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L.M. SHNEERSON and D. EASDOWN

We prove that a finitely presented Rees quotient of a free inverse semigroup

has polynomial growth if and only if it has bounded height. This occurs if

and only if the set of nonzero reduced words has bounded Shirshov height

and all nonzero reduced but not cyclically reduced words are nilpotent. This

occurs also if and only if the set of nonzero geodesic words have bounded

Shirshov height. We also give a simple sufficient graphical condition for

polynomial growth, which is necessary when all zero relators are reduced. As

a final application of our results, we give an inverse semigroup analogue of

a classical result that characterises polynomial growth of finitely presented

Rees quotients of free semigroups in terms of primitive words that label loops

of the Ufnarovsky graph of the presentation.

1. INTRODUCTION

In [21] the authors initiated the study of growth of finitely presented Rees quotients
of free inverse semigroups and the relationship with satisfiability of identities. In
[5] they considered satisfiability of identities in signature with involution in the one
relator case. Lau considered rationality of growth series [9] and degrees of growth
[10] for semigroups from this class (see also [20] by the first author, in the wider
context of Gelfand-Kirillov dimension and Rees quotients using infinitely many
relators). In [21], growth was shown to be polynomial or exponential for semi-
groups from this class and an algorithmic criterion given to recognise which type
of growth occurs [21, Section 3]. The arguments relied on a graphical technique,
the ingredients of which are outlined in the next section, which is a modification
of an idea due to Ufnarovsky [23] [24] (see also [13, Chapter 24]). In Theorem 3.3
below a simplified graphical condition is given which is always sufficient for poly-
nomial growth, and necessary when all zero relators are reduced. Shirshov [18] (see
also [16, Chapter 4], [22]) introduced the notion of height in his celebrated study
of rings which satisfy a polynomial identity. In Theorem 4.3 in the final section we
give simple criteria for polynomial growth for semigroups from our class in terms
of height, nilpotency and geodesic words. Some of the main results of the final
section also appear in Chapter 4 of Lau’s doctoral thesis [11], but with different
proofs. The final result, Theorem 4.4, is an application of our results to yield an
inverse semigroup analogue of a classical result characterising polynomial growth
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of finitely presented Rees quotients of free semigroups in terms of primitive words
that label loops of the Ufnarovsky graph.

2. PRELIMINARIES

We assume familiarity with the basic definitions and elementary results from the
theory of semigroups, which can be found in any of [3], [7], [8] or [14]. Let S

be a semigroup generated by a finite subset X . Recall that the length l(t)
of an element t ∈ S (with respect to X ) is the least number of factors in all
representations of t as a product of elements of X , and

gS(m) = | { t ∈ S | l(t) ≤ m } |

is called the growth function of S . We say that S has polynomial growth if
there exist natural numbers q and d such that gS(m) ≤ qmd for all natural
numbers m , and exponential growth if there exists a real number α > 1 such that
gS(m) ≥ αm for all sufficiently large m . These definitions and notions of growth
apply also to subsets of S in an obvious way. Throughout this paper, we may
implicitly assume that zero lies in the generating set of any semigroup with zero
(so that zero always has length one). If t ∈ S and the equation t = w holds in S,
where w is a product of ℓ(t) elements of X regarded as a word over the alphabet
X , then we call the word w a geodesic for t (with respect to X).

Let A be a finite alphabet and put B = A ∪ A−1, where it is understood
that the union is disjoint and any a in A may also be denoted by (a−1)−1. The
free semigroup and free inverse semigroup over A are denoted by FA and FIA

respectively. Literal equality of words is denoted by the symbol ◦ , and |w|
denotes the number of letters in a word w. Recall that w is reduced if w does
not contain xx−1 as a subword for any letter x ∈ B , and that w is cyclically
reduced if w and w2 are both reduced (whence all powers of w are reduced). A
word is called primitive if it cannot be expressed as a power of a proper subword.
Recall that elements of FIA may be regarded as birooted word trees (introduced
in [12]), the terminology and theory of which are explained in [2] (see also [21,
Section 2]). As in [21], denote the word tree of a word w over B by T (w). If u

