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Abstract

We introduce and study the partial singular braid monoid PSBn, a monoid that
contains both the inverse braid monoid IBn and the singular braid monoid SBn. Our
main results include a characterization of Green’s relations, a presentation in terms
of generators and relations, and a proof that PSBn embeds in the semigroup algebra
C[IBn].
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1 Introduction

Many knot and link invariants are defined in terms of recursive formulae which allow
reduction to simpler links. Links can be simplified in a number of ways, including cutting
strings, or allowing certain strings to pass through each other. Just as the closure operator
on links (Alexander’s Theorem [1]) led to the introduction of the braid groups [3], so too
do these link simplification operations lead to new classes of algebras; examples include
the inverse braid monoids IBn [12], singular braid monoids SBn [5, 7], factorizable braid
monoids FBn [11, 15], and permeable braid monoids PBn [18]. Some of these monoids
may also be thought of as “braid analogues” of various semigroups of transformations that
extend the symmetric groups; for other examples of such monoids, see [17, 25]. It is the
purpose of this article to introduce and study the partial singular braid monoid PSBn. This
monoid simultaneously extends IBn and SBn, and may also be thought of as a “singular
braid analogue” of the symmetric inverse monoid In (the inverse monoid of all partial
permutations of {1, . . . , n}, under the operation of composition as binary relations), or a
“partialized version” of SBn. The elements of PSBn are essentially singular braids with
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some (possibly none, or all) strings removed, and the multiplication operation is a natural
extension of that for partial braids [12]. It is possibly not surprizing that the notion of
partiality here is related to the “restriction categories” of [8]; the category whose objects
are the finite subsets of Z+, with Hom(A,B) being equal to the set of all partial singular
braids β whose corresponding partial permutation β has dom(β) ⊆ A and im(β) ⊆ B, is
a restriction category—the idempotent associated to a morphism β ∈ Hom(A,B) is the
idempotent partial braid whose associated partial permutation is the identity map on A
(we think of partial permutations as acting from the right, so the definitions from [8] need
to be modified to fit in with this convention). It should be noted that PSBn is not the
first generalization of SBn, as there is a large and growing literature on the singular Artin
monoids introduced by Corran in [9]. One of the main themes for study in singular Artin
monoids is the so-called Generalized Birman Conjecture, which concerns the injectivity of
a certain map from the singular Artin monoid to the group algebra of its corresponding
Artin group; see for example [2, 13, 21], and also [7] for the original formulation of the
conjecture, [27] for its proof, and [26] for its generalization to singular braid monoids on
closed surfaces.

This article is organized as follows. In Section 2 we define the partial singular braid mon-
oid PSBn, detailing some aspects of its structure, and culminating in a set of generators.
In Section 3 we characterize Green’s relations on PSBn, and also deduce characterizations
for IBn and SBn. We then explore more of the structure of PSBn when we study the pure
partial singular braid monoid PSPn in Section 4 and then, in Section 5, we find a system
of defining relations for PSBn with respect to the generating set alluded to above. Finally,
in Section 6 we prove an analogue of Birman’s Conjecture; specifically, we show that PSBn

may be embedded in the complex semigroup algebra of the inverse braid monoid IBn.

2 The Partial Singular Braid Monoid

Let n be a positive integer, which we will fix for the remainder of the article, and write
n = {1, . . . , n}. A partial singular braid on n is defined to be an object β obtained by
removing some (possibly all, or none) of the strings from a singular braid γ. (The reader
is referred to [7] for details concerning the singular braid monoid SBn; see also [5].) In this
case we say that β is a sub-braid of γ, and we write β ⊆ γ. See Figure 1 for an illustration.

⊆

Figure 1: A sub-braid β (left) of a singular braid γ (right).
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A partial singular braid β induces a partial permutation β ∈ In in a natural way; the
domain (resp. image) of β corresponds to the initial (resp. terminal) points of the strings
of β and, for i ∈ dom(β) and j ∈ im(β), we have iβ = j if and only if a string of β connects
upper point i to lower point j. So, with β as in Figure 1, we have β = ( 1 2 3 4 5

5 4 − 1 − ), using an
obvious tableaux notation for the elements of In. If β is a sub-braid of a singular braid γ
and dom(β) = A, then we write β = γ|A and call β the restriction of γ to A.

We say that two partial singular braids β1 and β2 are equivalent, and write β1 ≡ β2, if

(i) β1 = β2; and

(ii) β1 ⊆ γ1 and β2 ⊆ γ2 for some singular braids γ1 and γ2 which are equivalent in the
usual sense of rigid-vertex-isotopy [7].

Given two partial singular braids β and γ, the product βγ is formed by first concatenating β
and γ in the usual way, and then removing any string fragments which do not join an
upper point to a lower point. See Figure 2 for an illustration. It is easy to see that β1 ≡ β2

Figure 2: Multiplication of partial singular braids.

and γ1 ≡ γ2 together imply β1γ1 ≡ β2γ2, and that the induced product on ≡-classes is
accociative and unital (the identity is the ≡-class of the braid with n vertical strings). So
the set PSBn of all ≡-classes of partial singular braids on n is a monoid, which we call
the partial singular braid monoid on n. In practice, we will blur the distinction between a
partial singular braid and its ≡-class, but this should never cause any confusion.

If β ∈ PSBn, we will write

• |β| for the number of strings of β; and

• N(β) for the number of singular points of β.

Note that also |β| = rank(β) =
∣∣dom(β)

∣∣ =
∣∣im(β)

∣∣. It is also immediate from the
definitions that

|βγ| ≤ min
(
|β|, |γ|

)
and N(βγ) ≤ N(β) +N(γ)

for all β, γ ∈ PSBn. These definitions allow convenient description of the submonoids
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• IBn =
{
β ∈ PSBn

∣∣N(β) = 0
}
; and

• SBn =
{
β ∈ PSBn

∣∣ |β| = n
}
.

