On the Work Performed by a Transformation Semigroup

James East*
School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia
Peter J. McNamara ${ }^{\dagger}$
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA

October 1, 2009

Abstract

A (partial) transformation α on the finite set $\{1, \ldots, n\}$ moves an element i of its domain a distance of $|i-i \alpha|$ units. The work $w(\alpha)$ performed by α is the sum of all of these distances. We derive formulae for the total work $w(S)=\sum_{\alpha \in S} w(\alpha)$ performed by various semigroups S of (partial) transformations. One of our main results is the proof of a conjecture of Tim Lavers which states that the total work performed by the semigroup of all order-preserving functions on an n-element chain is equal to $(n-1) 2^{2 n-3}$.

Keywords: Transformation semigroup, work. MSC: Primary 20M20; Secondary 05A10.

1 Introduction

Fix a positive integer n and write $\mathbf{n}=\{1, \ldots, n\}$. The partial transformation semigroup $\mathcal{P} \mathcal{I}_{n}$ is the semigroup of all partial transformations on \mathbf{n}; i.e. all functions between subsets of \mathbf{n}. (Note that the use of the word "partial" does not imply that the domain is necessarily a proper subset of \mathbf{n}. In this way, $\mathcal{P} \mathcal{T}_{n}$ also includes all full transformations of \mathbf{n}; i.e. all functions $\mathbf{n} \rightarrow \mathbf{n}$.) A partial transformation α moves a point i of its domain to

[^0]a (possibly) new point j in its image. If the elements of \mathbf{n} are thought of as points, equally spaced along a line, then the point i has been moved a distance of $|i-j|$ units. Summing these values, as i varies over the domain of α, gives the (total) work performed by α, denoted by $w(\alpha)$. We may also consider the total and average work performed by a collection S of partial transformations, being the quantities $w(S)=\sum_{\alpha \in S} w(\alpha)$ and $\bar{w}(S)=\frac{1}{|S|} w(S)$ respectively. It is the purpose of the current article to calculate $w(S)$ and $\bar{w}(S)$ when S is either $\mathcal{P} \mathcal{T}_{n}$ itself, or one of its six key subsemigroups:

- $\mathcal{T}_{n}=\left\{\alpha \in \mathcal{P} \mathcal{T}_{n} \mid \operatorname{dom}(\alpha)=\mathbf{n}\right\}$, the (full) transformation semigroup;
- $\mathcal{I}_{n}=\left\{\alpha \in \mathcal{P} \mathcal{I}_{n} \mid \alpha\right.$ is injective $\}$, the symmetric inverse semigroup;
- $\mathcal{S}_{n}=\mathcal{T}_{n} \cap \mathcal{I}_{n}$, the symmetric group;
- $\mathcal{P} \mathcal{O}_{n}=\left\{\alpha \in \mathcal{P} \mathcal{I}_{n} \mid \alpha\right.$ is order-preserving $\} ;$
- $\mathcal{O}_{n}=\mathcal{T}_{n} \cap \mathcal{P} \mathcal{O}_{n}$; and
- $\mathcal{P O} \mathcal{I}_{n}=\mathcal{I}_{n} \cap \mathcal{P} \mathcal{O}_{n}$.

For the above definitions, recall that a partial transformation $\alpha \in \mathcal{P} \mathcal{T}_{n}$ is order-preserving if $i \alpha<j \alpha$ whenever $i, j \in \operatorname{dom}(\alpha)$ and $i<j .{ }^{1}$ The following diagram illustrates the various inclusions; for a more comprehensive picture, see [2].

Our interest in this topic began after attending a talk by Tim Lavers at a Semigroups Special Interest meeting in Sydney 2004, in which the formula $w\left(\mathcal{O}_{n}\right)=(n-1) 2^{2 n-3}$ was conjectured. We also note that the quantity $\frac{1}{n} \bar{w}\left(\mathcal{S}_{n}\right)=\frac{n^{2}-1}{3 n}$ has been calculated previously in relation to turbo coding [1] although, in the absence of such "external" considerations, we feel that $w(S)$ and $\bar{w}(S)$ are the more intrinsic quantities.

[^1]Our results are summarized in Tables 1 and 2 below, where the reader will notice some interesting relationships such as $w\left(\mathcal{O}_{n}\right)=w\left(\mathcal{P O} \mathcal{I}_{n}\right)$ and $\bar{w}\left(\mathcal{S}_{n}\right)=\bar{w}\left(\mathcal{T}_{n}\right)$. Table 3 catalogues the calculated values of $w(S)$ for $n=1, \ldots, 10$.

S	Formula for $w(S)$
\mathcal{S}_{n}	$\frac{n!\left(n^{2}-1\right)}{3}$
\mathcal{T}_{n}	$\frac{n^{n}\left(n^{2}-1\right)}{3}$
$\mathcal{P} \mathcal{I}_{n}$	$\frac{(n+1)^{n}\left(n^{2}-n\right)}{3}$
\mathcal{I}_{n}	$\frac{n^{3}-n}{3} \sum_{k=0}^{n-1}\binom{n-1}{k}^{2} k!$
$\mathcal{P O} \mathcal{I}_{n}$	$(n-1) 2^{2 n-3}$
\mathcal{O}_{n}	$(n-1) 2^{2 n-3}$
$\mathcal{P} \mathcal{O}_{n}$	$\left.\sum_{i, j=1}^{n} \sum_{k, \ell=0}^{n}\|i-j\| \begin{array}{c}i-1 \\ k\end{array}\right)\binom{j+k-1}{k}\binom{n-i}{\ell}\binom{n-j+\ell}{\ell}$

Table 1: Formulae for the total work $w(S)$ performed by a semigroup $S \subseteq \mathcal{P} \mathcal{T}_{n}$.