and v are elements of FIA , then T (u) is a subtree of T (v) if and only if v may
be expressed as a product of elements, one of whose factors is u , in which case
we say that u divides v . Any reference to Green’s relation J will be with repect
to FIA . Note that two words over A ∪ A−1 are J -related if and only if their
word trees are identical. Recall that an element s of a semigroup S with zero is
nilpotent if some power of s is zero.

Any given element w of FIA may also be expressed as

w = u1u
−1
1 u2u

−1
2 . . . uru

−1
r w (1)
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for some nonnegative integer r and reduced words u1, . . . , ur, w . If r is as small
as possible, so that no ui can be an initial segment of uj for i 6= j , then (as
in [20]) we call (1) the Schein (left) canonical form of w , which is unique up to
order of idempotents. Note that r is bounded by the number of leaf vertices on
T (w). We refer to the idempotents u1u

−1
1 , . . . , uru

−1
r as the components and w

as the irreducible part of w .
Let w be a nonempty word over B. A geodesic w̃ for w in FIA has the form

w̃ ◦ u0e1u1e2 . . . enun

where n ≥ 0 is the number of idempotents in the Schein canonical form,

w ◦ u0u1 . . . un and e1 ◦ . . . ◦ en ◦ 1 .

Geodesics in free inverse monoids were considered by Choffrut [4, Section 3.2], and
also by Poliakova and Schein [15], where they gave a rewriting system that reduces
an arbitrary word in the free inverse semigroup to its geodesic form (which is unique
up to the representation of idempotents). To form each word ei representing an
idempotent, one systematically traces the labels of edges of the branches of the
word tree that emanate from the geodesic chain of T (w) labelled by w at the vertex
pointed to by the last letter of ui−1 (or the initial vertex if i = 1 and u0 is empty).
The word ei is not unique unless there is exactly one branch emanating from that
vertex and that branch is a chain, because one may arbitrarily choose the order of
multiple subbranches to trace from any given vertex. The number of occurrences
of a given letter in ei however is unique.

As in [21], let MFI denote the class of finitely presented inverse semigroups
S with zero having a presentation of the form

S = 〈A | ci = 0 for i = 1, . . . , k 〉

where A is some finite alphabet, k some nonnegative integer and ci ∈ FA∪A−1

for i = 1 to k . Then MFI is precisely the class of Rees quotients of finitely
generated free inverse semigroups by finitely generated ideals. We refer to the
words c1, . . . , ck appearing in the above presentation as (zero) relators. Note that
S is unaffected by replacing any relator by a word to which it is J -equivalent.

We now redefine the Ufnarovsky graph Γ = ΓS of S (depending on the
presentation of S ). The illustrative example given below in Section 3 may assist
the reader in digesting the following construction. Suppose that there is at least
one relator which is J -equivalent to reduced word of length ≥ 2 . (This is a very
mild restriction for our purposes, and cases when it does not hold are catalogued
in comments following the statement of Theorem 2.1.) Note that the definition
of vertices given below is slightly different to that given in [21, Section 3]. This
modification shortens calculations when long relators appear which are not J -
equivalent to reduced words. Put d + 1 = max{ l(ci) | i = 1, . . . , k } and

d + 1 = max{ l(c) | c is a reduced word J−equivalent to some relator } .
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Note that d may be calculated easily by inspecting word trees of relators. Also
1 ≤ d ≤ d . Vertices of Γ are defined to be reduced words of length d which are
nonzero in S . If v1 and v2 are vertices then a directed edge from v1 to v2 is
defined in Γ if there exist letters g, h ∈ A∪A−1 such that v1g is a reduced word
which is nonzero in S and v1g ◦ hv2 . We regard the letter g as a label for this
edge. Paths in Γ may then be labelled by reduced words which are nonzero in S .
Conversely if w ◦ vu ◦ u′v′ is any nonzero reduced word where v and v′ have
length d then u labels a path in Γ emanating from v and terminating at v′ .

