈ S2 ⊂ SA2 and the

elements of SA1 = A subject to the relations:

t2 = 1 in SA2,

t µ1,1(u⊗ 1) = µ1,1(1⊗ u) t in SA2,

for any u ∈ SA1, and

µ2,1(t⊗ 1)µ1,2(1⊗ t)µ2,1(t⊗ 1) = µ1,2(1⊗ t)µ2,1(t⊗ 1)µ1,2(1⊗ t) in SA3.

Proof. This follows from the presentation for SAn where all elements of A⊗n and the

elements t1, . . . , tn−1 are taken as generators. The defining relations are obtained by using

the multiplication rule (5.1) and the standard presentation of Sn.

We let S(A) denote the Schur–Weyl category C(SA∗) associated with the multiplicative

sequence SA∗. The following theorem is immediate from Theorem 2.4 and Proposition 5.1.

Theorem 5.2. The category S(A) is a monoidal category generated by an object X such

that EndS(A)(X) = A and an automorphism c : X ⊗X → X ⊗X subject to the relations

c2 = 1, (c⊗ 1X)(1X ⊗ c)(c⊗ 1X) = (1X ⊗ c)(c⊗ 1X)(1X ⊗ c) (5.2)

and

(a⊗ b) c = c (b⊗ a), a, b ∈ A.

In other words, the category S(A) is a free symmetric category generated by an object X

such that EndS(A)(X) = A.

Example 5.3. Monoidal autoequivalences of S(A). Let f be an automorphism of the algebra

A. By Theorem 5.2, the assignment (F (X), F (a), F (c)) := (X, f(a), c) for all a ∈ A defines

a monoidal functor Tf : S(A) → S(A). The composition Tf ◦ Tg is canonically isomorphic

(as a monoidal functor) to Tfg. Clearly, T1 is canonically isomorphic to the identity functor.

Thus, Tf is a monoidal autoequivalence of S(A) for any automorphism f of A.

Note that in the particular case when A = k[u], the automorphism group Aut(k[u])

is isomorphic to the semi-direct product k∗ n k: any automorphism of k[u] has the form

φa,b with a ∈ k∗ and b ∈ k, and φa,b(u) = au + b. Later on we will consider quantum

deformations of the category S(k[u]); namely, the categories corresponding to multiplicative

sequences of the affine Hecke algebras and their degenerate versions. In those cases, the

automorphism group Aut(k[u]) will be reduced to one-parameter subgroups with b = 0

and a = 1, respectively; see also Examples 6.3 and 7.6.
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5.1 Affine symmetric groups and free affine symmetric category

Here we consider two particular cases of the general construction described above. We will

take A to be the algebra of Laurent polynomials k[u±1] = k[u, u−1] in a variable u and the

algebra of polynomials k[u].

Let ASn be the cross-product algebra k[u±1
1 , . . . , u±1

n ] ∗ Sn with respect to the natural

permutation action of Sn on k[u±1
1 , . . . , u±1

n ]. In other words, ASn is generated by the ele-

ments t1, . . . , tn−1 and invertible elements u1, . . . , un subject to the relations (3.1) together

with

tiui ti = ui+1, uiuj = uj ui.

Similarly, we let SASn denote the cross-product algebra k[u1, . . . , un] ∗ Sn with respect to

the natural permutation action of Sn on k[u1, . . . , un]. The algebra SASn can be presented

in the same way as ASn, with the invertibility condition on the ui omitted.

Now define the affine symmetric category AS to be the monoidal category C(AS∗)
corresponding to the multiplicative sequence AS∗ = {ASn | n > 0}. Similarly, define the

semi-affine symmetric category SAS to be the monoidal category C(SAS∗) corresponding

to the multiplicative sequence SAS∗ = {SASn | n > 0}.
Using the presentations of the algebras ASn and SASn we obtain the following.

Proposition 5.4. The multiplicative sequence AS∗ is generated by t ∈ AS2 and an invert-

ible element u ∈ AS1 subject to the relations

t2 = 1 in AS2,

tµ1,1(u⊗ 1) = µ1,1(1⊗ u)t in AS2,

µ2,1(t⊗ 1)µ1,2(1⊗ t)µ2,1(t⊗ 1) = µ1,2(1⊗ t)µ2,1(t⊗ 1)µ1,2(1⊗ t) in AS3.

Moreover, the multiplicative sequence SAS∗ admits the same presentation with the invert-

ibility condition on u ∈ SAS1 omitted.

The next corollary is immediate from Theorem 5.2.

Corollary 5.5. The affine symmetric category AS is a free symmetric monoidal category

generated by an object X and an automorphism x : X → X. Moreover, the semi-affine

symmetric category SAS is a free symmetric monoidal category generated by an object X

and an endomorphism x : X → X.

5.2 Fiber functors from S(A)

We now return to the Schur–Weyl category S(A) associated with an arbitrary unital asso-

ciative algebra A as defined in the beginning of Sec. 5.
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The natural embeddings k[Sn] ↪→ SAn define a homomorphism of multiplicative se-

quences k[S∗] → SA∗. This gives rise to a monoidal functor S → S(A) which sends

the generator X ∈ S to the generator X ∈ S(A) and sends the Yang–Baxter operator

c ∈ EndS(X⊗2) to c ∈ EndS(A)(X
⊗2). The algebras A⊗n ∗ Sn admit natural multiplicative

decompositions with the components A⊗n and k[Sn]. Hence, applying Theorem 2.3 we

derive that the right adjoint F : S(A) → S is also monoidal. By Theorem 5.2, the functor

F is determined by its values on the generating object X ∈ S(A) together with its values

on the generating morphisms a ∈ A = EndS(A)(X) and c ∈ EndS(A)(X
⊗2). The object

F (X) is the tensor product X⊗A of the generator X ∈ S with the underlying vector space

of the algebra A. For any element a ∈ A the endomorphism F (a) is the morphism induced

by the linear map A → A, which is the left multiplication by a. The automorphism F (c) is

c⊗ t, where we identify EndS((X⊗A)⊗2) with the tensor product EndS(X⊗2)⊗End(A⊗2)

and t : A⊗2 → A⊗2 is the transposition a⊗ b 7→ b⊗ a.