As mentioned in Section 1, the monoid IBn is known as the inverse braid monoid, and
its elements are (equivalence classes of) partial braids; see [12]. As always, SBn denotes
the singular braid monoid [5, 7]. The intersection of IBn and SBn is the braid group Bn,
which is the group of units of PSBn.

For A ⊆ n, write εA = 1|A for the restriction of the identity braid 1 ∈ Bn to A. Note
that εA is idempotent, and that β|A = εAβ for all β ∈ SBn. It is also immediate
that εAεB = εA∩B = εBεA for all A,B, so the set En = {εA |A ⊆ n} is a semilattice
isomorphic to the power-set (2n,∩).

Proposition 1 The semilattice En is equal to the set E(PSBn) of all idempotents of PSBn.
Further, we have

PSBn = EnSBn = SBnEn.

Proof Since every element of En is idempotent, we have En ⊆ E(PSBn). To prove
the reverse inclusion, suppose β ∈ E(PSBn) and put A = dom(β). Since |β| = |β2|,
we see that im(β) = A also, and so β lies in an isomorphic copy of SB|A|. But then
N(β) = N(β2) = N(β) +N(β) which forces N(β) = 0, so that β ∈ IBn. We have shown
that E(PSBn) = E(IBn) so the first claim follows from [12, Theorem 1.2].

For the final statement, if β ∈ PSBn with dom(β) = A and im(β) = B, then we clearly
have β = εAγ = γεB for any singular braid γ ∈ SBn that contains β. 2

For 1 ≤ i ≤ n− 1, denote by σ±1
i and τi the standard singular braid generators [5, 7] and,

for 1 ≤ r ≤ n, put εr = εn\{r} as in [16, 20]; see Figure 3 for an illustration. It is clear that
for any A ⊆ n, we have εA = εi1 · · · εik where n \ A = {i1, . . . , ik}.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

1 i n

1 i n

1 r n

1 i n

σ−1
i =

σi = = τi

= εr

Figure 3: The generators of PSBn.

Corollary 2 The partial singular braid monoid PSBn is generated by the set

Σn = {σ±1
1 , . . . , σ±1

n−1} ∪ {τ1, . . . , τn−1} ∪ {ε1, . . . , εn}. 2
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3 Green’s Relations

Green’s relations R,L ,J ,H ,D on a monoid M , introduced in the seminal paper [23],
are defined in terms of mutual accessability by left and/or right multiplication. These
relations encompass much of the structure of M , allowing its elements to be arranged
neatly into rectangular arrays known as “egg boxes”. Specifically, we have

• xR y ⇐⇒ xM = yM ;

• xL y ⇐⇒ Mx = My;

• xJ y ⇐⇒ MxM = MyM ;

• H = R ∩ L ; and

• D = R ∨ L = R ◦ L = L ◦ R.

It is our goal in this section to characterize Green’s relations in the partial singular braid
monoid PSBn. This characterization depends on various domains and images of the asso-
ciated partial permutations, as well as a structural feature of SBn discovered by Paris [27].
We begin with a lemma which describes Green’s relations in terms of translations by units
(braids).

Lemma 3 Let β, γ ∈ PSBn. Then

(i) βR γ ⇐⇒ β = γδ for some δ ∈ Bn;

(ii) βL γ ⇐⇒ β = δγ for some δ ∈ Bn;

(iii) βH γ ⇐⇒ β = γδ1 = δ2γ for some δ1, δ2 ∈ Bn; and

(iv) βJ γ ⇐⇒ βD γ ⇐⇒ β = δ1γδ2 for some δ1, δ2 ∈ Bn.

Proof We first prove (i). Now β = γδ with δ ∈ Bn immediately implies βR γ, since then
also γ = βδ−1. For the converse, suppose βR γ and write A = im(β) and B = im(γ). Now

β = γα1 and γ = βα2

for some α1, α2 ∈ PSBn. Note first that |β| = |γ| since |β| = |γα1| ≤ |γ| and simi-
larly |γ| ≤ |β|. Now put α3 = α1εA. Then since im(α1) ⊇ im(γα1) = im(β) = A, it follows
that im(α3) = A. We also have

β = βεA = γα1εA = γα3.

Since |β| = |γ| = |α3|, it follows that

N(β) = N(γ) +N(α3).
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By symmetry, we also have γ = βα4 for some α4 ∈ PSBn with im(α4) = B and

N(γ) = N(β) +N(α4).

These two equations together imply that N(α3) = N(α4) = 0. Now choose any two braids
δ1, δ2 ∈ Bn such that α3 ⊆ δ1 and α4 ⊆ δ2. Then by construction we have

β = γα3 = γδ1 and γ = βα4 = βδ2.

This completes the proof of (i).

Part (ii) follows by a dual argument, while (iii) is an immediate consequence of (i) and (ii).
For (iv), D ⊆ J holds in any semigroup, while β = δ1γδ2 for some δ1, δ2 ∈ Bn implies
that βD γ since then βR βδ2 L γ. Finally, we modify the argument from part (i) above
to show that βJ γ implies β = δ1γδ2 for some δ1, δ2 ∈ Bn. 2

If A,B ⊆ n are sets of the same cardinality, we write πA,B ∈ IBn for the partial braid with
no crossings that satisfies dom(πA,B) = A and im(πA,B) = B. See Figure 4 for an example.

Figure 4: The partial braid πA,B ∈ IB8, where A = {3, 4, 5, 8} and B = {1, 5, 6, 7}.

The set
{
πA,B

∣∣A,B ⊆ n and |A| = |B|
}

is a (finite) submonoid of PSBn and is isomorphic
to POIn, the monoid of all order-preserving partial permutations on n; see [14, 19]. If
A ⊆ n with |A| = k, we write

λA = πA,k and ρA = πk,A.

From the rule πA,BπB,C = πA,C , we immediately obtain

λAρB = πA,B, λAρA = εA, ρAλA = εk.