By a cycle in Γ we mean a path which starts and finishes at the same vertex.
By a loop at a vertex v we mean a cycle which begins at v using no other vertex
more than once. Recall from [21, Section 3] that (z, P ) is an adjacent pair if z is
a reduced word which labels a loop in Γ at a vertex v and P is a letter labelling
an edge which emanates from v and terminates outside the loop. The proof of
[21, Theorem 1] requires only trivial modifications to yield

THEOREM 2.1. Let S = 〈A | ci = 0 for i = 1, . . . , k 〉 be an inverse
semigroup from the class MFI and suppose that d ≥ 1 . Then the following
conditions are equivalent:

(a) S has polynomial growth.

(b) S does not contain any noncyclic free subsemigroup.

(c) (i) ΓS has no vertex contained in different cycles; and

(ii) if (z, P ) is an adjacent pair in ΓS then

zd+1PP−1zd+1 = 0 in S .

Note that if d = 0 then relators that are J -related to reduced words are J -
related to generators, in which case such generators and any relators in which they
or their inverses occur may be deleted without altering S (up to isomorphism).
If d does not exist then no relator is J -related to a reduced word, so that the
word tree of any relator must have at least one vertex of degree > 2, in which
case either (i) A = {a} and there are no relators, so that S is a free monogenic
inverse semigroup with zero, which has polynomial (in fact cubic) growth, or (ii) A

contains distinct letters a and b that generate a nonmonogenic free subsemigroup
of S, so that the growth of S is exponential. These observations and the previous
theorem tell us (as in [21, Corollaries 1 and 2]) that any Rees quotient of a finitely
generated free inverse semigroup by a finitely generated ideal has polynomial or
exponential growth (and there is an algorithm to determine which type of growth
occurs).

The proof of [21, Theorem 1] relied on a delicate argument that bounds the
number of idempotents in the Schein canonical form when the semigroup S has
polynomial growth. From that proof we extract the following result for use in the
final section of this paper:
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SCHOLIUM 2.2. Let S be an inverse semigroup from the class MFI having
polynomial growth where d ≥ 1. Form the Ufnarovsky graph ΓS and let N be the
number of paths in ΓS in which no cycle is repeated, and T the maximum number
of cycles in any such path. Put

λ = (2d + 2)T + 1 and M = λN + (d − 1)(2|A|)d−1 .

Then any nonzero element of S has at most M components in its Schein canonical
form. In particular, the number of leaf vertices of T (w) for any word w that is
nonzero in S is bounded by M + 2.

Finally we recall the notion of height introduced by Shirshov [18]. Let S be
any semigroup and X a subset of S . Denote by (X) the subsemigroup of S

generated by X . If s ∈ (X) can be expressed as a product

s = hα1

1 . . . hαk

k (2)

for some h1, . . . , hk ∈ X and positive integers α1, . . . , αk , and k is as small as
possible, then we say the height of s with respect to X is k . We say that a subset
T of S has bounded height ≤ k if there exists a finite subset X of S such that
T ⊆ (X) and the height of elements of T with respect to X is at most k . In the
final section of this paper we prove that, for semigroups from the class MFI , the
properties of having polynomial growth and having bounded height are equivalent.