S	Formula for $\bar{w}(S)$
\mathcal{S}_{n}	$\frac{n^{2}-1}{3}$
\mathcal{T}_{n}	$\frac{n^{2}-1}{3}$
$\mathcal{P} \mathcal{I}_{n}$	$\frac{n^{2}-n}{3}$
\mathcal{I}_{n}	$\frac{n^{3}-n}{3 \sum_{\ell=0}^{n}\binom{n}{\ell}^{2} \ell!} \sum_{k=0}^{n-1}\binom{n-1}{k}^{2} k!$
$\mathcal{P O} \mathcal{I}_{n}$	$\frac{1}{\binom{2 n}{n}}(n-1) 2^{2 n-3}$
\mathcal{O}_{n}	$\frac{1}{\binom{2 n-1}{n}}(n-1) 2^{2 n-3}$
$\mathcal{P} \mathcal{O}_{n}$	$\frac{1}{\sum_{m=0}^{n}\binom{n}{m}\binom{n+m-1}{m}} \sum_{i, j=1}^{n} \sum_{k, \ell=0}^{n}\|i-j\|\binom{i-1}{k}\binom{j+k-1}{k}\binom{n-i}{\ell}\binom{n-j+\ell}{\ell}$

Table 2: Formulae for the average work $\bar{w}(S)$ performed by an element of a semigroup $S \subseteq \mathcal{P} \mathcal{T}_{n}$.

The article is organized as follows. In Section 2 we obtain a general formula for $w(S)$ involving the cardinalities of certain subsets $M_{i, j}(S)$ of S. In Section 3 we consider separately the seven semigroups described above, calculating the cardinalities $\left|M_{i, j}(S)\right|$, and

n	1	2	3	4	5	6	7	8	9	10
$w\left(\mathcal{S}_{n}\right)$	0	2	16	120	960	8400	80640	846720	9676800	119750400
$w\left(\mathcal{I}_{n}\right)$	0	4	72	1280	25000	544320	13176688	352321536	10331213040	330000000000
$w\left(\mathcal{P} \mathcal{I}_{n}\right)$	0	6	128	2500	51840	1176490	29360128	803538792	24000000000	778122738030
$w\left(\mathcal{I}_{n}\right)$	0	4	56	680	8360	108220	1492624	21994896	346014960	5798797620
$w\left(\mathcal{P} \mathcal{O}_{n}\right)$	0	2	16	96	512	2560	12288	57344	262144	1179648
$w\left(\mathcal{O}_{n}\right)$	0	2	16	96	512	2560	12288	57344	262144	1179648
$w\left(\mathcal{P} \mathcal{O}_{n}\right)$	0	4	48	424	3312	24204	169632	1155152	7702944	50550932

Table 3: Calculated values of $w(S)$ for small values of n.
thereby obtaining explicit formulae for $w(S)$ in each case. The formulae obtained in this way are in a closed form when S is one of $\mathcal{S}_{n}, \mathcal{T}_{n}, \mathcal{P} \mathcal{T}_{n}$, but expressed as a sum involving binomial coefficients in the remaining four cases. In Section 4 we prove Lavers' conjecture, which essentially boils down to a proof of the identity

$$
\sum_{p, q=0}^{n}|p-q|\binom{p+q}{p}\binom{2 n-p-q}{n-p}=n 2^{2 n-1}
$$

giving rise to the postulated closed form for $w\left(\mathcal{O}_{n}\right)=w\left(\mathcal{P O} \mathcal{I}_{n}\right)$. By contrast, the expression $w\left(\mathcal{I}_{n}\right)=\frac{n^{3}-n}{3}\left|\mathcal{I}_{n-1}\right|$ may not be simplified further, since no closed form exists for $\left|\mathcal{I}_{n}\right|=\sum_{k=0}^{n}\binom{n}{k}^{2} k!$. It is not known to the authors whether a closed form for $w\left(\mathcal{P} \mathcal{O}_{n}\right)$ exists, but the presence of large prime factors suggests that the situation could not be as simple as that of $w\left(\mathcal{O}_{n}\right)$; for example, $w\left(\mathcal{P} \mathcal{O}_{9}\right)=2^{5} \cdot 3 \cdot 80239$.

Unless specified otherwise, all numbers we consider are integers, so a statement such as "let $1 \leq i \leq 5$ " should be read as "let i be an integer such that $1 \leq i \leq 5$ ". It will also be convenient to interpret a binomial coefficient $\binom{p}{q}$ to be 0 if $p<q$.

