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ABSTRACT. Recently Brundan, Kleshchev and Wang introduced a Z-grading on the Specht
modules of the degenerate and non-degenerate cyclotomic Hecke algebras of type G(`, 1, n).
In this paper we show that induced Specht modules have an explicit filtration by shifts of
graded Specht modules. This proves a conjecture of Brundan, Kleshchev and Wang.

1. INTRODUCTION

In a remarkable series of papers Brundan and Kleshchev (and Wang) [6–8] have shown
that the cyclotomic Hecke algebras of type G(`, 1, n) are Z-graded algebras and they have
proved a graded analogue of Ariki’s categorification theorem [1]. This work builds upon
the work of Khovanov and Lauda [16, §3.4] and Rouquier [25]’s introduction of the quiver
Hecke algebras which are certain graded algebras which categorify the negative part of
quantum group of an arbitrary Kac-Moody Lie algebra.

The representation theory of the cyclotomic Hecke algebras of type G(`, 1, n) is very
well developed with the Specht modules introduced in [3, 10] playing a central role. For
each multipartition µ Brundan, Kleshchev and Wang [8] introduced a Z-grading on each
Specht module Sµ which is isomorphic to the (ungraded) Specht module upon forgetting
the grading. In [8, Theorem 4.11] they showed that restriction of the graded Specht module
has a graded Specht filtration. By Frobenius reciprocity in the Grothendieck group there
is an analogous formula for the induced graded Specht modules. Brundan, Kleshchev and
Wang conjectured that this should correspond to a filtration of the induced Specht module
by shifts of graded Specht modules. In this paper we prove this conjecture.

To state our main results, fix an integral domain R and an integer e ∈ {0, 2, 3, 4, . . . }
such that either e = 0 or e is invertible inR whenever e is not prime, let H Λ

n be the graded
cyclotomic quiver Hecke algebra (over R) determined by e and the dominant weight Λ
(see Definition 3.1). The algebras H Λ

n include the cyclotomic Hecke algebras of type
G(`, 1, n) as special cases. When R is a field there is a natural graded embedding H Λ

n ↪→
H Λ
n+1 which makes H Λ

n+1 into a free H Λ
n -module by the main theorem of [13]. There is

an induction functor

Ind : Mod-H Λ
n −→Mod-H Λ

n+1;M 7→M ⊗H Λ
n

H Λ
n+1.

By projecting onto the blocks of H Λ
n+1 the induction functor decomposes as

Ind =
⊕
i∈I

i-Ind,

where I = Z/eZ.
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Fix i ∈ I and let µ be a multipartition of n. Let α1, . . . ,αz be the multipartitions of
n + 1 obtained by adding an addable i-node to µ (see before Definition 3.3), ordered so
that α1 . · · · .αz , where D is the dominance order on multipartitions (see §2.1). Given an
addable node A of µ then we define the integer dA(µ) in Definition 3.3 below. Finally, if
M is a graded H Λ

n -module and d ∈ Z then M〈d〉 is the graded H Λ
n -module obtained by

shifting the grading on M by d; see Section 4.

Main Theorem. Suppose that R is an integral domain and that either e = 0 or e is
invertible in R whenever e is not prime. Let µ ∈Pn and i ∈ I . Then the induced graded
Specht module i-IndSµ has a graded Specht filtration. That is, there exists a filtration

0 = I0 ⊂ I1 ⊂ · · · ⊂ Iz = i-IndSµ,

such that Ij/Ij−1
∼= Sαj 〈dAj (µ)〉.

Our arguments easily extend to the analogous result for the induced graded dual Specht
modules Sµ; see Corollary 4.6.

When e = 0 and ` = 2 this result can be deduced from [9, Lemma 3.4]. In the ungraded
setting, when H Λ

n can be identified with the cyclotomic Hecke algebras of typeG(`, 1, n),
this result was established by the second author [22]. The main observation in [22] is that
the filtration of the induced Specht module is the restriction of a Specht filtration of a
closely related family of ‘induced’ modules M(µ). In general, we do not know how to
construct graded lifts of the modules M(µ) so we cannot use this approach here.

To prove our Main Theorem we instead use a beautiful construction of Ryom-Hansen
which gives an explicit filtration of the induced Specht modules for the Hecke algebras
of the symmetric group [26] — in the ungraded setting Ryom-Hansen gave the first proof
of our Main Theorem for the Hecke algebras of the symmetric groups. In order to adapt
Ryom-Hansen’s construction to the graded setting we use our recent construction of a
homogeneous cellular basis for H Λ

n and our realization, up to shift, of the graded Specht
modules as graded submodules of H Λ

n ; see [13].
The outline of this paper is as follows. In the Chapter 2 we recall the results that we need

from the ungraded representation theory of the Hecke algebras of type G(`, 1, n) and use
this to establish a strong result (Theorem 2.12), about the transition matrices between the
standard and seminormal bases of these algebras in the semisimple case. In Chapter 3 we
prove an analogous result (Theorem 3.7), for the transition matrices between the standard
and homogeneous bases of the graded algebras. One consequence of these results is a
necessary condition for the products mstnuv and ψstψ

′
uv to be non-zero, where {mst} and

{nuv} are the standard bases corresponding to the trivial and sign representations of Hn

and {ψst} and {ψ′uv} are homogeneous analogues of these bases. In Chapter 4 we use this
non-vanishing condition, together with the ideas of Ryom-Hansen [26], to prove our Main
Theorem.

2. CYCLOTOMIC HECKE ALGEBRAS AND STRONG DOMINANCE

The aim of this paper is to understand the effect of the graded induction functors on the
Specht modules. To do this we first need to prove a strong result about certain structure
constants in the ungraded case.

2.1. Cyclotomic Hecke algebras. We start with the definition of the cyclotomic Hecke
algebras of type G(`, 1, n).

Fix an integral domain R and an integer ` ≥ 1. Define δξ1 = 1 if ξ = 1 and δξ1 = 0
otherwise.
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2.1. Definition. Suppose that ξ ∈ R is invertible and that Q = (Q1, . . . , Q`) ∈ R`. The
cyclotomic Hecke algebra Hn(ξ,Q) = H R

n (ξ,Q) of typeG(`, 1, n) and with parameters
ξ and Q is the unital associativeR-algebra with generators L1, . . . , Ln, T1, . . . , Tn−1 and
relations

(L1 −Q1) . . . (L1 −Q`) = 0, LrLt = LtLr,

(Tr + 1)(Tr − ξ) = 0, TrLr + δξ1 = Lr+1(Tr − ξ + 1),

TsTs+1Ts = Ts+1TsTs+1,

TrLt = LtTr, if t 6= r, r + 1,

TrTs = TsTr, if |r − s| > 1,

where 1 ≤ r < n, 1 ≤ s < n− 1 and 1 ≤ t ≤ n.

This definition, which we used in [13], allows us to simultaneously treat the degenerate
and non-degenerate cyclotomic Hecke algebras of type G(`, 1, n). By the Morita equiva-
lence reductions of [11, Theorem 1.1] and [5, Theorem 5.19] it is enough to consider the
cases where the parameters Q are integral in the sense that each Qs is an integral power
of ξ, if ξ 6= 1, and Q ∈ Z` if ξ = 1.

Define the quantum characteristic of ξ to be the smallest positive integer e such that
1 + ξ + · · ·+ ξe−1 = 0; or 0 if no such positive integer exists. Then e ∈ {0, 2, 3, 4, . . . }.
We fix a multicharge κ = (κ1, . . . , κ`) ∈ Z` such

a) if e 6= 0 then κl − κl+1 ≥ n for 1 ≤ l < `.
b) if ξ = 1 then Ql ≡ κl (mod e) , for 1 ≤ l ≤ `.
c) if ξ 6= 1 then Ql = ξκl , for 1 ≤ l ≤ `.