Semigroups with bounded height in general need not have polynomial growth
(for example, the Baumslag-Solitar groups BS(1, k) for |k| > 1 [2]), and so various
authors have placed restrictions that guarantee polynomial growth (see, for exam-
ple, [20, 1, 25]). For example, suppose in addition to the above there is an ambient
generating set Y for S (so for semigroups from the class MFI we would take Y to
be B). If k can always be chosen minimally in (2) so that the word hα1

1 . . . hαk

k is a
geodesic for s (with respect to Y ) then we call k the Shirshov height of s. We say
a subset T of S has bounded Shirshov height ≤ k if each element of T has Shirshov
height and this is at most k. For example, in the simplest nontrivial case, if S is
the free monogenic inverse semigroup generated by a then its subset of nonzero
reduced words has bounded height 1 (being the set of positive and negative powers
of a), and S has bounded Shirshov height 3 using geodesic forms.

It is very easy to see that if S has bounded Shirshov height k then S has
polynomial growth (with respect to the ambient generating set Y ) of degree at
most k. In all the cases considered below in this paper where we establish bounded
Shirshov height, if s is also geodesic in (2) then the number of occurrences of any
given letter in B is the same on both sides of (2). Thus, for the cases we consider,
our notion in fact coincides with the original classical notion [18].

The following facts are used in the final section. The first is routine and well-
known. For the second, the following notation is convenient: denote by ‖w‖ the
number of vertices of T (w) where w is any word over B.
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LEMMA 2.3. If T is a subset of a free semigroup FA where A is a finite
alphabet and T has bounded height, then T has polynomial growth.

LEMMA 2.4 Suppose that T is a set of words over B = A ∪ A−1 where A is
a finite alphabet. If T has bounded height in the free inverse semigroup FIA then
T has polynomial growth in FIA. In particular, if a Rees quotient of a finitely
generated free inverse semigroup has bounded height then it has polynomial growth.

PROOF. Suppose that T has height ≤ K with respect to some finite set X of
words over B. Consider w ∈ T . Then w = v in FIA where

v ◦ hα1

1 . . . hαk

k

for some k ≤ K, words h1, . . . , hk ∈ X and positive integers α1, . . . , αk. If hi is
not idempotent then the cyclically reduced part of hi is nonempty, and it follows
quickly that αi < ‖hαi

i ‖. If hi is idempotent then we may assume αi = 1. Observe
that hαi

i divides w so that in all cases

αi ≤ ‖hαi

i ‖ − 1 ≤ ‖w‖ − 1 ≤ |w̃| = ℓ(w) ,

where ℓ(w) is calculated in FIA with respect to B. This produces the constraint

α1 + . . . + αk ≤ K ℓ(w) .

from which it follows readily that the growth of T in FIA with respect to B is
bounded above by some polynomial of degree ≤ K, completing the proof of the
lemma.

3. GROWTH

In this section we give a useful sufficient condition for polynomial growth in terms
of the Ufnarovsky graph. This condition is also necessary when all the relators are
reduced. We begin with two observations concerning the existence of loops and
adjacent pairs. We assume for the time being that S has a presentation of the
form given in the previous section and d ≥ 1 .

LEMMA 3.1. Any word labelling a loop in ΓS is primitive.

PROOF. Suppose that zα labels a loop emanating from a vertex v . Then

zαd labels a cycle ending at v , so v must be a suffix of zαd . If v ◦ uzβ for
some β ≥ 1 and words u, u′ such that z ◦ u′u then vz ◦ uu′v . If z ◦ v′v for
some v′ then vz ◦ vv′v . In both cases z labels a path beginning and ending at
v . Hence, since zα labels a loop, α = 1 , completing the proof.
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LEMMA 3.2. Suppose that ΓS contains no vertex in different cycles, that v

is a nonempty word, P is a letter that is not the first letter of v , and vd+1P is
reduced and nonzero in S . Then v ◦ zα for some word z and positive integer
α such that (z, P ) is an adjacent pair in ΓS .

