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Abstract. The graded Specht module Sλ for a cyclotomic Hecke al-
gebra comes with a distinguished generating vector zλ ∈ Sλ, which can
be thought of as a “highest weight vector of weight λ”. This paper
describes the defining relations for the Specht module Sλ as a graded
module generated by zλ. The first three relations say precisely what it
means for zλ to be a highest weight vector of weight λ. The remaining
relations are homogeneous analogues of the classical Garnir relations.
The homogeneous Garnir relations, which are simpler than the classical
ones, are associated with a remarkable family of homogeneous operators
on the Specht module which satisfy the braid relations.

1. Introduction

Let Sd be the symmetric group on d letters. A central role in represen-
tation theory of Sd is played by certain ZSd-modules Sλ labelled by the
partitions λ of d. These modules are called Specht modules and their con-
struction goes back to [26, 29, 30]. Specht modules also arise naturally as
cell modules in the cellular structure on the group algebra of Sd constructed
by Murphy in [23], see [7, 14, 21] for further development of these ideas
which will be important in this paper.

It was shown recently by Brundan and the first author [3] that over an
arbitrary field F , the group algebra FSd is explicitly isomorphic to a certain
cyclotomic Khovanov-Lauda-Rouquier (KLR) algebra RΛ

d . The algebra RΛ
d

is Z-graded, and this grading can be transferred to FSd using the Brundan-
Kleshchev isomorphism. Moreover, in [6], the Specht modules over F were
also explicitly graded, which played a crucial role in the graded categorifica-
tion theorem of [4] generalizing the Ariki’s categorification theorem [1]. We
refer the reader to [19] for description of these ideas and further references.

Hu and the second author [11] have completed the picture by constructing
a graded cellular structure on the group algebra of the symmetric group,
so that the graded Specht modules of [6] arise as the corresponding cell
modules.

In all constructions above, the Specht module Sλ comes together with
a remarkable generating vector zλ ∈ Sλ, which can be thought of, infor-
mally, as a “highest weight vector of weight λ”. The goal of this paper
is to describe the defining relations of the Specht module Sλ over Z as a
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graded module over the KLR algebra RΛ
d generated by zλ. This idea of

presenting Specht modules by generators and relations is responsible for our
terminology universal Specht modules.

Our homogeneous relations for Sλ are given in Definition 5.9. The first
three relations say precisely what we mean by zλ being a highest weight
vector of weight λ. The fourth and final relation is a remarkable family of
homogeneous Garnir relations, which we consider to be the key innovation
of this paper.

We point out that the classical Garnir relations, which go back to [8,30],
are very far from being homogeneous with respect to the gradings under
consideration. The classical Garnir relations have the form of an alternating
sum of elements of the Specht module corresponding to certain tableaux
(being equated to zero).

Even though substantial initial work is required to define the homogeneous
Garnir relations, they are actually much simpler than the classical ones. For
example, if the underlying Lie type of the KLR algebra is A∞, which un-
der the isomorphism of [3] corresponds to the case where the field F has
characteristic 0, then the homogeneous Garnir relation has the form of just
one element corresponding to a special Garnir tableaux (being equated to

zero). In the case where the Lie type is A
(1)
p−1, which under the isomorphism

of [3] corresponds to the field F having characteristic p > 0, the homoge-
neous Garnir relation does look like a sum, but it has roughly p times as
few summands as the classical Garnir relation. For the case of the so-called
calibrated representations of the affine Hecke algebra in characteristic zero
this phenomenon has been known, see for example [24, (5.4)].

Even though so far we have been talking only about the symmetric groups,
the story of Specht modules generalizes to all cyclotomic Hecke algebras,
both degenerate and non-degenerate. This is the generality which we work
with throughout this paper.

In section 2 we collect various combinatorial facts and notation. The key
notion here is that of the degree of a standard tableau which was first defined
in [6]. In section 3, we recall the definition of the affine and cyclotomic
KLR algebras and define “permutation modules” for these algebras using
induction from one-dimensional modules of the parabolic subalgebras in the
affine setting.

In the crucial section 4, we define certain elements which we call block
intertwiners. These intertwiners will later be fed into the definition of the
homogeneous Garnir relations. They permute blocks (or bricks) of size e,
where e can be thought of as the analogue of the characteristic of the ground
field when working with Specht modules for the symmetric groups, and this
part of the story is trivial when e = 0. The block intertwiners τr are defined
in terms of products of the large number of the KLR generators. The KLR
generators do not satisfy Coxeter relations, so we find it truly remarkable
that the brick intertwiners τr do! See the key Theorem 4.12.

In section 5, we define (row) Garnir relations and universal (row) Specht
modules Sλ for the algebra RΛ

d by generators and relations, see Definition 5.9.

Our next goal is to prove that if we identify the cyclotomic KLR algebra RΛ
d

with the cyclotomic Hecke algebra HΛ
d via the Brundan-Kleshchev isomor-

phism, which is only valid over a field, then the universal Specht modules
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are identified with the usual graded Specht modules of [6]. This is done in
section 6.

Section 7 develops the parallel story for the column Specht modules Sλ,
which turn out to be dual to the row Specht modules Sλ. Accidentally, what
we call a column Specht module Sλ is what was called a Specht module in
James’ book [13].

The final section 8 contains two applications. One is the description
of Specht modules for higher level cyclotomic Hecke algebras as modules
induced from Specht modules of level 1, see Theorem 8.2. In fact, these
induced modules were sometimes taken as a definition of Specht modules
for higher levels, which was problematic because the connection with the
Specht modules as cell modules had not been established in full generality
before.

Our second application is a generalization of the famous very useful result
from James’ book [13, Theorem 8.15] for symmetric groups:

(Sλ)∗ ∼= Sλ
′ ⊗ sgn.

The analogue of this is proved for arbitrary cyclotomic Hecke algebras in
the graded setting, see Theorem 8.5.

2. Combinatorics

2.1. Lie theoretic notation. Let e ∈ {0, 2, 3, 4, . . . } and I := Z/eZ. Let Γ
be the quiver with vertex set I, and a directed edge from i to j if j = i− 1
(the orientation differs from the one in [3,11]). Thus Γ is a quiver of type A∞

if e = 0 or A
(1)
e−1 if e > 0. The corresponding Cartan matrix (ai,j)i,j∈I is

defined by

ai,j :=


2 if i = j,
0 if j 6= i, i± 1,
−1 if i→ j or i← j,
−2 if i� j.

