
ON A GENERALISATION OF THE DIPPER–JAMES–MURPHY

CONJECTURE
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Abstract. Let r, n be positive integers. Let e be 0 or an integer bigger than
1. Let v1, · · · , vr ∈ Z/eZ and Kr(n) the set of Kleshchev r-partitions of n

with respect to (e;Q), where Q := (v1, · · · , vr). The Dipper–James–Murphy
conjecture asserts that Kr(n) is the same as the set of (Q, e)-restricted bipar-
titions of n if r = 2. In this paper we consider an extension of this conjecture
to the case where r > 2. We prove that any multi-core λ = (λ(1), · · · , λ(r))

in Kr(n) is a (Q, e)-restricted r-partition. As a consequence, we show that in
the case e = 0, Kr(n) coincides with the set of (Q, e)-restricted r-partitions of
n and also coincides with the set of ladder r-partitions of n.

1. Introduction

A composition α = (α1, α2, · · · ) is a finite sequence of non-negative integers; we
denote by |α| the sum of this sequence and call α a composition of |α|. A partition
is a composition whose parts are non-increasing. Let r, n be positive integers. A
multipartition, or r-partition, of n is an ordered sequence λ = (λ(1), . . . , λ(r)) of
partitions such that |λ(1)|+ · · ·+ |λ(r)| = n. The partitions λ(1), . . . , λ(r) are called
the components of λ. If r = 2, a multipartition is also called a bipartition.

Let e be 0 or an integer bigger than 1. Let v1, · · · , vr ∈ Z/eZ. If e > 1, then a
partition λ = (λ1, λ2, · · · ) of k is said to be e-restricted if λi−λi+1 < e for any i ≥ 1.
We make the convention that every partition is e-restricted if e = 0. The notion of
e-restricted partitions plays an important role in the modular representation theory
of the symmetric groups Sn as well as its associated Iwahori–Hecke algebra Hq(Sn).
For example, if e > 1 and the parameter q is a primitive e-th root of unity, then
it is well-known that simple modules of Hq(Sn) are in one-to-one correspondence
with the set of e-restricted partitions of n. The same is true if e = 0 and q is not a
root of unity. Another important application (cf. [22]) is that the set of e-restricted
partitions provides a combinatorial realization of the crystal graph of the integrable

highest weight module of level one over the affine Lie algebra ŝle if e > 1; or over
the affine Lie algebra gl∞ if e = 0.

In [7], Ariki and Mathas introduced a notion of Kleshchev multipartitions which
provides a combinatorial realization of the crystal graph of integrable highest weight

module of level r over the affine Lie algebra ŝle if e > 1; or over the affine Lie algebra
gl∞ if e = 0. A priori, the notion of Kleshchev multipartition is defined with respect
to the given (r +1)-tuple (e; v1, · · · , vr) and is recursively defined. It is desirable to
look for a non-recursive definition. In the case r = 1, it coincides with the notion of
e-restricted partitions. In general, by a result of Ariki [3], the notion of Kleshchev
multipartitions fits nicely with the Dipper–James–Mathas Specht module theory
of the cyclotomic Hecke algebra Hr,n(q; qv1 , · · · , qvr ) and gives natural labelling of
the simple modules of Hr,n(q; qv1 , · · · , qvr ), where the parameter q is a primitive
e-th root of unity if e > 1; or not a root of unity if e = 0. Thus, the notion of
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Kleshchev multipartitions can be regarded as a natural generalization of the notion
of e-restricted partitions.

In 1995, when r = 2, Dipper, James and Murphy (see [13]) proposed a notion of
(Q, e)-restricted bipartitions (which is non-recursively defined), where Q = −qm,

q = e
√

1 and e > 1,m ∈ Z/eZ, and they conjectured that a Kleshchev bipartition of
n with respect to (e;m, 1) is the same as a (Q, e)-restricted bipartition of n. This
conjecture was proved only recently by Ariki–Jacon [6], using the result of another
recent work of Ariki–Kreiman–Tsuchioka [8]. The paper [8] contains a new non-
recursive description of Kleshchev bipartitions. In general, in the case r > 2,
the question of finding a non-recursive characterization of Kleshchev r-partitions
remains open.

The starting point of this paper is to explore this open question. We give
a natural extension of the Dipper–James–Murphy notion of (Q, e)-restricted bi-
partitions to the case where r > 2, i.e., (Q, e)-restricted multipartitions, where
Q := (v1, · · · , vr). We also introduce a notion of ladder r-partitions. It turns
out that any (Q, e)-restricted multipartition of n is a Kleshchev multipartition in
Kr(n). Our main result asserts that any multi-core λ = (λ(1), · · · , λ(r)) in Kr(n) is
a (Q, e)-restricted multipartition.

As a consequence, we show that if e = 0 (in that case every multipartition is a
multi-core), then Kr(n) coincides with the set of (Q, e)-restricted multipartitions of
n, which gives a non-recursive description of Kleshchev r-partition in this case; and
also coincides with the set of ladder r-partitions of n, which gives a new recursive
description of Kleshchev r-partition in that case. The main result is a generalization
of the theorem of Ariki and Jacon [6], i.e., we prove a generalization of the Dipper–
James–Murphy conjecture to the case where e = 0 and r > 2. Conjecturally,
everything should be still true in the case where e > 1.

The paper is organized as follows. In Section 2, we recall the notions of Kleshchev
multipartitions and (Q, e)-restricted multipartitions. In particular, we show that
any (Q, e)-restricted r-partition of n is a Kleshchev r-partition with respect to
(e;Q). We also recall a result of Littelmann and a related result of Kashiwara,
and give some consequence of these two results. In Section 3, after introducing the
notion of ladder nodes, ladder sequences, ladder multipartitions as well as strong
ladder multipartitions, we give the proof of our main result Propsition 3.10. As
a consequence we prove the generalized Dipper–James–Murphy conjecture when
e = 0, where we also show that the notion of ladder r-partition coincides with the
notion of strong ladder r-partition in that case.

2. Preliminaries

Let r, n be positive integers. Let Pr(n) be the set of r-partitions of n. If
λ ∈ Pr(n), then we write λ ⊢ n and |λ| = n. Then Pr(n) is a poset under
the dominance partial order “¥”, where λ D µ if

s−1∑

a=1

|λ(a)| +
i∑

j=1

λ
(s)
j ≥

s−1∑

a=1

|µ(a)| +
i∑

j=1

µ
(s)
j ,

for all 1 ≤ s ≤ r and all i ≥ 1.
Let λ ∈ Pr(n). Recall that the Young diagram of λ is the set

[λ] =
{
(i, j, s)

∣∣ 1 ≤ j ≤ λ
(s)
i

}
.

The elements of [λ] are called the nodes of λ. A λ-tableau is a bijection t : [λ] →
{1, 2, . . . , n}. The λ–tableau t is standard if t(i, j, s) ≤ t(i′, j′, s) whenever i ≤ i′,
j ≤ j′. Let Std(λ) be the set of standard λ–tableaux. For any two nodes γ =
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(a, b, c), γ′ = (a′, b′, c′) of λ, say that γ is below γ′, or γ′ is above γ, if either c > c′

or c = c′ and a > a′. If γ′ is above γ then we write γ′ > γ. A removable node
of λ is a triple (i, j, s) ∈ [λ] such that [λ] − {(i, j, s)} is the Young diagram of a
multipartition, while an addable node of λ is a triple (i, j, s) which does not lie in
[λ] but is such that [λ] ∪ {(i, j, s)} is the Young diagram of a multipartition.