Composing the monoidal functor S(A) → S with a fiber functor S → Vect we get a fiber

functor S(A) → Vect. In particular, taking the symmetric fiber functor FN : S → Vect we

get a fiber functor FN : S(A) → Vect. Applying Theorem 5.2 as above, we find that FN

is determined by its values FN(X), FN(c) and FN(a) for all a ∈ A. Introducing the vector

space V = kN we find that the object FN(X) is the tensor product V ⊗A. For any a ∈ A

the endomorphism FN(a) is the morphism, induced by the linear map A → A which is the

left multiplication by a. The automorphism FN(c) is the transposition

t : (V ⊗ A)⊗ (V ⊗ A) → (V ⊗ A)⊗ (V ⊗ A), (v ⊗ a)⊗ (u⊗ b) 7→ (u⊗ b)⊗ (v ⊗ a).

The following is an analogue of Proposition 3.4 providing an affine version of the Schur–

Weyl functor SWN and it is verified in the same way.

Proposition 5.6. The monoidal functor FN : S(A) → Vect factors through the category

Rep(glN(A)) of representations of the general linear Lie algebra over A

S(A)
FN //

SWN &&MMMMMMMMMMM Vect

Rep(glN(A))

88qqqqqqqqqqq

via a monoidal functor SWN : S(A) →Rep(glN(A)) and the forgetful functor

Rep(glN(A)) → Vect.

Remark 5.7. We believe that the functor SWN is full. Although we do not have a proof of

this conjecture.
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6 Yangians and degenerate affine Hecke algebras

6.1 Degenerate affine Hecke algebras

The degenerate affine Hecke algebra Λn is the unital associative algebra generated by ele-

ments t1, . . . , tn−1 and y1, . . . , yn subject to the relations

t2i = 1, titi+1ti = ti+1titi+1, titj = tjti for |i− j| > 1,

yiti − tiyi+1 = 1, yiyj = yjyi.

The assignments
ti ⊗ 1 7→ ti, 1⊗ tj 7→ tj+m,

yi ⊗ 1 7→ yi, 1⊗ yj 7→ yj+m

define algebra homomorphisms

Λm ⊗ Λn → Λm+n.

It is easy to see that these homomorphisms satisfy the associativity axiom thus giving rise

to the multiplicative sequence of algebras Λ∗ = {Λn | n > 0}; see Sec. 2.1. Hence we get a

monoidal category L = C(Λ∗) which we call the degenerate affine Hecke category.

Proposition 6.1. The multiplicative sequence Λ∗ is generated by elements y ∈ Λ1 and

t ∈ Λ2 subject to the relations

t2 = 1 in Λ2,

tµ1,1(y ⊗ 1)− µ1,1(1⊗ y)t = 1 in Λ2,

µ2,1(t⊗ 1)µ1,2(1⊗ t)µ2,1(t⊗ 1) = µ1,2(1⊗ t)µ2,1(t⊗ 1)µ1,2(1⊗ t) in Λ3.

Proof. This follows from the presentation for Λn.

Theorem 6.2. The degenerate affine Hecke category L is a free monoidal category gen-

erated by one object X, an endomorphism x : X → X and an involutive Yang–Baxter

operator c : X⊗2 → X⊗2 subject to the relations

c2 = 1, (c⊗ 1X)(1X ⊗ c)(c⊗ 1X) = (1X ⊗ c)(c⊗ 1X)(1X ⊗ c),

and

(x⊗ 1)c− c(1⊗ x) = 1. (6.1)

Proof. This is immediate from Theorem 2.4 and Proposition 6.1.

Theorem 6.2 implies that monoidal functors from L to a monoidal category C correspond

to triples (V, x, c), where V is an object in C, x ∈ EndC(V ) is its endomorphism, and

c ∈ End(V ⊗2) is an involutive Yang–Baxter operator satisfying (6.1).
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Example 6.3. Monoidal autoequivalences of L. Let u be an element of the basic field

k. The triple (X, x + uI, c) defines a monoidal functor Tu : L → L. The composition

Tu ◦ Tv is canonically isomorphic (as a monoidal functor) to Tu+v. Hence Tu is a monoidal

autoequivalence of L.

Due to [20], the degenerate affine Hecke algebra Λn admits multiplicative decomposi-

tions

Λn = k[y1, . . . , yn] k[Sn] = k[Sn] k[y1, . . . , yn]. (6.2)

In the particular case n = 2 the decompositions (6.2) follow from the relation

tf(y1, y2) = f(y2, y1)t +
f(y1, y2)− f(y2, y1)

y1 − y2

,

where f(y1, y2) is a polynomial in y1, y2.

The natural embeddings k[Sn] ↪→ Λn define a homomorphism of multiplicative se-

quences k[S∗] → Λ∗. Hence, we get a monoidal functor S → L which sends the generator

X ∈ S to the generator X ∈ L and sends the Yang–Baxter operator c ∈ EndS(X⊗2) to

c ∈ EndL(X⊗2). By Theorem 2.3, its right adjoint F : L → S is also monoidal. Further-

more, due to Theorem 6.2, the functor F is determined by its values on the generating

object X ∈ L together with its values on the generating morphisms x ∈ EndL(X) and

c ∈ EndL(X⊗2). We now describe these values. The object F (X) is the tensor product

X ⊗ k[y] of the generator X ∈ S with the vector space of polynomials k[y]. The en-

domorphism F (x) is the morphism induced by the linear map k[y] → k[y] which is the

multiplication by y. To describe the automorphism F (c), identify EndS((X⊗k[y])⊗2) with

the tensor product

EndS(X⊗2)⊗ End(k[y1, y2]) ' k[S2]⊗ End(k[y1, y2]).