If p and q are non-negative integers with p ≤ q, then it is immediate from the definitions
that any partial singular braid on p is also a partial singular braid on q. In this way,
the singular braid monoids SBk (k = 0, 1, . . . , n) are all contained in PSBn. (Here we
view SB0 as the singleton monoid consisting only of the empty braid.) Specifically, we
have

SBk =
{
β ∈ PSBn

∣∣ dom(β) = im(β) = k
}

for each k. The next lemma will prove useful on a number of occasions.

Lemma 4 Let β ∈ PSBn and put A = dom(β), B = im(β), and k = |β|. Then

β̂ = ρAβλB ∈ SBk is the unique singular braid on k for which β = λAβ̂ρB.
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Proof Since im(ρA) = A = dom(β), and im(β) = B = dom(λB), we see that |β̂| = |β| = k,

and we immediately deduce that β̂ ∈ SBk. We also have

λAβ̂ρB = λAρAβλBρB = εAβεB = β.

Finally, if γ ∈ SBk also satisfies β = λAγρB, then

γ = εkγεk = ρAλAγρBλB = ρAβλB = β̂.

This completes the proof. 2

This structure will allow us to characterize Green’s relations in a more computable way.
With this in mind, we first recall some structural results from [27] concerning the sin-
gular braid monoid SBn. For 1 ≤ i ≤ n − 1 and β ∈ Bn we define a singular braid
γi,β = β−1σiτiβ ∈ SBn and put

Γn = {γi,β | 1 ≤ i ≤ n− 1, β ∈ Bn}.

We write Gn = 〈Γn〉 for the submonoid of SBn generated by Γn. By [27, Lemma 2.3], we
have the internal semidirect product decompositions

SBn = Gn ⋊ Bn = Bn ⋉ Gn.

(Further information is given in [27] concerning the structure of Gn as a graph monoid on
the vertext set Γn, but we do not need it here.) So, for any β ∈ SBn, we have

β = LG(β)RB(β) = LB(β)RG(β)

for unique LG(β), RG(β) ∈ Gn and LB(β), RB(β) ∈ Bn. In fact, we always have

RB(β) = LB(β) and RG(β) = LB(β)−1LG(β)LB(β),

but it will still be helpful to refer to the “four” maps LG, RG, LB, RB. Note also that if
β ∈ SBn and γ ∈ Bn, then

LG(βγ) = LG(β), RB(βγ) = RB(β)γ,
LB(γβ) = γLB(β), RG(γβ) = RG(β).

For 0 ≤ k ≤ n, we will write LG;k etc. for the corresponding maps on SBk.

Theorem 5 Let β, γ ∈ PSBn and put k = |β|. Then

(i) βR γ ⇐⇒ dom(β) = dom(γ) and LG;k(β̂) = LG;k(γ̂);

(ii) βL γ ⇐⇒ im(β) = im(γ) and RG;k(β̂) = RG;k(γ̂);

(iii) βH γ ⇐⇒ dom(β) = dom(γ), im(β) = im(γ), LG;k(β̂) = LG;k(γ̂), and RG;k(β̂) =
RG;k(γ̂); and
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(iv) βJ γ ⇐⇒ βD γ ⇐⇒ |γ| = k and LG;k(β̂), RG;k(β̂), LG;k(γ̂), RG;k(γ̂) are all
conjugate via braids (from Bk).

Proof We start with part (i). Suppose first that dom(β) = dom(γ) and LG;k(β̂) = LG;k(γ̂).
Put

A = dom(β) = dom(γ), B = im(β), C = im(γ).

Now

β = λAβ̂ρB

= λALG;k(β̂)RG;k(β̂)ρB

= λALG;k(γ̂)RB;k(γ̂)
(
RB;k(γ̂)

)−1
RB;k(β̂)ρB

= λAγ̂εk
(
RB;k(γ̂)

)−1
RB;k(β̂)ρB

= λAγ̂ρCλC

(
RB;k(γ̂)

)−1
RB;k(β̂)ρB

= γα,

where α = λC

(
RB;k(γ̂)

)−1
RB;k(β̂)ρB, and throughout

(
RB;k(γ̂)

)−1
denotes the inverse with

respect to εk, the identity of Bk. Since α ∈ IBn, we have α ⊆ δ for some braid δ ∈ Bn and,
since dom(α) = C = im(γ), it follows that β = γα = γδ so that βR γ by Lemma 3(i).

Conversely, suppose βR γ. Then β = γδ for some δ ∈ Bn by Lemma 3(i). Now dom(γ) =
dom(γδ) = dom(β) since δ is a permutation. Write

A = dom(β) = dom(γ), B = im(β), C = im(γ).

Note first that Cδ = im(γ)δ = im(γδ) = im(β) = B since δ is a permutation. We also
have

β = βεB = γδεB = λA(γ̂ρCδλB)ρB.

But ρCδλB ∈ Bk since δ ∈ Bn and Cδ = B, so it follows that γ̂ρCδλB ∈ SBk. But then
Lemma 4 implies that γ̂ρCδλB = β̂, and it follows that

LG;k(γ̂) = LG;k(γ̂ρCδλB) = LG;k(β̂).

This completes the proof of (i).

Again, (ii) follows from a dual argument, and (iii) is an immediate consequence of (i)
and (ii).

For (iv), we have already established in Lemma 3 that J = D . Put

A = dom(β), B = im(β), C = dom(γ), D = im(γ).

Suppose first that βJ γ. Then β = δ1γδ2 for some δ1, δ2 ∈ Bn, by Lemma 3(iv), and it
follows that |γ| = |β| = k. Now

β̂ = ρAβλB = ρAδ1γδ2λB = ρAδ1λC γ̂ρDδ2λB = α1γ̂α2,
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where α1 = ρAδ1λC , α2 = ρDδ2λB ∈ Bk. We then have

LG;k(β̂)RB;k(β̂) = β̂ = α1γ̂α2 = α1LG;k(γ̂)RB;k(γ̂)α2 =
[
α1LG;k(γ̂)α

−1
1

]
α1RB;k(γ̂)α2.

