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Abstract. Orientable 4-dimensional infrasolvmanifolds bound ori-
entably. We show that every non-orientable 4-dimensional infra-
solvmanifold M with β = β1(M ;Q) > 0 or with geometry Nil4 or
Sol3×E1 bounds. However there are Sol4

1
-manifolds which are not

boundaries. The question remains open for Nil3 × E1-manifolds.
Any possible counter-examples have severely constrained funda-
mental groups. We also find simple cobounding 5-manifolds for
all but five of the 74 flat 4-manifolds, and investigate which flat
4-manifolds embed in Rn, for n = 5, 6 or 7.

1. introduction

Flat n-manifolds are boundaries [8]. This result has been extended to
restricted classes of infranilmanifolds [7, 12]. We shall show that it does
not extend to all infrasolvmanifolds. Since every 3-manifold bounds,
and every orientable 3-manifold bounds orientably, dimension 4 is the
first case of interest. Here there is a geometric simplification. Every
4-dimensional infrasolvmanifold is either a mapping torus or the union
of two twisted I-bundles. Simple algebraic arguments show that every
such mapping torus bounds, while a geometric construction applies to
many of the others. We find severe constraints on possible counter-
examples, which lead to a Sol41-manifold which is not a boundary. In
the latter part of the paper we seek explicit constructions of 5-manifolds
with boundary a given flat 4-manifold, and we consider also the related
question of which flat 4-manifolds embed in low codimensions.
Every infrasolvmanifold is finitely covered by a quotient Γ\S, where

Γ is a discrete cocompact subgroup of a 1-connected solvable Lie group
S [1]. Such quotients are parallelizable, and so the rational Pontr-
jagin classes of infrasolvmanifolds are 0. In particular, orientable 4-
dimensional infrasolvmanifolds have signature σ = 0. Therefore they
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bound orientably, and those with w2 = 0 bound as Spin-manifolds,
since Ω4 and ΩSpin

4 are detected by σ.
Non-orientable bordism is detected by Stiefel-Whitney numbers. In

our context, the only Stiefel-Whitney class of interest is w4
1. It fol-

lows easily that every 4-dimensional infrasolvmanifold M with β =
β1(M ;Q) > 0 bounds non-orientably. (This class includes all Sol4m,n-

manifolds with m 6= n and all Sol40-manifolds.) If β = 0 then π =
π1(M) ∼= A ∗C B, where A, B and C are fundamental groups of 3-
dimensional infranilmanifolds and [A : C] = [B : C] = 2. In §4–§9
we use a construction based on mapping cylinders of double covers to
show that many such manifolds bound. In particular, all Nil4- and
Sol3 × E1-manifolds bound. We do not yet have a complete result for
the remaining two geometries.
In §10 we show that if β ≥ 2 (and in many cases with β = 1) then

M is also the total space of an S1-bundle over a closed 3-manifold,
and so bounds the associated disc bundle. If the S1-bundle space M
is orientable then so is the disc bundle space. In §11 we show that the
mapping cylinder construction applies to most of the 24 flat 4-manifolds
which are not S1-bundle spaces. Closed hypersurfaces in euclidean
spaces bound. In §12 we show that, with one possible exception, all
flat 4-manifolds embed in R7, while between 24 and 56 embed in R6

and between 11 and 13 embed in R5.

2. solvable lie geometries of dimension 4

If G is a group let G′, ζG and
√
G denote its commutator subgroup,

centre and Hirsch-Plotkin radical, respectively. Let Gab = G/G′ be
the abelianization, and let I(G) = {g ∈ G | ∃n > 0, gn ∈ G′} be
the isolator subgroup. This is clearly a characteristic subgroup, since
G/I(G) is the maximal torsion-free abelian quotient of G. If S is a
subset of G then 〈S〉 shall denote the subgroup of G generated by S,
and 〈〈S〉〉 shall denote the normal closure of 〈S〉. We use the notation
of Chapter 8 of [9] for automorphisms of flat 3-manifold groups.
Every 4-dimensional infrasolvmanifold is geometric. There are six

relevant families of geometries: E4, Nil4, Nil3 × E1, Sol40, Sol41 and
Sol4m,n. (The final family includes the product geometry Sol3 × E1 =
Sol4m,m, for all m > 0, as a somewhat exceptional case.)
Let G be a 1-connected solvable Lie group of dimension 4 with a left

invariant metric, corresponding to a geometry G of solvable Lie type.
Let Isom(G) be the group of isometries, and let KG < Isom(G) be the
stabilizer of the identity in G. Let π < Isom(G) be a discrete subgroup
which acts freely and cocompactly on G, and let M = π\G. If β =
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β1(M ;Q) ≥ 1 then M is the mapping torus of a self-diffeomorphism of
a E3-, Nil3- or Sol3-manifold. If β = 1 the mapping torus structure is
essentially unique. If β ≥ 2 then M also fibres over the torus T , with
fibre T or the Klein bottle Kb.
All orientable Sol40-manifolds are coset spaces π\G̃ with π a discrete

subgroup of a 1-connected solvable Lie group G̃, which in general de-
pends on π. (See page 138 of [9].) In all other cases, the translation
subgroup G ∩ π is a lattice in G, and is a characteristic subgroup of π
[4]. If G is nilpotent then G ∩ π =

√
π; in general,

√
π ≤ G ∩ π, and

the holonomy π/G ∩ π is finite.
If g : X → X is a self-homeomorphism letM(g) = X×[0, 1]/(z, 0) ∼

(g(z), 1) be the mapping torus of g, and let [x, t] be the image of (x, t)
in M(g). If f : Y → Z let MCyl(f) be the mapping cylinder of f .

3. Stiefel-Whitney classes and the cases with β ≥ 1

We give first some simple observations on the Stiefel-Whitney classes
of 4-manifolds, which we shall use to show that 4-dimensional infrasolv-
manifolds with β ≥ 1 are boundaries.

Lemma 3.1. Let M be a closed 4-manifold and wi = wi(M). Then

w4 = w2
2 + w4

1 and w1w3 = 0.

Proof. The Wu formulae give v1 = w1, v2 = w2 + w2, w3 = Sq1w2 and
w4 = w2

2+w
4, since v3 = v4 = 0. Hence Sq1z = w1z, for z ∈ H3(M ;F2).

If x ∈ H1(M ;F2) then Sq
1(xw2) = x2w2 + xSq1w2. Therefore

xw3 = (w1x+ x2)w2 = (w1x+ x2)2 + (w1x+ x2)w2
1 = x4 + w1x

3.