Here End(k[y1, y2]) is the algebra of k-endomorphisms of the vector space k[y1, y2] ' k[y]⊗2.

Then we have F (c) = ∂+tτ , where t ∈ S2 is the involution, ∂ ∈ End(k[y1, y2]) is the divided

difference operator

∂f(y1, y2) =
f(y1, y2)− f(y2, y1)

y1 − y2

(6.3)

and τ is the algebra automorphism of k[y1, y2] defined on the generators by τ(y1) = y2 and

τ(y2) = y1.

6.2 Fiber functors and Yangians

Composing the monoidal functor L → S with a fiber functor S → Vect we get a fiber

functor L → Vect. In particular, taking the symmetric fiber functor FN : S → Vect we get

a fiber functor FN : L → Vect (for which we keep the same notation). By Theorem 6.2,
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FN is determined by its values on the generating object X ∈ L together with its values on

the generating morphisms x ∈ EndL(X) and c ∈ EndL(X⊗2). Now we describe the triple

(FN(X), FN(x), FN(c)). The object FN(X) is the tensor product V ⊗ k[y], where V = kN .

The endomorphism FN(x) is induced by the operator of multiplication by y in k[y] so that

FN(x)(v ⊗ ys) = v ⊗ ys+1, v ∈ V. (6.4)

To describe FN(c), we identify FN(X)⊗ FN(X) with V ⊗ V ⊗ k[y1, y2] by

(v ⊗ yr)⊗ (w ⊗ ys) 7→ v ⊗ w ⊗ yr
1y

s
2.

Then for any f ∈ k[y1, y2],

FN(c)(v ⊗ w ⊗ f(y1, y2)) = w ⊗ v ⊗ f(y2, y1) + v ⊗ w ⊗ ∂f(y1, y2). (6.5)

In particular, it follows from the definition that the homomorphisms FN(x) and FN(c)

satisfy the relations

(FN(x)⊗ 1)FN(c)− FN(c)(1⊗ FN(x)) = 1,

(FN(c)⊗ 1)(1⊗ FN(c))(FN(c)⊗ 1) = (1⊗ FN(c))(FN(c)⊗ 1)(1⊗ FN(c)).

Now we recall some basic facts about the Yangian; see e.g. [5, Ch. 12] and [22, Ch. 1] for

more details. The Yangian Y(glN) is the unital associative algebra generated by elements

t
(r)
ij with 1 6 i, j 6 N and r = 1, 2, . . . subject to the defining relations

[t
(r+1)
ij , t

(s)
kl ]− [t

(r)
ij , t

(s+1)
kl ] = t

(r)
kj t

(s)
il − t

(s)
kj t

(r)
il , (6.6)

where r, s > 0 and t
(0)
ij = δij. The Yangian is a Hopf algebra with the coproduct defined

by

∆(t
(r)
ij ) =

N∑

k=1

r∑
s=0

t
(s)
ik ⊗ t

(r−s)
kj . (6.7)

The Hopf algebra Y(glN) is a deformation of the universal enveloping algebra U(glN [y])

in the class of Hopf algebras. As before, we let {e1, . . . , eN} denote a basis of an N -

dimensional vector space V . Then the vector representation of glN in V extends to a

representation of glN [y] on the vector space V ⊗k[y], and it gives rise to the representation

of Y(glN) on this space defined by

t
(r)
ij (ek ⊗ ys) = δjkei ⊗ yr+s−1. (6.8)

Proposition 6.4. The fiber functor FN : L → Vect factors through the category of repre-

sentations of the Yangian Y(glN)-Mod,

L FN //

DN %%LLLLLLLLLLL Vect

Y(glN)-Mod

88ppppppppppp
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via a monoidal functor DN : L → Y(glN)-Mod and the forgetful functor Y(glN)-Mod →
Vect.

Proof. We need to show that the maps FN(x) and FN(c) defined in (6.4) and (6.5) are

morphisms of Y(glN)-modules. This is obviously true for FN(x). Furthermore, writing the

action (6.8) in terms of the formal series

tij(u) = δij +
∞∑

r=1

t
(r)
ij u−r

we get

tij(u)(v ⊗ ys) =
(
δij +

eij

u− y

)
(v ⊗ ys),

where the eij ∈ End(V ) denote the standard matrix units. By the coproduct formula (6.7),

we have

tij(u)
(
v ⊗ w ⊗ f(y1, y2)

)
=

N∑

k=1

(
δik +

eik

u− y1

)
v ⊗

(
δkj +

ekj

u− y2

)
w ⊗ f(y1, y2).

Hence, applying (6.5), we get

FN(c)tij(u)
(
v ⊗ w ⊗ f(y1, y2)

)
=

N∑

k=1

(
δkj +

ekj

u− y1

)
w ⊗

(
δik +

eik

u− y2

)
v ⊗ f(y2, y1)

+ δij

(
v ⊗ w ⊗ ∂f(y1, y2)

)
+

(
eijv ⊗ w ⊗ ∂

f(y1, y2)

u− y1

)

+
(
v ⊗ eijw ⊗ ∂

f(y1, y2)

u− y2

)
+

N∑

k=1

(
eikv ⊗ ekjw ⊗ ∂

f(y1, y2)

(u− y1)(u− y2)

)
.

On the other hand,

tij(u) FN(c)
(
v ⊗ w ⊗ f(y1, y2)

)
=

N∑

k=1

(
δik +

eik

u− y1

)
w ⊗

(
δkj +

ekj

u− y2

)
v ⊗ f(y2, y1)

+
N∑

k=1

(
δik +

eik

u− y1

)
v ⊗

(
δkj +

ekj

u− y2

)
w ⊗ ∂f(y1, y2).