Now let e be 0 or an integer bigger than 1. Let v1, · · · , vr ∈ Z/eZ. Let Q :=
(v1, · · · , vr). The residue of the node γ = (a, b, c) is defined to be

res(γ) := b − a + vc + eZ ∈ Z/eZ,

In this case, we say that γ is a res(γ)-node.
If µ = (µ(1), · · · , µ(r)) is an r-partition of n + 1 with [µ] = [λ] ∪

{
γ
}

for some
removable node γ of µ, we write λ → µ or µ/λ = γ. If in addition res(γ) = x, we

also write λ
x→ µ.

2.1. Definition. ( [7]) Let x ∈ Z/eZ. Let λ ∈ Pr(n) and η be a removable x-node

of λ. If whenever γ is an addable x-node of λ which is below η, there are more

removable x-nodes between γ and η than there are addable x-nodes, then we call η
a normal x-node of λ. The unique highest normal x-node of λ is called the good

x-node of λ;

For example, suppose n = 19, r = 3, e = 4, v1 = 4Z, v2 = 2 + 4Z, v3 = 4Z. The
nodes of λ = ((2), (4, 2, 2), (5, 2, 1, 1)) have the following residues

λ =

((
0 1

)
,




2 3 0 1
1 2
0 1


 ,




0 1 2 3 0
3 0
2
1




)
.

λ has six removable nodes. Fix a residue x and consider the sequence of removable
and addable x-nodes obtained by reading the boundary of λ from the bottom up.
In the above example, we consider the residue x = 1, then we get a sequence
“RAARRR”, where each “A” corresponds to an addable x-node and each “R”
corresponds to a removable x-node. Given such a sequence of letters A,R, we
remove all occurrences of the string “AR” and keep on doing this until no such
string “AR” is left. The normal x-nodes of λ are those that correspond to the
remaining “R” and the highest of these is the good x-node. In the above example,
there are two normal 1-nodes (1, 2, 1) and (4, 1, 3). The removable 1-node (1, 2, 1)
is a good 1-node. If γ is a good x-node of µ and λ is the multipartition such that

[µ] = [λ] ∪ γ, we write λ
x
։ µ.

2.2. Definition. ([7]) The set Kr(n) of Kleshchev r-partitions with respect to (e;Q)
is defined inductively as follows:

(1) Kr(0) :=
{

∅ :=
(
∅, · · · , ∅︸ ︷︷ ︸
r copies

)}
;

(2) Kr(n + 1) :=
{

µ ∈ Pr(n + 1)
∣∣∣ λ

x
։ µ for some λ ∈ Kr(n) and x ∈ Z/eZ

}
.

Kleshchev’s good lattice with respect to (e;Q) is the infinite graph whose vertices

are the Kleshchev r-partitions with respect to (e;Q) and whose arrows are given by

λ
x
։ µ ⇐⇒ λ is obtained from µ by removing a good x-node.

Let K be a field. Let q be a primitive e-th root of unity if e > 1; or not a root
of unity if e = 0. The Ariki–Koike algebra Hr,n(q; qv1 , · · · , qvr ) (or the cyclotomic
Hecke algebra of type G(r, 1, n)) is the associative unital K-algebra with generators
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T0, T1, · · · , Tn−1 and relations

(T0 − qv1) · · · (T0 − qvr ) = 0,

T0T1T0T1 = T1T0T1T0,

(Ti + 1)(Ti − q) = 0, for 1 ≤ i ≤ n − 1,

TiTi+1Ti = Ti+1TiTi+1, for 1 ≤ i ≤ n − 2,

TiTj = TjTi, for 0 ≤ i < j − 1 ≤ n − 2.

These algebras were introduced in the work of Broué and Malle [10] and of Ariki
and Koike [5]. They include the Iwahori–Hecke algebras of types A and B as spe-
cial cases. Conjecturally, they have an intimate relationship with the representation
theory of finite reductive groups. The modular representation theory of these alge-
bras was studied in [14, Section 5] and [12], where Hr,n(q; qv1 , · · · , qvr ) was shown
to be a cellular algebra in the sense of [14]. Using the cellular basis constructed
in [12], we know that the resulting cell modules (i.e., Specht modules) {Sλ}λ⊢n

are indexed by the set of r-partitions of n. By the theory of cellular algebras, each
Specht module Sλ is equipped with a bilinear form 〈, 〉. Let Dλ := Sλ/ rad〈, 〉. The
set

{
Dλ

∣∣ Dλ 6= 0,λ ⊢ n
}

is a complete set of pairwise non-isomorphic absolutely
simple Hr,n(q; qv1 , · · · , qvr )-modules. The significance of the notion of Kleshchev
multipartition can be seen from the following remarkable result of Ariki.

2.3. Theorem. ([3, Theorem 4.2]) Let λ ∈ Pr(n). Then, Dλ 6= 0 if and only if

λ ∈ Kr(n).

2.4. Definition. Let λ ∈ Pr(n) and t ∈ Std(λ). The residue sequence of t is

defined to be the sequence
(
res(t−1(1)), · · · , res(t−1(n))

)
.

The following definitions are natural extensions of the corresponding definitions
given in the case where r = 1, 2, see [6], [13] and [14].

2.5. Definition. Let λ ∈ Pr(n). λ is said to be (Q, e)-restricted if there exists

t ∈ Std(λ) such that the residue sequence of any standard tableau of shape µ ¢ λ is

not the same as the residue sequence of t.

Note that if r = 1, by [20, Corollary 3.41], (Q, e)-restricted partitions are the
same as e-restricted partitions. In particular, K1(n) is the same as the set of e-
restricted partitions. If r = 2, the above definition appeared in the paper [13] of
Dipper–James–Murphy. They proved that if λ is (Q, e)-restricted, then Dλ 6= 0,
and they conjectured the converse is also true, i.e., λ ∈ K2(n) if and only if λ is
(Q, e)-restricted. This conjecture was recently proved by Ariki–Jacon [6], using a
new characterization of Kleshchev bipartitions obtained in [8]. The general case
(i.e., when r > 2) remains open. That is

2.6. Generalised DJM Conjecture. Let λ ∈ Pr(n). Then λ ∈ Kr(n) if and only

if λ is (Q, e)-restricted.

Note that the generalised DJM conjecture can be understood as a criterion for
Dλ to be non-zero, where Dλ is defined using the Dipper–James–Mathas cellular
basis of Hr,n(q; qv1 , · · · , qvr ). With respect to a different cellular basis, Graham
and Lehrer proposed a similar conjecture in [14, (5.9),(5.10)]. Since we do not
know whether the two set of cellular datum give rise to equivalent cell modules
and labeling of simple modules when r > 2, it is not clear to us whether the two
conjectures are equivalent or not.

In fact, the “if” part of Conjecture 2.6 is easy, as we shall describe in the following.
The definition of (Q, e)-restricted multipartition can be reformulated in terms of
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the action of the affine quantum group on a Fock space (cf. [6]). To recall this,

we need some more notations. Let v be an indeterminate over Q. Let g := ŝle be

the affine Lie algebra of type A
(1)
e−1 if e > 1; or g := gl∞ be the affine Lie algebra

of type A∞ if e = 0. Let Uv(g) be the corresponding affine quantum group with
Chevalley generators ei, fi, ki and kd for i ∈ Z/eZ. Let

{
Λi

∣∣ i ∈ Z/eZ
}

be the set
of fundamental weights of g. Let F be the level r v-deformed Fock space associated
to (e; v1, · · · , vr) which was used in [7]. Our space F was denoted by Fv in [7] and
one should understand the r-tuple (Q1, · · · , Qr) in [7] as the r-tuple (qv1 , · · · , qvr )
in this paper, where q is a primitive e-th root of unity in C if e > 1; or not a root
of unity if e = 0. By definition1, F is a Q(v)-vector space with the basis given by
the set of all r-partitions, i.e.,

F =
⊕

n≥0,λ∈Pr(n)

Q(v)λ.