2 General Calculations

We now make precise our definitions and notation. The work performed by a partial transformation $\alpha \in \mathcal{P} \mathcal{I}_{n}$ in moving a point $i \in \mathbf{n}$ is defined to be

$$
w_{i}(\alpha)=\left\{\begin{array}{cl}
|i-i \alpha| & \text { if } i \in \operatorname{dom}(\alpha) \\
0 & \text { otherwise }
\end{array}\right.
$$

and the (total) work performed by α is

$$
w(\alpha)=\sum_{i \in \mathbf{n}} w_{i}(\alpha) .
$$

For $S \subseteq \mathcal{P} \mathcal{I}_{n}$, we write

$$
w(S)=\sum_{\alpha \in S} w(\alpha) \quad \text { and } \quad \bar{w}(S)=\frac{1}{|S|} w(S)
$$

for the total and average work performed by the elements of S (respectively).
For the remainder of this section, we fix a subset $S \subseteq \mathcal{P} \mathcal{T}_{n}$. For $i \in \mathbf{n}$, put

$$
w_{i}(S)=\sum_{\alpha \in S} w_{i}(\alpha),
$$

which may be interpreted as the total work performed by S in moving just the point i. Rearranging the defining sum for $w(S)$ gives

$$
w(S)=\sum_{\alpha \in S} w(\alpha)=\sum_{\alpha \in S} \sum_{i \in \mathbf{n}} w_{i}(\alpha)=\sum_{i \in \mathbf{n}} \sum_{\alpha \in S} w_{i}(\alpha)=\sum_{i \in \mathbf{n}} w_{i}(S) .
$$

For $i, j \in \mathbf{n}$, consider the set

$$
M_{i, j}(S)=\{\alpha \in S \mid i \in \operatorname{dom}(\alpha) \text { and } i \alpha=j\}
$$

of all elements of S which move i to j, and write

$$
m_{i, j}(S)=\left|M_{i, j}(S)\right|
$$

for the cardinality of $M_{i, j}(S)$. Note that $w_{i}(\alpha)=|i-j|$ for all $\alpha \in M_{i, j}(S)$, so that

$$
w_{i}(S)=\sum_{j \in \mathbf{n}}|i-j| m_{i, j}(S) .
$$

We have proved the following.
Lemma 1 Let $S \subseteq \mathcal{P} \mathcal{I}_{n}$. Then $w(S)=\sum_{i, j \in \mathbf{n}}|i-j| m_{i, j}(S)$.

3 Specific Calculations

We now use Lemma 1 as the starting point to derive explicit formulae for $w(S)$ for each of the semigroups S defined in Section 1. We consider each case separately, covering them roughly in order of difficulty. When S is one of $\mathcal{S}_{n}, \mathcal{T}_{n}, \mathcal{P} \mathcal{I}_{n}$, or \mathcal{I}_{n}, we will see that $m_{i, j}(S)$ is independent of $i, j \in \mathbf{n}$, and so $w(S)$ turns out to be rather easy to calculate, relying only on Lemma 1 and the well-known identity

$$
\sum_{i, j \in \mathbf{n}}|i-j|=2\binom{n+1}{3}=\frac{n^{3}-n}{3}
$$

(The reader is reminded of the convention that $\binom{n+1}{3}=0$ if $n=1$.) In each of the remaining three cases, the formulae we derive for the quantities $m_{i, j}(S)$ yields an expression for $w(S)$ as a sum involving binomial coefficients. We defer further investigation of the \mathcal{O}_{n} and $\mathcal{P O} \mathcal{I}_{n}$ cases until Section 4, where we show that this so-obtained expression may be simplified.

It may be that some of the intermediate results of this section are already known (for example Lemmas 2, 6 and 9) but the proofs, which are believed to be original, are included for completeness; the reader is referred to the introduction of [4] for a review of related studies. Note that the proofs we give are largely geometrically motivated. A partial transformation $\alpha \in \mathcal{P} \mathcal{T}_{n}$ may be represented diagrammatically by drawing an upper and lower row of n dots, representing the elements of \mathbf{n} (in increasing order from left to right), and drawing a line from upper vertex i to lower vertex j whenever $i \in \operatorname{dom}(\alpha)$ and $i \alpha=j$. In this way, the quantity $m_{i, j}(S)$ may be interpreted as the number of ways to "extend" the partial map $\pi_{i, j}$, pictured in Figure 1, to an element of S.

Figure 1: The partial map $\pi_{i, j} \in \mathcal{P} \mathcal{T}_{n}$ with domain $\{i\}$ and image $\{j\}$.

3.1 The Symmetric Group \mathcal{S}_{n}

To extend the partial map $\pi_{i, j}$ to a permutation of \mathbf{n}, we must add $n-1$ lines, ensuring that they correspond to a bijection from $\mathbf{n} \backslash\{i\}$ to $\mathbf{n} \backslash\{j\}$. It follows then that $m_{i, j}\left(\mathcal{S}_{n}\right)=(n-1)$! for all $i, j \in \mathbf{n}$, and so Lemma 1 gives

$$
w\left(\mathcal{S}_{n}\right)=\sum_{i, j \in \mathbf{n}}|i-j|(n-1)!=\frac{n^{3}-n}{3} \cdot(n-1)!=\frac{n!\left(n^{2}-1\right)}{3} .
$$

The average work is given by

$$
\bar{w}\left(\mathcal{S}_{n}\right)=\frac{w\left(\mathcal{S}_{n}\right)}{n!}=\frac{n^{2}-1}{3} .{ }^{2}
$$