In particular, w1w3 = w4 + w4 = 0. �

If M is a 4-dimensional infrasolvmanifold then w4(M) = 0, since
w4(M) ∩ [M ] is the reduction of χ(M) = 0 mod (2). Therefore w4

1 =
w2

1w2 = w2
2 is the only Stiefel-Whitney class of interest.

Lemma 3.2. Let M be a closed n-manifold and x ∈ H1(M ;F2). If

n > 2 and xn−1 6= 0 then xn 6= 0.

Proof. This follows easily from the non-degeneracy of Poincaré duality,
since x2 6= 0 and H1(M ;F2) is generated by x and Ker(x ∪ −). �

Lemma 3.3. If N is a non-orientable 3-manifold then β1(N ;Q) > 0.

Proof. This is clear, since χ(N) = 0 and H3(N ;Q) = 0. �

Similarly, if M is an orientable 4-manifold with χ(M) = 0 then
β1(M ;Q) > 0.
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Lemma 3.4. If a manifoldM fibres over an r-manifold, with orientable

fibre, then w1(M)r+1 = 0.

Proof. This is clear, since w1(M) is induced from a class on the base
of the fibration. �

Theorem 3.5. Let M be a 4-dimensional infrasolvmanifold with β =
β1(M ;Q) > 0. Then M = ∂W for some 5-manifold W .

Proof. The manifold M is the mapping torus of a (based) self diffeo-
morphism f of a closed 3-manifold N . Let π = π1(M) and ν = π1(N).
Then π and ν are virtually polycyclic, and π ∼= ν⋊θZ, where θ = π1(f).
If N is not orientable then I(ν) < ν, by Lemma 3.3, and so I(ν) ∼= Z,
Z2 or π1(Kb) = Z ⋊−1 Z. In the latter case I(I(ν)) ∼= Z. In all cases,
M fibres over a lower-dimensional manifold with orientable fibre, and
so w4

1 = 0, by Lemma 3.4. Therefore all the Stiefel-Whitney numbers
of M are 0, and so M = ∂W for some 5-manifold W . �

If M is a non-orientable Sol41-manifold then β = 0. There are non-
orientable manifolds with β > 0 for each of the other geometries.
For all but three flat 4-manifolds, either w2

1 = 0 or w2 = 0 or w2
1 = w2

[10]. Hence w4
1 = 0, so all Stiefel-Whitney numbers are 0, and the

manifold bounds. Two more are total spaces of S1-bundles, and so
bound the associated disc bundles. Thus only the example with group
G6 ∗φ B4 requires further argument. (See the next section.)
All Sol4m,n-manifolds (with m 6= n) and all Sol40-manifolds are map-

ping tori of self-diffeomorphisms of R3/Z3. (See Corollary 8.4.1 of [9].)
Thus they all bound.
We may assume henceforth that β = 0 (so the manifolds considered

are not orientable) and the geometry is Nil4, Nil3×E1, Sol41 or Sol
3×E1.

(However we shall also consider E4 in some detail.)
We shall need the following more specialized lemmas later.

Lemma 3.6. Let w : π → F2 = Z/2Z be a homomorphism. Then

p : π → G = π/〈k2 | w(k) = 0〉 induces an isomorphism H1(G;F2) ∼=
H1(π;F2). If p∗(uw) = 0 in H2(π;F2) then uw = 0 in H2(G;F2).

Proof. If p∗(uw) = 0 in H2(π;F2) there is a function f : π → F2

such that u(g)w(g′) = f(g) + f(g′) − f(gg′), for all g, g′ ∈ π. Let
K = Ker(w) and H = 〈k2 | w(k) = 0〉. Then f |K is a homomorphism,
and so f(h) = 0, for all h ∈ H . Hence f(g) = f(gh), for all g ∈ π and
h ∈ H . Thus f factors through a function f̄ : G→ F2, and so uw = 0
in H2(G;F2). �

The next lemma uses the non-degeneracy of Poincaré duality.
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Lemma 3.7. LetM be a non-orientable closed 4-manifold with χ(M) =
0, and let w = w1(M). Suppose that H1(M ;F2) = 〈u, w〉, where u2 = 0.
Then

(1) if w2 6= 0 and uw 6= 0, then w3 = 0.
(2) if w2 6= 0 and uw = 0 then w4 6= 0 ⇔ w2(M) 6= 0 or w2.

Proof. (1). Since u.uw2 = u2w2 = 0 and w.uw2 = Sq1(uw2) =
u2w2 = 0, we have uw2 = 0, by Poincaré duality. Now β2(M,F2) =
2β1(M,F2)−2 = 2. Since uw.w2 = uw.uw = 0 but uw 6= 0 and w2 6= 0
we must have uw = w2, by Poincaré duality. Hence w3 = uw2 = 0.
(2). Let v = w2(M) + w2 = v2(M). If w2(M) 6= 0 or w2 then

H2(M ;F2) = 〈w2, v〉. Since χ(M) = 0 we have v2 = w4 = 0. Therefore
w4 = (w2)2 = w2v 6= 0, by Poincaré duality. The converse is clear,
since v22 = w4 = 0. �

The second condition may be generalized as follows. Let H i =
H i(M ;F2) for i = 1 and 2. If w2

1 6= 0, w1 ∪ − : H1 → H2 has rank
1, w2 is not in the image of H1 ⊙ H1 and H2 = 〈H1 ⊙H1, w2〉, then
w4

1 6= 0. However these conditions are harder to check if β1(π;F2) > 2.
There are two (flat) 4-manifolds which fibre over T with fibre Kb,

and thus bound, but for which none of the conditions w2
1 = 0, w2 = 0

or w2 = w2
1 hold. Thus these conditions are not necessary for a 4-

manifold to bound. Nevertheless, manifolds which are not mapping
tori and whose orientable double covers are not Spin 4-manifolds may
provide non-bounding examples.

4. 4-manifolds with χ = β = 0

If M is a closed 4-manifold with χ(M) = 0 and β = 0 then M
is non-orientable, and there is an epimorphism f : π → D∞, where
D∞ = Z/2Z ∗ Z/2Z is the infinite dihedral group, by Lemma 3.14 of
[9]. Hence π ∼= A ∗C B, where C = Ker(f) and [A : C] = [B : C] =
2. Since D∞

∼= Z ⋊ Z/2Z, the group π has a subgroup of index 2
which is a semidirect product C ⋊ Z. Since β = 0 the Mayer-Vietoris
sequence for the homology of π gives an epimorphism from H1(C;Q)
to H1(A;Q)⊕H1(B;Q), and so β1(A;Q) + β1(B;Q) ≤ β1(C;Q).
If, moreover, M is an infrasolvmanifold then A, B and C are the

fundamental groups of 3-dimensional infrasolvmanifolds X , Y and Z,
say, and M =MCyl(c) ∪Z MCyl(d), where c : Z → X and d : Z → Y
are double covers. The next two lemmas are clear.