In order to compare these two expressions, note that

∂
f(y1, y2)

u− y1

=
f(y2, y1)

(u− y1)(u− y2)
+

1

u− y1

∂f(y1, y2),

∂
f(y1, y2)

u− y2

= − f(y2, y1)

(u− y1)(u− y2)
+

1

u− y2

∂f(y1, y2),
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and

∂
f(y1, y2)

(u− y1)(u− y2)
=

1

(u− y1)(u− y2)
∂f(y1, y2).

Therefore,

FN(c)tij(u)
(
v ⊗ w ⊗ f(y1, y2)

)− tij(u) FN(c)
(
v ⊗ w ⊗ f(y1, y2)

)

=
(
eijv ⊗ w − v ⊗ eijw +

N∑

k=1

(
ekjw ⊗ eikv − eikw ⊗ ekjv

))⊗ f(y2, y1)

(u− y1)(u− y2)
.

Taking the basis vectors v = ea and w = eb we find that the expression in the brackets

equals

δjaei ⊗ eb − δjbea ⊗ ei + δjbea ⊗ ei − δjaei ⊗ eb = 0,

thus completing the proof.

The functor DN is called the Drinfeld functor. The following property of DN was

essentially established in [1], [10].

Proposition 6.5. The Drinfeld functor DN : L → Y(glN)-Mod is full.

Proof. By the construction, DN sends the generator X of L to the vector representation

V [y] = V ⊗ k[y] of Y(glN). As DN is a monoidal functor, we have DN(X⊗n) = (V [y])⊗n,

while the effect of DN on morphisms amounts to the collection of homomorphisms

Λn → EndY(glN )

(
V [y]⊗ V [y]⊗ . . .⊗ V [y]

)
.

Note that in this description we actually work in the category C(Λ∗) rather than L = C(Λ∗).
Extending now DN to L we come to the formula

DN(M) = M ⊗Λn (V [y])⊗n, M ∈Mod-Λn.

The multiplicative decomposition Λn = k[Sn] k[y]⊗n allows us to identify

M ⊗Λn (V [y])⊗n ' M ⊗k[Sn] V
⊗n.

Due to the results of [1], [10], the functors

Mod-Λn −→ Y(glN)-Mod, M 7→ M ⊗k[Sn] V
⊗n

are full.
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7 Quantum affine algebras and affine Hecke algebras

7.1 Affine braid groups and affine Hecke algebras

The affine braid group B̃n is the group with generators t1, . . . , tn−1 and y1, . . . , yn subject

to the defining relations

titi+1ti = ti+1titi+1, titj = tjti for |i− j| > 1,

tiyiti = yi+1, yiyj = yjyi.

The assignments
ti ⊗ 1 7→ ti, 1⊗ tj 7→ tj+m,

yi ⊗ 1 7→ yi, 1⊗ yj 7→ yj+m

define algebra homomorphisms

k[B̃m]⊗ k[B̃n] → k[B̃m+n]

These homomorphisms satisfy the associativity axiom and so give rise to the multiplicative

sequence of algebras k[B̃∗] = {k[B̃n] | n > 0}; see Sec. 2.1. Hence we get a monoidal

category B̃ = C(k[B̃∗]) which we call the affine braid category.

Proposition 7.1. The multiplicative sequence k[B̃n] is generated by elements y ∈ k[B̃1]

and t ∈ k[B̃2] subject to the relations

tµ1,1(y ⊗ 1)t = µ1,1(1⊗ y) in k[B̃2],

µ2,1(t⊗ 1)µ1,2(1⊗ t)µ2,1(t⊗ 1) = µ1,2(1⊗ t)µ2,1(t⊗ 1)µ1,2(1⊗ t) in k[B̃3].

Proof. This follows from the presentation for B̃n.

Theorem 7.2. The affine braid category is a free monoidal category generated by one

object X, an endomorphism x : X → X and a Yang–Baxter operator c : X⊗2 → X⊗2

subject to the relations

(c⊗ 1X)(1X ⊗ c)(c⊗ 1X) = (1X ⊗ c)(c⊗ 1X)(1X ⊗ c)

and

c(x⊗ 1)c = 1⊗ x.

Proof. This follows from Theorem 2.4 and Proposition 7.1.
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Now we define certain quotients of the affine braid group algebras. Fix a nonzero

element q ∈ k. The affine Hecke algebra H̃n(q) is the associative algebra generated by

elements t1, . . . , tn−1 and invertible elements y1, . . . , yn subject to the relations

(ti − q)(ti + q−1) = 0, titi+1ti = ti+1titi+1, titj = tjti for |i− j| > 1,

tiyi ti = yi+1, yiyj = yj yi.

The assignments
ti ⊗ 1 7→ ti, 1⊗ tj 7→ tj+m,

yi ⊗ 1 7→ yi, 1⊗ yj 7→ yj+m

define algebra homomorphisms

µm,n : H̃m(q)⊗ H̃n(q) → H̃m+n(q)

making the sequence H̃∗(q) = {H̃n(q) | n > 0} into a multiplicative sequence of algebras;

see Sec. 2.1. This gives rise to a monoidal category H̃(q) = C(H̃∗(q)), which we call the

affine Hecke category.

Proposition 7.3. The multiplicative sequence H̃∗(q) is generated by elements y ∈ H̃1(q)

and t ∈ H̃2(q) subject to the relations

(t− q)(t + q−1) = 0 in H̃2(q),

tµ1,1(y ⊗ 1)t = µ1,1(1⊗ y) in H̃2(q),

µ2,1(t⊗ 1)µ1,2(1⊗ t)µ2,1(t⊗ 1) = µ1,2(1⊗ t)µ2,1(t⊗ 1)µ1,2(1⊗ t) in H̃3(q).

Proof. This follows from the presentation of H̃n(q).