[^2]
3.2 The Transformation Semigroup \mathcal{T}_{n}

To extend $\pi_{i, j}$ to a full transformation of \mathbf{n}, each upper vertex must be connected by a line to a lower vertex. Since the lower vertex of such a line is not constrained in any way, we see that $m_{i, j}\left(\mathcal{T}_{n}\right)=n^{n-1}$ for all $i, j \in \mathbf{n}$. By Lemma 1, we therefore have

$$
w\left(\mathcal{I}_{n}\right)=\sum_{i, j \in \mathbf{n}}|i-j| n^{n-1}=\frac{n^{3}-n}{3} \cdot n^{n-1}=\frac{n^{n}\left(n^{2}-1\right)}{3},
$$

and

$$
\bar{w}\left(\mathcal{T}_{n}\right)=\frac{w\left(\mathcal{T}_{n}\right)}{n^{n}}=\frac{n^{2}-1}{3},
$$

giving rise to the first interesting (and seemingly coincidental) identity: $\bar{w}\left(\mathcal{T}_{n}\right)=\bar{w}\left(\mathcal{S}_{n}\right)$.

3.3 The Partial Transformation Semigroup $\mathcal{P} \mathcal{T}_{n}$

To extend $\pi_{i, j}$ to a partial transformation, each upper vertex may be connected to any lower vertex or else left unconnected. It follows that $m_{i, j}\left(\mathcal{P} \mathcal{T}_{n}\right)=(n+1)^{n-1}$ for all $i, j \in \mathbf{n}$ and so, by Lemma 1, we have

$$
w\left(\mathcal{P} \mathcal{I}_{n}\right)=\sum_{i, j \in \mathbf{n}}|i-j|(n+1)^{n-1}=\frac{n^{3}-n}{3} \cdot(n+1)^{n-1}=\frac{(n+1)^{n}\left(n^{2}-n\right)}{3},
$$

and

$$
\bar{w}\left(\mathcal{P} \mathcal{I}_{n}\right)=\frac{w\left(\mathcal{P} \mathcal{I}_{n}\right)}{(n+1)^{n}}=\frac{n^{2}-n}{3} .
$$

Although $\bar{w}\left(\mathcal{P} \mathcal{T}_{n}\right) \neq \bar{w}\left(\mathcal{S}_{n}\right)=\bar{w}\left(\mathcal{T}_{n}\right)$, all three sequences are of course asymptotic to $\frac{n^{2}}{3}$.

3.4 The Symmetric Inverse Semigroup \mathcal{I}_{n}

To extend $\pi_{i, j}$ to an injective partial transformation, we must add at most $n-1$ more lines, ensuring that they correspond to an injective partially defined map from $\mathbf{n} \backslash\{i\}$ to $\mathbf{n} \backslash\{j\}$. Since such a partial map obviously corresponds to an injective partial transformation on $\{1, \ldots, n-1\}$, we see that $m_{i, j}\left(\mathcal{P} \mathcal{T}_{n}\right)=\left|\mathcal{I}_{n-1}\right|$ for all $i, j \in \mathbf{n}$. It then follows that

$$
w\left(\mathcal{I}_{n}\right)=\sum_{i, j \in \mathbf{n}}|i-j| \cdot\left|\mathcal{I}_{n-1}\right|=\frac{n^{3}-n}{3} \cdot\left|\mathcal{I}_{n-1}\right|=\frac{n^{3}-n}{3} \sum_{k=0}^{n-1}\binom{n-1}{k}^{2} k!,
$$

and

$$
\bar{w}\left(\mathcal{I}_{n}\right)=\frac{w\left(\mathcal{I}_{n}\right)}{\left|\mathcal{I}_{n}\right|}=\frac{n^{3}-n}{3} \cdot \frac{\left|\mathcal{I}_{n-1}\right|}{\left|\mathcal{I}_{n}\right|} .
$$

3.5 The Semigroup $\mathcal{P} \mathcal{O} \mathcal{I}_{n}$

From this point onward, calculation of the quantities $m_{i, j}(S)$ is not as straightforward. For $0 \leq p, q \leq n$ let $\mathcal{P O} \mathcal{I}_{p, q}$ denote the set of all order-preserving injective partial maps from \mathbf{p} to \mathbf{q}. (Note that we interpret $\mathbf{k}=\{1, \ldots, k\}$ to be empty if $k=0$.)

Lemma 2 Let $0 \leq p, q \leq n$. Then $\left|\mathcal{P O}_{p, q}\right|=\binom{p+q}{p}=\binom{p+q}{q}$.
Proof Let $\mathbf{q}^{\prime}=\left\{1^{\prime}, \ldots, q^{\prime}\right\}$ be a set in one-one correspondence with \mathbf{q}. Denote also by $^{\prime}: \mathbf{q}^{\prime} \rightarrow \mathbf{q}$ the inverse bijection, so that we write $i^{\prime \prime}=i$ for all $i \in \mathbf{q}$. Consider the set

$$
\Sigma=\left\{A \subseteq \mathbf{p} \cup \mathbf{q}^{\prime}| | A \mid=q\right\} .
$$