(2.1)

(The case ai,j = −2 only occurs if e = 2.)
Following [15], let (h,Π,Π∨) be a realization of the Cartan matrix (aij)i,j∈I ,

so we have the simple roots {αi | i ∈ I}, the fundamental dominant weights
{Λi | i ∈ I}, and the normalized invariant form (·, ·) such that

(αi, αj) = aij , (Λi, αj) = δij (i, j ∈ I).

If e > 0, the null-root is

δ := α0 + α1 + · · ·+ αe−1. (2.2)

Let P+ be the set of dominant integral weights, and Q+ :=
⊕

i∈I Z≥0αi the
positive part of the root lattice. For α ∈ Q+ let ht(α) be the height of α.
That is, ht(α) is the sum of the coefficients when α is expanded in terms of
the αi’s.

Let Sd be the symmetric group on d letters and let sr = (r, r + 1), for
1 ≤ r < d, be the simple transpositions of Sd. Then Sd acts from the left
on the set Id by place permutations. If i = (i1, . . . , id) ∈ Id then its weight
is |i| := αi1 + · · ·+ αid ∈ Q+. Then the Sd-orbits on Id are the sets

Iα := {i ∈ Id | α = |i|}
parametrized by all α ∈ Q+ of height d.



4 ALEXANDER S. KLESHCHEV, ANDREW MATHAS, AND ARUN RAM

Throughout the paper, we fix a positive integer l, referred to as the level,
and an ordered l-tuple

κ = (k1, . . . , kl) ∈ I l. (2.3)

Define the dominant weight Λ (of level l) as follows:

Λ = Λ(κ) := Λk1 + · · ·+ Λkl ∈ P+. (2.4)

Finally, for α ∈ Q+, define the defect of α (relative to Λ) to be

def(α) = (Λ, α)− 1

2
(α, α). (2.5)

2.2. Partitions. Recall that in (2.3) we have fixed a level l and an l-tuple
κ = (k1, . . . , kl). An l-multipartition of d is an ordered l-tuple of partitions

µ = (µ(1), . . . , µ(l)) such that
∑l

m=1 |µ(m)| = d. We call µ(m) the mth
component of µ. Let Pκ

d be the set of all l-multipartitions of d and put
Pκ :=

⊔
d≥0 Pκ

d . Of course, Pκ only depends on l, and not on κ, but
as soon as we consider residues of nodes of multipartitions, the dependence
on κ becomes crucial.

The Young diagram of the multipartition µ = (µ(1), . . . , µ(l)) ∈Pκ is

{(a, b,m) ∈ Z>0 × Z>0 × {1, . . . , l} | 1 ≤ b ≤ µ(m)
a }.

The elements of this set are the nodes of µ. More generally, a node is any ele-
ment of Z>0×Z>0×{1, . . . , l}. Usually, we identify the multipartition µ with
its Young diagram and visualize it as a column vector of Young diagrams.
For example, ((3, 1), ∅, (4, 2)) is the Young diagram

∅

To each node A = (a, b,m) we associate its residue, which is the following
element of I = Z/eZ:

resA = resκA = km + (b− a) (mod e) . (2.6)

An i-node is a node of residue i. Define the residue content of µ to be

cont(µ) :=
∑
A∈µ

αresA ∈ Q+. (2.7)

Denote
Pκ
α := {µ ∈Pκ | cont(µ) = α} (α ∈ Q+).

A node A ∈ µ is a removable node (of µ) if µ \ {A} is (the diagram of)
a multipartition. A node B 6∈ µ is an addable node (for µ) if µ ∪ {B} is a
multipartition. We use the notation

µA := µ \ {A}, µB := µ ∪ {B}.
Let µ, ν ∈Pκ

d . Then µ dominates ν, and we write µ� ν, if

m−1∑
a=1

|µ(a)|+
c∑
b=1

µ
(m)
b ≥

m−1∑
a=1

|ν(a)|+
c∑
b=1

ν
(m)
b
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for all 1 ≤ m ≤ l and c ≥ 1. In other words, µ is obtained from ν by moving
nodes up in the diagram.

We define
κ′ := (−kl, . . . ,−k1). (2.8)

Now, let µ = (µ(1), . . . , µ(l)) ∈Pκ. The conjugate of µ is the multipartition

µ′ = (µ(l)′ , . . . , µ(1)′) ∈Pκ′ ,

where each µ(m)′ is the partition conjugate to µ(m) in the usual sense, that
is, µ(m)′ is obtained by swapping the rows and columns of µ(m).

2.3. Tableaux. Let µ = (µ(1), . . . , µ(l)) ∈Pκ
d . A µ-tableau T = (T(1), . . . , T(l))

is obtained from the diagram of µ by inserting the integers 1, . . . , d into the
nodes, allowing no repeats. For each m = 1, . . . , l, T(m) is a µ(m)-tableau,
called the mth component of T. If the node A = (a, b,m) ∈ µ is occupied by
the integer r in T then we write r = T(a, b,m) and set resT(r) = resA. The
residue sequence of T is

i(T) = iκ(T) = (i1, . . . , id) ∈ Id, (2.9)

where ir = resT(r) is the residue of the node occupied by r in T (1 ≤ r ≤ d).
A µ-tableau T is row-strict (resp. column-strict) if its entries increase from

left to right (resp. from top to bottom) along the rows (resp. columns) of
each component of T. A µ-tableau T is standard if it is row- and column-
strict. Let St(µ) be the set of standard µ-tableaux.

Let T be a µ-tableau and suppose that 1 ≤ r 6= s ≤ d and that r =
T(a1, b1,m1) and that s = T(a2, b2,m2). We write r ↗T s if m1 = m2,
a1 > a2, and b1 < b2; informally, r and s are in the same component
and s is strictly to the north-east of r within that component. The symbols
→T,↘T, ↓T have the similar obvious meanings. For example, r ↓T s means
that r and s are located in the same column of the same component of T
and that s is in a strictly lower row of T than r.