This choice of multicharge plays a role in what follows only in helping us make a good
choice of modular system as in [13, §4.2]. The multicharge κ determines the parameters
Q. Moreover, for a fixed choice of multicharge, Hn depends only on the quantum charac-
teristic e of ξ, and not on the choice of ξ itself, by [6, Theorem 6.1]. Therefore, we write
Hn = Hn(e,κ).

Let Sn be the symmetric group on {1, 2, . . . , n}. Then Sn is a Coxeter group and
{s1, . . . , sn−1} is its standard set of Coxeter generators, where si = (i, i+ 1) for 1 ≤ i <
n. Let ` :Sn−→N be the length function on Sn so that `(w) = k if k is minimal such
that w = si1 . . . sik , for some sij with 1 ≤ ij < n. If w = si1 . . . sik , with k = `(w),
then set Tw = Ti1 . . . Tik . Then Tw depends only on w, and not on the choice of reduced
expression w = si1 . . . sik , because the braid relations hold in Hn; see, for example, [18,
Theorem 1.8].

Let Hξ(Sn) be the R-submodule of Hn spanned by {Tw | w ∈ Sn }. Then Hξ(Sn)
is isomorphic to the Iwahori-Hecke algebra of Sn with parameter ξ by [2, Cor. 3.11].

In order to define the bases of Hn which underpin this paper we now review the combi-
natorics of multipartitions and tableaux. Recall that a multicomposition of n is an `-tuple
µ = (µ(1), . . . , µ(`)) of compositions such that |µ(1)| + · · · + |µ(`)| = n. For each mul-
ticomposition let Sµ = Sµ(1) × · · · × Sµ(`) be the corresponding parabolic, or Young
subgroup, of Sn where we use the natural embedding Sµ ↪→ Sn.

A multipartition of n is a multicomposition µ = (µ(1), . . . , µ(`)) of n such that each
component µ(l) is a partition, for 1 ≤ l ≤ `. The set of multicompositions of n becomes
a poset under the dominance order D where ,if λ and µ are multicompositions of n, then
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λ D µ if
l−1∑
k=1

|λ(k)|+
i∑

j=1

λ
(l)
j ≥

l−1∑
k=1

|µ(k)|+
i∑

j=1

µ
(l)
j ,

for 1 ≤ l ≤ ` and i ≥ 1. If λ D µ and λ 6= µ then we write λ . µ. Let Pn be the poset
of the multipartitions of n ordered by dominance.

We identify the multipartition µ with its diagram

[µ] = { (r, c, l) | 1 ≤ c ≤ µ(l)
r , r ≥ 1 and 1 ≤ l ≤ ` } .

In this way, we will talk of the rows, columns and components of µ. If µ ∈ Pn let µ′ =

(µ(`)′, . . . , µ(1)′) be the conjugate multipartition which is obtained from µ by reversing
the order of its components and then swapping the rows and columns in each component.
We frequently identify µ and its diagram [µ], which we think of as an `-tuple of arrays of
boxes in the plane.

Let µ be a multicomposition of n. A µ-tableau is a map t : [µ]−→{1, 2, . . . , n}. We
think of t as a labelling of the diagram of µ and we define Shape(t) = µ. A µ-tableau
t is row standard if t(r, c, l) < t(r, c + 1, l) whenever (r, c, l), (r, c + 1, l) ∈ [µ]. Let
RStd(µ) be the set of row standard µ-tableau. The conjugate of the µ-tableau t is the
µ′-tableau which is obtained from t by reversing its components and then swapping its
rows and columns in each component.

Suppose now that µ is a multipartition. Then a µ-tableau t is standard if t and t′ are
both row standard tableaux. Let Std(µ) be the set of standard µ-tableaux and Std2(µ) =
{ (s, t) | s, t ∈ Std(µ) } be the set of pairs of standard µ-tableaux. For convenience we set

Std(Pn) =
⋃

µ∈Pn

Std(µ) and Std2(Pn) =
⋃

µ∈Pn

Std2(µ).

Suppose that s is a row standard λ-tableau and that t is a row standard µ-tableau, for
multicompositions λ and µ of n. For each non-negative integer m define sm and tm to be
the subtableaux of s and t, respectively, which contain {1, 2, . . . ,m}. Then s dominates t,
and we write s D t, if

Shape(sm) D Shape(tm), for 1 ≤ m ≤ n.

It is straightforward to check that s D t if and only if t′ D s′. Observe also that λ D µ if
and only if tλ D tµ.

We extend the dominance order to Std2(Pn) in two ways by declaring that if (s, t) ∈
Std2(λ) and (u, v) ∈ Std2(µ) then

(s, t) D (u, v) if λ . µ or λ = µ and s D u and t D v,

(s, t) I (u, v) if s D u and t D v.

By definition, (s, t) I (u, v) implies that (s, t) D (u, v), but the converse is false in general.
As above, we write (s, t) I (u, v), and (s, t) . (u, v), if (s, t) 6= (u, v) and (s, t) I (u, v)
and (s, t) D (u, v), respectively. The partial order I is the strong dominance order on
Std2(Pn).

Suppose that µ is a multicomposition of n and define tµ to be the unique row standard
µ-tableau such that tµ D s whenever s is a row standard µ-tableau. That is, tµ is the
µ-tableau with the numbers 1, 2, . . . , n entered in order from left to right along the rows of
each component of tµ. Next if s ∈ Std(µ) let d(s) be the unique permutation in Sn such
that s = tµd(s).
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We are now ready to define the first bases of Hn that we will need. Let ∗ : Hn−→Hn

be the unique anti-isomorphism of Hn which fixes each of the generators in Definition 2.1.
Let µ be a multicomposition. Following [10, 20], set

u+
µ =

l∏
k=2

|µ(1)|+···+|µ(k−1)|∏
m=1

(Lm −Qk), xµ =
∑
w∈Sµ

Tw,

u−µ =

`−1∏
k=1

|µ(1)|+···+|µ(`−k+1)|∏
m=1

(Lm −Qk), yµ =
∑
w∈Sµ

(−ξ)−`(w)Tw,

and let mµ = u+
µxµ and nµ = u−µyµ. Finally, if µ is a multipartition define

mst = T ∗d(s)mµTd(t) and nst = T ∗d(s)nµTd(t),

for (s, t) ∈ Std2(Pn). It follows easily from the relations in Hn (see [10, Remark 3.7]),
that the elements xµ and u+

µ , and yµ and u−µ , commute, so that m∗st = mts and n∗st = nts.
We have the following important and well-known result.

2.2. Theorem. Suppose that R is an integral domain. Then:

a) {mst | (s, t) ∈ Std2(Pn) } is a cellular basis of Hn.
b) {nst | (s, t) ∈ Std2(Pn) } is a cellular basis of Hn.

Part (a) is proved in [10, Theorem 3.26] and [3, Theorem 6.3] for the non-degenerate
(ξ 6= 1) and degenerate (ξ = 1) cases, respectively. Part (b) is can be proved in the
same way or arguing by specialization from the case where Hn is defined over a ‘generic’
ground ring in which case Hn has a Z-linear automorphism which interchanges these two
bases; see, for example, [20, (3.1)].

2.2. Seminormal forms and strong dominance. In this subsection we give a necessary
condition for the product mstnuv to be non-zero. To prove this we show that the tran-
sition matrices between the standard and seminormal bases of Hn are ordered by strong
dominance, a theme that continues throughout this paper.

Suppose that (s, t) ∈ Std2(Pn) and 1 ≤ k ≤ n. If k appears in row r and column c
of t(l) then define

contt(k) =

{
ξc−rQl, if ξ 6= 1,

c− r +Ql, if ξ = 1.