For $A \in \Sigma$, define $\phi_{A} \in \mathcal{P O} \mathcal{I}_{p, q}$ by

$$
\operatorname{dom}\left(\phi_{A}\right)=A \cap \mathbf{p} \quad \text { and } \quad \operatorname{im}\left(\phi_{A}\right)=\mathbf{q} \backslash\left(A \cap \mathbf{q}^{\prime}\right)^{\prime}
$$

noting that $|A \cap \mathbf{p}|=\left|\mathbf{q} \backslash\left(A \cap \mathbf{q}^{\prime}\right)^{\prime}\right|$, and that an element of $\mathcal{P O} \mathcal{I}_{p, q}$ is completely determined by its domain and image. It is then easy to check that the maps determined by

$$
A \mapsto \phi_{A} \quad \text { and } \quad \phi \mapsto \operatorname{dom}(\phi) \cup(\mathbf{q} \backslash \operatorname{im}(\phi))^{\prime}
$$

are mutually inverse bijections between Σ and $\mathcal{P O} \mathcal{I}_{p, q}$. The result follows since we clearly have $|\Sigma|=\binom{p+q}{q}$.

Remark 3 Geometrically, this proof corresponds to the fact that, given p upper vertices and q lower vertices, an element of $\mathcal{P O} \mathcal{I}_{p, q}$ is determined by choosing q vertices, and then joining the selected upper vertices to the unselected lower vertices. An alternative proof begins by noting that $\mathcal{P O} \mathcal{I}_{p, q}$ contains $\binom{p}{k}\binom{q}{k}$ maps of rank k, and then applies the identity $\sum_{k=0}^{\infty}\binom{p}{k}\binom{q}{k}=\binom{p+q}{q}$.

Lemma 4 Let $i, j \in \mathbf{n}$. Then $m_{i, j}\left(\mathcal{P O}_{n}\right)=\binom{i+j-2}{i-1}\binom{2 n-i-j}{n-i}$.
Proof Let $\alpha \in M_{i, j}\left(\mathcal{P O} \mathcal{I}_{n}\right)$. Then since $i \alpha=j$ and α is order-preserving, we see that $k \alpha<j$ whenever $k \in \operatorname{dom}(\alpha)$ and $k<i$. Thus, we may define a map $\lambda_{\alpha} \in \mathcal{P O} \mathcal{I}_{i-1, j-1}$ by

$$
\operatorname{dom}\left(\lambda_{\alpha}\right)=\operatorname{dom}(\alpha) \cap\{1, \ldots, i-1\} \quad \text { and } \quad \operatorname{im}\left(\lambda_{\alpha}\right)=\operatorname{im}(\alpha) \cap\{1, \ldots, j-1\} .
$$

Similarly, we have $k \alpha>j$ whenever $k \in \operatorname{dom}(\alpha)$ and $k>i$, and so we may also define a map $\rho_{\alpha} \in \mathcal{P O} \mathcal{I}_{n-i, n-j}$ by
$\operatorname{dom}\left(\rho_{\alpha}\right)=\{k-i \mid k \in \operatorname{dom}(\alpha), k>i\} \quad$ and $\quad \operatorname{im}\left(\rho_{\alpha}\right)=\{k-j \mid k \in \operatorname{im}(\alpha), k>j\}$.
It is then easy to check that the map $\alpha \mapsto\left(\lambda_{\alpha}, \rho_{\alpha}\right)$ defines a bijection from $M_{i, j}\left(\mathcal{P O} \mathcal{I}_{n}\right)$ to $\mathcal{P O} \mathcal{I}_{i-1, j-1} \times \mathcal{P} \mathcal{I}_{n-i, n-j}$. The result now follows from Lemma 2 .

Remark 5 The idea of the above proof is summed up in the schematic picture of a typical element of $M_{i, j}\left(\mathcal{P O} \mathcal{I}_{n}\right)$ illustrated in Figure 2.

Figure 2: A schematic picture of an element of $M_{i, j}\left(\mathcal{P} \mathcal{O} \mathcal{I}_{n}\right)$.

It follows by Lemmas 1 and 4 that the total work performed by $\mathcal{P O} \mathcal{I}_{n}$ is given by

$$
w\left(\mathcal{P O} \mathcal{I}_{n}\right)=\sum_{i, j \in \mathbf{n}}|i-j|\binom{i+j-2}{i-1}\binom{2 n-i-j}{n-i}
$$

In Section 4 we revisit this formula, and show that in fact $w\left(\mathcal{P O} \mathcal{I}_{n}\right)=(n-1) 2^{2 n-3}$. An expression for $\bar{w}\left(\mathcal{P O} \mathcal{I}_{n}\right)$ may be found by dividing through by $\left|\mathcal{P O} \mathcal{I}_{n}\right|=\left|\mathcal{P O} \mathcal{I}_{n, n}\right|=\binom{2 n}{n}$.