(Again, α−1
1 denotes the inverse in Bk.) Since α1LG;k(γ̂)α

−1
1 ∈ Gk and α1RB;k(γ̂)α2 ∈ Bk,

it follows by [27, Lemma 2.3] that LG;k(β̂) = α1LG;k(γ̂)α
−1
1 . The forwards implication is

now proved, since LG;k(µ) and RG;k(µ) are always conjugate via braids for any µ ∈ SBk,
as we noted before the statement of the theorem.

For the reverse implication, suppose |β| = |γ| = k and

LG;k(β̂) = αLG;k(γ̂)α
−1,

where α ∈ Bk and α−1 denotes the inverse in Bk. Then

β = λAβ̂ρB

= λALG;k(β̂)RB;k(β̂)ρB

= λAαLG;k(γ̂)α
−1RB;k(β̂)ρB

= λAαLG;k(γ̂)RB;k(γ̂)
(
RB;k(γ̂)

)−1
α−1RB;k(β̂)ρB

= λAαεkγ̂εk
(
RB;k(γ̂)

)−1
α−1RB;k(β̂)ρB

= λAαρCλC γ̂ρDλD

(
RB;k(γ̂)

)−1
α−1RB;k(β̂)ρB

= α1γα2,

where α1 = λAαρC and α2 = λD

(
RB;k(γ̂)

)−1
α−1RB;k(β̂)ρB. Now α1, α2 ∈ IBn, so we

choose any braids δ1, δ2 ∈ Bn such that α1 ⊆ δ1 and α2 ⊆ δ2. Since im(α1) = C = dom(γ)
and im(γ) = D = dom(α2), we have

β = α1γα2 = δ1γδ2,

so that βJ γ by Lemma 3(iv). This completes the proof. 2

Remark 6 Theorem 5 yields an algorithmic solution to the problem of determining
whether two partial singular braids are equivalent under one of Green’s relations. In
each case, the problem breaks down into (i) the computation of various domains and/or
images (this is trivial), (ii) the computations of various LG;k and/or RG;k factors (this is
again trivial; see [21]), and (iii) a solution to the word problem [9] in the case of R,L ,H ,
or the conjugacy problem [10] in the case of D =J .

Characterizations of Green’s relations in IBn and SBn may be obtained directly, but to
the author’s knowledge are not stated anywhere in the literature. In any case, they are
immediate consequences of Theorem 5 (and parts of its proof), so we state them here.
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Corollary 7 Let β, γ ∈ IBn. Then

(i) βR γ ⇐⇒ dom(β) = dom(γ);

(ii) βL γ ⇐⇒ im(β) = im(γ);

(iii) βH γ ⇐⇒ dom(β) = dom(γ) and im(β) = im(γ); and

(iv) βJ γ ⇐⇒ βD γ ⇐⇒ |β| = |γ|. 2

Corollary 8 Let β, γ ∈ SBn. Then

(i) βR γ ⇐⇒ LG(β) = LG(γ);

(ii) βL γ ⇐⇒ RG(β) = RG(γ);

(iii) βH γ ⇐⇒ LG(β) = LG(γ) and RG(β) = RG(γ); and

(iv) βJ γ ⇐⇒ βD γ ⇐⇒ LG(β), RG(β), LG(γ), RG(γ) are all conjugate via braids. 2

4 The Pure Partial Singular Braid Monoid

It is immediate from the definitions that βγ = β γ for all β, γ ∈ PSBn, so we have an epi-
morphism PSBn → In : β 7→ β which naturally extends the permutation map SBn → Sn.
We define the pure partial singular braid monoid

PSPn =
{
β ∈ PSBn

∣∣ β = idA (∃A ⊆ n)
}
.

Note that PSPn is the preimage under the above map of E(In), the semilattice of idem-
potents of In. Key submonoids of PSPn include

• SPn = PSPn ∩ SBn, the pure singular braid monoid [24];

• IPn = PSPn ∩ IBn, the pure inverse braid monoid [16]; and

• Pn = PSPn ∩ Bn, the pure braid group [3, 4].

The following diagram displays the various inclusions and intersections.

PSBn

IBn

IPn

SBn

SPn Bn

PSPn

Pn
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In this section we study the pure partial singular braid monoid PSPn, and record a number
of structural results concerning generation. With this in mind, for 1 ≤ i < j ≤ n, we define

αij = (σ−1
j−1 · · ·σ

−1
i+1)σ

2
i (σi+1 · · ·σj−1) ∈ Pn,

γij = (σ−1
j−1 · · ·σ

−1
i+1)σiτi(σi+1 · · ·σj−1) ∈ SPn.

In the notation introduced after Lemma 4, we have γij = γi,β, where β = σi+1 · · ·σj−1. See
Figure 5 for an illustration.

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·
1 i j n nji1

Figure 5: The pure braid αij (left) and pure singular braid γij (right).

It is a standard result that Pn is generated (as a group) by the αij ; see for example [4, 6].
The next result has its origins in [24]; see also [13].

Proposition 9 The pure singular braid monoid SPn is generated as a monoid by the
set Υn = {α±1

ij , γij | 1 ≤ i < j ≤ n}.