By [22] and [7], there is an action of Uv(g) on F which quantizes the classical
action of g on the Q-vector space

⊕
n≥0,λ∈Pr(n) Qλ. That is, for each i ∈ Z/eZ

and λ ∈ Pr(n),

eiλ =
∑

µ
i
→λ

v−Nr
i (µ,λ)µ, fiλ =

∑

λ
i
→µ

vN l
i (λ,µ)µ,

kiλ = vNi(λ)λ, kdλ = v−Nd(λ)λ,

where

Nr
i (µ,λ) := #

{
γ

∣∣∣∣∣
γ is an addable i-node

for λ, γ > λ/µ

}
− #

{
γ

∣∣∣∣∣
γ is a removable i-node

for λ, γ > λ/µ

}
,

N l
i (λ,µ) := #

{
γ

∣∣∣∣∣
γ is an addable i-node

for λ, γ < µ/λ

}
− #

{
γ

∣∣∣∣∣
γ is a removable i-node

for λ, γ < µ/λ

}
,

Ni(λ) = #
{

γ
∣∣∣ γ is an addable

i-node for λ

}
− #

{
γ

∣∣∣ γ is a removable
i-node for λ

}
,

Nd(λ) := #
{

γ ∈ [λ]
∣∣∣ res(γ) = 0

}
.

Note that the empty multipartition ∅ is a highest weight vector of weight
∑r

j=1 Λvj
.

One can also identify F with a tensor product of r level one Fock spaces. We refer
the reader to the proof of [7, Proposition 2.6] for more details.

2.7. Lemma. Let λ ∈ Pr(n). Then λ is (Q, e)-restricted if and only if there exists

a sequence (i1, · · · , in) of residues such that

fin
· · · fi1∅ = A0λ +

∑

µ⋪λ

Aλ,µ(v)µ,

for some A0, Aλ,µ(v) ∈ Z≥0[v, v−1] with A0 6= 0, where fi1 , · · · , fin
are the Cheval-

ley generators of Uv(g).

Proof. For any residue j and any µ ∈ Pr(n), by definition, we have that

fjµ =
∑

res(ν/µ)=j

Cµ,ν(v)ν,

for some Cµ,ν(v) ∈ Z≥0[v, v−1] satisfying Cµ,ν(1) 6= 0. The lemma follows directly
from this fact and the definition of standard tableaux. ¤

2.8. Corollary. Let λ ∈ Pr(n). If λ is (Q, e)-restricted, then λ ∈ Kr(n).

1Although in [7] the ground field of Fv is C(v), it does no harm to replace it by Q(v).
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Proof. Let Λ :=
∑r

j=1 Λvj
. Then the Uv(g)-submodule of F generated by ∅ is the

irreducible highest weight module V (Λ) of highest weight Λ. It is well-known that
V (Λ) has a canonical basis

{
G(µ)

}
, which is indexed by the set Kr :=

⊔
n≥0 Kr(n).

Combining [2, Theorem 4.4] with [9, Theorem 3.14, (5.3), Theorem 5.6, Theorem
5.14, Corollary 5.15], we see that for any µ ∈ Kr(n),

G(µ) = µ +
∑

ν∈Pr(n)
ν¤µ

dν,µ(v)ν,

where dν,µ(v) ∈ Z≥0[v, v−1] for each ν ∈ Pr(n) satisfying ν ¤ µ.
Since λ is (Q, e)-restricted, by Lemma 2.7, we deduce that there exists a sequence

(i1, · · · , in) of residues such that

fin
· · · fi1∅ = A0λ +

∑

µ⋪λ

Aλ,µ(v)µ,

for some A0, Aλ,µ(v) ∈ Z≥0[v, v−1] with A0 6= 0.
On the other hand, since fin

· · · fi1∅ ∈ L(Λ), hence we can write

A0λ +
∑

µ⋪λ

Aλ,µ(v)µ =
∑

ν∈Kr(n)

A′
ν(v)G(ν),

for some A′
ν(v) ∈ Z[v, v−1]. It follows from the induction on the dominance partial

order “¢” that λ ∈ Kr(n), as required. ¤

Therefore, we have proved that “if” part of the Conjecture 2.6. It remains to
consider the “only if” part of that conjecture. To this end, we need a result of
Littelmann.

We need some more notations. Let P+ :=
{∑

i∈Z/eZ aiΛi

∣∣ ai ∈ Z≥0,∀ i
}

be the

set of dominant weights. Let {αi}i∈Z/eZ (resp., {hi}i∈Z/eZ) be the set of simple roots
(resp., simple coroots). For each dominant weight Λ, let V (Λ) be the irreducible
Uv(g)-module with highest weight Λ. We assume that the reader is familiar with
the theory of Kashiwara crystals. It is well-known that V (Λ) has a crystal basis.
We denote by B(Λ) its crystal graph. Note that B(Λ) is equipped with additional

data wt, εi, ϕi, ẽi and f̃i. We refer the readers to [4], [15] and [16] for details.
We use uΛ to denote the unique element in B(Λ) satisfying wt(uΛ) = Λ. For each
i ∈ Z/eZ, there are two important realizations of the crystal graph B(Λi), one by
e-restricted partitions (cf. [22]), the other by Littelmann’s path model (cf. [17]).
Let W be the affine Weyl group with standard Coxeter generators si, i ∈ Z/eZ.
By definition, W is presented by the generators si, i ∈ Z/eZ and the following
relations:

s2
i = 1, ∀ i ∈ Z/eZ;

sisj = sjsi, if i 6= j ± 1;

sisi+1si = si+1sisi+1, ∀ i ∈ Z/eZ.

With these two realizations in mind, we can associate each e-restricted partition λ
with an Lakshimibai-Seshadri path (w1Λi, · · · , wsΛi; a0, · · · , as), where w1, · · · , ws

are elements in W such that w1Λi, · · · , wsΛi are distinct and 0 = a0 < a1 < · · · <
as = 1 are some rational numbers. We refer the readers to [17] for the precise
definition of Lakshimibai–Seshadri paths and related notions. For simplicity, we
shall often abbreviate “Lakshimibai–Seshadri paths” to “LS paths”. Note that
there is a canonical crystal embedding B(Λv1

+ · · ·+Λvr
) →֒ B(Λv1

)⊗· · ·⊗B(Λvr
).

We identify B(Λv1
+ · · · + Λvr

) with the image by this embedding. We have the
following result of Littelmann, which was reformulated in [8, Theorem 5.7].
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2.9. Theorem. ([18, Theorem 10.1]) Let

π = π(1) ⊗ · · · ⊗ π(r) ∈ B(Λv1
) ⊗ · · · ⊗ B(Λvr

).