3.6 The Semigroup \mathcal{O}_{n}

For $0 \leq p \leq n$ and $q \in \mathbf{n}$ let $\mathcal{O}_{p, q}$ denote the set of all order-preserving maps from \mathbf{p} to \mathbf{q}.
Lemma 6 Let $0 \leq p \leq n$ and $q \in \mathbf{n}$. Then $\left|\mathcal{O}_{p, q}\right|=\binom{p+q-1}{p}=\binom{p+q-1}{q-1}$.
Proof Consider the set

$$
\Omega=\left\{\alpha \in \mathcal{P O}_{p, q} \mid p \in \operatorname{dom}(\alpha)\right\} .
$$

There is an obvious bijection $\mathcal{O}_{p, q} \rightarrow \Omega$ determined geometrically by removing all but the right-most lines from the connected components in the picture of $\alpha \in \mathcal{O}_{p, q}$; see Figure 3. For $i \in \mathbf{q}$, put

$$
\Omega_{i}=\{\alpha \in \Omega \mid p \alpha=i\}
$$

so that we have the disjoint union $\Omega=\Omega_{1} \sqcup \cdots \sqcup \Omega_{q}$. Clearly, the operation of removing the right-most line gives a bijection between Ω_{i} and $\mathcal{P O}_{p-1, i-1}$ for each $i \in \mathbf{q}$ so that, by Lemma 2, we have

$$
\left|\mathcal{O}_{p, q}\right|=|\Omega|=\sum_{i \in \mathbf{q}}\binom{p+i-2}{p-1}
$$

The result now follows from the identity $\sum_{k=0}^{s}\binom{r+k}{r}=\binom{r+s+1}{s}$.

Figure 3: The bijection $\mathcal{O}_{p, q} \rightarrow \Omega$; see the proof of Lemma 6 for an explanation of the notation.

Remark 7 An argument similar to that used in the proof of Lemma 2 may also be used here. An element $\alpha \in \Omega$ is completely determined by the sets $\operatorname{dom}(\alpha) \backslash\{p\} \subseteq\{1, \ldots, p-1\}$ and $\mathbf{q} \backslash \operatorname{im}(\alpha) \subseteq \mathbf{q}$. This gives rise to a bijection between Ω and the set

$$
\left\{A \subseteq\left\{1, \ldots, p-1,1^{\prime}, \ldots, q^{\prime}\right\}||A|=q-1\}\right.
$$

which has cardinality $\binom{p+q-1}{q-1}$.

Lemma 8 Let $i, j \in \mathbf{n}$. Then $m_{i, j}\left(\mathcal{O}_{n}\right)=\binom{i+j-2}{i-1}\binom{2 n-i-j}{n-i}$.

Proof The proof follows a similar pattern to the proof of Lemma 4. Rather than include all the details, we simply refer to Figure 4 which gives a schematic picture of an element of $M_{i, j}\left(\mathcal{O}_{n}\right)$, indicating a bijection between $M_{i, j}\left(\mathcal{O}_{n}\right)$ and $\mathcal{O}_{i-1, j} \times \mathcal{O}_{n-i, n-j+1}$.

Figure 4: A schematic picture of an element of $M_{i, j}\left(\mathcal{O}_{n}\right)$.

In particular, we have $m_{i, j}\left(\mathcal{O}_{n}\right)=m_{i, j}\left(\mathcal{P O} \mathcal{I}_{n}\right)$ for all $i, j \in \mathbf{n}$, so that $w\left(\mathcal{O}_{n}\right)=w\left(\mathcal{P} \mathcal{O} \mathcal{I}_{n}\right)$. The differing cardinalities of \mathcal{O}_{n} and $\mathcal{P O} \mathcal{I}_{n}$ mean that $\bar{w}\left(\mathcal{O}_{n}\right) \neq \bar{w}\left(\mathcal{P O} \mathcal{I}_{n}\right)$. However, since $\left|\mathcal{P O} \mathcal{I}_{n}\right|=\binom{2 n}{n}=2\binom{2 n-1}{n}=2\left|\mathcal{O}_{n}\right|$, we do have the relationship $\bar{w}\left(\mathcal{O}_{n}\right)=2 \bar{w}\left(\mathcal{P O} \mathcal{I}_{n}\right)$.

3.7 The Semigroup $\mathcal{P} \mathcal{O}_{n}$

For $0 \leq p \leq n$ and $q \in \mathbf{n}$ let $\mathcal{P O}_{p, q}$ denote the set of all order-preserving partial transformations from \mathbf{p} to \mathbf{q}.

Lemma 9 Let $0 \leq p \leq n$ and $q \in \mathbf{n}$. Then $\left|\mathcal{P} \mathcal{O}_{p, q}\right|=\sum_{k=0}^{n}\binom{p}{k}\binom{q+k-1}{k}$.
Proof For $A \subseteq \mathbf{p}$ write $\mathcal{P} \mathcal{O}_{p, q}^{A}=\left\{\alpha \in \mathcal{P} \mathcal{O}_{p, q} \mid \operatorname{dom}(\alpha)=A\right\}$. We then have the disjoint union

$$
\mathcal{P} \mathcal{O}_{p, q}=\bigsqcup_{A \subseteq \mathbf{p}} \mathcal{P O}_{p, q}^{A}
$$

Now for any $0 \leq k \leq p$, there are $\binom{p}{k}$ subsets $A \subseteq \mathbf{p}$ for which $|A|=k$ and, for each such subset A, we have $\left|\mathcal{P} \mathcal{O}_{p, q}^{A}\right|=\left|\mathcal{O}_{k, q}\right|=\binom{q+k-1}{k}$, the last equality following by Lemma 6 . This shows that

$$
\left|\mathcal{P} \mathcal{O}_{p, q}\right|=\sum_{A \subseteq \mathbf{p}}\left|\mathcal{P O}_{p, q}^{A}\right|=\sum_{k=0}^{p}\binom{p}{k}\binom{q+k-1}{k}
$$

The upper limit may be changed to n, in light of the convention that $\binom{p}{k}=0$ if $k>p$.