Theorem 7.4. The affine Hecke category is a free monoidal category generated by one

object X, an endomorphism x : X → X and a Hecke Yang–Baxter operator c : X⊗2 → X⊗2

subject to the relations

(c− q)(c + q−1) = 0, (c⊗ 1X)(1X ⊗ c)(c⊗ 1X) = (1X ⊗ c)(c⊗ 1X)(1X ⊗ c)

and

c(x⊗ 1)c = 1⊗ x.

Proof. This follows from Theorem 2.4 and Proposition 7.3.

Corollary 7.5. Monoidal functors from the affine braid category (resp., from the affine

Hecke category) to a monoidal category C are determined by triples (V, x, c), where V is

an object in C, x ∈ EndC(V ) is its endomorphism, and c ∈ End(V ⊗2) is a (Hecke) Yang–

Baxter operator such that

c(x⊗ 1)c = 1⊗ x. (7.1)
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Example 7.6. Monoidal autoequivalences of H̃(q). Let u be an invertible element of the

basic field k. The triple (V, ux, c) satisfies the conditions of Corollary 7.5 and so it defines

a monoidal functor Tu : H̃(q) → H̃(q). The composition Tu ◦ Tv is canonically isomorphic

(as a monoidal functor) to Tuv. Hence Tu is a monoidal autoequivalence of H̃(q).

Due to [20, Lemma 3.4], affine Hecke algebras admit multiplicative decompositions

H̃n(q) = k[y±1
1 , . . . , y±1

n ] Hn(q) = Hn(q) k[y±1
1 , . . . , y±1

n ]. (7.2)

For n = 2 the decomposition (7.2) follows from the relation

tf(y1, y2) = f(y2, y1)t− (q − q−1) y2
f(y1, y2)− f(y2, y1)

y1 − y2

,

where f(y1, y2) is an arbitrary Laurent polynomial in y1, y2.

The monoidal functor H(q) → H̃(q) defined by the natural homomorphism of mul-

tiplicative sequences H∗(q) → H̃∗(q), sends the generator X ∈ H(q) to the generator

X ∈ H̃(q) and sends c ∈ EndH(q)(X
⊗2) to c ∈ End eH(q)(X

⊗2). By Theorem 2.3, its right

adjoint F : H̃(q) → H(q) is also monoidal. By Corollary 7.5, the functor F is determined

by its values on the generating object X ∈ H̃(q) together with its values on the generating

morphisms x ∈ End eH(q)(X) and c ∈ End eH(q)(X
⊗2). Now we describe these values. The ob-

ject F (X) is the tensor product X⊗k[y±1] of the generator X ∈ H(q) with the vector space

k[y±] of Laurent polynomials. The automorphism F (x) is the morphism induced by the

linear map k[y±1] → k[y±1], which is multiplication by y. To describe the automorphism

F (c), identify End eH(q)((X ⊗ k[y±1])⊗2) with the tensor product

EndH(q)(X
⊗2)⊗ End(k[y±1 , y±2 ]) ' H2(q)⊗ End(k[y±1 , y±2 ]).

Here End(k[y±1 , y±2 ]) is the algebra of k-endomorphisms of the vector space of Laurent

polynomials k[y±1 , y±2 ] ' k[y±]⊗2. We have F (c) = d + t τ , where t = t1 is the generator

of H2(q), τ ∈ End(k[y±1 , y±2 ]) is the algebra automorphism τ(f)(y1, y2) = f(y2, y1) and

d ∈ End(k[y±1 , y±2 ]) is defined by d(f) = −(q − q−1)y2 (y1 − y2)
−1(f − τ(f)).

7.2 Fiber functors and quantum affine algebras

Let us compose the monoidal functor F : H̃(q) → H(q) with the monoidal fiber functor

FN : H(q) → Vect considered in Sec. 4.2. We get a fiber functor FN : H̃(q) → Vect

which we denote by the same symbol. By Corollary 7.5, FN is determined by its values

on the generating object X ∈ H̃(q) together with its values on the generating morphisms

x ∈ End eH(q)(X) and c ∈ End eH(q)(X
⊗2). The object FN(X) is the tensor product V ⊗k[y±1],

where V = kN . The endomorphism FN(x) is the morphism, induced by the multiplication

by y in k[y±1],

FN(x)(v ⊗ ys) = v ⊗ ys+1. (7.3)
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The map FN(c) : FN(X) ⊗ FN(X) → FN(X) ⊗ FN(X) is given as follows. Identifying

FN(X)⊗ FN(X) with V ⊗ V ⊗ k[y±1
1 , y±1

2 ] by

(v ⊗ yr)⊗ (w ⊗ ys) 7→ v ⊗ w ⊗ yr
1y

s
2,

we can write FN(c) as

FN(c)
(
v ⊗ w ⊗ f(y1, y2)

)
= R(v ⊗ w)⊗ f(y2, y1)− (q − q−1)v ⊗ w ⊗ y2 ∂f(y1, y2), (7.4)

where the operator R is defined in (4.3), and ∂ is the divided difference operator (6.3)

extended to Laurent polynomials.

We will now formulate an analogue of Proposition 6.4, where the role of the Yangian is

played by the quantum affine algebra Uq(ĝlN) (with the trivial center charge), also known

as the quantum loop algebra. The role of the vector representation is now played by the

space V ⊗ k[y±1]. Explicit formulas for the action of Uq(ĝlN) on this space are analogous

to (6.8) and they can be found in [14].

Proposition 7.7. The fiber functor FN : H̃(q) → Vect factors through the category of

representations Uq(ĝlN)-Mod of the quantum affine algebra

H̃(q)
FN //

GRVN &&MMMMMMMMMMM Vect

Uq(ĝlN)-Mod

88rrrrrrrrrrr

via a monoidal functor GRVN : H̃(q) −→ Uq(ĝlN)-Mod and the forgetful functor

Uq(ĝlN)-Mod −→ Vect.