Then π belongs to B(Λv1
+ · · · + Λvr

) if and only if there exists a sequence

w
(1)
1 ≥ · · · ≥ w

(1)
N1

≥ w
(2)
1 ≥ · · · ≥ w

(2)
N2

≥ · · · ≥ w
(r)
Nr

in W such that

π(k) = (w
(k)
1 Λvk

, · · · , w
(k)
Nk

Λvk
; a

(k)
0 , · · · , a

(k)
Nk

),

for any integer 1 ≤ k ≤ r, where “ ≥ ” is the Bruhat order and 0 = a
(k)
0 < a

(k)
1 <

· · · < a
(k)
Nk

= 1 are some rational numbers.

2.10. Lemma. ([21, Proposition 4.10]) If λ = (λ(1), · · · , λ(r)) is a Kleshchev r-
partition with respect to (e; v1, · · · , vr), then for each 1 ≤ i ≤ r, λ(i) is an e-
restricted partition.

The combinatorial realization of B(Λi) in terms of e-restricted partitions (cf.
[22]) allows a natural generalization to the higher level case (cf. [7]) as we now
recall. Let Λ := Λv1

+ · · · + Λvr
. Set Kr := ⊔n≥0Kr(n). For each i ∈ Z/eZ and

λ ∈ Kr(n), we define

ẽiλ =

{
λ − {γ}, if λ has a good i-node γ;

0, otherwise;

f̃iλ =

{
λ ∪ {γ}, if γ is a good i-node of λ ∪ {γ};
0, otherwise.

εi(λ) = max{n ≥ 0|ẽn
i b 6= 0}, ϕi(λ) = max{n ≥ 0|f̃n

i b 6= 0};
wt(λ) = Λ −

∑

i∈Z/eZ

Ñi(λ)αi,

where Ñi(λ) is the number of i-nodes in [λ]. By a result of Misra–Miwa [22] and

Ariki–Mathas [7], the data Kr, wt, εi, ϕi, ẽi and f̃i define a realization of the crystal
B(Λ) in terms of Kleshchev’s good lattice with respect to (e,Q). Henceforth, we
make this identification. In particular, taking r = 1 and i ∈ Z/eZ, we can identify
any element in B(Λi) with an e-restricted partition.

Recall that for any two g-crystals B1, B2. The tensor product B1 ⊗B2 is the set
B1 × B2 equipped with the crystal structure defined by

a) wt(b1 ⊗ b2) = wt(b1) + wt(b2);
b)

ẽi(b1 ⊗ b2) =

{
ẽib1 ⊗ b2, if ϕi(b1) ≥ ǫi(b2);

b1 ⊗ ẽib2, if ϕi(b1) < ǫi(b2);

c)

f̃i(b1 ⊗ b2) =

{
f̃ib1 ⊗ b2, if ϕi(b1) > ǫi(b2);

b1 ⊗ f̃ib2, if ϕi(b1) ≤ ǫi(b2).

d) ǫi(b1 ⊗ b2) = max
{
ǫi(b1), ǫi(b2) − 〈hi,wt(b1)〉

}
;

e) ϕi(b1 ⊗ b2) = max
{
ϕi(b1) + 〈hi,wt(b2)〉, ϕi(b2)

}
.

Let λ = (λ(1), · · · , λ(r)) ∈ Pr(n). By Lemma 2.10, λ is a Kleshchev multiparti-
tion with respect to (e;Q) only if each λ(s) is an e-restricted partition for 1 ≤ s ≤ r.
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2.11. Lemma. The map which sends each λ = (λ(1), · · · , λ(r)) ∈ Kr(n) to λ(r) ⊗
λ(r−1) ⊗ · · · ⊗ λ(1) coincides with the canonical crystal embedding B(Λ) = B(Λvr

+
· · · + Λv1

) →֒ B(Λvr
) ⊗ · · · ⊗ B(Λv1

). In particular, if each λ(s) is e-restricted for

1 ≤ s ≤ r, then λ = (λ(1), · · · , λ(r)) is a Kleshchev r-partition with respect to (e;Q)
if and only if λ(r) ⊗ · · · ⊗ λ(1) belongs to B(Λvr

+ · · · + Λv1
).

Proof. This follows directly from the fact that if we reverse the order of the com-

ponents, then the action of the Kashiwara operator f̃i on tensor product of crystals
coincides with the operator of adding good i-node on Kleshchev multipartitions. ¤

The above lemma implies that the problem of characterizing Kleshchev multi-
partition in terms of its components is essentially a purely crystal theoric question.
For the latter, Theorem 2.9 gives an answer in the language of Littelmann’s path
model. The following lemma is a direct consequence of Theorem 2.9.

2.12. Corollary. If λ = (λ(1), · · · , λ(r)) is a Kleshchev r-partition with respect

to (e; v1, · · · , vr), then (λ(j1), · · · , λ(jt)) is a Kleshchev t-partition with respect to

(e; vj1 , · · · , vjt
) for any integers 1 ≤ t < r and 1 ≤ j1 < · · · < jt ≤ r.

2.13. Remark. We note that the converse of Corollary 2.12 is in general false. For
example, let e = 5, (v1, v2, v3) = (3 + 5Z, 2 + 5Z, 1 + 5Z). Let

λ(1) := (5, 1), λ(2) := (3), λ(3) := (2).

Then it is easy to check that

(1) (λ(1), λ(2)) is a Kleshchev bipartition with respect to (5; v1, v2); and
(2) (λ(2), λ(3)) is a Kleshchev bipartition with respect to (5; v2, v3); and
(3) (λ(1), λ(3)) is a Kleshchev bipartition with respect to (5; v1, v3);

but (λ(1), λ(2), λ(3)) is not a Kleshchev 3-partition with respect to (5; v1, v2, v3).

Let Λ be any dominant weight. By [16, Corollaire 8.1.5], there exists a unique
crystal morphism Kh : B(Λ) →֒ B(hΛ) of amplitude h, for all h ∈ N. In other
words,

(i) Kh(uΛ) = uhΛ;
(ii) wt(Kh(b)) = h wt(b), εi(Kh(b)) = hεi(b) and ϕi(Kh(b)) = hϕi(b);

(iii) Kh(ẽib) = ẽh
i Kh(b) and Kh(f̃ib) = f̃h

i Kh(b) for all b ∈ B(Λ).

Composing Kh with the natural embedding B(hΛ) →֒ B(Λ)⊗h, we get a crystal
morphism Sh : B(Λ) →֒ B(Λ)⊗h of amplitude h.

Recall that, for each w ∈ W , the weight space V (Λ)wΛ is one-dimensional. We
use uwΛ to denote the unique element in B(Λ) satisfying wt(uwΛ) = wΛ.

2.14. Lemma. ([16, Proposition 8.3.2]) Let b ∈ B(Λ). Then there is an integer

s > 0, and rational numbers 0 = a0 < a1 < · · · < as = 1 and elements w1, · · · , ws

of W such that w1Λ, · · · , wsΛ are pairwise distinct and whenever h satisfies (ai+1−
ai)h ∈ Z≥0 for all i we have

Sh(b) = u
⊗(a1−a0)h
w1Λ

⊗ u
⊗(a2−a1)h
w2Λ

⊗ · · · ⊗ u
⊗(as−as−1)h
wsΛ .

Furthermore, the map

b 7→ (w1Λ, · · · , wsΛ; a0, a1, · · · , as)

coincides with Littelmann’s path model.