Let µ ∈Pκ, i ∈ I, A be a removable i-node and B be an addable i-node
of µ. We set

dA(µ) = #
{

addable i-nodes of µ
strictly below A

}
−#

{
removable i-nodes of µ

strictly below A

}
, (2.10)

and

dB(µ) = #
{

addable i-nodes of µ
strictly above B

}
−#

{
removable i-nodes of µ

strictly above B

}
. (2.11)

Given µ ∈Pκ
d and T ∈ St(µ), the degree of T is defined in [6, section 3.5]

inductively as follows. If d = 0, then T is the empty tableau ∅, and we
set deg(T) := 0. Otherwise, let A be the node occupied by d in T. Let
T<d ∈ St(µA) be the tableau obtained by removing this node and set

deg(T) := dA(µ) + deg(T<d). (2.12)

Similarly, define a dual notion of codegree by

codeg(∅) := 0, codeg(T) := dA(µA) + codeg(T<d). (2.13)

The definition of the degree and codegree of a tableau depend on the residues
and so, ultimately, they depend on κ by (2.6). We write degκ(T) and
codegκ(T) when we wish to emphasize this dependence.
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By [6, Lemma 3.12], using codegree instead of degree for a tableau leads
only to a negation and “global shift” by the defect: more precisely, we have

deg(T) + codeg(T) = def(α) (T ∈ St(µ), µ ∈Pκ
α). (2.14)

The group Sd acts on the set of µ-tableaux from the left by acting on
the entries of the tableaux. Let Tµ be the µ-tableau in which the num-
bers 1, 2, . . . , d appear in order from left to right along the successive rows,
working from top row to bottom row. Let Tµ be the µ-tableau in which
the numbers 1, 2, . . . , d appear in from top to bottom along the successive
columns, working from the leftmost column to the rightmost column within
a component and moving from the lth component up to the first component.

For example, if µ = ((3, 1), (2, 2)) then

Tµ =

1 2 3

4

5 6

7 8

and Tµ =

5 7 8

6

1 3

2 4

.

Set
iµ := i(Tµ) and iµ := i(Tµ). (2.15)

For each µ-tableau T define permutations wT and wT in Sd by the equations

wTTµ = T = wTTµ. (2.16)

If T = (T(1), . . . , T (l)) ∈ St(µ) then the conjugate of T is the standard

µ′-tableau T′ = (T(l)′ , . . . , T(1)′), where T(m)′ is the µ(m)′-tableau obtained

by swapping the rows and columns of T(m), for 1 ≤ m ≤ l. For example,
(Tµ)′ = Tµ′ .

2.4. Bruhat order. Let ` be the length function on Sd with respect to
the Coxeter generators s1, s2, . . . , sd−1. Let ≤ be the Bruhat order on Sd

(so that 1 ≤ w for all w ∈ Sd). Define a related partial order on St(µ) as
follows: if S, T ∈ St(µ) then

SE T if and only if wS ≤ wT. (2.17)

If SE T then we also write TD S. If SE T and S 6= T we write S / T and T . S.
Observe that if T ∈ St(µ) then TµE TE Tµ. There is a similar connection

between the relation wS ≤ wT and the corresponding tableaux. To describe
this, recall conjugate multipartitions and tableaux.

Lemma 2.18. Suppose that µ ∈Pκ
d and that S, T ∈ St(µ). Then:

(i) wT = wT′;
(ii) TE S if and only if wT ≥ wS;
(iii) wTµ = (wT)−1wT and wTµ = w−1

T wT with `(wTµ) = `(wT) + `(wT)
and `(wTµ) = `(wT) + `(wT).

Proof. (i) Observe that (Tµ)′ = Tµ′ , (Tµ)′ = Tµ
′
and St(µ) = { T | T′ ∈ St(µ′) }.

Now, conjugating the equation T = wTTµ shows that wT′ = wT, for T ∈ St(µ).
(ii) If U ∈ St(µ) and 1 ≤ k ≤ d, let U≤k be the subtableau of T containing

the entries 1, 2 . . . , k. Then it follows from [21, Theorem 3.8] that SD T if
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and only if the shape of S≤k dominates the shape of T≤k for all 1 ≤ k ≤ d.
So TE S if and only if S′E T′. Therefore, by part (i) and (2.17), we get

TE S⇐⇒ S′E T′ ⇐⇒ wS′ ≤ wT′ ⇐⇒ wS ≤ wT.

(iii) Since wTTµ = T = wTTµ, we have wTµTµ = (wT)−1wTTµ which implies
that wTµ = (wT)−1wT. Since TµE TE Tµ we obtain `(wTµ) = `(wT) + `(wT)
using the description of the Bruhat order given in (ii). The remaining claims
are proved similarly. �

We will also need the following result.

Lemma 2.19. [6, Lemma 3.7] Suppose that µ ∈ Pκ
d , T ∈ St(µ), and

1 ≤ r < d such that r ↓T r + 1 or r →T r + 1. Suppose that S ∈ St(µ) and
S . srT. Then SD T.

3. KLR algebras and permutation modules

Throughout this paper a graded algebra will mean a Z-graded algebra and
a graded module will be a Z-graded module. If A is a graded algebra then
A-Mod is the category of finitely generated graded (left) A-modules with
degree preserving maps. We use the standard notation of graded represen-
tation theory. In particular, if M =

⊕
d∈ZMd then v ∈Md is homogeneous

of degree d = deg v. Further, if n ∈ Z then M〈n〉 is the graded module
obtained by shifting the grading on M up by n so that M〈n〉d = Md−n.

3.1. KLR algebras. Let O be a commutative ring with identity and α ∈
Q+. Recall from [16, 17, 25] that the (affine) Khovanov-Lauda-Rouquier
algebra, or KLR algebra, Rα = Rα(O), is defined to be the unital O-algebra
generated by the elements

{e(i) | i ∈ Iα} ∪ {y1, . . . , yd} ∪ {ψ1, . . . , ψd−1}, (3.1)

subject only to the following relations:

e(i)e(j) = δi,je(i);
∑
i∈Iαe(i) = 1; (3.2)

yre(i) = e(i)yr; ψre(i) = e(sri)ψr; (3.3)

yrys = ysyr; (3.4)

ψrys = ysψr if s 6= r, r + 1; (3.5)

ψrψs = ψsψr if |r − s| > 1; (3.6)

ψryr+1e(i) = (yrψr + δir,ir+1)e(i) (3.7)

yr+1ψre(i) = (ψryr + δir,ir+1)e(i) (3.8)

ψ2
re(i) =


0 if ir = ir+1,
e(i) if ir+1 6= ir, ir ± 1 ,
(yr+1 − yr)e(i) if ir → ir+1,
(yr − yr+1)e(i) if ir ← ir+1,
(yr+1 − yr)(yr − yr+1)e(i) if ir � ir+1;

(3.9)

ψrψr+1ψre(i) =


(ψr+1ψrψr+1 + 1)e(i) if ir+2 = ir → ir+1,
(ψr+1ψrψr+1 − 1)e(i) if ir+2 = ir ← ir+1,(
ψr+1ψrψr+1 − 2yr+1

+yr + yr+2

)
e(i) if ir+2 = ir � ir+1,

ψr+1ψrψr+1e(i) otherwise.