Proof We clearly have Υn ⊆ SPn. Conversely, suppose β ∈ SPn. Now β = LG(β)RB(β)
and, since LG(β) ∈ Gn ⊆ SPn, it follows that RB(β) ∈ Pn = 〈α±1

ij | 1 ≤ i < j ≤ n〉.
So it suffices to show that the generators γi,δ = δ−1σiτiδ of Gn belong to 〈Υn〉. But,
since γi,δ = δ−1γi,i+1δ, so it is enough to show that δ−1γijδ ∈ 〈Υn〉 for all 1 ≤ i < j ≤ n
and δ ∈ Bn. Now one may easily check that

σ−1
k γijσk =






α−1
i−1,iγi−1,jαi−1,i if k = i− 1

γi+1,j if k = i 6= j − 1

α−1
j−1,jγi,j−1αj−1,j if k = j − 1 6= i

γi,j+1 if k = j

γij otherwise,

and

σkγijσ
−1
k =






γi−1,j if k = i− 1

αi,i+1γi+1,jα
−1
i,i+1 if k = i 6= j − 1

γi,j−1 if k = j − 1 6= i

αj,j+1γi,j+1α
−1
j,j+1 if k = j

γij otherwise.
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The desired result now follows by a simple induction on k, where δ = σ±1
i1

· · ·σ±1
ik

. 2

Remark 10 The author has not calculated a set of defining relations for SPn with
respect to the generating set Υn. Relations may easily be obtained by first obtaining a
presentation with respect to the infinite generating set Γn ∪ {α±1

ij | 1 ≤ i < j ≤ n}, using
the semidirect product structure of SPn = Gn ⋊ Pn, and presentations for Gn (as a graph
monoid) and Pn, but the resulting presentation is infinite. The author suspects that SPn

is not finitely presented (although it is of course finitely generated).

For A ⊆ n we define

ΥA = {α±1
ij , γij | 1 ≤ i < j ≤ n, i, j ∈ A}.

The next lemma is one of the key steps in establishing a presentation for PSBn in the next
section.

Lemma 11 Let β ∈ PSPn and put A = dom(β). Then β = εAγ for a unique γ ∈ 〈ΥA〉.

Proof We first prove existence. Now β ⊆ δ for some singular braid δ ∈ SBn, and so
β = δ|A = εAδ. Now for all i ∈ A we have

iδ =
(
i(idA)

)
δ = iεAδ = iβ = i,

since β is pure. So we may write δ = (i1, j1) · · · (ik, jk) as a product of transpositions,
where 1 ≤ ir < jr ≤ n and ir, jr ∈ n \ A for all r ∈ k. Let α = σikjk

· · ·σi1j1 ∈ Bn, where

σij = (σ−1
j−1 · · ·σ

−1
i+1)σi(σi+1 · · ·σj−1).

Then εAα = εA, as can easily be checked diagrammatically. But then, putting δ1 = αδ, we
have

β = εAδ = εAαδ = εAδ1,

and
δ1 = αδ = (ik, jk) · · · (i1, j1)(i1, j1) · · · (ik, jk) = 1.

Thus δ1 ∈ SPn = 〈Υn〉, so we have δ1 = ξ1 · · · ξℓ for some ξ1, . . . , ξℓ ∈ Υn. If all of the ξi
belong to ΥA already, then we are done. Otherwise, if i ∈ ℓ is minimal so that ξi ∈ Υn\ΥA,
then we have εAξi = εA, so that

β = εAδ1 = εAξ1 · · · ξi−1ξiξi+1 · · · ξℓ

= ξ1 · · · ξi−1εAξiξi+1 · · · ξℓ

= ξ1 · · · ξi−1εAξi+1 · · · ξℓ

= εAξ1 · · · ξi−1ξi+1 · · · ξℓ.
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Since ξ1 · · · ξi−1ξi+1 · · · ξℓ has one fewer appearence of a generator from Υn \ ΥA, we are
done after applying an induction hypothesis.

To establish uniqueness, if β = εAγ = εAγ
′ where γ, γ′ ∈ 〈ΥA〉, then an isotopy from εAγ

to εAγ
′ in (an isomorphic copy of) SP |A| may be extended to give an isotopy from γ to γ′

in SPn by adding the remaining n − |A| strings (as straight strings passing behind the
pre-existing strings) and keeping them out of the way during the isotopy. 2

5 A Presentation

It is our task in this section to find a presentation for PSBn with respect to the generating
set

Σn = {σ±1
1 , . . . , σ±1

n−1} ∪ {τ1, . . . , τn−1} ∪ {ε1, . . . , εn}

from Corollary 2. With this in mind, define alphabets

S = {s1, . . . , sn−1}, S−1 = {s−1
1 , . . . , s−1

n−1}, T = {t1, . . . , tn−1}, E = {e1, . . . , en},

and put
X = S ∪ S−1 ∪ T ∪ E.

Since PSBn = 〈Σn〉, we have an epimorphism

Φ : X ∗ → PSBn : s±1
i 7→ σ±1

i , ti 7→ τi, ei 7→ εi.

Consider the set R of relations

sis
−1
i = s−1

i si = 1 for all i (R1)

sisj = sjsi if |i− j| > 1 (R2)

sisjsi = sjsisj if |i− j| = 1 (R3)

titj = tjti if |i− j| > 1 (R4)

sitj = tjsi if |i− j| 6= 1 (R5)

sisjti = tjsisj if |i− j| = 1 (R6)

e2i = ei = eis
2
i = s2

i ei for all i (R7)

eiej = ejei for all i, j (R8)

siej = ejsi if j 6= i, i+ 1 (R9)

eiei+1si = eiei+1 for all i (R10)

tiej = ejti if j 6= i, i+ 1 (R11)

tiei = siei = ei+1si = ei+1ti for all i. (R12)

It is our goal to show that PSBn
∼= 〈X |R 〉. From now on we denote by ∼ = R♯ the

congruence on X ∗ generated by R. Since we know that Φ is an epimorphism, our task is
to show that ker Φ = ∼.

13



Lemma 12 We have the inclusion ∼ ⊆ ker Φ.

Proof This amounts to a check that relations (R1—R12) are preserved by Φ. Now R
contains defining relations for SBn in (R1—R6), and for IBn in (R1—R3), (R7—R10),
and part of (R12); see [5, 7, 22] and [16, 20] respectively. So it remains to check that the
equations

τiεj = εjτi if j 6= i, i+ 1

τiεi = σiεi = εi+1τi for all i

hold in PSBn. This may be easily accomplished diagrammatically. 2

The observation in the previous proof that R contains defining relations for SBn and IBn

immediately implies the following.