Lemma 10 Let $i, j \in \mathbf{n}$. Then

$$
m_{i, j}\left(\mathcal{P} \mathcal{O}_{n}\right)=\sum_{k, \ell=0}^{n}\binom{i-1}{k}\binom{j+k-1}{k}\binom{n-i}{\ell}\binom{n-j+\ell}{\ell}
$$

Proof Again we find that there is a bijection between $M_{i, j}\left(\mathcal{P} \mathcal{O}_{n}\right)$ and $\mathcal{P} \mathcal{O}_{i-1, j} \times \mathcal{P} \mathcal{O}_{n-i, n-j+1}$, and the result follows from Lemma 9.

It follows, by Lemmas 1 and 10, that

$$
w\left(\mathcal{P} \mathcal{O}_{n}\right)=\sum_{i, j=1}^{n} \sum_{k, \ell=0}^{n}|i-j|\binom{i-1}{k}\binom{j+k-1}{k}\binom{n-i}{\ell}\binom{n-j+\ell}{\ell}
$$

An expression for $\bar{w}\left(\mathcal{P} \mathcal{O}_{n}\right)$ is found by dividing through by

$$
\left|\mathcal{P} \mathcal{O}_{n}\right|=\left|\mathcal{P} \mathcal{O}_{n, n}\right|=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k-1}{k} .
$$

4 The Proof of Lavers' Conjecture

We now turn to the task of proving the conjectured result of Lavers that $w\left(\mathcal{O}_{n}\right)=(n-1) 2^{2 n-3}$. In light of Section 3.6, this amounts to a proof of the identity

$$
\sum_{i, j \in \mathbf{n}}|i-j|\binom{i+j-2}{i-1}\binom{2 n-i-j}{n-i}=(n-1) 2^{2 n-3}
$$

Replacing n by $n+1$, and introducing the new parameters $p=i-1$ and $q=j-1$, the identity takes on the more pleasing form:

$$
\sum_{p, q=0}^{n}|p-q|\binom{p+q}{p}\binom{2 n-p-q}{n-p}=n 2^{2 n-1}
$$

The remainder of this section is devoted to a proof of this identity and, hence, a proof of the conjecture.

For $0 \leq m \leq 2 n$, define

$$
f(n, m)=\sum_{p=0}^{m}|m-2 p|\binom{m}{p}\binom{2 n-m}{n-p}
$$

noting first that $f(n, 0)=f(n, 2 n)=0$. We now find a closed form for the remaining values of m.

Lemma 11 We have the following identities:

$$
\begin{align*}
f(n, 2 k+1) & =\frac{2}{n} \frac{(2 n-2 k-1)!}{(n-k-1)!(n-k-1)!} \frac{(2 k+1)!}{k!k!} & \text { for } 0 \leq k \leq n-1 \tag{12}\\
f(n, 2 k) & =\frac{2}{n} \frac{(2 n-2 k)!}{(n-k)!(n-k-1)!} \frac{(2 k)!}{k!(k-1)!} & \text { for } 1 \leq k \leq n-1 \tag{13}
\end{align*}
$$

Proof We apply two different methods of proof, one to each identity, and each of which may be adapted to treat the other case.

We first present a purely human-discovered proof of (12). Let $0 \leq k \leq n-1$. Consider the degree k polynomial

$$
P_{k}(x)=\sum_{p=0}^{k}|2 k+1-2 p|\binom{2 k+1}{p} x_{(p)}(x-k-1)_{(k-p)}
$$

in an indeterminate x. In the defining sum for $f(n, m)$, the terms with $p=i$ and $p=m-i$ are equal. In this way, we calculate

$$
f(n, 2 k+1)=\frac{2(2 n-2 k-1)!}{n!(n-k-1)!} P_{k}(n)
$$

So it suffices to prove the polynomial identity

$$
\begin{equation*}
P_{k}(x)=\frac{(2 k+1)!}{k!k!}(x-1)_{(k)} . \tag{14}
\end{equation*}
$$

We do this by induction on k, noting first that when $k=0$ both sides of (14) are identically equal to 1 . Suppose now that $1 \leq k \leq n-1$ and that $0 \leq \ell<k$. We consider $P_{k}(k+\ell+1)$.

In the defining sum, terms with $p \leq k-\ell-1$ will be zero and so, replacing the index of summation by $r=p-k+\ell$, we have

$$
P_{k}(k+\ell+1)=\sum_{r=0}^{\ell}|2 \ell+1-2 r|\binom{2 k+1}{k-\ell+r}(k+\ell+1)_{(k-\ell+r)} \ell(\ell-r),
$$

which is readily checked to be equal to

$$
\frac{(2 k+1)!}{k!} \frac{\ell!}{(2 \ell+1)!} P_{\ell}(k+\ell+1)
$$

By an inductive hypothesis,

$$
P_{\ell}(x)=\frac{(2 \ell+1)!}{\ell!\ell!}(x-1)_{(\ell)}
$$

and it quickly follows that (14) holds for the k distinct x-values $x=k+1, k+2, \ldots, 2 k$. Since the identity (14) involves polynomials of degree k, it suffices to verify it for one more value of x and, when $x=0$, both sides are easily checked to be equal to $(-1)^{k} \frac{(2 k+1)!}{k!}$. So (14) holds, and the proof of (12) is complete.