The proof is quite similar to that of Proposition 6.4 and amounts to checking that

FN(x) and FN(c) are morphisms of Uq(ĝlN)-modules. We omit the details; see also [14].

We call GRVN the Ginzburg–Reshetikhin–Vasserot functor, as the following version of

the Schur–Weyl duality for the quantum loop algebras was proved in [14]; see also [4].

Proposition 7.8. The functor GRVN : H̃(q) −→ Uq(ĝlN)-Mod is full.

8 Localizations and categorical actions

8.1 Localizations with respect to discriminants

Here we discuss some applications of the universal properties of the affine Hecke category

H̃(q) and its degenerate version L. We will regard H̃(q) and L as respective quantum
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deformations of the affine symmetric category AS and the semi-affine symmetric category

SAS and we will show that these deformations are trivial away from some discriminant-

type loci.

To formulate the precise statement, let ∆ ⊂ MorAS be the monoidally and multi-

plicatively closed set of morphisms generated by x⊗1−1⊗x; see Sec. 5.1. In other words,

for each n we consider the multiplicatively closed set of morphisms generated by

∆n ∈ k[y±1
1 , . . . , y±1

n ]Sn ⊂ k[y±1
1 , . . . , y±1

n ] ∗ Sn = EndAS(X⊗n),

where ∆n =
∏

i6=j(yi−yj) is the discriminant polynomial . Note that the algebra of symmet-

ric polynomials k[y±1
1 , . . . , y±1

n ]Sn coincides with the center of the endomorphism algebra

EndAS(X⊗n) so that ∆n commutes with all morphisms in AS. Denote by AS[∆−1] the

category of fractions with respect to ∆; see e.g. [13] for the definition. This category has

the form C(A∗), where A∗ = {An | n > 0} is the multiplicative sequence of the localized

algebras An =
(
k[y±1

1 , . . . , y±1
n ] ∗ Sn

)
[∆−1

n ]. Therefore, the category AS[∆−1] is monoidal.

A similar argument shows that the category SAS[∆−1] is also monoidal. Moreover, the

localization functors AS → AS[∆−1] and SAS → SAS[∆−1] are monoidal.

It is well known from [3] that the center of the affine Hecke algebra H̃n(q) for generic q

coincides with the algebra of symmetric Laurent polynomials k[y±1
1 , . . . , y±1

n ]Sn , while the

center of the degenerate affine Hecke algebra Λn coincides with the algebra of symmetric

polynomials k[y1, . . . , yn]Sn . Therefore, it is unambiguous to define the respective categories

of fractions as

H̃(q)[∆−1] = C(H̃∗(q)[∆−1
∗ ]) and L[∆−1] = C(Λ∗[∆−1

∗ ]).

Proposition 8.1. The assignment (X, x, c) 7→ (X, x, c̃), where

c̃ = (x⊗ 1− 1⊗ x)−1
(
(q−1 − q)(1⊗ x) + (q(x⊗ 1)− q−1(1⊗ x))c

)
(8.1)

defines a monoidal functor H̃(q)[∆−1] → AS[∆−1].

Moreover, the assignment (X, x, c) 7→ (X, x, c̃), where

c̃ = (x⊗ 1− 1⊗ x)−1
(
1⊗ 1 + (x⊗ 1− 1⊗ x− 1⊗ 1)c

)
(8.2)

defines a monoidal functor L[∆−1] → SAS[∆−1].

Proof. In the affine Hecke category case, write c̃ = a+(q−a)t as an element of k[x1, x2]∗S2

with t = c and a = (q−1 − q)x2 (x1 − x2)
−1, where x1 = x⊗ 1, x2 = 1⊗ x. Now we verify

the relations

( c̃− q)( c̃ + q−1) = 0, (x⊗ 1) c̃− c̃ (1⊗ x) = 1, (8.3)

( c̃⊗ 1X)(1X ⊗ c̃ )( c̃⊗ 1X) = (1X ⊗ c̃ )( c̃⊗ 1X)(1X ⊗ c̃ ) (8.4)
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by direct computations in k[x1, x2] ∗ S2 and k[x1, x2, x3] ∗ S3, respectively, where in the

latter case we interpret the variables as x1 = x⊗ 1⊗ 1, x2 = 1⊗ x⊗ 1 and x3 = 1⊗ 1⊗ x.

Noting that ta = (q − q−1 − a)t we get

(a− q + (q − a) t)(a + q−1 + (q − a) t)

= (a− q)(a + q−1) + (a− q)(q − a) t− (q − a)(a− q) t + (q − a)(q−1 + a) t2 = 0

and

(a + (q − a)t) x1(a− (q − a)t)

= a2x1 + (q − a)x2(q − q−1 − a) t + ax1(q − a) t− (q − a)(q−1 + a) t2

= x2 + a
(
a(x1 − x2)− (q−1 − q)x2

)
+ (q − a)

(
a(x1 − x2)− (q−1 − q)x2

)
t = x2,

thus proving (8.3). To verify (8.4), note that the relation is equivalent to

(a12 + (q − a) t12)(a23 + (q − a) t23)(a12 + (q − a) t12)

= (a23 + (q − a) t23)(a12 + (q − a) t12)(a23 + (q − a) t23), (8.5)

where we used the notation a12 = a ⊗ 1, a23 = 1 ⊗ a and a13 = t1a23t1 = t2a12t2. Now

compare the coefficients of the elements of S3 on both sides of (8.5). They obviously equal

for the elements t1t2, t2t1 and t1t2t1 = t2t1t2, while for 1, t1 and t2 we need to check the

following relations, respectively:

a12a23a12 + (q − a12)a13(q
−1 + a12) = a23a12a23 + (q − a23)a13(q

−1 + a23),

a12a23(q − a12) + (q − a12)a13(q − q−1 − a12) = a23(q − a12)a13,

a12(q − a23)a13 = a23a12(q − a23) + (q − a23)a13(q − q−1 − a23).