Proposition 13 If u, v ∈ (S ∪ S−1 ∪ T )∗ or u, v ∈ (S ∪ S−1 ∪ E)∗, then uΦ = vΦ
implies u ∼ v. 2

Next we record a technical lemma which will allow us to prove, in Corollary 15 below, a
“word version” of the factorization PSBn = EnSBn from Proposition 1.

Lemma 14 Let 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n. Then

s±1
i ej ∼






ei+1s
±1
i if j = i

eis
±1
i if j = i+ 1

ejs
±1
i otherwise,

(14.1—14.3)

tiej ∼






ei+1ti if j = i

eiti if j = i+ 1

ejti otherwise.

(14.4—14.6)

Proof Relations (14.1—14.3) follow by Proposition 13 and a simple diagrammatic check,
while (14.4) and (14.6) follow immediately from (R12) and (R11) respectively. For (14.5)
we have

tiei+1 ∼ s−1
i sitiei+1 by (R1)

∼ s−1
i tieisi by (R5) and (14.2)

∼ s−1
i ei+1siti by (R12) and (R5)

∼ s−1
i sieiti by (R12)

∼ eiti by (R1). 2
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For A ⊆ n with n \ A = {i1, . . . , ik} and i1 < · · · < ik, we define a word

eA = ei1 · · · eik ∈ E∗,

noting that eAΦ = εA.

Corollary 15 Let w ∈ X ∗ and put A = dom
(
wΦ

)
. Then w ∼ eAw

′ for some word
w′ ∈ (S ∪ S−1 ∪ T )∗.

Proof By repeatedly applying Lemma 14 (if necessary), we have w ∼ w′′w′ for some
w′′ ∈ E∗ and w′ ∈ (S ∪ S−1 ∪ T )∗. By (R7—R8), we have w′′ ∼ eB for some B ⊆ n. But
then

B = dom(idB) = dom(εB) = dom
(
εBw′Φ

)
= dom

(
(eBw′)Φ

)
= dom

(
wΦ

)
= A

since w′Φ is a permutation. This completes the proof. 2

We now define words, for 1 ≤ i < j ≤ n, by

aij = (s−1
j−1 · · · s

−1
i+1)s

2
i (si+1 · · · sj−1)

gij = (s−1
j−1 · · · s

−1
i+1)siti(si+1 · · · sj−1),

noting that aijΦ = αij and gijΦ = γij. We put

Un = {a±1
ij , gij | 1 ≤ i < j ≤ n}.

Here and elsewhere, if w = s±1
i1

· · · s±1
ik

is a word over S ∪ S−1, we denote by w−1 the

word s∓1
ik

· · · s∓1
i1

, noting that ww−1 ∼ w−1w ∼ 1 for all w ∈ (S ∪ S−1)∗.

Lemma 16 Let w ∈ X ∗ be such that wΦ = idA for some A ⊆ n. Then w ∼ eAw
′ for

some w′ ∈ 〈Un〉.

Proof Now w ∼ eAw
′′ for some w′′ ∈ (S ∪ S−1 ∪ T )∗ by Corollary 15. As in the proof of

Lemma 11, we fix some factorization

w′′Φ = (i1, j1) · · · (ik, jk)

of w′′Φ into transpositions, where 1 ≤ ir < jr ≤ n and ir, jr ∈ n \ A for each r ∈ k. Put
w′′′ = sikjk

· · · si1j1 where

sij = (s−1
j−1 · · · s

−1
i+1)si(si+1 · · · sj−1).

Then εA(w′′′Φ) = εA in IBn, and it follows that eA ∼ eAw
′′′ by Proposition 13. Now put

w′′′′ = w′′′w′′. Then

w′′′′Φ = w′′′Φw′′Φ = (ik, jk) · · · (i1, j1)(i1, j1) · · · (ik, jk) = 1.

15



It follows, by Propositions 9 and 13, that w′′′′ ∼ w′ for some w′ ∈ 〈Un〉, and so

w ∼ eAw
′′ ∼ eAw

′′′w′′ = eAw
′′′′ ∼ eAw

′,

and the proof is complete. 2

Lemma 17 Let 1 ≤ i < j ≤ n and 1 ≤ k ≤ n. Then

a±1
ij ek ∼ eka

±1
ij (17.1)

gijek ∼ ekgij. (17.2)

Further, if k ∈ {i, j}, then

eka
±1
ij ∼ ek ∼ ekgij. (17.3)

Proof Relation (17.1) and the first part of (17.3) follow from Proposition 13 and a simple
diagrammatic check. For (17.2), first observe that

sitieℓ ∼ eℓsiti

for any ℓ, by using the two relevant parts of Lemma 14. We then have

gijek = (s−1
j−1 · · · s

−1
i+1)siti(si+1 · · · sj−1)ek

∼ (s−1
j−1 · · · s

−1
i+1)sitieℓ(si+1 · · · sj−1) for some ℓ, by (14.1—14.3)

∼ (s−1
j−1 · · · s

−1
i+1)eℓsiti(si+1 · · · sj−1) by the observation

∼ ek(s
−1
j−1 · · · s

−1
i+1)siti(si+1 · · · sj−1) by (14.1—14.3) again

= ekgij,

establishing (17.2). To complete the proof of (17.3), observe first that

eℓsiti ∼ eℓs
2
i if ℓ ∈ {i, i+ 1}.

Indeed, we have
eisiti ∼ siei+1ti ∼ siei+1si ∼ eis

2
i

by (14.2) and (R12), while
ei+1siti ∼ ei+1tisi ∼ ei+1s

2
i

by (R5) and (R12). It then follows that for k ∈ {i, j} we have

ekgij = ek(s
−1
j−1 · · · s

−1
i+1)siti(si+1 · · · sj−1)

∼ (s−1
j−1 · · · s

−1
i+1)eℓsiti(si+1 · · · sj−1) for some ℓ ∈ {i, i+ 1}, by (14.1) or (14.3)

∼ (s−1
j−1 · · · s

−1
i+1)eℓs

2
i (si+1 · · · sj−1) by the observation

∼ ek(s
−1
j−1 · · · s

−1
i+1)s

2
i (si+1 · · · sj−1) by (14.1) or (14.3) again

= ekaij ,
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and the proof is complete. 2

For A ⊆ n we put
UA = {a±1

ij , gij | 1 ≤ i < j ≤ n, i, j ∈ A}.