Then by [14, Prop. 3.7] and [3, Lemma 6.6], corresponding to the cases ξ 6= 1 and ξ = 1,
respectively,

mstLk = contt(k)mst +
∑

(u,v)∈Std2(Pn)
(u,v).(s,t)

ruvmuv,(2.3)

for some ruv ∈ R.
For the rest of this subsection we assume that R = K is a field and that Hn = H K

n is
semisimple. Equivalently, we assume that if s, t ∈ Std(Pn) then conts(k) = contt(k),
for all 1 ≤ k ≤ n, if and only if s = t.

The following definition has its origins in the work of Murphy [23].
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2.4. Definition ( [21, Defn 3.1]). Suppose that λ ∈Pn and (s, t) ∈ Std2(λ). Define

Ft =

n∏
k=1

∏
s∈Std(Pn)

conts(k) 6=contt(k)

Lk − conts(k)

contt(k)− conts(k)
∈H K

n .

Set fst = FsmstFt.

By (2.3), fst = mst +
∑

(u,v).(s,t) ruvmuv, for some ruv ∈ K. In particular, applying
Theorem 2.2 shows that {fst} is a basis of H K

n . Moreover, if (s, t) ∈ Std2(Pn) and
1 ≤ k ≤ n then

(2.5) fuvLk = contv(k)fuv

by [20, Prop. 2.6(iii)] and [3, Page 109].
If s is a tableau and 1 ≤ k ≤ n define comps(k) = c if k appears in s(c). If s and t

are tableau we write comp(s) ≤ comp(t) if comps(k) ≤ compt(k) for 1 ≤ k ≤ n. Then
comp(s) ≤ comp(t) whenever s D t , but the converse is false in general.

The following result is well-known. We include a proof because we do not know of a
reference for it.

2.6. Lemma. Suppose that λ,µ ∈ Pn and s ∈ Std(λ) and that there exist two integers
a < b which are in the same row of tµ and in the same column of s. Then there exists an
element w ∈ S{a,a+1,··· ,b} and an integer a ≤ c < b such that

a) sw is standard; and
b) `

(
d(s)w

)
= `
(
d(s)

)
+ `(w); and

c) c, c+ 1 are in the same row of tµ and the same column of sw.

Proof. By assumption, the integers a, a+1, · · · , b are all in the same row of tµ so because s
is standard we may assume, without loss of generality, that a appears in row r of s(l) and
that b appears in row r + 1 of s(l), where 1 ≤ l ≤ `. We now argue by induction on b− a.

If b − a = 1 then there is nothing to prove, so suppose that b − a > 1. Let c < b be
maximal such that

a) comps(c) < l or comps(c) = l and c appears in the first r rows of s(l), and
b) comps(c+ 1) > l or comps(c) = l and c+ 1 appears below row r of s(l).

In particular, this means that the numbers c + 1, c + 2, · · · , b all appear ‘below’ row r of
s(l). Let t = sw, where w = (c, c + 1, . . . , b) = sb−1 . . . sc ∈ Sn. Then s D t and
`(d(t)) = `(d(s)) + `(w). The integers a < c are in the same row of tµ and in the same
column of t = sw. Note that c− a < b− a. The Lemma now follows by induction. �

2.7. Proposition. Suppose that R = K and λ is a multicomposition of n > 0. Then there
exist scalars aλuv ∈ K such that

mλ =
∑

(u,v)∈Std2(Pn)

aλuvfuv,

and aλst 6= 0 only if comp(tλ) ≥ comp(u), comp(tλ) ≥ comp(v) and i and j are in
different columns of u and v whenever they are in the same column of tλ.

Proof. We consider only the case when ξ 6= 1. The case ξ = 1 is similar and may be
proved using the results of [3, §6]. The only real difference between the cases ξ 6= 1
and ξ = 1 is the choice of content function: if ξ 6= 1 then contv(k) = ξc−rQl, when
v(r, c, l) = k, and if ξ = 1 then, instead, contv(k) = c − r + Ql. Analogous minor
‘logarithmic’ adjustments are required in the argument below when ξ = 1.
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By (2.3) there exist aλuv ∈ K such that we can write

mλ = ftλtλ +
∑

(u,v)D(tλ,tλ)

aλuvfuv.

Suppose that si = (i, i + 1) ∈ Sλ, where 1 ≤ i < n. It is well-known and easy to check
that xλTi = ξxλ (see, for example, [18, Lemma 3.2]), so that mλTi = ξmλ. To compute
the action of Ti on the right hand side of the last equation we need to recall how Hn acts
on its seminormal basis.

By [20, Prop. 2.7], fuvTi = ξfuv if i and i + 1 are in the same row of v and fuvTi =
−fuv if i and i + 1 are in the same column of v. Otherwise, i and i + 1 are in different
rows and columns of v so we set t = v(i, i + 1) and cv = contv(i) and ct = contt(i) =
contv(i+ 1). Without loss of generality, v . t. Hence, by [20, Prop. 2.7] we have

fuvTi =
(ξ − 1)ct
(ct − cv)

fuv + fut,

futTi =
(ξcv − ct)(cv − ξct)

(cv − ct)2
fuv +

(ξ − 1)cv
(cv − ct)

fut.

Therefore, aλuv = 0 if i and i + 1 are in the same column. If v and t are both standard
tableau and v . t then

ξaλuv =
(ξ − 1)ct
(ct − cv)

aλuv +
(ξcv − ct)(cv − ξct)

(cv − ct)2
aλut

ξaλut = aµuv +
(ξ − 1)cv
(cv − ct)

aλut.

Solving these equations shows that aλuv = (cv−ξct)/(cv−ct)·aλut. In particular, aλuv 6= 0 if
and only if aλut 6= 0, since cv 6= ct and cv 6= ξct (because H K

n is semisimple), whenever i
and i + 1 are in the same row of tλ and in different columns of v. Applying Lemma 2.6
and acting by Sλ now shows that aλuv = 0 whenever there exist i and j which are in the
same column of v and the same row of tλ.

To complete the proof we need to show that comp(tλ) ≥ comp(u) and comp(tλ) ≥
comp(v). In fact, since mλ = m∗λ it is enough to show that comp(tλ) ≥ comp(v). Let
1 ≤ l ≤ ` be minimal such that |λ(l)| > 0. If l = ` then comp(tλ) ≥ comp(v) for
any tableau v so in this case there is nothing to prove. Suppose then that 1 ≤ l < ` and
fix (s, t) ∈ Std(Pn) with aλst 6= 0. Let ν be the multicomposition with ν(k) = λ(k) if
k 6= l, l + 1, ν(l) = (0) and where ν(l+1) is the composition obtained by concatenating
λ(l) and λ(l+1). Let m = |λ(l)|. Then xλ = xν and

mλ = mν

m∏
k=1

(Lk −Ql+1) =
∑

(u,v)∈Std2(Pn)

aνuvfuv

m∏
k=1

(Lk −Ql+1).

Thus, aλuv = aνuv(contv(1)−Ql+1) . . . (contv(m)−Ql+1) by (2.5). By induction aνuv 6= 0
only if comp(tν) ≥ comp(v). In particular, if aνuv 6= 0 then compv(k) ≤ comptλ(k) =
comptν (k) whenever m < k ≤ n. Consequently, if comp(tλ) 6≥ comp(v) then there
must exist a k with 1 ≤ k ≤ m and compv(k) = l + 1. Therefore, since v is standard and
compv(k′) ≤ comptν (k′), there exists 1 ≤ k′ ≤ k in the first row and column of v(l+1)

so that contv(k′) = Ql+1. Consequently, aλuv = 0 and fuv does not appear in mλ in this
case. It follows that aλuv 6= 0 only if comp(tλ) ≥ comp(v) as required. �
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2.8. Corollary. Suppose that µ ∈ Pn is a multipartition of n. Then there exist scalars
auv ∈ K such that

mµ =
∑

(u,v)∈Std2(Pn)
(u,v) I(tµ,tµ)

auvfuv.