However, all of them follow from the identity

a12a23 − a12a13 − a13a23 + (q − q−1)a13 = 0,

which is verified directly by substituting the expressions for a12, a23 and a13 in terms of x1,

x2 and x3.

In the case of the degenerate affine Hecke category, the argument is quite similar. We

write c̃ = a + (1− a) t as an element of k[x1, x2] ∗S2 with t = c and a = (x1− x2)
−1, where

x1 = x⊗ 1, x2 = 1⊗ x. Now the relations

c̃ 2 = 1, (x⊗ 1) c̃− c̃ (1⊗ x) = 1,

( c̃⊗ 1X)(1X ⊗ c̃ )( c̃⊗ 1X) = (1X ⊗ c̃ )( c̃⊗ 1X)(1X ⊗ c̃ )

are verified directly by computations in k[x1, x2] ∗ S2 and k[x1, x2, x3] ∗ S3, respectively,

exactly as in the Hecke category case.
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Let ∆(q) ⊂ MorAS be a monoidally and multiplicatively closed set of morphisms

generated by q(x ⊗ 1) − q−1(1 ⊗ x). That is, for each n we consider the multiplicatively

closed set of morphisms generated by

∆(q)n ∈ k[y±1
1 , . . . , y±1

n ]Sn ⊂ k[y±1
1 , . . . , y±1

n ] ∗ Sn = EndAS(X⊗n),

where ∆(q)n =
∏

i 6=j(qyi − q−1yj) is the quantum discriminant polynomial. We can also

consider ∆q as a set of morphisms of H̃(q). Similarly, let ∆̃ ⊂MorSAS be a monoidally

and multiplicatively closed set of morphisms generated by x ⊗ 1 − 1 ⊗ x − 1 ⊗ 1, so that

for each n we consider the multiplicatively closed set of morphisms generated by

∆̃n ∈ k[y1, . . . , yn]Sn ⊂ k[y,
1 . . . , yn] ∗ Sn = EndSAS(X⊗n),

where ∆̃n =
∏

i6=j(yi− yj − 1) is the degenerate quantum discriminant polynomial. Similar

to the above, we can consider ∆̃ as a set of morphisms of L.

The proof of the following is completely analogous to and partly follows from the proof

of Proposition 8.1.

Proposition 8.2. The assignment (X, x, c) 7→ (X, x, c̃), where

c̃ = (q(x⊗ 1)− q−1(1⊗ x))−1
(
(x⊗ 1− 1⊗ x) c + (q−1 − q)(1⊗ x)

)
(8.6)

defines a monoidal functor AS[∆(q)−1] → H̃(q)[∆(q)−1].

Moreover, the assignment (X, x, c) 7→ (X, x, c̃), where

c̃ = (x⊗ 1− 1⊗ x− 1⊗ 1)−1
(
(x⊗ 1− 1⊗ x) c + 1⊗ 1

)
(8.7)

defines a monoidal functor SAS[∆̃−1] → L[∆̃−1].

Combining Propositions 8.1 and 8.2, we come to the following theorem, where we let

D(q) = ∆∆(q) denote the set of compositions of morphisms from ∆ and ∆(q), and let

D = ∆∆̃ denote the set of compositions of morphisms from ∆ and ∆̃.

Theorem 8.3. The monoidal categories AS[D(q)−1] and H̃(q)[D(q)−1] are equivalent.

Moreover, the monoidal categories SAS[D−1] and L[D−1] are equivalent.

Proof. Both statements follow from the observation that each pair of constructions (8.1)

and (8.6), as well as (8.2) and (8.7), are inverse to each other.

Remark 8.4. By the Galois theory, k[y1, . . . , yn][∆−1
n ] ∗ Sn is isomorphic to the algebra

Mn!

(
k[y1, . . . , yn]Sn [∆−1

n ]
)
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of n! × n! matrices with coefficients in the localization k[y1, . . . , yn]Sn [∆−1
n ] of the algebra

of symmetric polynomials. Theorem 8.3 implies that the algebra H̃n(q)[(∆n∆(q)n)−1] is

isomorphic to the matrix algebra

Mn!

(
k[y±1

1 , . . . , y±1
n ]Sn [(∆n∆(q)n)−1]

)
.

Similarly, the algebra Λn[(∆n∆̃n)−1] is isomorphic to the matrix algebra

Mn!

(
k[y±1

1 , . . . , y±1
n ]Sn [(∆n∆̃n)−1]

)
.

8.2 Orellana–Ram and Cherednik–Arakawa–Suzuki functors

Here we give a construction, turning a braided monoidal category with a Hecke object into

a module category over the affine Hecke category; see e.g. [16], [24] for the definition of

a module category. Our construction has been motivated by the work of Orellana and

Ram [23].

Let C be a braided monoidal category and let cX,Y denote the braiding

cX,Y : X ⊗ Y → Y ⊗X.

Fix an object X of C and let O : C → C be the functor of tensoring by X from the

right: O(Y ) = OX(Y ) = Y ⊗ X. Note that O, as an object of the monoidal category of

endofuctors Funct(C, C), possesses a Yang–Baxter operator c, which is (as a morphism in

the functor category Funct(C, C)) the natural transformation OcX,X
:

O ◦O(Y ) = Y ⊗X⊗2
1Y ⊗cX,X // Y ⊗X⊗2 = O ◦O(Y ) .

Define an endomorphism x : O → O (a natural transformation) as the composition:

O(Y ) = Y ⊗X
cY,X // X ⊗ Y

cX,Y // Y ⊗X = O(Y ).

Lemma 8.5. The triple (O, x, c) defines a monoidal functor ORX : B̃ → Funct(C, C).