The next result is an improvement of Lemma 16, and is “almost” a word version of
Lemma 11.

Lemma 18 Let w ∈ X ∗ be such that wΦ = idA for some A ⊆ n. Then w ∼ eAw
′ for

some w′ ∈ 〈UA〉.

Proof By Lemma 16 we have w ∼ eAw
′′ for some w′′ ∈ 〈Un〉. Write w′′ = x1 · · ·xk, where

x1, . . . , xk ∈ Un. If each of x1, . . . , xk belongs to UA already, then we are done. Otherwise,
let i ∈ k be minimal so that xi ∈ Un \ UA. Then we have xi = a±1

rs or xi = grs for some
1 ≤ r < s ≤ n such that either r or s belongs to n \ A. Let q ∈ {r, s} be such that
q ∈ n \ A. We then have

w ∼ eAx1 · · ·xi−1xixi+1 · · ·xk

∼ eAeqx1 · · ·xi−1xixi+1 · · ·xk by (R7—R8)

∼ eAx1 · · ·xi−1eqxixi+1 · · ·xk by (17.1—17.2)

∼ eAx1 · · ·xi−1eqxi+1 · · ·xk by (17.3)

∼ eAx1 · · ·xi−1xi+1 · · ·xk by (17.1—17.2) and (R7—R8) again.

Since x1 · · ·xi−1xi+1 · · ·xk contains one fewer factor from Un\UA, we are done after applying
an induction hypothesis. 2

We are now ready to prove the main result of this section.

Theorem 19 We have the presentation PSBn
∼= 〈X |R 〉.

Proof It remains only to show that ker Φ ⊆ ∼, so suppose (w1, w2) ∈ ker Φ, and put
A = dom

(
w1Φ

)
= dom

(
w2Φ

)
. Then

w1 ∼ eAw
′
1 and w2 ∼ eAw

′
2

for some w′
1, w

′
2 ∈ (S ∪ S−1 ∪ T )∗ by Corollary 15. Choose any w ∈ (S ∪ S−1)∗ such that

wΦ = w′
1Φ

−1
and put

w′′
1 = eAw

′
1w and w′′

2 = eAw
′
2w.

Then
w′′

1Φ = (eAw
′
1w)Φ = (w1w)Φ = (w2w)Φ = (eAw

′
2w)Φ = w′′

2Φ.
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This implies that
w′′

2Φ = w′′
1Φ = eAΦw′

1ΦwΦ = idA.

By Lemma 18 we therefore have

w′′
1 ∼ eAw

′′′
1 and w′′

2 ∼ eAw
′′′
2

for some w′′′
1 , w

′′′
2 ∈ 〈UA〉. It then follows that

εA(w′′′
1 Φ) = w′′

1Φ = w′′
2Φ = εA(w′′′

2 Φ),

and so w′′′
1 Φ = w′′′

2 Φ by Lemma 11, since w′′′
1 , w

′′′
2 ∈ 〈ΥA〉. But w′′′

1 , w
′′′
2 ∈ (S ∪ S−1 ∪ T )∗

and so w′′′
1 ∼ w′′′

2 by Proposition 13. Putting this all together, we have

w1 ∼ eAw
′
1ww

−1 = w′′
1w

−1 ∼ eAw
′′′
1 w

−1 ∼ eAw
′′′
2 w

−1 ∼ w′′
2w

−1 = eAw
′
2ww

−1 ∼ w2,

and the proof is complete. 2

Remark 20 Presentations utilizing the alphabet S ∪ S−1 ∪ {e1, t1} may be derived
from 〈X |R 〉, in view of the equations

εi = β−1
1i ε1β1i

τi = β−1
1i β

−1
2,i+1τ1β2,i+1β1i

where βij = σi · · ·σj−1 for each 1 ≤ i ≤ j ≤ n. Such a presentation would then include
the original presentation [12] for IBn, and also a presentation for SBn in terms of gener-
ators {σ±1

1 , . . . , σ±1
n−1, τ1}; to the author’s knowledge, such a presentation for SBn has not

been written down anywhere, although the relations are easy enough to obtain from those
in [5, 7, 22] and share similarities to presentations of the factorizable and permeable braid
monoids FBn and PBn of [15, 18]. Of course, the set {σ±1

1 , . . . , σ±1
n−1} is not a minimal gen-

erating set for the braid group Bn, as these 2(n−1) generators may be replaced by the three
braids σ1, σ2 · · ·σn−1, σ

−1
n−1 · · ·σ

−1
1 . The resulting five-element generating set for PSBn is

certainly minimal, but it is the opinion of the author that a set of defining relations with
respect to these generators would not be “natural” enough to warrant investigation.

6 The Desingularization Map

The primary reason for the introduction of the singular braid monoid SBn in [5, 7] was its
connection to Vassiliev invariants of knots and links; see also [28]. The exact connection
lies in the existence of a homomorphism from SBn into the complex group algebra C[Bn]
of the braid group induced by σ±1

i 7→ σ±1
i and τi 7→ σi − σ−1

i . It was conjectured in [7],
and proved in [27], that this homomorphism—the so-called Vassiliev homomorphism, or
desigularization map—is injective. In this section we derive a similar result for the partial
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singular braid monoid PSBn; specifically, we show that there is a natural desingulariza-
tion map from PSBn into the complex semigroup algebra C[IBn] of the inverse braid
monoid IBn, and we show that this map is injective.