Proof. Suppose that auv 6= 0 for some (u, v) ∈ Std2(Pn). By Proposition 2.7 auv 6= 0
only if comp(v) ≤ comp(tµ) and i and j are in different columns of v whenever they
are in the same row of tµ. These two conditions imply that if 1 ≤ m ≤ n then the node
containing m in v is never below the node which contains m in tµ. This implies that
v D tµ. Similarly, or by applying the involution ∗, u D tµ. �

We want to generalize result to an arbitrary basis element mst. To do this we use the
following two technical results, the first of which is due to Murphy [24]. First, recall
from [18, Theorem 3.8] that if v̂ and v are two row standard ν-tableaux then v D v̂ if and
only if d(v) ≤ d(v̂) where ≤ is the Bruhat order on Sn. That is, u ≤ v if u has a reduced
expression which is a subexpression of some reduced expression of v.

2.9. Lemma (Murphy [24, Lemma 3.5]). Suppose that v̂ ∈ RStd(µ), s ∈ Std(µ) and
u,w ∈ Sn such that u ≤ w, v̂ D s, v̂u is row standard, s . sw and `(d(s)w) = `(d(s)) +
`(w). Then v̂u D sw.

When comparing our statement of Lemma 2.9 with Murphy’s result note that Murphy
considers row standard µ-tableaux, where µ is a composition. Let µ∨ = µ(1) ∨ · · · ∨ µ(`)

be the composition obtained by concatenating the parts of µ. Then any row standard µ-
tableau t corresponds to the row standard µ∨-tableau t∨ = t(1) ∨ · · · ∨ t(`) obtained by
concatenating the rows of t. This observation allows us to rewrite Murphy’s lemma in the
form above.

2.10. Lemma. Suppose that u, v ∈ Std(ν) and t ∈ Std(µ) are standard tableaux such
that v D tµ and that x ∈ Sn with x ≤ d(t). Then muvTx can be written as a linear
combination of terms mcd such that c D u and d D t.

Proof. Observe that xνHξ(Sn) is the permutation module for Hξ(Sn), in the sense
of [18, Chapt. 3], which is indexed by the composition ν∨ which is obtained by concate-
nating the components of ν. By [18, Cor. 3.4], {xνTd(b) | b ∈ RStd(ν) }is a basis of the
Hξ(Sn)-module xνHξ(Sn). Moreover, the same result shows that if 1 ≤ i < n then

(2.11) xνTd(v)Ti =


ξxνTd(v), if vsi /∈ RStd(ν),

xνTd(v)si , if v . vsi ∈ RStd(ν),

ξxνTd(v)si + (ξ − 1)xνTd(v), if v / vsi ∈ RStd(ν).

We note that if vsi ∈ RStd(ν) then either v . vsi or vsi . v. Applying (2.11) recursively,
we see that xνTd(v)Tx is a linear combination of terms of the form xνTd(b) where b =
tνd(v̂)u ∈ RStd(ν), v̂ is a row standard ν-tableau such that v̂ D v, u ≤ x ≤ d(t) and
`(d(v̂)u) = `(d(v̂)) + `(u). Thus, we have v̂ ∈ RStd(ν), b = v̂u ∈ RStd(ν) and
v̂ D v D tµ. Hence, setting s = tµ and w = d(t) we see that all of the conditions in
Murphy’s Lemma 2.9 are satisfied so that b = v̂u D sw = t. That is, xνTd(v)Tx can be
written as a linear combination of xνTd(b) where b ∈ RStd(ν) and b D t.

We have shown that muvTx can we written as a linear combination of terms of the form
mub, where b D t is row standard. Hence, by [10, Prop. 3.18] we can write muvTx as a
linear combination of elements of the form mcd where c D u and d D t. (Note that the
standard tableaux c and d do not necessarily have shape µ.) This completes the proof. �
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2.12. Theorem. Suppose that R = K and (s, t) ∈ Std2(Pn). Then:
a) There exist scalars auv ∈ K such that

mst = fst +
∑

(u,v)∈Std2(Pn)
(u,v)I(s,t)

auv fuv.

b) There exist scalars buv ∈ K such that

fst = mst +
∑

(u,v)∈Std2(Pn)
(u,v)I(s,t)

buvmuv.

Proof. We first prove part (b) using induction on I . If η = ((n), (0), . . . , (0)) then,
directly from the definitions, ftηtη = mtηtη = mη . Hence, (b) is automatically true in
this case. Notice also that (tη, tη) I (s, t), for all (s, t) ∈ Std2(Pn). Suppose now that
(s, t) ∈ Std2(µ) and (s, t) 6= (tη, tη). Then, by Corollary 2.8 and induction, there exist
scalars auv ∈ K such that

ftµtµ = mµ +
∑

(u,v)I(tµ,tµ)

auvmuv.

Suppose that (s, t) ∈ Std2(µ). By [20, Proposition 4.1 and Lemma 4.3], there exists
elements Φs,Φt ∈Hξ(Sn) such that fst = Φ∗sftµtµΦt. (In [20] this is proved only in the
case when ξ 6= 1. The case when ξ = 1 follows by exactly the same argument.) Therefore,
by the last displayed equation,

fst = Φ∗sftµtµΦt =
∑

(u,v) I(tµ,tµ)

auvΦ∗smuvΦt,

where for convenience we set atµtµ = 1. By the argument of [20, Proposition 4.1(ii)],
Φt =

∑
b≤d(t) ptbTb, for some ptb ∈ K where, in the sum, b ∈ Sn (with ptd(t) = 1).

By Lemma 2.10 we can write muvTb as a linear combination of elements of the form mcd

with c D u and d D t. Hence, we can write muvΦt as a linear combination of terms mcd

with (c, d) I (tµ, t). Applying the left handed version of Lemma 2.10 to each of the terms
Φ∗smcd, we see that each Φ∗smuvΦt can be written as a linear combination of elements
of the form mab with (a, b) I (s, t). Hence, fst can be written as a linear combination
of elements mab with (a, b) I (s, t) giving (b). Inverting the equations in (b) gives (a),
completing the proof. �

We can now prove the promised criterion for the productmstnuv to be non-zero. Notice
that unlike Theorem 2.12, which requiresR = K, the next results are valid over an arbitrary
integral domain.

2.13. Corollary. Suppose that R is an integral domain and that (s, t), (u, v) ∈ Std2(Pn).
Then:

a) mstnuv 6= 0 only if u′ D t, and,
b) nuvmst 6= 0 only if v′ D s.

Proof. Parts (a) and (b) are equivalent by applying the anti-isomorphism ∗ of Hn which
fixes each generator, so we prove only (a). Let K be the field of fractions of R. Then
by embedding H R

n into H K
n and choosing a suitable modular system (O,K,K) (see

[13, §4.2] for example), we can reduce to the case where R = K. Following [20], if
(u, v) ∈ Std2(Pn) then define guv = Fu′nuvFv′ . Then by repeating the arguments of
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Theorem 2.12 (or by applying a suitable automorphism in the generic case as in the proof
of [20, Prop. 3.4]), it follows that

nuv = guv +
∑

(c,d)I(u,v)

dcdgcd,

for some scalars dcd ∈ K. Hence, by Theorem 2.12 we have

0 6= mstnuv =
(
fst +

∑
(a,b)I(s,t)

cabfab

)(
guv +

∑
(c,d)I(u,v)

dcdgcd

)
.