Proof. The following commutative diagram (which is a joint of two coherence diagrams for

the braiding) guarantees that c and x satisfy the condition (7.1):

Y ⊗X⊗2

1Y ⊗cX,X

��

cY⊗X,X // X ⊗ Y ⊗X
cX,Y⊗X // Y ⊗X⊗2

Y ⊗X⊗2
cY⊗X,X // X ⊗ Y ⊗X

cX,Y⊗X // Y ⊗X⊗2

1Y ⊗cX,X

OO

thus proving the claim.
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We call ORX the Orellana–Ram functor corresponding to X ∈ C. In the particular case

C = B we get a monoidal functor OR : B̃ → Funct(B,B) corresponding to the generating

object of B. It is easy to see that this functor is faithful (injective on morphisms).

An object X of a braided monoidal category C will be called a Hecke object , if the

braiding cX,X ∈ EndC(X⊗2) satisfies the equation (cX,X − q 1X⊗X)(cX,X + q−1 1X⊗X) = 0

for some non-zero scalar q ∈ k.

Proposition 8.6. If X be a Hecke object of C, then the functor ORX factors through the

affine Hecke category H(q), giving rise to a functor ORX : H̃(q) → Funct(C, C).

Proof. By definition, the Yang–Baxter operator c on the functor O satisfies the equation

(c− q)(c + q−1) = 0.

Now we describe a degenerate analog of the Orellana–Ram functors. The construction

(a special case of which was studied in [2] and [6]) requires an infinitesimal version of

the notion of braided category. The notion of chorded categories was virtually defined by

Drinfeld [11] and was studied in [19] under the name infinitesimal symmetric categories.

Due to their relation with Kontsevich’s chord diagrams we will call them chorded categories.

Let C be a symmetric monoidal category with the symmetry cX,Y . A chording on C is

a natural collection of morphisms hX,Y : X ⊗ Y → X ⊗ Y satisfying the conditions:

cX,Y hY,X = hX,Y cX,Y (8.8)

and

hX,Y⊗Z = hX,Y ⊗ 1Z + (1X ⊗ cY,Z)(hX,Z ⊗ 1Y )(1X ⊗ cY,Z)−1. (8.9)

A symmetric monoidal category with a chording will be called a chorded category.

A symmetric monoidal functor F : C → D between chorded categories is chorded if

FX,Y F (hX,Y ) = hF (X),F (Y )FX,Y ,

where

FX,Y : F (X ⊗ Y ) → F (X)⊗ F (Y )

is the monoidal constraint of F .

Now we describe a construction, which endows the category of representations of a Lie

algebra with a chorded structure. A Lie algebra g will be called a Casimir Lie algebra, if

it is equipped with a symmetric and g-invariant element Ω ∈ g⊗ g.

Proposition 8.7. Let (g, Ω) be Casimir Lie algebra and let M,N ∈ Rep(g). The relation

hM,N(m⊗ n) = Ω(m⊗ n), m ∈ M, n ∈ N,

defines a chorded structure on the category of representations Rep(g) of g.
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Proof. The g-invariance of Ω implies that hM,N is a homomorphism of representations of

g; i.e., a morphism in Rep(g). The condition (8.8) follows from the symmetry property of

Ω. Finally, we have the identity

(1⊗∆)(Ω) = Ω12 + Ω13,

where ∆(y) = y ⊗ 1 + 1⊗ y for y ∈ g, which verifies the condition (8.9).

An object X of a chorded category C will be called a degenerate Hecke object, if the

chording is proportional to the commutativity morphism, hX,X = λ cX,X for some non-zero

scalar λ ∈ k. Let C be a chorded monoidal category and let X be a degenerate Hecke object

of C. Let O : C → C be a functor of tensoring by X from the right, O(Y ) = OX(Y ) = Y ⊗X.

Note that O, as an object of the monoidal category of endofuctors Funct(C, C), possesses

a Yang–Baxter operator c, which is (as a morphism in the functor category Funct(C, C))

the natural transformation OcX,X
:

O ◦O(Y ) = Y ⊗X⊗2
1Y ⊗cX,X // Y ⊗X⊗2 = O ◦O(Y ) .

Define an endomorphism x : O → O (a natural transformation):

O(Y ) = Y ⊗X
λ−1hY,X // Y ⊗X = O(Y ).

Proposition 8.8. Let C be a chorded monoidal category and let X be a degenerate Hecke

object of C. Then the triple (O, x, c) defines a monoidal functor CASX : L → Funct(C, C).

Proof. The condition (6.1) follows from the chording axiom. Indeed, the natural transfor-

mation (x⊗ 1) c− c (1⊗ x) ∈ End
(
O(X) ◦O(X)

)
evaluated at Y ∈ C has the form

λ−1(hY,X ⊗ 1X)(1Y ⊗ cX,X)− λ−1(1Y ⊗ cX,X)hY⊗X,X

= λ−1(hY,X ⊗ 1X)(1Y ⊗ cX,X)− λ−1(1Y ⊗ cX,X)

×
(
1Y ⊗ hX,X + (1Y ⊗ cX,X)(hY,X ⊗ 1X)(1Y ⊗ cX,X)

)

= λ−1(1Y ⊗ cX,X)(1Y ⊗ hX,X) = 1Y⊗X⊗X ,

as required.

We call the functor CASX the Cherednik–Arakawa–Suzuki functor corresponding to

X ∈ C; see the following examples.

Example 8.9. Representations of glN . Let V be the N -dimensional vector representation

of the Lie algebra glN . Consider the chorded structure on the category C = Rep(glN) of

representations of glN given by the standard Casimir element C ∈ glN ⊗ glN . Then V is

a degenerate Hecke object of C. This gives a functor CASV : L → Funct(C, C) studied in

some form in [2] and [6]; see also [7, Lemma 7.21].
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Example 8.10. The category S. The category S has a chorded structure uniquely defined

by hX,X = cX,X . In particular, the generator X is a degenerate Hecke object of S. Thus

we get a monoidal functor CASX : L → Funct(S,S).
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