Lemma 4.1. If c : Z → X is a double cover of an n-manifold X then

MCyl(c) is an (n + 1)-manifold with boundary Z. If Z is connected
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the mapping cylinder is orientable if and only if X is non-orientable

and c is the orientable double cover. �

In particular, if f is an orientation-preserving self-diffeomorphism of
a 3-manifold N then M(f 2) bounds a non-orientable 5-manifold.

Lemma 4.2. Let X and Y be connected (n− 1)-manifolds which have

double covers c : Z → X and d : Z → Y with the same domain,

and let M = MCyl(c) ∪Z MCyl(d). Suppose that X, Y and Z each

bound n-manifolds X̂, Ŷ and Ẑ, and that c and d extend to double

covers ĉ : Ẑ → X̂ and d̂ : Ẑ → Ŷ . Let W = MCyl(ĉ) ∪Ẑ MCyl(d̂).
Then ∂W =M . If c and d are the orientable covers of non-orientable

manifolds then W and M are orientable. �

We shall show that this construction applies to many 4-dimensional
infrasolvmanifolds.
Theorems 8.4–8.9 of [9] limit the possibilities for A,B and C. In

particular, if C is virtually Z3 but π is not virtually abelian then C
has holonomy of order ≤ 2. There are four such, two orientable: Z3

and G2 = Z2 ⋊−I Z, and two non-orientable: B1 = Z × π1(Kb) and
B2. Similarly, if C is a Nil3-group but π is not virtually nilpotent then
[C :

√
C] ≤ 2. We shall not need to consider the possibility that C be

a Sol3-group.
We note also the following simple result.

Lemma 4.3. If π ∼= A∗CB where [A : C] = [B : C] = 2 and A, B and

C are the groups of 3-dimensional infranilmanifolds then the holonomy

of A maps injectively to the holonomy of π. �

5. amalgamation over flat 3-manifold groups

If C = Z3 then A and B have holonomy of order ≤ 2. Since β1(A;Q)
and β1(B;Q) ≥ 1 and β1(A;Q) + β1(B;Q) ≤ 3, we may assume that
A ∼= G2 and B is not Z3. Let f, g and h be the involutions of S1 ×D2

given by f(u, v) = (ū, v̄), g(u, v) = (u, v̄) and h(u, v) = (ū, uv), for all
(u, v) ∈ S1 ×D2. The boundaries of the mapping toriM(f),M(g) and
M(h) are the flat 3-manifolds with groups G2, B1 and B2, respectively,
and in each case the mapping torus is doubly covered by S1×D2×S1,
with boundary the 3-torus R3/Z3. Therefore the mapping cylinder
construction shows that M is a boundary.
If C = G2 then β1(C;Q) = 1. We may assume that A = G6 and B

is one of G2, G4, G6, B3 or B4. If B = G2
∼= C then the inclusion of C

into B induces an isomorphism C/I(C) ∼= B/I(B), and is induced by
a double cover from M(f) to itself. Non-orientable 3-manifolds bound
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non-orientable 4-manifolds, and their orientable double covers bound
the orientable double covers of such manifolds. If f is the involution
of S1×D2 defined above then M(f) has an orientation-preserving free
involution given by [u, v, t] 7→ [−u, v̄,−t]. The quotient manifold has
boundary HW , the Hantzsche-Wendt flat 3-manifold with group G6.
Thus the mapping cylinder construction applies, provided B 6∼= G4.
If C = B1 or B2 then A and B must be B3 or B4, and I(I(A)) =

I(I(B)) = I(C) ∼= Z. Hence π/I(C) ∼= A/I(C) ∗Z2 B/I(C) and so
is a 3-manifold group. The manifold M is then the total space of an
S1-bundle. (The mapping cylinder construction can also be used here.)
There remains the possibility that A = G6, B = G4 and C = G2. In

this case the holonomy group Z/4Z of G4 does not act diagonally, and
there is no obvious construction of a 4-manifold with boundary the flat
3-manifold with group G4. Instead we may use algebraic arguments.
The group π then has a presentation

〈t, x, y, z | xy2x−1 = y−2, yx2y−1 = x−2, z = xy, tx2t−1 = x2my2p,

ty2t−1 = x2ny−2m, tzt−1 = x−2ry2sz, t2 = x2ay2bz〉,

where a, b,m, n, p,∈ Z, r = (m − 1)a + pb, s = −na + (m + 1)b and
m2 + np = −1. (We may assume also that 0 ≤ a, b ≤ 1.) Here
C = 〈x2, y2, z〉, and π/C ∼= D∞ is generated by the images of t and

x. The automorphism of
√
C = 〈x2, y2, z2〉 determined by conjugation

by tx has eigenvalues m ±
√
m2 + 1. If m = 0 then π is virtually

abelian, and the corresponding manifold M is flat. In this case π is
also isomorphic to G2 ∗Z3 B2, and so M bounds. Otherwise, π is not
virtually nilpotent, and M is a Sol3 × E1-manifold.
The generators t, x and y in this presentation represent orientation-

reversing elements of π. If m is even, or if m is odd and n, p are both
even, then π/π′ ∼= (Z/4Z)2, and so w2

1 = 0. Thus we may asume
that m,n are odd (and hence p is even). In this case π/π′ ∼= Z/8Z ⊕
Z/2Z, where the summands are generated by the images of tx−1 and
x, respectively. Thus w = w1 is projection onto the second summand.
Let u : π → Z/2Z be the homomorphism determined by u(t) = 1
and u(x) = 0. Let H = 〈k2 | w(k) = 0〉, as in Lemma 3.6. Then
G = π/H ∼= Z/4Z ⊕ Z/2Z, and so u2 = 0 and uw 6= 0 in H2(G;F2).
Hence uw 6= 0 in H2(π;F2), by Lemma 3.6, and so w3 = 0, by part (1)
of Lemma 3.7. Thus all such manifolds bound.
These results apply immediately to the flat 4-manifolds with β = 0.