(3.10)
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Recall from (2.4) that we have fixed Λ = Λ(κ) ∈ P+. The corresponding
cyclotomic KLR algebra RΛ

α = RΛ
α(O) is generated by the same elements

(3.1) subject only to the relations (3.2)–(3.10) and the additional cyclotomic
relations

y
(Λ,αi1 )
1 e(i) = 0 (i = (i1, . . . , id) ∈ Iα). (3.11)

Thus RΛ
α is the quotient of Rα by the relations (3.11).

The algebras Rα and RΛ
α have Z-gradings determined by setting e(i) to

be of degree 0, yr of degree 2, and ψre(i) of degree −air,ir+1 for all r and
i ∈ Iα.

Note that Rα(Z) ⊗Z O ∼= Rα(O) and RΛ
α(Z) ⊗Z O ∼= RΛ

α(O). In this
paper O will usually be Z or a field F .

3.2. Graded duality. Let α ∈ Q+ be of height d. It is easy to check
using generators and relations that there exists a homogeneous algebra anti-
involution

τ : Rα −→ Rα, e(i) 7→ e(i), yr 7→ yr, ψs 7→ ψs. (3.12)

for all i ∈ Iα, 1 ≤ r ≤ d, and 1 ≤ s < d. Note that τ factors through to an
anti-involution of the cyclotomic quotient RΛ

α , which we also denote by τ .
If M =

⊕
d∈ZMd is a finite rank graded Rα-module, then the graded dual

M~ is the graded O-module such that (M~)d := HomO(M−d,O), for all
d ∈ Z, and where the Rα-action is given by (xf)(m) = f(τ(x)m), for all
f ∈M~,m ∈M,x ∈ Rα.

3.3. The sign map. For i = (i1, . . . , id) ∈ Id, set

− i := (−i1, . . . ,−id). (3.13)

If α =
∑

i∈I aiαi ∈ Q+, then define

α′ =
∑
i∈I

aiα−i.

We clearly have α′ ∈ Q+ and ht(α′) = ht(α). Moreover, i ∈ Iα if and only

if −i ∈ Iα′ . Now, inspecting the relations, there is a unique homogeneous
algebra isomorphism

sgn : Rα −→ Rα′ , e(i) 7→ e(−i), yr 7→ −yr, ψs 7→ −ψs (3.14)

for all i ∈ Iα, 1 ≤ r ≤ d, and 1 ≤ s < d, where d = ht(α).
Recall κ = (κ1, . . . , κl) from (2.3) and κ′ = (−κl, . . . ,−κ1) from (2.8).

Then, as in (2.4), κ′ determines the dominant weight

Λ′ = Λ(κ′) = Λ−κl + · · ·+ Λ−κ1 ∈ P+.

Equivalently, if Λ =
∑

i∈I liΛi, then Λ′ =
∑

i∈I liΛ−i.

The algebra RΛ
α is the quotient of Rα by the cyclotomic relations (3.11).

Applying the involution sgn to (3.11) we obtain

0 = sgn
(
y

(Λ,αi1 )
1 e(i)

)
= ±y(Λ,αi1 )

1 e(−i) = ±y(Λ′,α−i1 )
1 e(−i),

where the right hand side is, up to sign, the cyclotomic relation for RΛ′
α′ .

Hence sgn factors through to a graded algebra isomorphism

sgn : RΛ
α
∼−→ RΛ′

α′ .
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The isomorphism sgn induces equivalences

Rα′-Mod
∼−→ Rα-Mod and RΛ′

α′ -Mod
∼−→ RΛ

α-Mod

of the corresponding categories of graded modules. These equivalences send
the Rα′-module M to the Rα-module Msgn, where Msgn = M as a graded
vector space and where the Rα-action on Msgn is given by a ·m = sgn(a)m,
for a ∈ Rα and m ∈Msgn.

3.4. Basis Theorem. Suppose that α ∈ Q+ is of height d. For the rest of
this paper we fix a preferred reduced decomposition w = sr1 . . . srm for each
element w ∈ Sd, where m ≥ 0 is as small as possible and 1 ≤ r1, . . . , rm < d.
Define the elements

ψw := ψr1 . . . ψrm ∈ Rα (w ∈ Sd).

In general, ψw depends on the choice of a preferred reduced decomposition
of w, but:

Proposition 3.15. Suppose that i ∈ Iα, and

w = st1 . . . stm = sr1 . . . srm

are two reduced decompositions of an element w ∈ Sd. Then in Rα, we have

ψt1 . . . ψtme(i) = ψr1 . . . ψrme(i) +X,

where X is a linear combination of elements of the form ψuf(y)e(i) such
that u < w, f(y) is a polynomial in y1, . . . , yd, and

deg(ψuf(y)e(i)) = deg(ψr1 . . . ψrme(i)) = deg(ψt1 . . . ψtme(i)).

Proof. This is proved in [6, Proposition 2.5] for corresponding elements of
the cyclotomic KLR algebra RΛ

α . As the argument in [6] does not use the
relation (3.11) the result holds in Rα. �

Suppose now that µ ∈Pκ
α and that T is a µ-tableau. In (2.16) we defined

the permutations wT, w
T ∈ Sd. Define

ψT := ψwT and ψT := ψwT . (3.16)

These elements will be used to produce bases of various modules below.
By (3.6), there is one important case where the elements ψw are inde-

pendent of the choice of preferred reduced decomposition of w. An element
w ∈ Sd is fully commutative if one can go from any reduced decomposition
of w to any other reduced decomposition of w using only the commuting
braid relations; that is, the relations of the form srst = stsr, for |r − t| > 1.
We refer the reader to [27] for more details on fully commutative elements.
We record the following easy result for future reference:

Lemma 3.17. Suppose that 1 ≤ s < k and let D be the set of the minimal
length left coset representatives of the parabolic subgroup Ss ×Sk−s in the
symmetric group Sk. Then every element of D is fully commutative.

In general we have the following important result:

Theorem 3.18. [16, Theorem 2.5], [25, Theorem 3.7] Let α ∈ Q+. Then

{ψwym1
1 . . . ymdd e(i) | w ∈ Sd, m1, . . . ,md ∈ Z≥0, i ∈ Iα}

is an O-basis of Rα.