Henceforth, we assume that Λ = Λk is a fundamental weight. We use Wk to
denote the symmetric group generated by si, i ∈ Z/eZ − {k + eZ}. Recall that the
crystal B(Λk) has a realization in terms of the set of e-restricted partitions. We
denote by ∅k the empty partition in B(Λk). Let W/Wk be the set of distinguished
coset representatives of Wk in W . For any i ∈ Z/eZ and any e-core ν, let siν be
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defined as in [8, Lemma 3.3(2)]. For any w ∈ W , wν := si1 · · · sit
ν if si1 · · · sit

is a
reduced expression of w. This is well-defined, i.e., independent of the choice of the
reduced expression. By [8, Proposition 3.5], if w ∈ W/Wk, then w∅k is an e-core,
and this gives rise to a natural bijection between the set of e-cores and the set{
wΛ

∣∣ w ∈ W
}
. Note that the empty partition ∅k corresponds to uΛ, while the e-

core w∅ corresponds to uwΛ. Therefore, translating into the language of e-cores, we
can write an LS-path (w1Λ, · · · , wsΛ; a0, a1, · · · , as) as (ν1, · · · , νs; a0, a1, · · · , as),
where νi = wi∅k is an e-core for each i, and we can rephrase Lemma 2.14 as follows:
for each e-restricted partition λ, there exist an integer s, distinct e-cores ν1, · · · , νs

and rational numbers 0 = a0 < a1 < · · · < as = 1 such that whenever h satisfies
(ai+1 − ai)h ∈ Z≥0 for all i we have

Sh(λ) = ν
⊗(a1−a0)h
1 ⊗ ν

⊗(a2−a1)h
2 ⊗ · · · ⊗ ν⊗(as−as−1)h

s .

Furthermore, the map λ 7→ (ν1, · · · , νs; a0, a1, · · · , as) coincides with Littelmann’s
path model.

In the remaining part of this paper, we shall always write an LS-path

(w1Λk, · · · , wsΛk; a0, a1, · · · , as)

as (ν1, · · · , νs; a0, a1, · · · , as), where νi is the unique e-core such that νi = wi∅ for
each 1 ≤ i ≤ s.

2.15. Lemma. ([8], [16]) With the notations as above, the map which sends each

λ to (ν1, · · · , νs; a0, a1, · · · , as) defines an isomorphism of crystals between the two

realizations of B(Λk), the one by e-restricted partitions and the one by LS-paths.

Furthermore, if λ is an e-core, then s = 1 and ν1 = λ.

Proof. The first part of the lemma follows from [8, Theorem 5.14] and [16, Theorem
8.2.3], while the second part of the lemma is a direct consequence of [16, Proposition
8.3.2 (1)]. ¤

In the above lemma, whenever λ is mapped to (ν1, · · · , νs; a0, a1, · · · , as), we
then write

π(λ) = (ν1, ν2, · · · , νs).

2.16. Lemma. With the notations as above, we have that ν1 ⊃ ν2 ⊃ · · · ⊃ νs. In

particular, (νs, · · · , ν1) is a Kleshchev s-partition with respect to (e; k, · · · , k).

Proof. Let Λ = Λk. By Lemma 2.14, there exist integers n1, · · · , ns, such that

ν⊗n1

1 ⊗ ν⊗n2

2 ⊗ · · · ⊗ ν⊗ns
s ∈ B(mΛ) ⊂ B(Λ)⊗m,

where m = n1 + · · · + ns. For each integer 1 ≤ j ≤ s, we write νj = djWk for a
unique dj ∈ W/Wk. Applying Theorem 2.9, we deduce that d1 ≥ d2 ≥ · · · ≥ ds.
Finally, applying [8, Proposition 4.4] and Lemma 2.15, we get that

ν1 ⊃ ν2 ⊃ · · · ⊃ νs,

and (νs, · · · , ν1) is a Kleshchev s-partition with respect to (e; k, · · · , k). ¤

Let λ = (λ(1), · · · , λ(r)) be an r-partition. Suppose that for each integer 1 ≤
i ≤ r, the component λ(i) is an e-restricted partition. For each integer 1 ≤ i ≤ r,

we identify λ(i) as an element in B(Λvi
) and we write π(λ(i)) = (ν

(i)
1 , · · · , ν

(i)
s(i)) for

some integer s(i) and some pairwise distinct e-cores ν
(i)
1 , · · · , ν

(i)
s(i). We define

π̃(λ) =
(
ν

(1)
1 ⊗ · · · ⊗ ν

(1)
s(1)

)
⊗ · · · ⊗

(
ν

(r)
1 ⊗ · · · ⊗ ν

(r)
s(r)

)
.

We identify B(Λv1
+· · ·+Λvr

) with its image by the natural embedding B(Λv1
+· · ·+

Λvr
) →֒ B(Λv1

)⊗· · ·⊗B(Λvr
) and B

(
s(1)Λv1

+ · · ·+s(r)Λvr

)
with its image by the

natural embedding B
(
s(1)Λv1

+ · · ·+ s(r)Λvr

)
→֒ B(Λv1

)⊗s(1) ⊗ · · · ⊗B(Λvr
)⊗s(r).
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2.17. Corollary. With the notations as above, we have that

λ(1) ⊗ · · · ⊗ λ(r) ∈ B(Λv1
+ · · · + Λvr

)

if and only if

π̃(λ) ∈ B
(
s(1)Λv1

+ · · · + s(r)Λvr

)
.

Proof. For each 1 ≤ i ≤ r, we identify λ(i) with an LS-path

π(i) =
(
w

(i)
1 Λvi

, · · · , w
(i)
s(i)Λvi

; a
(i)
0 , · · · , a

(i)
s(i)

)
.

If λ(1) ⊗ · · · ⊗ λ(r) ∈ B(Λv1
+ · · · + Λvr

), then Theorem 2.9 implies that we can

choose those elements w
(i)
1 , · · · , w

(i)
s(i), 1 ≤ i ≤ r, in a way such that

w
(1)
1 ≥ · · · ≥ w

(1)
s(1) ≥ w

(2)
1 ≥ · · · ≥ w

(2)
s(2) ≥ · · · ≥ w

(r)
s(r).

By Lemma 2.15, we know that for each 1 ≤ i ≤ r and 1 ≤ j ≤ s(i),
(
w

(i)
j ; 0, 1

)

is an LS-path for the e-core ν
(i)
j . Applying Theorem 2.9 again, we prove that

π̃(λ) ∈ B
(
s(1)Λv1

+ · · · + s(r)Λvr

)
.

Conversely, assume that π̃(λ) ∈ B
(
s(1)Λv1

+ · · · + s(r)Λvr

)
. Then Theorem 2.9

implies that we can find elements ŵ
(i)
1 , · · · , ŵ

(i)
s(i), 1 ≤ i ≤ r such that ŵ

(i)
j Λvi

=

w
(i)
j Λvi

for each 1 ≤ i ≤ r, 1 ≤ j ≤ s(i), and

ŵ
(1)
1 ≥ · · · ≥ ŵ

(1)
s(1) ≥ ŵ

(2)
1 ≥ · · · ≥ ŵ

(2)
s(2) ≥ · · · ≥ ŵ

(r)
s(r).

Since ŵ
(i)
j Λvi

= w
(i)
j Λvi

, we have that

π(i) =
(
ŵ

(i)
1 Λvi

, · · · , ŵ
(i)
s(i)Λvi

; a
(i)
0 , · · · , a

(i)
s(i)

)
.