Hence, there exist tableaux (a, b) I (s, t) and (c, d) I (u, v) such that fabgcd 6= 0. By [20,
Corollary 3.8], fabgcd 6= 0 only if c′ = b. Therefore, u′ D c′ = b D t, so that u′ D t as
required. �

2.14. Remark. Both the statement and proof of part (b) of Corollary 2.13 is essentially
the same as [19, Lemma 5.4]. Unfortunately, in [19] the second author confused the two
partial orders D and I on Std2(Pn), so all that was actually proved in that paper was
that Shape(u′) D Shape(t) whenever mstnuv 6= 0. As a consequence, the current paper
completes the proof of [19, Lemma 5.8] which requires the full strength of Corollary 2.13
(and Lemma 2.6).

2.15. Corollary. Suppose thatR is an integral domain, 1 ≤ k ≤ n and (s, t) ∈ Std2(Pn).
Then there exist scalars cuv ∈ R such that

mstLk = contt(k)mst +
∑

(u,v)∈Std2(Pn)
(u,v)I(s,t)

cuvmuv.

Proof. As in the proof of Corollary 2.13 it is enough to consider the case when R = K
and H K

n is semisimple. Using parts (a) and (b) of Theorem 2.12, to switch between the
standard and seminormal bases, together with (2.5) for the second equality we see that

mstLk =
(
fst +

∑
(u,v)∈Std2(Pn)

(u,v)I(s,t)

auvfuv

)
Lk

= contt(k)fst +
∑

(u,v)∈Std2(Pn)
(u,v)I(s,t)

contv(k)auv fuv

= contt(k)mst +
∑

(u,v)∈Std2(Pn)
(u,v)I(s,t)

contv(k)cuvmuv,

for some cuv ∈ K. This completes the proof. �

We remark that it is not hard to see that Corollary 2.8, Corollary 2.15 and the two
statements in Theorem 2.12 are all, in fact, equivalent. There are analogous (equivalent)
statements for the basis {nst}. We leave the details to the interested reader.

Similarly, one can show that nstLk = contt′(k)nst plus a linear combination of terms
nuv with (u, v) I (s, t).
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3. CYCLOTOMIC QUIVER HECKE ALGEBRAS AND GRADED SPECHT MODULES

We now switch to the cyclotomic quiver Hecke algebras, which were introduced in a
series of papers by Khovanov-Lauda [16], Rouquier [25] and Brundan and Kleshchev [6].
These algebras are certain naturally graded algebras which depend on e. As we recall,
when they are defined over suitable fields, they are isomorphic to the cyclotomic Hecke
algebras of the last section if we take e to be equal to the quantum characteristic of the
parameter ξ and choose appropriate parameters.

3.1. Cyclotomic Quiver Hecke algebras and graded induction. Recall from the intro-
duction that we have fixed an integer e ∈ {0, 2, 3, 4, . . . } and that I = Z/eZ. Let Γ be the
oriented quiver with vertex set I and directed edges i −→ i+ 1, for i ∈ I . To the quiver Γ
we attach the standard Lie theoretic data of a Cartan matrix (aij)i,j∈I , fundamental weights
{Λi | i ∈ I }, positive weights X+ =

∑
i∈I NΛi, positive roots Q+ =

⊕
i∈I Nαi and we

let (·, ·) be the bilinear form determined by

(αi, αj) = aij and (Λi, αj) = δij , for i, j ∈ I.

More details can be found, for example, in [15, Chapt. 1].

3.1. Definition. The cyclotomic quiver Hecke algebra, or cyclotomic Khovanov-Lauda–
Rouquier algebra, RΛ

n of weight Λ and type Γe is the unital associative R-algebra with
generators

{ψ1, . . . , ψn−1} ∪ {y1, . . . , yn} ∪ { e(i) | i ∈ In }

and relations

y
(Λ,αi1 )
1 e(i) = 0, e(i)e(j) = δije(i),

∑
i∈Ine(i) = 1,

yre(i) = e(i)yr, ψre(i) = e(sr·i)ψr, yrys = ysyr,

ψrys = ysψr, if s 6= r, r + 1,

ψrψs = ψsψr, if |r − s| > 1,

ψryr+1e(i) =

{
(yrψr + 1)e(i), if ir = ir+1,

yrψre(i), if ir 6= ir+1

yr+1ψre(i) =

{
(ψryr + 1)e(i), if ir = ir+1,

ψryre(i), if ir 6= ir+1

ψ2
re(i) =



0, if ir = ir+1,

e(i), if ir 6= ir+1 ± 1,

(yr+1 − yr)e(i), if e 6= 2 and ir+1 = ir + 1,

(yr − yr+1)e(i), if e 6= 2 and ir+1 = ir − 1,

(yr+1 − yr)(yr − yr+1)e(i), if e = 2 and ir+1 = ir + 1

ψrψr+1ψre(i) =



(ψr+1ψrψr+1 + 1)e(i), if e 6= 2 and ir+2 = ir = ir+1 − 1,

(ψr+1ψrψr+1 − 1)e(i), if e 6= 2 and ir+2 = ir = ir+1 + 1,(
ψr+1ψrψr+1 + yr

−2yr+1 + yr+2

)
e(i), if e = 2 and ir+2 = ir = ir+1 + 1,

ψr+1ψrψr+1e(i), otherwise.
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for i, j ∈ In and all admissible r and s. Moreover, RΛ
n is naturally Z-graded with degree

function determined by

deg e(i) = 0, deg yr = 2 and degψse(i) = −ais,is+1
,

for 1 ≤ r ≤ n, 1 ≤ s < n and i ∈ In.

To make the link between the cyclotomic Hecke algebra Hn and the quiver Hecke al-
gebra RΛ

n suppose that R = K is a field of characteristic p ≥ 0. Fix non-zero element ξ
of K and let e ∈ {0, 2, 3, 4, . . . } is the quantum characteristic of ξ. As noted after Defini-
tion 2.1, if the parameters Q are integral then the algebra Hn = Hn(e,κ) is determined
by e and the multicharge κ. Let Λ = Λκ ∈ X+ be the unique positive weight such that

(Λ, αi) = # { 1 ≤ l ≤ ` | κl ≡ i (mod e) } , for all i ∈ I.

We define H Λ
n = Hn(e,κ), where Λ = Λκ.

Next observe that (2.3) together with Theorem 2.2 implies that H Λ
n decomposes into a

direct sum of (simultaneous) generalized eigenspaces for the elements L1, . . . , Ln. More-
over, the possible eigenvalues for L1, . . . , Ln are precisely the integers in I , if ξ = 1,
and otherwise they are belong to the set { ξi | i ∈ I }, if ξ 6= 1. Hence, the generalized
eigenspaces for these elements are indexed by In. For each i ∈ In let e(i) be the corre-
sponding idempotent in H Λ

n (or zero if the corresponding eigenspace is zero).

3.2. Theorem (Brundan-Kleshchev). Suppose that R = K is a field, ξ ∈ K as above,
and that Λ = Λκ. Then there is an isomorphism of algebras RΛ

n
∼= H Λ

n which sends
e(i) 7→ e(i), for all i ∈ In and

yr 7→


∑
i∈In

(1− ξ−irLr)e(i), if ξ 6= 1,

∑
i∈In

(Lr − ir)e(i), if ξ = 1.

ψs 7→
∑
i∈In

(Tr + Pr(i))Qr(i)
−1e(i),

where Pr(i), Qr(i) ∈ R[yr, yr+1], for 1 ≤ r ≤ n and 1 ≤ s < n.