In the next section we shall use them to confirm that all Nil4- and
Sol3 × E1-manifolds are boundaries.
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6. Nil4- and Sol3 × E1-manifolds

LetM be a Nil4-manifold and let C be the centralizer of I(
√
π) ∼= Z2

in
√
π. Then C ∼= Z3, and 1 < ζ

√
π < I(

√
π) < C <

√
π is a

characteristic series with all successive quotients Z. (See Theorem 1.5
of [9].) In particular, C is normal in π and π/C has two ends. The
preimage in π of any finite normal subgroup of π/C is a flat 3-manifold
group which is normal in π. This must be Z3, by Theorem 8.4 of [9],
and so π/C has no non-trivial finite normal subgroup. Hence π/C ∼= Z

or D∞, and [π :
√
π] divides 4. In particular, if β = 0 the mapping

cylinder construction of §4 applies, and so all Nil4-manifolds bound.
(Note that since ζ

√
π ∼= Z the result of [7] applies here if and only if

either π =
√
π or π/

√
π = Z/2Z and acts by inversion on ζ

√
π.)

If M is a Sol3 × E1-manifold then
√
π ∼= Z3 and the quotient π/

√
π

has two ends. Therefore π ∼= A ∗C B, where
√
π ≤ C, [C :

√
π] is finite

and [A : C] = [B : C] = 2, since we are assuming that β = 0. Since π
is not virtually nilpotent, [C :

√
π] ≤ 2, by Theorem 8.4 of [9]. In all

cases M is a boundary, by the results of §4.

7. amalgamation over Nil3-manifold groups

The other cases that we shall need to consider are when A, B and
C are fundamental groups of Nil3-manifolds. These have canonical
Seifert fibrations, with base a flat 2-orbifold with no reflector curves.
(There are seven such orbifolds: T , Kb, S(2, 2, 2, 2), P (2, 2), S(2, 4, 4),

S(2, 3, 6) and S(3, 3, 3).) The quotients A = A/ζ
√
A, B = B/ζ

√
B

and C = C/ζ
√
C are the orbifold fundamental groups of the bases. If

the image of g ∈ A generates a maximal finite cyclic subgroup of A
then ζ

√
A ≤ 〈g〉, since 〈g, ζ

√
A〉 is torsion-free and virtually Z.

Lemma 7.1. Suppose that π ∼= A ∗C B, where C is a Nil3-group and

A = 〈C, t〉 and B = 〈C, u〉, with t2, u2 ∈ C. Then

(1) if [
√
A :

√
C] = 2 or if C =

√
C and A/ζ

√
A ∼= Z2 ⋊−I Z/2Z

then the automorphism of
√
C/ζ

√
C induced by conjugation by

tu has finite order;

(2) if π is not virtually nilpotent then
√
A =

√
B =

√
C;

(3) if the inclusion of C into each of A and B induces isomorphisms

C/ζ
√
C ∼= A/ζ

√
A and C/ζ

√
C ∼= B/ζ

√
B then M bounds.

Proof. If [
√
A :

√
C] = 2 then t ∈

√
A, and so t centralizes

√
C/ζ

√
C.

If C is nilpotent and A/ζ
√
A ∼= Z2 ⋊−I Z/2Z then t acts via −I on√

C/ζ
√
C. Since u2 ∈ C and [C :

√
C] is finite, in each case some

power of tu acts trivially on
√
C/ζ

√
C. Hence π is virtually nilpotent.
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Part (2) is an immediate consequence of part (1).

The hypotheses of part (3) imply that π/ζ
√
C ∼= C/ζ

√
C × D∞.

(Hence π is virtually a product
√
C × Z.) Let N = K(C, 1) and let ι

be the free involution of N ×D2 which is the antipodal map on the S1

fibres of N and reflection across a diameter of D2. Then the quotient
N ×D2/〈ι〉 is a 5-manifold with boundary M = K(π, 1). �

As in the flat case, β1(A;Q) + β1(B;Q) ≤ β1(C;Q) ≤ 2. If C =
√
C

we may assume that either A =
√
A and K(B, 1) has base S(2, 2, 2, 2),

or the bases for K(A, 1) and K(B, 1) are Kb or S(2, 2, 2, 2).

If [C :
√
C] = 2 then K(C, 1) has base S(2, 2, 2, 2) or Kb. In the first

case K(A, 1) and K(B, 1) have base S(2, 2, 2, 2), P (2, 2) or S(2, 4, 4).
In the second case we may assume that K(A, 1) has base P (2, 2) and
K(B, 1) has base Kb or P (2, 2).

Lemma 7.2. Suppose that π ∼= A ∗C B, where C is a Nil3-group and

A = 〈C, t〉 and B = 〈C, u〉, with t2, u2 ∈ C. Then w2
1 = 0 if either

(1) q = [ζ
√
C : ζ

√
C∩

√
C

′
] is even, and either C =

√
C or tn, un ∈

ζ
√
C for some n ≥ 2; or

(2) C =
√
C and K(A, 1) and K(B, 1) fibre over Kb; or

(3) K(C, 1) has base S(2, 2, 2, 2) and K(A, 1) and K(B, 1) both

have base S(2, 4, 4); or
(4) K(C, 1) has base S(2, 2, 2, 2) and K(A, 1) and K(B, 1) both

have base P (2, 2).

Proof. Since Nil3-manifolds are orientable the orientation reversing el-
ements of π are of the form xc, where x ∈ (A ∪ B) \ C and c ∈ C.
In each case, such elements have images in π/π′ of order divisible by
4. �

This does not always hold ifK(A, 1) has base P (2, 2) andK(B, 1) has

base S(2, 4, 4). When ζ
√
A = ζ

√
B = ζ

√
C and K(C, 1) and K(A, 1)

have bases S(2, 2, 2, 2) and P (2, 2), respectively, the automorphism of√
C/ζ

√
C induced by tu has matrix

ξ = ( 1 0
0 −1 ) (

m p
n −m ) = ( m p

−n m ) ,

where m2 + np = 1 if K(B, 1) hase base P (2, 2) and m2 + np = −1 if
K(B, 1) has base S(2, 4, 4). If m = 0 this has finite order, and so M is
a Nil3 × E1-manifold. If m = ±1 and np = 0 then K(B, 1) must also
have base P (2, 2), and M is a Nil3 × E1-manifold if n = p = 0, and is
a Nil4-manifold if one of n or p is not 0. In all these cases w2

1 = 0, and
so M bounds. Otherwise (if m2 = 1 and np = −2, or if |m| > 1) the
eigenvalues of ξ are not roots of unity, and so M is a Sol41-manifold.
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If [C :
√
C] > 2 then M must be a Nil3 × E1-manifold. These cases

are considered in the next section. (In most such cases part (3) of
Lemma 7.1 applies.)
The mapping cylinder construction appears to have limited applica-

bility here. Let Θm and Ψn be the self-diffeomorphisms of S1 × D2

given by Θm(u, d) = (u, umd) and Ψn(u, d) = (ū, und̄), for all (u, d) ∈
S1 ×D2, respectively, and let θm = Θm|T and ψn = Ψn|T be the restric-
tions to T = ∂(S1 × D2). The mapping tori M(Θm) and M(Ψn) are
D2-bundles over T and Kb, respectively. The double covers of M(Θm)
are all diffeomorphic toM(Θ2m), while the double covers ofM(Ψn) are

diffeomorphic to M(Θ2n) or M(Ψ2n). In particular, if C =
√
A =

√
B

and K(A, 1) and K(B, 1) each fibre over Kb then M bounds.