10 ALEXANDER S. KLESHCHEV, ANDREW MATHAS, AND ARUN RAM

3.5. Induction and restriction for affine KLR algebras. Given α, β ∈
Q+, we set Rα,β := Rα ⊗ Rβ, viewed as an algebra in the usual way. Let
M�N be the outer tensor product of the Rα-module M and the Rβ-module
N . There is an obvious injective homogeneous (non-unital) algebra homo-
morphism Rα,β ↪→Rα+β mapping e(i) ⊗ e(j) to e(ij), where ij is the con-
catenation of the two sequences. The image of the identity element of Rα,β
under this map is eα,β :=

∑
i∈Iα, j∈Iβ e(ij). Let Indα+β

α,β and Resα+β
α,β be the

corresponding induction and restriction functors between the corresponding
categories of graded modules:

Indα+β
α,β := Rα+βeα,β⊗Rα,β? : Rα,β-Mod→ Rα+β-Mod,

Resα+β
α,β := eα,βRα+β⊗Rα+β? : Rα+β-Mod→ Rα,β-Mod .

These have obvious generalizations to n ≥ 2 factors:

Indβ1+···+βn
β1,...,βn

: Rβ1,...,βn-Mod→ Rβ1+···+βn-Mod,

Resβ1+···+βn
β1,...,βn

: Rβ1+···+βn-Mod→ Rβ1,...,βn-Mod .

The functor Resβ1+···+βn
β1,...,βn

is left multiplication by the idempotent eβ1,...,βn ,

so it is exact and sends finite dimensional modules to finite dimensional
modules. The functor Indβ1+···+βn

β1,...,βn
is left adjoint to Resβ1+···+βn

β1,...,βn
. Moreover,

Rβ1+···+βneβ1,...,βn is a free graded right Rβ1,...,βn-module of finite rank, so

Indβ1+···+βn
β1,...,βn

sends finite dimensional graded modules to finite dimensional

graded modules. Finally, if Ma ∈ Rβa-Mod, for a = 1, . . . , n, we define

M1 ◦ · · · ◦Mn := Indβ1+···+βn
β1,...,βn

M1 � · · ·�Mn. (3.19)

3.6. Permutation Modules M(~s). For i ∈ I, and N ∈ Z≥1, let s(i,N) ∈
IN be the tuple (j1, . . . , jN ) with jr = i + r − 1 (mod e) . In other words,
s(i,N) is the segment of length N starting at i. Similarly, if N ∈ Z<0 define
s(i,N) ∈ I−N be the tuple (j1, . . . , j−N ) with jr = i − r + 1 (mod e) . For
example s(0, e) = (0, 1, . . . , e− 1) and s(0,−e) = (0,−1, . . . , 1− e).

Suppose that s := s(i,N) is a segment and let α = |s| ∈ Q+. Define
the corresponding segment module M(s) := O ·m(s) to be the graded Rα-
module which is the free O-module of rank one on the generator m(s) of
degree 0 with action

e(i)m(s) = δi,sm(s), ψrm(s) = 0 and ytm(s) = 0

for all admissible i, r and t. Equivalently, M(s) = Rα/K(s), where K(s) is
the left ideal of Rα generated by the elements e(i)− δi,s, ψr, and yt, for all
admissible i, r and t.

Let ~s = (s(1), . . . , s(n)) be an ordered tuple of segments. Set αr := |s(r)|,
and let λr := ht(αr) be the length of the segment s(r), for r = 1, . . . , n. Also
set α = α1 + · · ·+αn and d := ht(α). Note that (λ1, . . . , λn) is a composition
of d. Define the permutation module

M(~s) = M(s(1), . . . , s(n)) := M(s(1)) ◦ · · · ◦M(s(n)).

This is the graded Rα-module generated by the vector

m(~s) := 1⊗m(s(1))⊗ · · · ⊗m(s(n)) (3.20)
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in Indαα1,...,αnM(s(1)) � · · · �M(s(n)). Let S~s be the parabolic subgroup
Sλ1 × · · · ×Sλn of Sd. Define

j(~s) := s(1) . . . s(n) ∈ Iα (3.21)

where the product on the right hand side is the concatenation. Now let
K(~s) to be the left ideal of Rα generated by

{e(i)− δi,j(~s), yr, ψt | i ∈ Iα, 1 ≤ r ≤ d, 1 ≤ t < d such that st ∈ S~s}.
Then we have:

M(~s) ∼= Rα/K(~s). (3.22)

Under this isomorphism m(~s) is identified with 1+K(~s). With the notation
as above, we have as an immediate consequence of the Basis Theorem 3.18:

Theorem 3.23. Let D~s be the set of the shortest length left coset repre-
sentatives of S~s in Sd. Then {ψwm(~s) | w ∈ D~s} is an O-basis of M(~s).
Moreover each basis element ψwm(~s) is homogeneous of degree equal to the
degree of the element ψwe(j(~s)) ∈ Rα, and ψwm(~s) ∈ e(w · j(~s))M(~s).

4. Block intertwiners

Throughout this section we assume that e > 0. Recall from (2.2) that
δ ∈ Q+ is the null-root. We fix i ∈ I and a composition λ = (λ1, . . . , λn) of
k. Define

~s(i, λ) := (s(i, eλ1), . . . , s(i, eλn))

the tuple of segment of lengths eλ1, . . . , eλn, all starting at i. We consider
the corresponding permutation module

M(i, λ) := M(~s(i, λ))

over the algebra Rkδ as in section 3.6. Let

j = (j1, . . . , jke) := j(~s(i, λ)) ∈ Ikδ

as defined in (3.21). We have j = s(i, ke). Finally, let the corresponding
idempotent be

e(i, λ) := e(j(~s(i, λ))) ∈ Rkδ
and

m(i, λ) := m(~s(i, λ)) ∈M(i, λ),

the generator of M(s) as in (3.20).

4.1. The elements σ. We consider the element wr of the symmetric group
Ske defined as the product of transpositions

wr :=
re∏

a=re−e+1

(a, a+ e) (1 ≤ r < k). (4.1)

Informally, wr permutes the rth “e-block” and the (r + 1)st “e-block”. If
we write wr = w′rsre then `(wr) = `(w′r) + 1.

Define
σr := ψwre(i, λ) ∈ Rkδ (1 ≤ r < k). (4.2)

Note by Lemma 3.17 that wr and w′r are fully commutative elements so the
elements ψwr and ψw′r of Rkδ do not depend on the choice of preferred re-
duced decompositions for these permutations. Furthermore, ψwr = ψw′rψre.