We abuse notation and identify the algebras RΛ
n and H Λ

n under this isomorphism. In
particular, we will not distinguish between the homogeneous generators of RΛ

n and their
images in H Λ

n under the isomorphism of Theorem 3.2.
The algebra RΛ

n
∼= H Λ

n has a unique anti-isomorphism ? : RΛ
n −→RΛ

n ; a 7→ a? which
fixes each of the homogeneous generators. We note that the automorphism ? is, in gen-
eral, not equal to the anti-automorphism ∗ which fixes each of the (non-homogeneous)
generators of H Λ

n in Definition 2.1.
Until further notice fix a multipartition µ ∈ Pn. If i ∈ I then an i-node is a triple

(r, c, l) ∈ N2×{1, 2, . . . , `} such that i = c− r+κl (mod e) . An i-node A is an addable
i-node of µ if A /∈ [µ] and [µ] ∪ {A} is the diagram of a multipartition. Similarly, an
i-node B ∈ [µ] is a removable i-node of µ if [µ] \ {B} is the diagram of a multipartition.
Given two nodes A = (r, c, l) and B = (s, d,m) then A is below B, or B is above A, if
either l > m, or l = m and r > s.

Following Brundan, Kleshchev and Wang , we make the following definitions.
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3.3. Definition (Brundan, Kleshchev and Wang [8, Defn. 3.5]). Suppose that µ ∈Pn and
that A is a removable or addable i-node of µ, for some i ∈ I . Define integers

dA(µ) = #
{ addable i-nodes of µ

strictly below A

}
−#

{ removable i-nodes of µ

strictly below A

}
,

and

dA(µ) = #
{ addable i-nodes of µ

strictly above A

}
−#

{ removable i-nodes of µ

strictly above A

}
.

If t is a standard µ-tableau then its degree and codegree are defined inductively by setting
deg t = 0 = codeg t, if n = 0, and if n > 0 then

deg t = deg tn−1 + dA(ν) and codeg t = codeg tn−1 + dA(ν)

where A = t−1(n) and ν = Shape(tn−1).

If t is a standard tableau define res(t) = (rest(1), . . . , rest(n)) ∈ In, where rest(k) =
c − r + κl (mod e) if k appears in row r and column c of t(l), for 1 ≤ k ≤ n. This
definition is compatible with our previous definition of contt(k) in the sense that ifR = K
then contt(k) ≡ rest(k) (mod e) , if ξ = 1, and contt(k) = ξrest(k), if ξ 6= 1.

3.4. Definition ( [13, Definitions 4.9, 5.1 and 6.9]). Suppose that µ ∈ Pn. Let iµ =
res(tµ′) and iµ = res(tµ) and set eµ = e(iµ) and e′µ = e(iµ) and define

yµ = yd1
1 . . . ydnn and y′µ = y

d′1
1 . . . y

d′n
n ,

where dm = dAm(µm), d′m = dA
′
m(µ′m), µm = Shape(tµm), µ′m = Shape((tµ′)m), and

Am and A′m are the nodes such that tµ(Am) = m and tµ′(A
′
m) = m.

For the rest of this paper, fix a reduced expression d(u) = si1 . . . sik for each row
standard µ-tableau u and set ψd(u) = ψi1 . . . ψik . Suppose that (s, t) ∈ Std2(µ) and
define ψst = ψ?d(s)eµyµψd(t) and ψ′st = ψ?d(s)e

′
µy
′
µψd(t).

We warn the reader that, in general, the elements ψd(s), ψd(t), ψst and ψ′st all depend
upon the choices of reduced expression for d(s) and d(t) that we have fixed, once and for
all, in Definition 3.4. See [13, Example 5.6] for an explicit example.

The following result can be viewed as a graded analogue of Theorem 2.2.

3.5. Theorem (Hu-Mathas [13, Theorems 5.8 and 6.11]).
a) {ψst | (s, t) ∈ Std2(Pn) } is a graded cellular basis of H Λ

n .
b) {ψ′st | (s, t) ∈ Std2(Pn) } is a graded cellular basis of H Λ

n .
In particular, if (s, t) ∈ Std2(Pn) then

degψst = deg s + deg t and degψ′st = codeg s′ + codeg t′.

Graded cellular algebras were introduced in [13]. They are a natural extension of Gra-
ham and Lehrer’s [12] definition of a cellular algebra to the graded setting.

We close this section by extending results in the last subsection about strong dominance
to the ψ and ψ′-bases.

3.6. Lemma. Suppose that R = K and µ ∈Pn. Then

ψtµtµ =
∑

(u,v) I(tµ,tµ)

ruvmuv and ψ′tµtµ =
∑

(u,v) I(tµ,tµ)

suvnuv,

for some ruv, suv ∈ K such that rtµtµ 6= 0 and stµtµ 6= 0.
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Proof. As in [13, Definition 4.3] we fix a modular system (O,K,K) with parameters
v ∈ O and QO = (QO1 , . . . , Q

O
` ) ∈ O` such that H K

n = H O
n ⊗O K is split semisimple

and H K
n
∼= H O

n ⊗OK, where H O
n = H O

n (v,QO). By [13, Defn. 4.12], there exist ele-
ments yOµ and eOµ in H O

n such that eµyµ = eOµy
O
µ ⊗O1K . Moreover, by [13, Lemma 4.13]

there exist scalars rs ∈ K such that in H K
n

eOµy
O
µ =

∑
sDtµ

res(s)=iµ

rsfss.

Therefore, by Theorem 2.13, there exist rKuv ∈ K such that

eOµy
O
µ =

∑
(u,v) I(tµ,tµ)

rKuvmuv.

However, eOµy
O
µ ∈ H O

n and muv ∈ H O
n for all (u, v) ∈ Std2(Pn) so, in fact, rKuv ∈ O.

Hence, we can reduce this equation modulo the maximal ideal ofO to write eµyµ = ψtµtµ

in the required form.
We leave the proof of the formula for ψ′tµtµ to the reader. It is proved in exactly same

way except that [13, Lemma 6.5] is used in place of [13, Lemma 4.13]. �

3.7. Theorem. Suppose that R = K and (s, t) ∈ Std2(Pn). Then

ψst =
∑

(u,v) I(s,t)

auvmuv, mst =
∑

(u,v) I(s,t)

cuv ψuv,

ψ′st =
∑

(u,v) I(s,t)

buv nuv, nst =
∑

(u,v) I(s,t)

duv ψ
′
uv

for some scalars auv, buv, cuv and duv in K such that ast, bst, cst and dst are all non-zero.

Proof. For convenience, let is = res(s) and it = res(t). By Theorem 3.2 and Defini-
tion 3.4, if d(t) = si1 . . . sik is reduced then

ψtµt = ψtµtµ(Ti1 + Pi1(i1))Qi1(i1)−1e(i1) . . . . . . (Tik + Pik(ik))Qik(ik)−1e(ik),

where i1 = (iµ)si1 and ij = i
sij
j−1 for all 2 ≤ j ≤ k with Sn acting on In from the

right in the natural way. (Thus, ik = it.) Using the relations we can rewrite the ex-
pression for ψd(t)e(i

t) as rTd(t)e(i
t) plus a linear combination of terms of the form LTu,

where r ∈ K is non-zero, u < d(t) and L ∈ 〈L1, . . . , Ln〉. By Lemma 3.6 and Corol-
lary 2.13, ψtµtµL can be written as linear combinations of elements of form muv with
(u, v) I (tµ, tµ). Therefore, applying Lemma 2.10 to the elements muvTu shows that
ψtµt can be written as a linear combination of elements muv with (u, v) I (tµ, t). Using
the same argument to act with e(is)ψ?d(s) from the left shows that ψst can be written in the
required form. Arguing by induction on the strong dominance order I we can now invert
this equation to show that mst is a linear combination of elements ψuv with (u, v) I (s, t).