8. Nil3 × E1-manifolds

If M is an infranilmanifold with holonomy a finite 2-group which
acts effectively on ζ

√
π thenM bounds, by Proposition 1.3 of [7]. (The

hypotheses of the later result of [12] imply thatM must be an orientable
Nil3 × E1-manifold, and so this is of limited interest for our problem.)
Let M be a Nil3 ×E1-manifold. Then

√
π ∼= Γq ×Z, for some q ≥ 1,

and so ζ
√
π ∼= Z2 and

√
π/ζ

√
π ∼= Z2. Moreover, I(

√
π) ∼= Z and

I(
√
π) < ζ

√
π. Let θ : π → Aut(ζ

√
π), θ̄ : π → Aut(ζ

√
π/I(

√
π)) and

ψ : π → Aut(
√
π/ζ

√
π) be the homomorphisms induced by conjugation

in π. Since I(
√
π) is a characteristic subgroup of π, the image of θ lies

in the diagonal group (Z/2Z)2 of GL(2,Z). The manifold M is non-
orientable if and only if θ̄ is nontrivial. (In that case the holonomy
γ = π/

√
π acts by inversion on the Euclidean factor of Nil3 × R.)

Let K = Ker(θ). Then
√
K =

√
π, since

√
π ≤ K E π. Moreover,

ζ
√
π ≤ ζK ≤

√
K, and so ζK = ζ

√
π. The quotient K/ζK is a

flat 2-orbifold group with holonomy K/
√
K. Since K acts trivially

on ζK this orbifold is orientable, and so K/
√
K is cyclic, of order

1, 2, 3, 4 or 6. The preimage in π of any finite normal subgroup of
π/I(

√
π) is an infinite cyclic normal subgroup, and therefore is I(

√
π).

Therefore the induced action of γ on
√
π/I(

√
π) is effective, and so

(ψ, θ̄) : γ → GL(2,Z) × Z× is injective. Hence γ is isomorphic to
a subgroup of D2n × Z/2Z, for n = 4 or 6. All the possibilities are
realized, except for the products D2n × Z/2Z, with n = 3, 4 or 6 [5].
Although some Nil3 × E1-groups with β = 0 are amalgamated free

products π ∼= A ∗C B with A,B and C virtually Z3, the cases with A =
G6, B = G4 and C = G2 do not arise here, and so the corresponding
manifolds bound. Thus we may assume that π ∼= A ∗C B, where A, B
and C are fundamental groups of Nil3-manifolds. If K(C, 1) has base
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P (2, 2), S(2, 4, 4) or S(2, 3, 6) then A = B = C, and so M bounds,
by part (3) of Lemma 7.1. However, if K(C, 1) has base S(3, 3, 3)
then K(A, 1) or K(B, 1) could have base S(2, 3, 6). In this case there

are non-normal subgroups of index 3, with similar structures Ã ∗√C B̃,

where K(Ã, 1) and K(B̃, 1) have base T or S(2, 2, 2, 2). Since coverings
of odd degree induce isomorphisms on cohomology with coefficients F2,
we may further assume that [C :

√
C] ≤ 2, and that γ = π/

√
π is a

2-group, of order dividing 8.
If γ = Z/2Z then γ must act trivially on I(

√
π) and via −I3 on√

π/I(
√
π) ∼= Z3 (since β = 0). Thus γ acts effectively on ζ

√
π, and so

M bounds, by Proposition 1.3 of [7]. Thus we may assume that either
γ = (Z/2Z)2 and ζπ = I(

√
π) (i.e., γ does not act effectively on ζ

√
π)

or γ = Z/4Z, Z/4Z ⊕ Z/2Z, (Z/2Z)3 or D8.

If C =
√
C then the orientable double cover of M is a Spin 4-

manifold. If, moreover, either K(A, 1) and K(B, 1) both fibre over

Kb or q = [ζ
√
C : ζ

√
C ∩

√
C

′
] is even then w2

1 = 0 and so M bounds,

by part (1) of Lemma 7.2. If K(C, 1) has base S(2, 2, 2, 2) and
√
A =√

B =
√
C (and π is virtually nilpotent) then w2

1 = 0. There are
mapping tori of self-diffeomorphisms of suchK(C, 1) which are not Spin
[10]. Thus the cases when K(A, 1) and K(C, 1) have base S(2, 2, 2, 2)
may give examples of Nil3 × E1-manifolds which are not boundaries.

9. Sol41-manifolds

IfM is a Sol41-manifold then
√
π ∼= Γq for some q ≥ 1, and π/

√
π has

two ends. Therefore π ∼= A ∗C B, where [A : C] = [B : C] = 2,√
π =

√
C and [C :

√
π] is finite. Thus A, B and C are funda-

mental groups of Nil3-manifolds. Since π is not virtually nilpotent,
[C :

√
π] ≤ 2, by Theorem 8.4 of [9], and so [A :

√
π] and [B :

√
π] are

each ≤ 4. Moreover
√
A =

√
B =

√
C, by part (2) of Lemma 7.1. The

possibilities are limited further by the fact that π cannot have Z2 as a
normal subgroup, since Sol41-manifolds are not Seifert fibred. In partic-
ular, K(C, 1) cannot be fibred over Kb, for otherwise the characteristic
subgroup I(C) ∼= Z2 would be normal in π.
If C =

√
π then K(A, 1) and K(B, 1) are S1-bundles over Kb, by

part (1) of Lemma 7.1. The mapping cylinder construction then applies
to show that M bounds. If [C :

√
π] = 2 then K(C, 1) has base

S(2, 2, 2, 2), and soK(A, 1) andK(B, 1) have bases P (2, 2) or S(2, 4, 4).
If the bases are the same then w2

1 = 0, by parts (3) and (4) of Lemma
7.2, and so M bounds. There remains the possibility that K(A, 1) has
base S(2, 4, 4) and K(B, 1) has base P (2, 2).
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Theorem 9.1. Let M be a Sol41-manifold with π = π1(M) ∼= A ∗C B,

where K(A, 1) is Seifert fibred over S(2, 4, 4) and K(B, 1) is Seifert

fibred over P (2, 2). If q = [ζ
√
C : ζ

√
C ∩

√
C

′
] is odd then M bounds

if and only if w2
1 = 0.