To prove the results in this section we will use the graphical representation
of elements of Rkδ and M(i, λ) = Rkδ/K(~s(i, λ)) = Rkδm(i, λ) following
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[16]. In fact, the diagram used to represent an element he(i, λ) ∈ Rkδ in [16],
here will represent the element hv ∈ M(i, λ), for some v ∈ e(i, λ)M(i, λ).
Of course, the element v needs to be specified before this makes sense. For
example, if v = m(i, λ), then

m(i, λ) =

j1 j2 jke

, ψrm(i, λ) =

j1 jr−1jrjr+1 jke

,

and

ysm(i, λ) =

j1 js−1js js jke

,

where 1 ≤ r < d and 1 ≤ s ≤ d. Also, setting r′ = (r−1)e, r′′ = (r+1)e+1,
we have

σrm(i, λ) =

j1
j
r′ i i+1 i−1 i i+1 i−1 j

r′′ jke

(4.3)

We will colour the strings of the diagrams to improve readability, but these
colours will have no mathematical meaning (and will not be distinguishable
in black and white!).

4.2. The block permutation subspace. Consider the block permutation
subspace

T (i, λ) := O-span{σr1σr2 . . . σram(i, λ) | 1 ≤ r1, . . . , ra < k}.
It is not hard to see using Theorem 3.23 that

T (i, λ) = e(i, λ)M(i, λ).

It is easy to see that deg(σre(i, λ)) = 0. Therefore,

T (i, λ) ⊆M(i, λ)0,

the degree zero component of M(i, λ).

Lemma 4.4. Suppose that 1 ≤ s, t ≤ ke with t 6≡ 0 (mod e) . Then the
elements ys and ψt act as zero on T (i, λ).

Proof. Let v ∈ T (i, λ). We have

ysv ∈ e(i, λ)M(i, λ) = T (i, λ) ⊆M(i, λ)0.

On the other hand, deg(ysv) = deg(ys) + deg(v) = 2. Hence ysv = 0.
Moreover, ψtv ∈ e(st · j)M(i, λ) = 0, the last equality holding by Theo-
rem 3.23. �
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4.3. Quadratic relation. We want to study relations satisfied by the el-
ements σr acting on T (i, λ). Our main goal is to show that the elements
τr := σr + 1 satisfy the Coxeter relations on T (i, λ). We begin with the
quadratic relations.

Lemma 4.5. Suppose that 1 ≤ r < k and v ∈ T (i, λ). Then ψreσrv =
−2ψrev. Equivalently, in terms of diagrams we have

j1
j
r′ i i+1 i−1 i i+1 i−1 j

r′′ jke

= −2

j1
j
r′ i i+1 i−1 i i+1 i−1 j

r′′ jke

where r′ = (r − 1)e, r′′ = (r + 1)e+ 1 and i = s(i, ke).

Proof. For typographical convenience, we only consider the case where r = 1
and i = 0. We first treat the case e = 2 which is exceptional because in
this case the quiver Γ is not simply laced. Using the relation (3.9), and then
(3.7) and (3.8), we have:

ψ2σ1 =

0 1 0 1

= 2

0 1 0 1

−

0 1 0 1

−

0 1 0 1

= 2

0 1 0 1

= 2

0 1 0 1

= −2

0 1 0 1

= −2ψ2v,

as required.
Now suppose that e > 2. To start, using (3.9) we see that ψeσ1v equals

−

0 1 2 3 −2 −1 0 1 2 3 −2 −1

+

0 1 2 3 −2 −1 0 1 2 3 −2 −1

.

Let D1 be the first diagram and let D2 be the second diagram. To com-
plete the proof, we show that D1 = ψev and D2 = −ψev. In fact, the two
equalities are proved similarly, so we give details only for the first one. Using
(3.7), we see that

D1 =

0 1 2 3 −2 −1 0 1 2 3 −2 −1

=

0 1 2 3 −2 −1 0 1 2 3 −2 −1

+

0 1 2 3 −2 −1 0 1 2 3 −2 −1

.
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The second summand is zero as y1v = 0 by Lemma 4.4. Applying the braid
relations (3.10) to the first summand, we get that D1 equals

0 1 2 3 −2 −1 0 1 2 3 −2 −1

+

0 1 2 3 −2 −1 0 1 2 3 −2 −1

.

Using the braid relations to pull the second 0-string through shows that the
first summand equals

0 1 2 3 −2 −1 0 1 2 3 −2 −1

,

showing that this element is zero since ψe+1v = 0, by Lemma 4.4. Applying
the braid relations to the second summand, we get

0 1 2 3 −2 −1 0 1 2 3 −2 −1

+

0 1 2 3 −2 −1 0 1 2 3 −2 −1

.

As before, using the braid relations to pull the second 1-string to the top of
the first diagram shows that the first summand is zero. So, by (3.9),

D1 =

0 1 2 3 −2 −1 0 1 2 3 −2 −1

.

The argument so far has straightened the first three strings in the diagram.
Continuing in this way straightens the first e− 1 strings so that

D1 =

0 1 2 3 −2 −1 0 1 2 3 −2 −1

Now applying the braid relation for the last time shows that D1 equals

0 1 2 3 −2 −1 0 1 2 3 −2 −1

+

0 1 2 3 −2 −1 0 1 2 3 −2 −1

=

0 1 2 3 −2 −1 0 1 2 3 −2 −1

= ψev,

as required. �
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Recall from section 4.1 that ψwr = ψw′rψre.

Corollary 4.6. Suppose that 1 ≤ r < k and v ∈ T (i, λ). Then σ2
rv =

−2σrv.

Proof. Using Lemma 4.5, we get

σ2
rv = ψw′rψreσrv = −2ψw′rψrev = −2ψwrv = −2σrv,

as desired. �

4.4. Braid relations. This section is dedicated to the proof of the following

Theorem 4.7. Suppose that 1 ≤ r < k and v ∈ T (i, λ). Then

(σrσr+1σr − σr+1σrσr+1 − σr + σr+1)v = 0.

In the proof, for typographical reasons, we assume that i = 0 and k = 3
(this corresponds to ignoring vertical strings to the left and to the right of the
relation we are interested in). As in the Lemma 4.5, all diagrams represent
elements of T (i, λ) obtained by applying the corresponding elements of Rkδ
to a given v ∈ T (i, λ).

First, we need three technical lemmas.