The other equations can be proved similarly. �

3.8. Corollary. Suppose that R = K and (s, t), (u, v) ∈ Std2(Pn). Then ψstψ
′
uv 6= 0

only if u′ D t and ψ′uvψst 6= 0 only if v′ D s.

Proof. By Theorem 3.7 there exist scalars acd and bab such that

ψ′uvψst =
( ∑

(c,d) I(u,v)

bcd ncd

)( ∑
(a,b) I(s,t)

aabmab

)
.
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Therefore, ψ′uvψst 6= 0 only if there exist tableaux a, b, c and d such that ncdmab 6= 0 and
(c, d) I (u, v) and (a, b) I (s, t). By Corollary 2.13 this happens only if d′ D a. Therefore,
v′ D d′ D a D s as required. The result for ψstψ

′
uv now follows by applying the graded

involution ?. �

We leave the following result as an exercise for the reader. It follows easily using
Theorem 3.2 and Corollary 2.13.

3.9. Corollary. Suppose that R = K and let (s, t) ∈ Std2(Pn). Then there exist scalars
auv, buv ∈ K such that

ψstyr =
∑

(u,v)I(s,t)

auv ψuv and ψ′styr =
∑

(a,b)I(s,t)

bab ψ
′
ab.

Moreover, auv and bab are non-zero only when res(u) = res(s), res(v) = res(t), res(a) =
res(s), res(b) = res(t) and deg u + deg v = deg s + deg t + 2, codeg a′ + codeg b′ =
codeg s′ + codeg t′ + 2.

4. GRADED INDUCTION AND GRADED SPECHT MODULES

Before starting the proof of our Main Theorem we recall the facts that we need about
Z-graded algebras and the construction of the graded Specht modules and their duals.

Suppose that A =
⊕

k∈ZAk is a Z-graded algebra. If a ∈ Ak then a is homogeneous
of degree deg a = k. If M =

⊕
kMk is a graded A-module let M〈s〉 be the graded

R-module obtained by shifting the grading on M upwards by s; that is, M〈s〉k = Mk−s,
for k ∈ Z. Let Mod-A be the category of finite dimensional graded (right) A-module with
homomorphisms being the degree preserving maps (of degree zero). If A has a degree
preserving anti-involution ? then the contragredient dual of M is the graded A-module

M~ =
⊕
d∈Z

HomA(M〈d〉,K)

where the action ofA is given by (fa)(m) = f(ma?), for all f ∈M~, a ∈ A andm ∈M .

4.1. Graded Specht modules. Following the standard construction from the theory of
(graded) cellular algebras, the two graded cellular bases of Theorem 3.5 define graded cell
modules for H Λ

n . More explicitly, for each multipartition µ ∈ Pn the graded Specht
module Sµ and the graded dual Specht module Sµ are the graded H Λ

n -modules such
that

Sµ〈deg tµ〉 = (ψtµtµ + Hµ)H Λ
n and Sµ〈codeg tµ′〉 = (ψ′tµtµ + H ′

µ)H Λ
n ,

where Hµ is the two-sided ideal of H Λ
n spanned by the elements ψuv, where (u, v) ∈

Std2(ν), ν . µ and H ′
µ is spanned by the ψ′uv, for (u, v) ∈ Std2(ν) with ν . µ. Thus,

Sµ has a natural basis {ψt | t ∈ Std(µ) }, and Sµ has a basis {ψ′t | t ∈ Std(µ) }, where
the action on both modules in induced by the action of H Λ

n upon the ψ and ψ′ bases of
H Λ
n , respectively, and degψt = deg t, degψ′t = codeg t′, for t ∈ Std(µ). In particular,

by [13, Prop. 6.19], Sµ is isomorphic to the graded Specht module defined by Brundan,
Kleshchev and Wang [8]. See [13, §2] for more details.

To explain the relationship between the graded Specht module and its dual we need
to recall the description of the blocks of H Λ

n . Let β ∈ Q+ be a positive root with
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i∈I(Λi, β) = n and set Iβ = { i ∈ In | αi1 + · · ·+ αin = β } and eβ =

∑
i∈Iβ e(i).

By [17, Theorem 2.11] and [4, Theorem 1],

H Λ
n =

⊕
β∈Q+, Iβ 6=∅

H Λ
β , where H Λ

β = eβH
Λ
n ,

where H Λ
β is an indecomposable two-sided ideal of H Λ

n whenever eβ 6= 0. Following
Brundan and Kleshchev [8, (3.4)], if β ∈ Q+ with eβ 6= 0 then define the defect of H Λ

β

by

def β = (Λ, β)− 1

2
(β, β).

Then def β ≥ 0. Let Pβ = {µ ∈Pn | iµ ∈ Iβ } and suppose that µ ∈ Pβ . Then,
by [13, Prop. 6.19],

Sµ ∼= S~
µ′〈def β〉,

where S~
µ′ is the graded dual of Sµ′ . This justifies calling Sµ a graded dual Specht module.

For the rest of this section we fix β ∈ Q+ and µ ∈Pβ such that eβ 6= 0.
To prove our Main Theorem we need to compute i-IndSµ, for i ∈ I . To do this we will

use another construction of the graded Specht modules which, up to shift, realizes them as
submodules of H Λ

n . Recall that tµ is the unique standardµ-tableau such that tµ D t for all
t ∈ Std(µ). Let tµ be the unique standard µ-tableau such that t D tµ for all t ∈ Std(µ).
Then tµ is the standard µ-tableau which has the numbers 1, 2, . . . , n entered in order down
its columns in the components from right to left. Equivalently, tµ is the tableau conjugate
to tµ

′
. Define wµ = d(tµ) ∈ Sn. It is easy to check that w−1

µ = wµ′ = d(tµ′).

4.1. Definition. Suppose that µ ∈Pβ , for β ∈ Q+. Define zµ = y′µ′ψwµ′ eµyµ.

Consulting the definitions, zµ = ψ′
tµ′ tµ′

ψtµtµ = ψ′
tµ′ tµ′

ψtµtµ . The connection be-
tween these elements and the graded Specht modules is the following.

4.2. Lemma ( [13, §6.4]). Suppose that µ ∈Pβ . Then, as graded H Λ
n -modules,

Sµ〈def β + codeg tµ〉 ∼= zµH Λ
n and Sµ′〈def β + deg tµ〉 ∼= z?µH Λ

n .

Hence, to determine i-IndSµ it suffices to describe the H Λ
n+1-module i-Ind zµH Λ

n .
To do this we adapt ideas which Ryom-Hansen [26] used to describe the induced Specht
modules of Hξ(Sn).

4.2. Graded induction of Specht modules. We are now ready to prove our main theorem.
We start by describing the i-induction functors for H Λ

n more explicitly.
Recall that I = Z/eZ. For each i ∈ I define

ei,n =
∑
j∈In

e(j ∨ i) ∈H Λ
n+1.

Then
∑
i∈I ei,n =

∑
i∈In+1 e(i) is the identity element of H Λ

n+1
∼= RΛ

n+1. Let Mod-H Λ
n

be the category of finite dimensional graded H Λ
n -modules, with morphisms being H Λ

n -
module homomorphisms of degree zero.

4.3. Lemma. Suppose that R = K is field and that i ∈ I . Then there is a (non-unital)
embedding of graded algebras H Λ

n ↪→H Λ
n+1 given by

e(j) 7→ e(j ∨ i), yr 7→ ei,nyr and ψs 7→ ei,nψs,

for j ∈ In, 1 ≤ r ≤ n and 1 ≤ s < n. This map induces an exact functor

Fi : Mod-H Λ
n −→Mod-H Λ

n+1;M 7→M ⊗H Λ
n
ei,nH

Λ
n+1.
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Moreover, Fi = i-Ind
H Λ
n+1

H Λ
n

is the graded induction functor from Mod-H Λ
n to Mod-H Λ

n+1.