Proof. Since K(C, 1) is a double cover of each of K(A, 1) and K(B, 1),

it is Seifert fibred over S(2, 2, 2, 2), and
√
A =

√
B =

√
C. The orb-

ifold fundamental groups of the bases A = πorb(S(2, 4, 4)) and B =
πorb(P (2, 2)) have presentations 〈a, x | a4 = (a2x)2, [x, axa−1] = 1〉 and
〈j, u | j2 = (ju2)2 = 1〉, and their maximal abelian normal subgroups
are 〈x, axa−1〉 and 〈u2, (ju)2〉, respectively.
After suitable normalizations we may assume that A has a presen-

tation
〈a, x, y | y = axa−1, [x, y] = a4q, a2xa−2 = x−1 〉,

and that C = 〈a2, x, y〉. We may then assume that B has a presentation

〈j, k, x, y | [x, y] = j2q, jxj−1 = x−1, jyj−1 = y−1, kxk−1 = xmynj2e,

kyk−1 = xpy−mj2f , k2 = xrysj2g, (jk)2 = xtyuj2h 〉,
where m is odd and p and n are even (since (m p

n −m ) must be conjugate
to ( 1 0

0 −1 )), and ru− ts = ±1. Here C is the subgroup 〈j, x, y〉, and we
may identify j with a2. Hence π has a presentation

〈a, k, x, y | axa−1 = y, a2xa−2 = x−1, kxk−1 = xmyna4e,

kyk−1 = xpy−ma4f , k2 = xrysa4g, (a2k)2 = xtyua4h, [x, y] = a4q 〉.
Abelianizing this presentation gives [x] = [y], 4q[a] = 0, 2[x] = 0,

(m+ n+ 1)[x] = 4e[a], (m+ p+ 1)[x] = 4f [a], 2[k] = (r+ s)[x] + 4g[a]
and 2[k] = (t+ u)[x] + 4(h− 1)[a]. Since m+ n+ 1 and m+ p+ 1 are
even two of these simplify to 4e[a] = 4f [a] = 0. Moreover 2q[k] = q[x].
Since r + s and t + u cannot both be even, we can solve for [x] in

terms of [a] and [k]. If they are both odd then π/π′ ∼= Z/4q̃Z ⊕Z/4Z,
where q̃ = h.c.f.{q, e, f, g − h + 1}, and then w2

1 = 0. Otherwise
π/π′ ∼= Z/4q̃Z ⊕ Z/2Z, where q̃ divides h.c.f.{q, e, f}, and w2

1 6= 0. If
(say) r+s is even then 2([k]−2g[a]) = 0 and so ka−2g is an orientation
reversing element with image in π/π′ of order 2.
The projection to the quotient π/〈〈a4, (ak)2, x〉〉 ∼= D8 induces an

isomorphism H1(D8;F2) ∼= H1(π;F2) = 〈u, w〉. Since uw = 0 in
H2(D8;F2) it follows that uw = 0 in H2(π;F2) also.
The orientable double cover of M is the mapping torus of the self-

diffeomorphism of K(C, 1) corresponding to t = ak, and is not a Spin
manifold, since q is odd. (See §7 of [10].) Therefore w2(M) 6= 0 or w2.
It now follows from part (2) of Lemma 3.7 that w4 6= 0, and so M does
not bound. �
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In particular, the Sol41-manifold M whose group has presentation

〈a, k, x, y | axa−1 = y, a2xa−2 = x−1, kxk−1 = x3y−4, kyk−1 = x2y−3,

k2 = xy−1, (a2k)2 = xy−2, [x, y] = a4 〉.
is not a boundary.

10. S1-bundle spaces

In many cases a 4-dimensional infrasolvmanifold M is the boundary
of the total space of a D2-bundle over a 3-manifold.
In all, 50 of the 74 flat 4-manifolds are total spaces of S1-bundles.

The exceptions have β ≤ 1, and are three with group G2 ⋊Z (all non-
orientable), three with group G3 ⋊ Z (all orientable), two with group
G4 ⋊ Z (both orientable), one with group G5 ⋊ Z (orientable), twelve
with group G6⋊Z (seven orientable) and three with β = 0 and groups
G2 ∗φ B2, G6 ∗φ B3 and G6 ∗φ B4 (all non-orientable). In §11 we shall
show that the mapping cylinder construction applies to most of these.
Coset spaces of Nil3 × R or Sol3 × R are products N × S1, with N

a Nil3- or Sol3-coset space, respectively, and so bound N ×D2. Coset
spaces of Nil4 or Sol41 are also S

1-bundle spaces, since the action of the
centre R induces a free S1-action on the coset space. A Nil4-manifold
is such a coset space if and only if β = 2, while a Nil3 × E1-manifold
is such a coset space if and only if β = 3. These coset spaces are
orientable, and so bound orientably.
If M is a Nil4-manifold or a Nil3 × E1-manifold, but is not a coset

space, then β ≤ 1 or β ≤ 2, respectively. If M is non-orientable and
β > 0, or if M is an orientable Nil3 × E1-manifold and β = 2, then
π ∼= ν ⋊θ Z, where ν = Z3, G2, B1 or B2. (See Theorems 8.4 and 8.9 of
[9].) The manifold M is the mapping torus of a self-diffeomorphism of
the corresponding flat 3-manifold N . (IfM is orientable then ν = Z3 or
G2, and ifM is a non-orientable Nil4-manifold then ν = Z3.) If ν = Z3

or G2 then θ|I(ν) has an eigenvalue ±1, since π is virtually nilpotent.
(If β = 1 and ν = Z3 the eigenvalue must be −1.) The quotient of π by
the corresponding infinite cyclic normal subgroup is torsion-free, and
so M is also the total space of an S1-bundle over a closed 3-manifold.
A similar result holds if ν = B1 or B2, for in these cases I(ν) ∼= Z.
Orientable Nil3 × E1- and Nil4-manifolds with β = 1, and all ori-

entable Sol41-manifolds (which have β = 1) are mapping tori of diffeo-
morphisms of Nil3-manifolds. If the fibre is a Nil3-coset space, with
group ν =

√
ν, then π/I(ν) is torsion-free, and so the 4-manifold is the

total space of an S1-bundle over a Nil3-manifold. However if ν 6= √
ν
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then π has no infinite cyclic normal subgroup with torsion-free quo-
tient, and the manifold is not an S1-bundle space.
If M is a Sol3 × E1-manifold then β ≤ 2, and if β = 2 then π ∼=

Z3 ⋊θ Z. In this case θ has an eigenvalue 1, and so M is an S1-bundle
space. This is also the case if β = 1 and π ∼= Z3⋊θZ, as one eigenvalue
of θ must be ±1. Otherwise either β = 1 and π ∼= σ ⋊ Z, where σ is
the group of a Sol3-manifold, or β = 0.