PROOF. Certainly vd+1 is nonzero in S . This implies that all divisors of
powers of v are nonzero in S , since all relators have length ≤ d + 1 . Write

vd ◦ v1v2 where v2 has length d . Then v2v
d+1 ◦ v2vvd ◦ (v2vv1)v2 . But

v2v
d+1 is reduced and nonzero in S , since it divides a power of v . Hence vd+1

labels a cycle beginning and ending at v2 . Let z be the smallest suffix of vd+1

which labels a loop at v2 . Since ΓS contains no vertex in different cycles, vd+1

is a positive power of z . Hence both v and z must be positive powers of some

word w . By Lemma 3.1, z ◦ w . Further, since vd+1P is reduced and nonzero
in S and again since no vertex is contained in different cycles, P must label an
edge emanating from v2 which terminates outside the loop labelled by z . Hence
(z, P ) is an adjacent pair in ΓS and the lemma is proved.

THEOREM 3.3. Let S = 〈A | ci = 0 for i = 1, . . . , k 〉 be an inverse
semigroup from the class MFI where d ≥ 1 . Then S has polynomial growth if

(i) ΓS has no vertex contained in different cycles; and

(ii) if (z, P ) is any adjacent pair then (z−1, P ) is not an adjacent pair.

If S has polynomial growth and each relator is J -equivalent to a reduced word,
then (i) and (ii) hold.

PROOF. Suppose that conditions (i) and (ii) hold and that (z, P ) is an ad-
jacent pair. Suppose that zd+1PP−1zd+1 is nonzero in S . Then (z−1)d+1P is
reduced and nonzero in S . Hence by Lemma 3.2, z−1 ◦ wα for some word w

and positive integer α such that (w, P ) is an adjacent pair. But z−1 labels a
loop in ΓS , since z labels a loop and inversion induces an edge-reversing bijection
of the graph. Hence, by Lemma 3.1, α = 0 . Thus (z−1, P ) is an adjacent pair,
contradicting (ii). Hence zd+1PP−1zd+1 = 0 in S . By Theorem 2.1, S has
polynomial growth.

Suppose now that S has polynomial growth and all relators are J -equivalent
to reduced words. Certainly (i) holds by Theorem 2.1. Let (z, P ) be an adjacent
pair. By Theorem 2.1, zd+1PP−1zd+1 = 0 in S . Hence some relator ci divides
zd+1PP−1zd+1 . Since ci is J -equivalent to a reduced word, its word tree is a
chain of ≤ d + 1 edges, and so, by inspection, must be a subtree of the word tree
of zd+1P or P−1zd+1 . But zd+1P 6= 0 in S , since (z, P ) is an adjacent pair.
Hence P−1zd+1 = 0 in S , so (z−1, P ) cannot be an adjacent pair. This shows
that (ii) holds, and the proof of the theorem is complete.
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The condition given in the previous theorem is not in general necessary for
polynomial growth. For example, consider the semigroup

S = 〈a, b | ab = b−1a = ab−1ba = 0〉 .

Then d = 1 , d = 3 and ΓS is the following graph:

a b

b−1 a−1

a b

b−1 a−1

a

b−1

b−1 a−1

The adjacent pairs are (a, b−1), (a−1, b−1), (b, a−1) and (b, a), and

a4b−1ba4 = a−4b−1ba−4 = b4a−1ab4 = b4aa−1b4 = 0

in S. There are no vertices in different cycles, so S has polynomial growth by
Theorem 2.1. However, both (a, b−1) and (a−1, b−1) are adjacent pairs of ΓS ,
so that (ii) of Theorem 3.3 fails.

4. BOUNDED HEIGHT

This section begins with a lemma that reformulates condition (c)(ii) of Theorem
2.1 in terms of nilpotent elements. The paper culminates in several equivalences
relating polynomial growth to height, the main result being that the growth of a
finitely presented Rees quotient of a free inverse semigroup is polynomial if and
only if this quotient has bounded height.

LEMMA 4.1. Let S belong to the class MFI and suppose that no vertex of ΓS

is contained in different cycles. Then zd+1PP−1zd+1 = 0 in S for all adjacent
pairs (z, P ) in ΓS if and only if all reduced words that are not cyclically reduced
are nilpotent in S .