Applying Theorem 2.9 again, we deduce that λ(1) ⊗ · · · ⊗ λ(r) ∈ B(Λv1
+ · · ·+ Λvr

)
as required. ¤

2.18. Corollary. With the notations as above, we have that (λ(r), · · · , λ(1)) is a

Kleshchev r-partition with respect to (e; vr, · · · , v1) if and only if
(
ν

(r)
s(r), · · · , ν

(r)
1 , · · · , ν

(1)
s(1), · · · , ν

(1)
1

)

is a Kleshchev (
∑r

i=1 s(i))-partition with respect to
(
e; vr, · · · , vr︸ ︷︷ ︸

s(r) copies

, · · · , v1, · · · , v1︸ ︷︷ ︸
s(1) copies

)
.

3. The multi-core case

The purpose of this section is to give a proof of the “only if” part of the Con-
jecture 2.6 in the multi-core case. In particular, we prove that the generalised
Dipper–James–Murphy conjecture is true if e = 0.2

3.1. Definition. Let λ ∈ Pr(n) and γ ∈ [λ]. We call γ a semi-ladder node of λ if

γ is a removable node of λ and there is no lower addable node of the same residue.

We call γ a ladder node of λ if γ is a semi-ladder node such that there is no higher

semi-ladder node of the same residue.

2Note that in the case e = 0, i.e., q is not a root of unity, the Ariki–Koike algebra

Hr,n(q; qv1 , · · · , qvr ) is NOT necessarily semisimple whenever r ≥ 2. We refer the reader to [1]

for the semisimplicity criterion of Ariki–Koike algebra.
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A semi-ladder node of λ is necessarily a normal node of λ. In general, a multi-
partition may have no semi-ladder nodes. Let x ∈ Z/eZ. By an x-sequence of λ

we mean a sequence of removable x-nodes of λ, arraying in decreasing order, i.e.,
α1 > α2 > · · · > αs. If λ has a semi-ladder x-node for some x ∈ Z/eZ, then we
call the sequence of all the semi-ladder x-nodes, arraying in decreasing order, i.e.,
α1 > α2 > · · · > αs, as a ladder x-sequence of λ. It is readily seen that every node
in the ladder x-sequence of λ is necessarily a normal x-node of λ.

3.2. Lemma. Assume that λ is a non-empty Kleshchev multipartition with respect

to (e; v1, · · · , vr). Then λ has at least one ladder node.

Proof. By assumption, λ = (λ(1), · · · , λ(r)) ∈ Kr(n). Let α be the lowest removable
node of λ. Suppose that α is in the ath row of the cth component of λ. Let

x := res(α) ∈ Z/eZ. Then λ(t) = ∅ for any integer t > c, and λ
(c)
s = 0 for any

integer s > a.
By Lemma 2.10, λ ∈ Kr(n) implies that each component λ(t) is an e-restricted

partition. In particular, λ(c) is a non-empty e-restricted partition. It follows that
the residue of the unique addable node below α in λ(c) is different from x. In other
words, there are no addable x-node in λ(c) which is below α.

We claim that for any integer t > c we must have that x 6= vt. Since λ ∈ Kr(n),
by definition, we can find λ(i) ∈ Kr(i) for each 0 ≤ i ≤ n such that

a) λ(0) = ∅, λ(n) = λ;
b) λ(i) ⊂ λ(i + 1) for each 0 ≤ i ≤ n − 1;
c) γ(i) := λ(i + 1)/λ(i) is a good node of λ(i + 1).

Let 1 ≤ j ≤ n be the unique integer such that α = γ(j). Since α is the lowest
removable node of λ, α must also be the lowest removable node of λ(i + 1), it
follows from the definition of good nodes that x 6= vt for any x > t. This proves
our claim.

Therefore there are actually no addable x-nodes in [λ] that can be lower than
α. Hence α is a semi-ladder x-node and λ must have a ladder x-node. ¤

3.3. Example. Suppose that e = 3 and v1 = 2 + 3Z, v2 = 1 + 3Z, v3 = 3Z. Let

λ :=
(
(1), (2, 1), (3, 1)

)
, µ :=

(
(1), (3, 1), ∅

)
.

Then it is easy to see that λ is a Kleshchev 3-partition with respect to (3; v1, v2, v3),
while µ is not a Kleshchev 3-partition with respect to (3; v1, v2, v3). Furthermore, λ

has a unique good node, that is, the good 2-node (1, 1, 1) and λ has only semi-ladder

2-nodes, (1, 3, 3) > (2, 1, 3) is the ladder 2-sequence of λ and (1, 3, 3) is the ladder

2-node of λ. Note that (1, 1, 1) > (1, 3, 3) > (2, 1, 3) are all the normal 2-nodes of

λ. Finally, µ has no semi-ladder nodes.

3.4. Definition. Let λ ∈ Pr(n). We call λ a ladder multipartition if there is a se-

quence of residues i1, · · · , in and a sequence of multipartitions λ[0] = ∅, · · · ,λ[n] =
λ such that for each t, λ[t− 1] is obtained from λ[t] by removing the ladder it-node

of λ[t].

3.5. Definition. Let λ ∈ Pr(n). We call λ a strong ladder multipartition if

there is a sequence of residues i1, · · · , ip and a sequence of multipartitions ∅ =
λ[0], · · · ,λ[p] = λ such that for each t, λ[t − 1] is obtained from λ[t] by removing

all the nodes in the ladder it-sequence of λ[t].

It is clear that a strong ladder multipartition is necessarily a ladder multiparti-
tion. But it is not obvious that the converse is also true. We conjecture that the
converse is also true. Indeed we shall prove that the converse is true in the case
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where e = 0. Note that in the case r = 2, a strong ladder multipartition is the
same as a bipartition which has an optimal sequence in the sense of [6].

The next definition is a natural generalization of [6, Definition 4.1] to the arbi-
trary multipartition case.

3.6. Definition. Let λ,µ ∈ Pr(n). We write λ ≺ µ if there exist integers 1 ≤ s ≤ r
and t ≥ 0 such that

a) λ(j) = µ(j) for any s + 1 ≤ j ≤ r and λ
(s)
j = µ

(s)
j for any j > t;

b) λ
(s)
t < µ

(s)
t .

It is clear that if µ ¢ λ then λ ≺ µ.

3.7. Lemma. Any strong ladder multipartition is (Q, e)-restricted, and hence is a

Kleshchev multipartition with respect to (e;Q).

Proof. Let λ = (λ(1), · · · , λ(r)) be a strong ladder multipartition in Pr(n). By
Definition 3.5, we can find a sequence of residues i1, · · · , ip and a sequence of
multipartitions ∅ = λ[0], · · · ,λ[p] = λ such that for each t, λ[t − 1] is obtained
from λ[t] by removing all the nodes in the ladder it-sequence of λ[t]. By the
definition of ladder sequence, we know that is 6= it whenever |s − t| = 1. For each
1 ≤ t ≤ p, we use at to denote the number of semi-ladder it-nodes in the ladder
it-sequence of λ[t] and set lt :=

∑t
j=1 aj , l0 = 0. Let γlt−1+1, γlt−1+2, · · · , γlt be

the ladder it-sequence of λ[t].
We claim that

(3.8) f
(ap)
ip

· · · f (a1)
i1

∅ = λ +
∑

µ≺λ

Cλ,µ(v)µ,

for some Cλ,µ(v) ∈ Z≥0[v, v−1], where f
(aj)
ij

denotes the quantum dividing power

(cf. [19, (1.4.1), (3.1.1)]).
The proof is similar to the proof [6, Proposition 4.2] in the bipartition case. We

use induction on p. By definition, lp = n. Let c := n− ap. Then γc+1, · · · , γc+ap
=

γn is the ladder ip-sequence for λ. Let λ′ := λ − {γc+1, · · · , γn}, which is again
a strong ladder multipartition and hence (Q, e)-restricted, and hence a Kleshchev
multipartition with respect to (e;Q).