Lemma 4.8. Suppose that e > 2, k = 3, i = 0, and v ∈ T (i, λ). Then:

σ1v =

0 1 −2 −1 0 1 −2 −1 0 1 −2 −1

,

and

σ2v =

−1−210−1−210−1−210

.

Proof. We prove only the first identity for σ1 as the proof of the second one
is almost identical. Let D1 be the first diagram on the right hand side of
the first equality. Using more strings for clarity of exposition,

D1 =

0 1 2 −3 −2 −1 0 1 2 −3 −2 −1 0 1 2 −3 −2 −1

.

Pulling the rightmost 0-string past the 1 1-crossing immediately to its right
gives zero because ψ2e+1v = 0 by Lemma 4.4. Here, and in similar situations
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below, we will omit such terms which arise when applying the braid relations
(3.10). This observation shows that

D1 =

0 1 2 −3 −2 −1 0 1 2 −3 −2 −1 0 1 2 −3 −2 −1

=

0 1 2 −3 −2 −1 0 1 2 −3 −2 −1 0 1 2 −3 −2 −1

where for the second equality we pulled the rightmost 1-string past the 2 2

-crossing. Continuing in this way and pulling the right most (i − 1)-string

past its neighbouring i i-crossing, for 3 ≤ i < e− 1, shows that

D1 =

0 1 2 −3 −2 −1 0 1 2 −3 −2 −1 0 −5 −4 −3 −2 −1

.

Another application of the braid relation (3.10) yields

D1 =

0 1 2 −3 −2 −1 0 1 2 −3 −2 −1 0 −5 −4 −3 −2 −1

.

Applying (3.6) we can straighten the rightmost −3,−4, . . . ,−1 strings com-
pletely and then pull the next e+ 1 strings to the right to give

D1 =

0 1 2 −3 −2 −1 0 1 2 3 −2 −1 0 1 2 −3 −2 −1

.
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Now applying the quadratic relation (3.9) to the rightmost pair of (−1, 0)-
strings, using Lemma 4.4, and then applying the relation (3.8), gives

D1 =

0 1 2 −3 −2 −1 0 1 2 3 −2 −1 0 1 2 −3 −2 −1

=

0 1 2 −3 −2 −1 0 1 2 3 −2 −1 0 1 2 −3 −2 −1

Repeating the same argument another e− 2 times shows that

D1 =

0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −3 −2 −1

A final application of (3.9) and (3.8) now shows that D1 = σ1v completing
the proof. �

Lemma 4.9. Suppose that k = 3, i = 0, v ∈ T (i, λ) and let

E1 =

0 1 −2−1 0 1 −2−1 0 1 −2−1

, E′1 =

0 1 −2−1 0 1 −2−1 0 1 −2−1

,

E2 =

−1−210−1−210−1−210

, E′2 =

−1−201−1−201−1−210

Then E1 = σ1v + E′1 and E2 = σ2v + E′2.

Proof. Both identities are proved similarly, so we consider only the first one.
First consider the exceptional case e = 2. Then we have to show that

0 1 0 1 0 1

= σ1v +

0 1 0 1 0 1

. (4.10)
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Applying the braid relation (3.10), (the first line of) the quadratic relation
(3.9) and Lemma 4.4, shows that

0 1 0 1 0 1

=

0 1 0 1 0 1

+

0 1 0 1 0 1

.

Applying (3.10) twice to the first summand and (3.8) to the second summand
gives

0 1 0 1 0 1

=

0 1 0 1 0 1

+

0 1 0 1 0 1

.

The relations (3.10), (3.8) and Lemma 4.4 show that the first summand
above equals the second summand on the right hand side of (4.10) and the
second summand above equals σ1v.

Now consider the case when e > 2. By (3.10), E1 is equal to

0 1 −2 −1 0 1 −2 −1 0 1 −2 −1

+

0 1 −2 −1 0 1 −2 −1 0 1 −2 −1

.

By Lemma 4.8 the second summand is equal to σ1v. Using the braid rela-
tions again, the first summand is equal to

0 1 −2 −1 0 1 −2 −1 0 1 −2 −1

= E′1+

0 1 −2 −1 0 1 −2 −1 0 1 −2 −1

.

Using the braid relations to pull the rightmost −2-string in the second sum-
mand above to the right and observing that the error term of the braid
relation equals zero by (3.9), shows that the second summand equals

D =

0 1 −2 −1 0 1 −2 −1 0 1 −2 −1

= 0,

where the last equality follows because ψ3e−1v = 0 in view of Lemma 4.4.
Therefore, E1 = σ1v + E′1 as claimed. �

Lemma 4.11. Suppose that i 6= 0,−1 and v ∈ T (i, λ). Then

0 1 −1 0 i−1 i i+1 −1 0 1 −1

=

0 1 −1 0 i−1 i i+1 −1 0 1 −1

.
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Proof. Let D be the left hand diagram. Then, using the braid relations,

D =

0 i−1 i i+1 −1 0 i−1 i i+1 −1 0 i−1 i i+1 −1

+

0 i−1 i i+1 −1 0 i−1 i i+1 −1 0 i−1 i i+1 −1

.

Let the first summand of D be D1 and the second one be D2. Then by the
braid relations, we have

D1 =

0 i−1 i i+1 −1 0 i−1 i i+1 −1 0 i−1 i i+1 −1

+

0 i−1 i i+1 −1 0 i−1 i i+1 −1 0 i−1 i i+1 −1

.

The first summand is zero because we can use (3.10) to pull the rightmost
(i−1)-string to the top of the diagram and then use the fact that ψ2e+iv = 0

by Lemma 4.4. The second summand is zero by because
i i

= 0 by (3.9).
Hence, D1 = 0. Now consider D2. Using the braid relations to pull the
middle i-string in D2 to the right, D2 is equal to the diagram on the right
hand side of the formula in the statement of the lemma plus the following
error term

0 i−1 i i+1 −1 0 i−1 i i+1 −1 0 i−1 i i+1 −1

,
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which using the (error term free) braid relations, equals

0 i−1 i i+1 −1 0 i−1 i i+1 −1 0 i−1 i i+1 −1

.

By the braid relations again, this equals

0 i−1 i i+1 −1 0 i−1 i i+1 −1 0 i−1 i i+1 −1

+

0 i−1 i i+1 −1 0 i−1 i i+1 −1 0 i−1 i i+1 −1

The first summand is zero since ψiv = 0 by Lemma 4.4. The second term

is zero because of the quadratic relation
i i

= 0. The proof of the lemma is
complete. �

We can now prove Theorem 4.7.