We now present a computer-aided proof of (13) using the WZ method [5]. Let $1 \leq k \leq n-1$. Define

$$
F(n, k, p)=\frac{2 n(k-p)\binom{2 k}{p}\binom{2 n-2 k}{n-p}}{k(n-k)\binom{2 k}{k}\binom{2 n-2 k}{n-k}}
$$

noting that the desired result is equivalent to

$$
\begin{equation*}
\sum_{p=0}^{k-1} F(n, k, p)=1 \tag{15}
\end{equation*}
$$

A computer implementation ${ }^{3}$ of Gosper's algorithm [3] gives us the identity

$$
F(n+1, k, p)-F(n, k, p)=G(n, k, p+1)-G(n, k, p),
$$

where the function G is defined by

$$
G(n, k, p)=\frac{p(k+1-p)}{2 n(n+1-p)} F(n, k, p)
$$

Summing over $p \in\{0, \ldots, k-1\}$, and noting that $G(n, k, k)=G(n, k, 0)=0$, we obtain the equality

$$
\sum_{p=0}^{k-1} F(n+1, k, p)=\sum_{p=0}^{k-1} F(n, k, p)
$$

So it suffices to prove (15) in the case $n=k+1$ only. This however is a triviality as only the $p=k-1$ term in the sum is non-zero. This completes the proof of (13).

[^3]Proposition 16 The following identity holds:

$$
\begin{equation*}
\sum_{p, q=0}^{n}|p-q|\binom{p+q}{p}\binom{2 n-p-q}{n-p}=n 2^{2 n-1} \tag{17}
\end{equation*}
$$

Proof Consider the two generating functions

$$
\sum_{k=0}^{\infty} \frac{(2 k+1)!}{k!k!} x^{k}=(1-4 x)^{-3 / 2} \quad \text { and } \quad \sum_{k=0}^{\infty}\binom{k+2}{2} 4^{k} x^{k}=(1-4 x)^{-3}
$$

After squaring the first, and equating coefficients of x^{n-1}, Lemma 11 gives

$$
\frac{n}{2} \sum_{k=0}^{n-1} f(n, 2 k+1)=\binom{n+1}{2} 4^{n-1}
$$

Similarly, starting from

$$
\sum_{k=1}^{\infty} \frac{(2 k)!}{k!(k-1)!} x^{k}=2 x(1-4 x)^{-3 / 2} \quad \text { and } \quad \sum_{k=2}^{\infty}\binom{k}{2} 4^{k-1} x^{k}=4 x^{2}(1-4 x)^{-3}
$$

squaring the first, and looking at the coefficient of x^{n}, we obtain

$$
\frac{n}{2} \sum_{k=1}^{n-1} f(n, 2 k)=\binom{n}{2} 4^{n-1}
$$

Returning to the original sum, we rewrite it to first sum over those p and q for which $p+q=m$ is fixed, and get

$$
\begin{aligned}
\sum_{p, q=0}^{n}|p-q|\binom{p+q}{p}\binom{2 n-p-q}{n-p} & =\sum_{m=0}^{2 n} f(n, m) \\
& =f(n, 0)+\sum_{k=0}^{n-1} f(n, 2 k+1)+\sum_{k=1}^{n-1} f(n, 2 k)+f(n, 2 n) \\
& =\frac{2}{n}\left[\binom{n+1}{2} 4^{n-1}+\binom{n}{2} 4^{n-1}\right] \\
& =n 2^{2 n-1},
\end{aligned}
$$

completing the proof.

References

[1] D. Daly and P. Vojte. How Permutations Displace Points and Stretch Intervals. Ars Combin., 90:175-191, 2009.
[2] M. Delgado and V. H. Fernandes. Abelian Kernels, Solvable Monoids and the Abelian Kernel Length of a Finite Monoid. Semigroups and Languages, eds. I. M. Araújo, M. J. J. Branco, V. H. Fernandes, and G. M. S. Gomes, World Scientific, pages 68-85, 2002.
[3] R. W. Gosper. Decision Procedure for Indefinite Hypergeometric Summation. Proc. Nat. Acad. Sci. U.S.A., 75:40-42, 1978.
[4] A. Laradji and A. Umar. Combinatorial Results for Semigroups of Order-Decreasing Partial Transformations. J. Integer Seq., 7(3):14pp. (electronic), 2004.
[5] H. S. Wilf and D. Zeilberger. Rational Functions Certify Combinatorial Identities. J. Amer. Math. Soc., 3:147-158, 1990.

[^0]: * jamese @ maths.usyd.edu. au
 ${ }^{\dagger}$ petermc@math.mit.edu

[^1]: ${ }^{1}$ Out of habit, we write $i \alpha$ for the image of $i \in \mathbf{n}$ under $\alpha \in \mathcal{P} \mathcal{T}_{n}$, although the semigroup operation on $\mathcal{P} \mathcal{T}_{n}$ (composition as binary relations) does not feature in the current work.

[^2]: ${ }^{2}$ This result may be found in [1], in a slightly different form.

[^3]: ${ }^{3}$ Available at http://www.cis.upenn.edu/~wilf/progs.html