By induction hypothesis, we have that

f
(ap−1)
ip−1

· · · f (a1)
i1

∅ = λ′ +
∑

µ′≺λ′

Cλ′,µ′(v)µ′.

Let µ 6= λ be a multipartition which appears in f
(ap)
ip

· · · f (a1)
i1

∅ with nonzero coef-

ficient. Then there exist removable ip-nodes α1, · · · , αap
of µ and a multipartition

µ′ such that µ = µ′ ⊔ {α1, · · · , αap
}.

By the definition of ladder sequence of λ, it is clear that µ′ = λ′ implies that
µ ≺ λ. Hence we can assume that µ′ ≺ λ′. Suppose that µ ⊀ λ, i.e., λ ≺ µ. Then
we can find integers 1 ≤ s ≤ r and t ≥ 0 such that

a) µ′(l) = λ′(l) for any s + 1 ≤ l ≤ r and µ′(s)
j = λ′(s)

j for any j > t;

b) µ′(s)
t < λ′(s)

t .

We claim that

c) µ
(l)
j = λ

(l)
j for any (j, l) ∈ {(j, l)|s + 1 ≤ l ≤ r} ⊔ {(j, s)|j > t};

d) µ
(s)
t+1 < µ

(s)
t = µ′(s)

t + 1 = λ′(s)
t = λ

(s)
t ;

e) at least one of the nodes γc+1, · · · , γc+ap
is above (t, λ

(s)
t , s).

In fact, all of these statements follow from the fact that µ′ ≺ λ′, λ ≺ µ and there

are no addable ip-nodes below αap
. Now d) implies that (t, λ

(s)
t , s) is an ip-node
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of λ(s). Hence it is not a removable node of λ otherwise it has to be removed to
obtain λ′ (by the definition of ladder ip-sequence of λ). It follows that λ

(s)
t+1 = λ

(s)
t .

Thus µ
(s)
t+1 < λ

(s)
t = λ

(s)
t+1, which is a contradiction. This completes the proof of

(3.8).
Since µ ≺ λ (i.e., λ ⊀ µ) implies that µ ⋪ λ, it follows from Lemma 2.7

that λ is (Q, e)-restricted. Applying Lemma 2.8, we deduce that λ is a Kleshchev
multipartition with respect to (e;Q). ¤

Let m be an arbitrary integer. We use Wm to denote the symmetric group
generated by si, i ∈ Z/eZ−{m+ eZ}. Let W/Wm be the set of distinguished coset
representatives of Wm in W .

3.9. Lemma. ([11, Lemma 3.2]) Let i ∈ Z/eZ. Let x ∈ Wm, d ∈ W/Wm and

w := dx. Suppose that siw < w and sid 6∈ W/Wm. Then d−1sid = sl for some

l ∈ Z/eZ with l 6= m + eZ and such that slx < x.

Recall that a multipartition λ = (λ(1), · · · , λ(r)) is said to be a multi-core if λ(j) is
an e-core for each integer 1 ≤ j ≤ r. For each multipartition λ = (λ(1), · · · , λ(r)) ∈
Pr(n), we write

λ⋄ := (λ(r), · · · , λ(1)).

Clearly, λ⋄ is a multi-core if and only if λ is a multi-core. The next theorem is the
main result of this paper.

3.10. Proposition. Let λ = (λ(1), · · · , λ(r)) ∈ Pr(n). Suppose λ⋄ is a Kleshchev

r-partition of n with respect to (e, vr, · · · , v1) and also a multi-core. Then λ⋄ is

a strong ladder multipartition and hence (Q, e)-restricted. Furthermore, for each

ladder sequence γ1 > · · · > γa of λ⋄, λ⋄ − {γ1, · · · , γa} is again a strong ladder

multipartition and hence a Kleshchev multipartition with respect to (e; vr, · · · , v1).

Proof. We argue by induction on n. Suppose that the conclusion is true for any
integer 0 ≤ n′ < n. In other words, for any multi-core Kleshchev r-partition λ′ of
n′ with respect to (e; vr, · · · , v1), λ′ is a strong ladder multipartition, and for any
ladder sequence γ′

1 > · · · > γ′
a′ of λ′, λ′ − {γ′

1, · · · , γ′
a′} is again a strong ladder

multipartition.
We now look at the multi-core Kleshchev r-partition λ⋄ := (λ(r), · · · , λ(1)) of

n with respect to (e; vr, · · · , v1). By Lemma 3.2, there exists a ladder sequence
γ1 > · · · > γa with res(γ1) = i ∈ Z/eZ. Suppose that the nodes γ1 > · · · > γc

are located in the component λ(t) and γc+1 6∈ λ(t) for some 1 ≤ c < a. Let µ

be the r-partition which is obtained from λ by deleting the nodes {γ1, · · · , γc}.
Since λ(t) is an e-core, λ(t) has no addable i-nodes. By definition, γ1, · · · , γc are all
the removable i-nodes on the e-core partition λ(t). It follows (by considering the
abacus display of partition) that λ(t) − {γ1, · · · , γt} is again an e-core, and hence
µ⋄ is again a multi-core. We are going to show that µ⋄ is Kleshchev. Note that
γc+1 > · · · > γa is a ladder i-sequence of µ⋄. Once we can prove µ⋄ is Kleshchev,
then by induction hypothesis that

λ⋄ − {γ1, · · · , γa} = µ⋄ − {γc+1, · · · , γa}
is a strong ladder multipartition, and then by definition, λ⋄ must be a strong ladder
multipartition as well, which completes the proof of the proposition.

Let µ = (µ(1), · · · , µ(r)). By Theorem 2.9 and Lemma 2.15, we can find elements
w1 ≥ w2 ≥ · · · ≥ wr in W , such that λ(j) = wj∅vj

, where the subscript is used to
indicate the charge vj . There is a unique way to write each wj in the form djxj

where dj ∈ W/Wvj
, xj ∈ Wvj

. For later use, we choose these elements wj in a way

such that
∑r

j=1 ℓ(xj) is as small as possible.
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Note that µ(j) = λ(j) for any j 6= t. Since both λ(t) and µ(t) are e-cores, and
µ(t) is obtained from λ(t) by removing all its removable i-nodes, we deduce that
µ(t) = (sidt)∅vt

with dt > sidt ∈ W/Wvt
. Now for each integer 1 ≤ j ≤ r, we define

w′
j =

{
wj , if j 6= t;

siwj , if j = t.

Note that ℓ(siwt) = ℓ(sidt)+ℓ(xt) = ℓ(wt)−1. Hence w′
t < wt. Let t+1 ≤ k ≤ r be

the smallest integer such that λ(k) contains addable i-nodes. Then for each integer
t + 1 ≤ l ≤ k − 1, λ(l) contains neither removable i-nodes nor addable i-nodes.

We claim that

(3.11) w′
1 ≥ w′

2 ≥ · · · ≥ w′
r.