We begin by defining a map

ψ : X ∗ → C[IBn] :






s±1
i 7→ σ±1

i

ei 7→ εi

ti 7→
1
2
(σi + σ−1

i ).

A simple check of the relations shows that ∼ ⊆ kerψ, so that ψ induces a homomor-
phism X ∗/∼ → C[IBn]. By Theorem 19 it follows that we have a well-defined homomor-
phism

Ψ : PSBn → C[IBn]

under which
σ±1

i Ψ = σ±1
i , εiΨ = εi, τiΨ = 1

2
(σi + σ−1

i ).

As alluded to above, it is our goal in this section to show that Ψ is injective.

Remark 21 The exact form of tiψ = 1
2
(σi + σ−1

i ) was chosen with relation (R12) in
mind. If we had instead chosen to define tiψ = σi − σ−1

i as in [7], or tiψ = σi + σ−1
i as

in [24], then (tiei)ψ would have been equal to 0, or 2σiεi, respectively, in either case not
preserving (R12). If we instead define tiψ = aiσi + biσ

−1
i for some collection of scalars

ai, bi ∈ C and want ∼ ⊆ kerψ, then (R6) forces ai = a1 and bi = b1 for all i, while (R12)
forces a1 + b1 = 1. If a1 = 0 or b1 = 0, then the induced map Ψ : PSBn → C[IBn]
would not be injective, since then σ−1

i Ψ = τiΨ = σ−1
i or σiΨ = τiΨ = σi respectively. The

arguments we use throughout this section may easily be adapted to treat the more general
map defined with non-zero a1, b1 satisfying a1 + b1 = 1 as above.

Recall that for 0 ≤ k ≤ n, the singular braid monoid SBk is contained in PSBn as the set of
all β ∈ PSBn satisfying dom(β) = im(β) = k. We will denote by σ±1

i;k , τi;k (i = 1, . . . , k−1)
the canonical generators of SBk. Note that we have

σ±1
i;k = εkσ

±1
i and τi;k = εkτi

for each i. By [7] and [24], for each 0 ≤ k ≤ n, there exist homomorphisms

ηk : SBk → C[Bk] : σ±1
i;k 7→ σ±1

i;k , τi;k 7→ σi;k − σ−1
i;k

ζk : SBk → C[Bk] : σ±1
i;k 7→ σ±1

i;k , τi;k 7→ σi;k + σ−1
i;k .

In [24] it was shown that injectivity of ηk is equivalent to injectivity of ζk and, in [27], the
injectivity of ηk (and hence also of ζk) was demonstrated. To simplify subsequent proofs,
it will be convenient to record the next intermediate result.
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Lemma 22 For all 0 ≤ k ≤ n, the map

ξk : SBk → C[Bk] : β 7→
1

2N(β)
(βζk)

is an injective homomorphism.

Proof Using the rule N(βγ) = N(β)+N(γ) for all β, γ ∈ SBk, and the fact that ζk is a ho-
momorphism, we quickly deduce that ξk is a homomorphism. Suppose now that β, γ ∈ SBk

are such that βξk = γξk. Now

βξk =
∑

δ∈Bk

cδδ,

where only finitely many of the coefficients cδ ∈ C are non-zero. Put Ξ = {δ ∈ Bk | cδ 6= 0}.
By definition of ζk, there is a unique braid δ∗ ∈ Ξ of maximal exponent sum (the exponent
sum of a braid δ ∈ Bk is r1 + · · · + rℓ for any expression δ = σr1

i1;k · · ·σ
rℓ

iℓ;k
), and we clearly

have cδ∗ = 1
2N(β) . Since βξk = γξk, it follows also that cδ∗ = 1

2N(γ) and so N(β) = N(γ).
But then

βζk = 2N(β)(βξk) = 2N(γ)(γξk) = γζk,

so that β = γ, by the injectivity of ζk. This completes the proof. 2

Lemma 23 For all 0 ≤ k ≤ n, the restriction Ψ|SBk
is injective.

Proof If k = 0, 1 then SBk has only one element and the result is trivial, so suppose k ≥ 2.
One easily checks the formulae

σ±1
i;k Ψ = σ±1

i;k and τi;kΨ = 1
2
(σi;k + σ−1

i;k ).

So Ψ and ξk agree on the generators of SBk and it follows that Ψ|SBk
= ξk, and we are

done by the previous lemma. 2

We have now come to the main result of this section.

Theorem 24 The desingularization map Ψ : PSBn → C[IBn] is injective.

Proof Suppose β, γ ∈ PSBn are such that βΨ = γΨ. Write

βΨ =
∑

δ∈IBn

cδδ,

where each cδ ∈ C, and put Ξ = {δ ∈ IBn | cδ 6= 0}. We have δ = β for all δ ∈ Ξ, by the
definition of ψ. It follows that β = γ. Put A = dom(β), B = im(β), and k = |β|. Let

β̂, γ̂ ∈ SBk be as in Lemma 4. We then have

β̂Ψ = (ρAβλB)Ψ = (ρAΨ)(βΨ)(λBΨ) = (ρAΨ)(γΨ)(λBΨ) = (ρAγλB)Ψ = γ̂Ψ,
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so that β̂ = γ̂ by Lemma 23. But then

β = λAβ̂ρB = λAγ̂ρB = γ,

and the proof is complete. 2
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[24] Antal Járai Jr. On the Monoid of Singular Braids. Topology Appl., 96:109–119, 1999.

[25] T. G. Lavers. The Theory of Vines. Comm. Algebra, 25(4):1257–1284, 1997.

[26] L. Paris. Birman’s Conjecture for Singular Braids on Closed Surfaces. J. Knot Theory
Ramifications, 13(7):895–915, 2004.

[27] L. Paris. The Proof of Birman’s Conjecture on Singular Braid Monoids. Geom. Topol.,
8:1281–1300, 2004.

[28] V. Vassiliev. Cohomology of Knot Spaces. Theory of singularities and its applications
(Ed. V. Arnold), Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, pages
23–69, 1990.

22