PROOF. Suppose that w ◦ u−1vu is reduced, u is nonempty, v is cyclically
reduced and w is not nilpotent in S . Let P be the first letter of u . Since wd+1
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is nonzero in S , and since vd+1P is a reduced word dividing wd+1 , vd+1P is
nonzero in S . Hence, by Lemma 3.2, v ◦ zα for some word z and positive integer
α such that (z, P ) is an adjacent pair. But then zd+1PP−1zd+1 is nonzero in S

since it divides w2d+2 and w is not nilpotent.
Conversely let (z, P ) be an adjacent pair such that zd+1PP−1zd+1 is nonzero

in S . Put w ◦ P−1zd+1P . Observe that w is a reduced but not cyclically
reduced word. If w is nilpotent then, by inspection, because the length of each
relator is ≤ d + 1 some relator must divide zd+1PP−1zd+1 , a contradiction.
Hence w is nilpotent and the proof of the lemma is complete.

The if part of the following theorem is a standard height argument, but is
included for completeness and the convenience of the reader. The only if part
relies on Lemma 2.4. The result also appears as Theorem 4.3.4 of [9] with a
different proof.

THEOREM 4.2. Let S belong to the class MFI and let T be the set of reduced
words that are nonzero in S . Suppose also that d ≥ 1 . Then T has bounded
height [bounded Shirshov height with respect to a finite set of reduced words over
B] if and only if no vertex of ΓS is contained in different cycles.

PROOF. Suppose firstly that no vertex of ΓS is contained in different cycles.
Let Y be the set of labels of loops in ΓS and put X = Y ∪ A ∪ A−1 , which is
clearly finite. Let l1 be the number of edges in the longest path in ΓS which
contains no loops and let l2 be the number of loops in ΓS . Put k = d + l1 + l2 .
Let w be a reduced word which is nonzero in S . If l(w) ≤ d then certainly w is
a product of ≤ k elements of X . Suppose that l(w) > d . Then w ◦ vw′ where
v is a vertex of ΓS and w′ is the label of a path π in ΓS emanating from v .
Suppose that π has m loops. No vertex of π is contained in two different loops.
Hence

w ◦ vP1(x1y1)
α1x1P2(x2y2)

α2x2 . . . Pm(xmym)αmxmPm+1 (3)

where, for i = 1, . . . , m , xi labels the portion of the ith loop from the vertex
where π enters to the vertex where π exits, yi labels the remainder of the ith
loop (so that xiyi labels the entire ith loop at the vertex of entry), P1 and Pm+1

are labels of the portions of π which lead up to the first and away from the last
loop respectively, and for i = 2, . . . , m , Pi labels the portion of π connecting the
(i − 1)th to the ith loop. It is understood here that any of P1, Pm+1, y1, . . . , ym

could be empty, but certainly all of P2, . . . , Pm, x1, . . . xm are nonempty. Observe
that l(P1x1P2x2 . . . PmxmPm+1) ≤ l1 and m ≤ l2 , so that w is a product of ≤ k

powers of elements of X . Because we have graphical equality above of reduced
words, the right hand side is automatically a geodesic for the left hand side, and
this shows that T has bounded Shirshov height ≤ k with respect to a finite set
of reduced words over B.
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Conversely, if ΓS has a vertex in two different cycles, then the growth of S

is exponential, so that T does not have bounded height, by Lemma 2.4, and the
proof of the theorem is complete.

THEOREM 4.3. Let S belong to the class MFI . The following conditions are
equivalent:

(a) S has polynomial growth.

(b) The set of reduced words that are nonzero in S has bounded height
[bounded Shirshov height with respect to some finite set of reduced
words over B] and all reduced words that are not cyclically reduced
are nilpotent.

(c) The set of geodesic words that are nonzero in S has bounded Shirshov
height with respect to some finite set of reduced words over B.

(d) S has bounded height.