11. mapping cylinder constructions

The mapping cylinder construction of Lemma 4.1 and 4.2 apply to
many of the flat 4-manifolds which are not realizable by S1-bundle
spaces. We note here the following variation: if c : Z → X is a double
cover and f is a self-diffeomorphism X such that f∗c∗π1(Z) = c∗π1(Z)
then f extends to a self-diffeomorphism F ofMCyl(c), and soM(f) =
∂M(F ).
All the mapping tori of self-diffeomorphisms of orientable flat 3-

manifolds with cyclic holonomy and β = 1 also fibre over Kb, and
so their groups map onto D∞. The groups G6 ⋊θ Z corresponding to
the outer automorphism classes θ = a, ab, i and ei also map onto D∞.
The groups corresponding to cej, abcej and j have abelianization Z,
and so Lemma 4.2 does not apply to these. The classes ace = (ci)2,
bce = (ei)2 and and abcej = j4 are squares in Out(G6) (as are 1 = 12

and ab = (cei)2). These bound, since M(f 2) bounds the mapping
cylinder of the canonical double cover of M(f). (Since cei and ci are
orientation-reversing, two of these mapping cylinders are orientable.)
The classes a, ce, cei, ci and j are not squares, since they are orientation-
reversing. The classes i and ei are not squares, as they have order 4
and Out(G6) has no elements of order 8. The class cej is not a square,
as it has order 6 and Out(G6) has no elements of order 12.
The mapping cylinder construction applies to show that each of the

four flat 4-manifolds with β = 0 is a boundary. There remain five flat
4-manifolds (corresponding to ce, cei, cej, ci and j) for which we do not
yet have simple cobounding 5-manifolds, and a further two orientable
flat 4-manifolds (corresponding to abcej and bce) for which we do not
have simple orientable cobounding 5-manifolds.

12. embedding flat 4-manifolds in Rn

If a closed smooth n-manifold embeds in Rk then the kth normal
Stiefel-Whitney classes wk(M) is 0, since this is the mod-(2) normal
Euler class. (See Theorem 10.2 of [11].) This necessary condition is
also sufficient when n = 4 and k = 3: a closed smooth 4-manifold
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M embeds in R7 if and only if w3(M) = 0 [6]. (Note that w3(M) =
w3(M)+w1(M)3 = Sq1w2(M)+w1(M)3, by the Whitney sum theorem
and the Wu formulae.) In particular, every orientable closed smooth
4-manifold embeds in R7. An orientable closed smooth 4-manifold M
embeds in R6 if and only if w2(M) = 0 and σ(M) = 0 [2]. However,
there is as yet no general criterion for non-orientable 4-manifolds to
embed in R6.
It follows from these results (and Lemma 3.1) that if a 4-dimensional

infrasolvmanifold M is a boundary and w3(M) = 0 then M embeds in
R7, since w4

1 = 0 implies w3
1 = 0, by Lemma 3.2, and then w3(M) = 0.

If M is orientable then it embeds in R6 if and only if w2(M) = 0.
In [10] it is shown that w2 is integral (and hence w3 = 0) for all but at

most two flat 4-manifolds. The exceptions have groups π = G6⋊ciZ or
G6∗φB4. When π = G6⋊ciZ, the Wang sequence for π as an extension
of Z and the Universal Coefficient Theorem imply that H2(π;Z/4Z) ∼=
(Z/4Z)2 maps onto H2(π;F2). Therefore w3 = Sq1w2 = 0. Thus, with
one possible exception, every 4 flat 4-manifold embeds smoothly in R7.
Three orientable flat 4-manifolds have w2 6= 0; they are mapping

tori of self-diffeomorphisms of HW , corresponding to θ = e, bce or ei in
Out(G6). The other 24 embed in R6. Since w2(M) = w2(M)+w1(M)2,
non-orientable flat 4-manifolds which embed in R6 must have Pin−-
structures. This condition excludes 15 of the 47 non-orientable flat
4-manifolds, but we do not know whether all the others embed in R6.
If M embeds in R5 then it bounds a compact region and is s-

parallelizable. Thus M is parallelizable if also χ(M) = 0. Moreover,
if X and Y are the closures of the components of S5 \ M then X
and Y are connected and H1(X) ⊕ H1(Y ) ∼= H1(M). In particu-
lar, if β = 1 then M has an essentially unique infinite cyclic covering
M ′, and this bounds a covering of X , say. Let t generate the cover-
ing group, and let T be the maximal finite submodule of H1(M ; Λ).
Then Poincaré duality with coefficients in the group ring Λ = Z[t, t−1]
and the Universal coefficient spectral sequence together give an isomor-

phism T ∼= Ext2Λ(T,Λ). This is equivalent to a non-degenerate pairing
ℓp : T × T → Q/Z, with an isometric action of the covering group.
When M ′ is homotopy equivalent to a 3-manifold this pairing is the
standard torsion linking pairing on M ′, with the action of the covering
group 〈t〉. (In knot theory this pairing is known as the Farber-Levine
pairing.) If M = ∂W and p extends to a homomorphism from π1(W )
to Z then K = Ker(: T → H1(W ; Λ) is a submodule which is its own
annihilator with respect to ℓp. Hence ℓp is metabolic.
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Every closed 3-manifold N embeds in R5 [13]. The normal bun-
dle of an embedding j : N → R5 is classified by an Euler class
e(j) ∈ H2(N ;Zw) ∼= H1(N ;Z). If M is the boundary of a regular
neighbourhood of j then M is the total space of an S1-bundle over N ,
and e(j) is also the class of the corresponding extension of π1(N) by
Z. If N is orientable the normal bundle is trivial, and so M = N ×S1.
The six orientable flat 4-manifolds which are products N ×S1 (with

groups Gi × Z, for 1 ≤ i ≤ 6) all embed in R5. Since Gab
3
∼= Z⊕ Z/3Z

and Gab
4

∼= Z ⊕ Z/2Z, the flat 4-manifolds with groups Gi ⋊θ Z (for
i = 3 or 4) and β = 1 do not embed in R5. The group Gab