Proof. The images of the homogeneous generators of H Λ
n under this embedding commute

with ei,n, which implies that this defines a non-unital degree preserving homomorphism
from H Λ

n to H Λ
n+1. This map is an embedding by Theorem 3.2. The remaining claims

follow because ei,n is idempotent and
∑
i∈I ei,n is the identity element of H Λ

n+1. �

We now fix a multipartition µ ∈ Pn and introduce the notation that we need to prove
our main result. Let A1, . . . , Az be the addable i-nodes of µ ordered so that Ai+1 is
below Ai, for 1 ≤ i < z. Finally, let αi be the multipartition of n+ 1 obtained by adding
Ai to µ, so that [αi] = [µ] ∪ {Ai}, for 1 ≤ i ≤ Z. Then α1 . α2 . · · · . αz because we
arranged the nodes A1, . . . , Az in “downwards order”. For notational convenience in what
follows we set α = α1 and ω = αz .

The two extremal multipartitions α and ω will be particularly important in what fol-
lows: α is the most dominant multipartition obtained from µ by adding an i-node and ω is
the least dominant such multipartition. Define zµ↑i = ei,nzµ to be the image of zµ under
the algebra embedding of Lemma 4.3. Then by Definition 3.4 and Definition 4.1

zµ↑i = ei,ny
′
µ′ψwµ′ eµyµei,n.

Therefore, by Lemma 4.2 and Lemma 4.3, we have the following.

4.4. Lemma. Suppose that µ ∈ Pβ and i ∈ I . Then there is an isomorphism of graded
H Λ
n+1-modules,

i-IndSµ〈def β + codeg tµ〉 ∼= zµ↑iH
Λ
n+1.

To prove our main theorem we show that zµ↑iH Λ
n+1 has a filtration by graded Specht

modules. For each 1 ≤ k ≤ z, define tαkµ to be the unique standard αk-tableau such that
(tαkµ )n = tµ.

4.5. Proposition. Suppose that µ ∈Pβ and i ∈ I . Then

Bµ,i = { ei,ny′µ′ψt
αk
µ t | t ∈ Std(αk) for 1 ≤ k ≤ z }

is a basis of zµ↑iH Λ
n+1.

Proof. Let Iµ be the vector space spanned by Bµ,i. By [7, Corollary 5.8] and Lemma 4.4,
we know that

dim zµ↑iH
Λ
n+1 = dim i-IndSµ = #Bµ,i ≥ dim Iµ.

Therefore, to prove the Proposition, it suffices to show that zµ↑iH Λ
n+1 ⊆ Iµ.

For each multipartition ρ of n let ρ+ be the multipartition of n+ 1 obtained by adding
its lowest addable node. Similarly, if s ∈ Std(ρ) then define s+ to be the unique standard
ρ+-tableau such that s+

n = s. Note that it is not necessarily true that ress+(n + 1) = i
since the lowest addable node of ρ need not be an i-node.

Suppose that h ∈ H Λ
n+1. We want to show that zµ↑ih ∈ Iµ. By definition, zµ↑i =

ei,ny
′
µ′ψtµtµei,n. Moreover, under the natural embedding H Λ

n ↪→ H Λ
n+1 of ungraded

algebras, mtµtµ = mt+µ(tµ)+ . Therefore, applying Theorem 3.7 twice,

zµ↑i = ei,ny
′
µ′

( ∑
(st)∈Std2(Pn+1)

(s,t) I
(
t+µ ,(t

µ)+
) astψst

)
ei,n,
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for some ast ∈ K. Therefore, zµ↑ih is equal to a linear combination of elements of the
form ei,ny

′
µ′ψst, where s, t ∈ Std(λ), ress(n+1) = i and λ is a multipartition n+1 such

that λ D µ+. In particular, Shape(sn) D µ.
On the other hand, since e′µ′y

′
µ′ = ψ′

tµ′ tµ′
and ei,n ∈ K[y1, · · · , yn+1], applying

Theorem 3.7 and Corollary 3.9 shows that ei,ne′µ′y
′
µ′ is equal to a linear combination of

elements ψ′uv such that u D (tµ
′
)+ and v D (tµ

′
)+. By Corollary 3.8, ψ′uvψst 6= 0 only

if v′ D s. Therefore, ei,ne′µ′y
′
µ′ψst 6= 0 only if tµ D sn because tµ = (tµ

′
)′ D (v′)n.

Therefore, by the last paragraph, zµ↑ih = ei,ny
′
µ′ψtµtµei,nh = ei,ne

′
µ′y
′
µ′ψtµtµei,nh is

equal to a linear combination of the elements of the form ei,ny
′
µ′ψst, where s, t ∈ Std(λ),

Shape(sn) D µ, ress(n+ 1) = i, and λ is a multipartition of n+ 1 such that tµ D sn. It
follows that s = t

αj
µ and λ = αj , for some j with 1 ≤ j ≤ z. Hence, zµ↑ih ∈ Iµ and the

proof is complete. �

We can now prove our main theorem.

Proof of Main Theorem. By Lemma 4.4, i-IndSµ〈def β + codeg tµ〉 ∼= zµ↑iH Λ
n+1 so it

remains to show that zµ↑iH Λ
n+1 has a suitable Specht filtration. For 0 ≤ j ≤ n define

Ij = 〈ei,ny′µ′ψt
αk
µ t | t ∈ Std(αk) for 1 ≤ k ≤ j〉.

Then Ij is a submodule of zµ↑iH Λ
n+1 by Theorem 3.5 and the proof of Proposition 4.5.

Furthermore, the map

Sαj 〈2 codeg tµ + deg t
αj
µ 〉 ∼= Ij/Ij−1;ψt 7→ ei,ny

′
µ′ψt

αj
µ t

+ Ij−1,

for t ∈ Std(αj) is an isomorphism since Bµ,i is linearly independent. Notice that this map
can also be viewed as left multiplication:

ψ
t
αj
µ t

+ Hµ 7→ ei,ny
′
µ′ψt

αj
µ t

+ Ij−1,

for t ∈ Std(αj). To complete the proof we need to check that the degree shifts in the
Specht filtration are as predicted by the Main Theorem. We have deg t

αj
µ = deg tµ +

dAj (µ). Moreover, codeg tµ + deg tµ = def β by [8, Lemma 3.12]. Therefore,

2 codeg tµ + deg t
αj
µ = def β + codeg tµ + dAj (µ),

so that Sαj 〈def β+codeg tµ +dAj (µ)〉 ∼= Ij/Ij−1. Applying Lemma 4.4 now completes
the proof of our Main Theorem. �

Finally, we note that we also have the following description of the induced graded
dual Specht module. This can be proved either using the isomorphism Sµ ∼= S~

µ′〈def β〉
from [13, Prop. 6.19], or by essentially repeating the argument above starting with the iso-
morphism Sµ′〈def β + deg tµ〉 ∼= z?µH Λ

n from Lemma 4.2. We leave the details to the
reader.

4.6. Corollary. Suppose that µ ∈Pn and i ∈ I . Then i-IndSµ′ has a filtration

0 = Jz+1 ⊂ Jz ⊂ · · · ⊂ J1 = i-IndSµ′ ,

such that Jk/Jk+1
∼= Sαk〈dAk(µ)〉, for 1 ≤ k ≤ z, where {A1 < A2 < · · · < Az} is

the set of addable i-nodes of µ′ ordered so that αz . · · · .α1, where αk = µ′ ∪ {Ak} for
1 ≤ k ≤ z.
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