PROOF. The equivalence of (a), (b), (c) and (d) is immediate if d = 0 or d

does not exist, by the observations following Theorem 2.1 and by Lemma 2.3. We
may suppose therefore that d ≥ 1.

(a) ⇐⇒ (b): This follows by Theorem 2.1, Lemma 4.1 and Theorem 4.2.

(a) =⇒ (d): Suppose S has polynomial growth. Let T denote the set of reduced
words that are nonzero in S. Because (a) implies (b), there exists a finite set X

such that T has bounded height k with respect to X . Using the Schein canonical
form and the bound M in Scholium 2.2, it is immediate then that S has height
bounded by (2M + 1)k with respect to X . Thus (d) holds.

(d) =⇒ (a): This follows by Lemma 2.4.

(a) ⇐⇒ (c): As we noted it is easy to see that bounded Shirshov height implies
polynomial growth (or alternatively, it is obvious that (c) implies (d), and we have
just observed that (d) implies (a)). Suppose then S has polynomial growth, and
as before let T denote the set of reduced words that are nonzero in S. Let U
denote the set of all geodesics that are nonzero in S. For n ≥ 2, let Un denote
the subset of geodesics whose word trees have at most n leaf vertices. Since a
word tree has at most two more vertices than the number of idempotents in the
Schein canonical form, we have U = UM+2, by Scholium 2.2. We prove that Un

has bounded Shirshov height by induction, for n = 2, . . . , M +2. By Theorem 4.2,
there exists a set X of reduced words such that T has bounded Shirshov height k

with respect to X and the alphabet B. Observe first that

U2 = { g−1gwhh−1 | g, h, gwh ∈ T }

so that the Shirshov height of U2 is bounded by 3k, which starts an induction. Note
the height is Shirshov because each reduced word in the factorisation is expressed
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as a product of powers of elements of X using usual concatenation of words in the
free semigroup FB. This same observation will hold in the inductive step below
(without comment). Suppose n > 2 and, as inductive hypothesis, that Un−1 has
Shirshov height bounded by k′ with respect to X . We claim that Un has Shirshov
height bounded by

K = (M + 1)k′ + 2k

where M is the constant in Scholium 2.2. Consider a geodesic word of the form

w ◦ u0e1u1e2 . . . emum

that is not in U2. If u0 is nonempty then T (e1u1e2 . . . emum) has one less leaf
vertex than T (w), so by the inductive hypothesis, w has height bounded by

k + k′ ≤ K .
Suppose then that

w ◦ e1u1e2 . . . emum

where e1 is the (nonempty) label of a tree emanating from the initial vertex of
T (w). If T (e1) is a chain then u1 and e2 are nonempty (since w 6∈ U2), so e1 ◦ g−1g

for some reduced word g such that gu1 is reduced, and T (e2u2 . . . emum) has one
fewer leaf vertex than T (w), so, by the inductive hypothesis, w has height bounded
by

2k + k′ ≤ K .

Suppose then that T (e1) is not a chain. There are two subcases. Suppose first
that the degree of the initial vertex of the word tree T (w) is δ > 2, so that
e1 ◦ f1 . . . fδ−1 where f1, . . . , fδ−1 label idempotents corresponding to branches
emanating from the initial vertex. But T (f1), . . . , T (fδ−1) and T (u1e2 . . . emum)
have fewer than n leaf vertices, and δ − 1 ≤ M by Scholium 2.2. Hence w has
height bounded by

(δ − 1)k′ + k′ ≤ (M + 1)k′ ≤ K .

Finally, suppose the degree of the initial vertex is 2. Then

e1 ◦ zg1 . . . gℓ−1z
−1

for some reduced word z labelling a path from the initial vertex to a vertex of
degree ℓ say, from which there are ℓ − 1 branches corresponding to idempotents
labelled by g1, . . . , gℓ−1. Now T (g1), . . . , T (gℓ−1) and T (u1e2 . . . emum) have fewer
than n leaf vertices, so w ◦ zg1 . . . gℓ−1z

−1u1e2 . . . emum has height bounded by

k + (ℓ − 1)k′ + k + k′ ≤ (M + 1)k′ + 2k = K ,

and the proof of the theorem is complete.
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We remark that the equivalence of (a) and (d) is also proved, by different
means, in [9, Theorem 4.3.6].