6
∼= (Z/4Z)2

does not have a subgroup which is its own annihilator with respect to
the torsion linking pairing ofHW , and so no flat 4-manifold with group
G6 ⋊ Z and β = 1 can embed in R5. However, such considerations do
not apply to the flat 4-manifold with group G5 ⋊θ Z and β = 1, since
Gab

5
∼= Z is torsion-free. In this case H1(π) ∼= Z ⊕ Z/2Z is the sum

of two cyclic groups. Since the corresponding flat 4-manifold M has
w2(M) = 0 and σ(M) = 0, it embeds in R5, by Theorem 6.2 of [3].
If π ∼= Z3 ⋊T Z has cyclic holonomy and β = 2, then any basis for

π/I(π) ∼= Z2 will contain at least one element whose image generates
the holonomy. Therefore if M embeds in S5 with closed complemen-
tary regions X and Y there will be an infinite cyclic cover M ′ with
fundamental group an orientable flat 3-manifold group with the same
holonomy, which bounds an infinite cyclic cover of X , say. This is again
impossible if the holonomy has order 3 or 4.
The remaining six orientable flat 4-manifolds are mapping tori of self-

diffeomorphisms of the half-turn flat 3-manifold, with groups G2 ⋊θ Z,
and five of these have β = 1. These also fibre over non-orientable flat
3-manifolds. In three of these cases the group is a semidirect product
Z ⋊w Bi, where w = w1(B2) and 2 ≤ i ≤ 4. These correspond to
S1-bundles with a section, i.e., to bundles with Euler class 0. We shall
show that they each embed in R5.
If a flat 4-manifold M is the boundary of a regular neighbourhood

of an embedding j of a non-orientable flat 3-manifold N in R5, then
π = π1(M) is a non-trivial extension of π1(N) by Z, β = β1(N) and
e(j) must have finite order. In particular, if π1(N) = B1 or B2 then
π ∼= G2×Z or Z⋊w B2. The semidirect product is the only orientable,
virtually abelian extension of B2 by Z, since H1(B2;Z) is torsion-free.
If π1(N) = B3 or B4 then β = 1, π ∼= G2 ⋊θ Z and the holonomy is
(Z/2Z)2.
Since Kb embeds in G2, Kb × S1 embeds in R5 with normal Euler

class 0, and so the flat 4-manifold with group Z ⋊w B1 embeds. (This
is of course G2×S1.) Let R be the orientation preserving involution of
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D2 ×D2 which swaps the factors. Then R restricts to an orientation-
reversing involution of T = S1 × S1, and M(RT ) ∼= K(B2, 1) embeds
in M(R) ∼= S1 × D4 ⊂ R5. Since this embedding can be isotoped off
itself, the flat 3-manifold K(B2, 1) embeds in R5, with normal Euler
class 0.
Two of the non-orientable flat 3-manifolds fibre over the torus, while

the other two fibre over the Klein bottle. Let pi : Ei → F be the
projection of the associated R2-bundle, let s : F → Ei be the 0-section,
and let ji : K(Bi, 1) → Ei be the natural inclusion of the unit circle
bundle. Note that ji may be isotoped to a disjoint nearby embedding.
Let ηi be the line bundle over F with w1(ηi) = s∗w1(Ei). Then the
Whitney sum pi ⊕ ηi is an R3-bundle over F , with orientable total
space Êi = E(pi ⊕ ηi).
If i = 2 or 4 the fibres of the projections piji have image 0 in

H1(Bi;F2), and so piji induces isomorphisms Hq(F ;F2) ∼= Hq(Bi;F2),
for q ≤ 2. Since w2 = w2

1 for any 3-manifold, by the Wu relations, the

Whitney sum formula gives w2(Êi) = 0. Regular neighbourhoods of
any embedding of T or Kb in R5 are D3-bundles with parallelizable to-

tal space. Therefore if i = 2 or 4 then Êi embeds in R5. Hence the flat
3-manifold K(Bi, 1) also embeds in R5, with normal Euler class 0. The
boundary of a regular neighbourhood is an orientable flat 4-manifold
with group Z ⋊w Bi.

When i = 1 or 3 it is not so clear that w2(Êi) = 0. Instead we use
more explicit constructions. We have already done this for i = 1. We
may embed Kb in S1 × D3 as the subset {(u2, x, yu) | u ∈ S1, x, y ∈
R, x2 + y2 = 1}. Let h be the orientation-preserving diffeomorphism
of S1×D3 given by h(u, x, y, z) = (ū, x, y,−z). Then h reverses the S1

factor, h(Kb) = Kb and h fixes pointwise the fibre of Kb over u = 1.
The mapping torus M(h) is an orientable D3-bundle over Kb, and
M(h|Kb) = B3. Since h|∂ has 1-dimensional fixed point set, the bound-
ary of M(h) is the orientable S2-bundle over Kb with w2 = 0, and so
w2(M(h)) = 0. Therefore M(h) embeds in R5 as a regular neighbour-
hood of an embedding of Kb. Hence K(B3, 1) also embeds in R5, with
normal Euler class 0. The boundary of a regular neighbourhood is an
orientable flat 4-manifold with group Z ⋊w B3.
One of the three remaining groups G2 ⋊ Z has abelianization Z ⊕

Z/4Z. The corresponding flat 4-manifold embeds in R5, by Theorem
6.2 of [3]. The group is a non-split extension of B4 by Z, and so the
normal Euler class is a non-zero torsion class.
The two undecided cases have groups with presentations

〈t, x, y, z | txt−1 = x−1yz, ty = yt, tzt−1 = z−1,



18 J.A.HILLMAN

xyx−1 = y−1, xzx−1 = z−1, yz = zy〉
and

〈t, x, y, z | txt−1 = x−1, tyt−1 = z, tzt−1 = y,

xyx−1 = y−1, xzx−1 = z−1, yz = zy〉,
respectively. These manifolds are Spin, and so embed in R6. In each
case the Farber-Levine pairing is metabolic, and so provides no obstruc-
tion to an embedding in R5. On the other hand, the abelianizations
each need at least three generators, and so the result of [3] does not
apply.
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