In fact, it suffices to prove that w′
t ≥ w′

t+1. Suppose this is not the case, then
we can deduce that wt+1 must have a reduced expression which starts from si

(otherwise the inequality siw
′
t = wt ≥ wt+1 already implies that w′

t ≥ wt+1).
Hence siwt+1 < wt+1. Note that since the e-core λ(t+1) has no removable i-nodes,
dt+1 has no reduced expression which starts from si. It follows that sidt+1 > dt+1

and hence sidt+1 6∈ W/Wvt+1
(otherwise siwt+1 = sidt+1xt+1 > dt+1xt+1 = wt+1,

a contradiction). Applying Lemma 3.9, we get that d−1
t+1sidt+1 = sl for some

l 6= vt+1 + eZ and such that ℓ(slxt+1) < ℓ(xt+1). In particular, we see that

(3.12) siwt+1 = dt+1(slxt+1) < dt+1xt+1 = wt+1.

For each integer t + 1 ≤ j ≤ k − 1, we define

w̃j =

{
wj , if siwj > wj ;

siwj , if siwj < wj .

We write w̃j = d̃j x̃j , where d̃j ∈ W/Wvj
, x̃j ∈ Wvj

. Then from (3.12) we see

that w̃t+1 = siwt+1, d̃t+1 = dt+1 and x̃t+1 = slxt+1 < xt+1. In general, for each

integer t + 1 ≤ j ≤ k − 1, if siwj > wj , then by definition w̃j = wj , d̃j = dj

and x̃j = xj ; while if siwj < wj , then as λ(j) has no removable i-nodes, it follows
that sidj 6∈ W/Wvj

(otherwise siwj = sidjxj > djxj = wj , a contradiction).

Applying Lemma 3.9, we get that d−1
j sidj = sl for some l 6= vj + eZ and such that

d̃j = dj , x̃j = slxj < xj . In particular, we see that w̃jWvj
= wjWvj

for any integer
t + 1 ≤ j ≤ k − 1. We claim that

(3.13) w1 ≥ · · · ≥ wt ≥ w̃t+1 ≥ · · · ≥ w̃k−1 ≥ wk ≥ · · · ≥ wr.

It is enough to show that w̃t+1 ≥ · · · ≥ w̃k−1 ≥ wk. For each integer t + 1 ≤ j ≤
k − 2, there are only the following three possibilities:

Case 1. w̃j = wj . In this case, it is trivial to see that w̃j ≥ w̃j+1.

Case 2. w̃j = siwj < wj , w̃j+1 = siwj+1 < wj+1. From the inequality wj ≥ wj+1

it is also clear that w̃j ≥ w̃j+1.

Case 3. w̃j = siwj < wj , w̃j+1 = wj+1. By definition, we know that siwj+1 >
wj+1. In particular, wj+1 has no reduced expression starting from si. From the
inequality siw̃j = wj ≥ wj+1 it follows that w̃j ≥ wj+1 = w̃j+1.

It remains to show that w̃k−1 ≥ wk. If w̃k−1 = wk−1, there is nothing to prove.
Assume w̃k−1 = siwk−1 < wk−1. Since λ(k) is an e-core which contains addable
i-nodes. We deduce that dk < sidk ∈ W/Wvk

. In particular, ℓ(siwk) = ℓ(sidkxk) =
ℓ(sidk)+ ℓ(xk) = ℓ(wk)+1, which implies that wk has no reduced expression which
starts from si. Therefore, from the inequality siw̃k−1 = wk−1 ≥ wk we can deduce
that w̃k−1 ≥ wk, as required. This completes the proof of the claim (3.13).
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Since
k−1∑

j=t+1

ℓ(x̃j) <
k−1∑

j=t+1

ℓ(xj),

we get a contradiction to our previous choice of xj . Therefore, we must have that
w′

t ≥ w′
t+1. This proves the claim (3.11). Now applying Theorem 2.9, we deduce

that µ⋄ is Kleshchev, as required. This completes the proof of the proposition. ¤

3.14. Corollary. Let λ := (λ(1), · · · , λ(r)) be a Kleshchev r-partition of n with

respect to (e, v1, · · · , vr). Let γ be an arbitrary ladder node of λ, where res(γ) =
i ∈ Z/eZ. Suppose that λ is a multi-core. Then λ − {γ} is a again a Kleshchev

multipartition with respect to (e; v1, · · · , vr).

Proof. Let γ = γ1 > · · · > γa be the ladder i-sequence in λ. It is clear that
µ := λ−{γ1, · · · , γa} is again a multi-core. By Proposition 3.10, we know that both
λ and µ := λ − {γ1, · · · , γa} are strong ladder multipartitions. Since {γ2, · · · , γa}
is the ladder i-sequence of λ − {γ} = µ ⊔ {γ2, · · · , γa}, it follows directly from
definition that λ−{γ} is a strong ladder multipartition. Now using Lemma 3.7, we
see that λ−{γ} must be a Kleshchev multipartition with respect to (e; v1, · · · , vr)
as well. ¤

To sum up, we have the following inclusion relations:
{

Strong ladder
r-partitions of n

}
⊆

{
(Q, e)-restricted
r-partitions of n

}
⊆ Kr(n),

{
Strong ladder

r-partitions of n

}
⊆

{
Ladder

r-partitions of n

}
.

We conjecture they are actually all equalities. Proposition 3.10 says that

Kr(n)
⋂{

multi-cores
}
⊆

{
Strong ladder

r-partitions of n

}
.

In the remaining part of this section, we shall show that our conjecture is indeed
true in the case e = 0. In particular, we shall show that the “only if” part of
Conjecture 2.6 is always true if e = 0 and the notion of ladder multipartition
coincides with the notion of strong ladder multipartition in that case.

3.15. Proposition. Suppose that e = 0. Then any Kleshchev multipartition in

Kr(n) is a strong ladder multipartition and hence is (Q, e)-restricted. In that case,

for any ladder node γ of a strong ladder multipartition λ, λ−{γ} is again a strong

ladder multipartition.

Proof. Since in the case e = 0, every multipartition is an e-core. The proposition
follows immediately from Proposition 3.10 and Corollary 3.14. ¤

3.16. Theorem. Suppose that e = 0. Let λ ∈ Pr(n). Then λ is a ladder multipar-

tition if and only if λ is a strong ladder multipartition.

Proof. It suffices to show that if λ is a ladder multipartition, then λ is a strong
ladder multipartition.

We make induction on n. By definition, λ has a ladder node γ such that λ−{γ}
is again a ladder multipartition. Write res(γ) = i ∈ Z/eZ. Suppose that γ ∈ λ(c).
Since e = 0, γ must be the unique i-node of [λ(c)]. By induction hypothesis,
µ := λ − {γ} is a strong ladder multipartition. In particular, µ ∈ Kr(n − 1). If
µ has no ladder i-node, then γ is already a ladder i-sequence of λ. In that case it
follows from definition that λ is a strong ladder multipartition. Therefore, we can
assume that µ does have ladder i-nodes. Let γ1 > · · · > γa be the ladder i-sequence
of µ. By Proposition 3.15, µ−{γ1, · · · , γa} is again a strong ladder multipartition.
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Since γ > γ1 > · · · > γa is the ladder i-sequence of λ = µ ⊔ {γ, γ1, · · · , γa}, it
follows directly from definition that λ must be a strong ladder multipartition as
well. This completes the proof of the theorem. ¤
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of Uv(ŝle), Adv. Math., 218 (2008), 28–86.

[9] J. Brundan and A. Kleshchev, Graded decomposition numbers for cyclotomic Hecke algebras,
Adv. Math., 222 (2009), 1883–1942.
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