As an application of the equivalence of (a) and (b) of the previous theorem,
we prove Theorem 4.4 below, which may be regarded as an inverse semigroup
analogue of the following classical result: consider a finitely presented semigroup
Π with zero such that all relations have zero on the right hand side (that is, Π is
a finitely presented Rees quotient of a free semigroup). Then Π has polynomial
growth if and only if each nonzero element of Π that is not nilpotent can be
represented by a word whose primitive root labels some loop of the Ufnarovsky
graph of the presentation. This follows from [6] where the syntactic structure of
the Jacobson radical was described (also see this description in [24, Section 7.6,
Theorem 3]) and the trivial fact that Π embeds in an associative monomial algebra
with the same set of generators and defining relations (see also [13, Chapter 24]).

THEOREM 4.4. Let S belong to the class MFI . The following conditions are
equivalent:

(a) S has polynomial growth.

(b) If u is a word over B such that u is not nilpotent in S, then either
u is idempotent, or u ◦ x−1xwyy−1 where w ◦ u is cyclically reduced,
x is a suffix of w, y is a prefix of w and w ◦ zα (α ≥ 1) for some
primitive word z that labels a loop of the Ufnarovsky graph.

PROOF. As before, the equivalence of the conditions is immediate if d is zero
or does not exist, so we may suppose d ≥ 1.

Suppose first that (a) holds and u is a word over B that is neither idempotent
nor nilpotent in S. By replacing u by a sufficiently high power, if necessary, we
may suppose ℓ(w) > d where w ◦ u. By [21, Lemma 5.2], w is a cyclically reduced
word such that u lies in the closure (in the sense of Schein [17], see also [8] or [14])
of the inverse subsemigroup of FIA generated by w. Replacing w by a sufficiently
high power, if necessary, we may suppose that u ◦ x−1xwyy−1 where x is a suffix
and y is a prefix of w. But there is no vertex of ΓS contained in different cycles,
since S has polynomial growth, so an equation of the form (3) holds:

w ◦ vP1(x1y1)
α1x1P2(x2y2)

α2x2 . . . Pm(xmym)αmxmPm+1 ,

where cj ◦ xjyj are distinct words labelling loops of ΓS for j = 1, . . . , m. By
Lemma 3.1, each cj is primitive. But w is not nilpotent and no vertex of ΓS is
contained in different cycles, so it follows quickly that m = 1 and

w ◦ vP1c
α1

1
◦ zα

for some positive integer α > α1, where z ◦ c1, completing the proof that (b)
holds.
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Suppose conversely that (b) holds. We first prove that no vertex of ΓS lies
in distinct cycles. Suppose to the contrary that ΓS has a vertex v in two distinct
cycles, which we may assume are labelled by words ux and wx respectively where
x is the last letter of v and u and w begin with different letters. For any positive
integers β and γ, consider the word

Dβ,γ ◦ (ux)β(wx)γ .

Then Dβ,γ labels a path in ΓS , so certainly Dβ,γ is not nilpotent in S. But we
may take one of β or γ sufficiently large so that Dβ,γ is not a power of a word
of length less than or equal to the maximum length of all reduced words labelling
loops of ΓS . This violates condition (b). Hence no vertex of ΓS lies in distinct
cycles. By Theorem 4.2, the set of all reduced words that are nonzero in S has
bounded height. But also by (b), every reduced but not cyclically reduced nonzero
word in S must be nilpotent. Hence condition (b) of Theorem 4.3 holds, so that
(a) holds, completing the proof of the theorem.
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