Proof of Theorem 4.7. Writing σ1σ2σ1v in terms of diagrams and using Lemma 4.9
we have

σ1σ2σ1v =

0 1 −2 −1 0 1 −2 −1 0 1 −2 −1

=σ1 +

0 1 −2 −1 0 1 −2 −1 0 1 −2 −1

.
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Hence, applying Lemma 4.11 (e− 1) times,

σ1σ2σ1v =σ1v +

0 1 −2 −1 0 1 −2 −1 0 1 −2 −1

= · · · =σ1v +

−1−201−1−201−1−210

=σ1v − σ2v +

−1−210−1−210−1−210

,

where the last equality follows using the identity E2 = σ2v + E′2 from
Lemma 4.9. The diagram in the last equation is equal to σ2σ1σ2v, so this
completes the proof of Theorem 4.7. �

4.5. The elements τ . Let 1 ≤ r < k. Recall from the beginning of the
section that σr = ψwre(i, λ) ∈ Rkδ. Define

τr = (σr + 1)e(i, λ) = σr + e(i, λ) = (ψwr + 1)e(i, λ).

Quite remarkably, as we now show, the elements τ1, . . . , τk−1 satisfy the
usual Coxeter relations for the symmetric group Sk when they act on the
block permutation space T (i, λ). Let Sλ = Sλ1 × . . .Sλn be the parabolic
subgroup of Sk indexed by λ, Oλ the trivial representation of Sλ, and Dλ

the set of the minimal length left coset representatives of Sλ in Sk.

Theorem 4.12. Suppose that 1 ≤ r, s < k and v ∈ T (i, λ). Then

(i) τ2
r v = v.

(ii) If |r − s| > 1 then τrτsv = τsτrv.
(iii) If r < k − 1 then τrτr+1τrv = τr+1τrτr+1v.

Consequently, Sk acts on T (i, λ), and the elements τum(i, λ) for u ∈ Sk

are well-defined. Finally, T (i, λ) ∼= indOSkOSλ Oλ as OSk-modules, and T (i, λ)

has O-basis {τum(i, λ) | u ∈ Dλ}.

Proof. Part (i) comes from Corollary 4.6. Part (ii) follows directly from the
definition of σr. For part (iii), by definition

τrτr+1τrv = (σr + 1)(σr+1 + 1)(σr + 1)v

= (σrσr+1σr + σrσr+1 + σr+1σr + σ2
r + 2σr + σr+1 + 1)v.

Theorem 4.7 and Corollary 4.6 now imply (iii). So we obtain the action of
the symmetric group Sk on T (i, λ) with Coxeter generators sr acting as τr
for all r = 1, . . . , k − 1.



22 ALEXANDER S. KLESHCHEV, ANDREW MATHAS, AND ARUN RAM

For the final statement of the proposition, consider the parabolic subgroup
Sλ ≤ Sk generated by

{sr | r 6= λ1 + · · ·+ λa for all a = 1, . . . , n}.
Note from the definition of T (i, λ) that T (i, λ) is an O-span of all elements of
the form τr1 . . . τram(i, λ). Moreover, O ·m(i, λ) ∼= Oλ is the trivial module
of Sλ because if sr ∈ Sλ then τrm(i, λ) = m(i, λ) since σrm(i, λ) = 0 by

(3.20). So we have a surjective homomorphism from indOSkOSλ Oλ onto T (i, λ),

which sends the natural cyclic generator of indOSkOSλ Oλ onto m(i, λ). The
injectivity of this map follows from Theorem 3.23, which describes an O-
basis for M(i, λ), together with the observation that the transition matrix
for the change of basis from the products of the τr to the corresponding
products of the σr is unitriangular. �

5. Homogeneous Garnir relations

In this section we define universal graded (row) Specht modules Sµ for
Rα by generators and relations, see Definition 5.9. This definition will be
justified in Theorem 6.23 when we show that these universal graded Specht
modules are isomorphic to the usual graded Specht modules from [6,11].

5.1. Row Garnir tableaux. The definitions here differ slightly from those
given in [6] but match those in [21]. Let A = (a, b,m) be a node of µ ∈Pκ.
Then A is a (row) Garnir node if (a+ 1, b,m) is also a node of µ. The (row)
A-Garnir belt BA is the set of nodes

BA = { (a, c,m) ∈ µ | b ≤ c ≤ µ(m)
a } ∪ { (a+ 1, c,m) ∈ µ | 1 ≤ c ≤ b } .

For example, ifA = (2, 3, 2) then theA-Garnir belt BA for µ = ((1), (7, 7, 4, 1))
is highlighted below:

A

The (row) A-Garnir tableau is the µ-tableaux GA defined as follows. Let
u = Tµ(a, b,m) and v = Tµ(a+1, b,m). Now insert the numbers u, u+1, . . . , v
into the nodes of the Garnir belt going from left bottom to top right, and
the other numbers into the same positions as in Tµ. Continuing the previous
example, u = 11, v = 18, and Tµ and the (2, 3, 2)-Garnir tableau are:

Tµ =

1

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19

20

, GA =

1

2 3 4 5 6 7 8

9 10 14 15 16 17 18

11 12 13 19

20

Lemma 5.1. Suppose that µ ∈Pκ, A is a Garnir node of µ, and S ∈ St(µ).
If S . GA then S agrees with Tµ outside the A-Garnir belt.
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Proof. This follows from [6, Lemma 3.9] and Lemma 2.19. �

The importance of the Garnir tableaux comes from the following:

Lemma 5.2. Suppose that µ ∈ Pκ
d and that T is a row-strict µ-tableau

which is not standard. Then there exists a Garnir tableau G = GA, for A ∈ µ
a row Garnir node, and w ∈ Sd such that T = wG and `(wT) = `(wG) + `(w).

Proof. If l = 1 this is [21, Lemma 3.14], and the general case follows easily
from the case l = 1. �

5.2. Bricks. Fix µ ∈ Pκ
d and a Garnir node A = (a, b,m) ∈ µ. A (row

A-)brick is a set of e successive nodes in the same row

{(c, d,m), (c, d+ 1,m), . . . , (c, d+ e− 1,m)} ⊆ BA

such that res(c, d,m) = resA. Note that BA is a disjoint union of the bricks
that it contains together with less than e nodes at the end of row a which
are not contained in a brick and less than e nodes at the beginning of row
a+ 1 which are not contained in a brick.

Let k = kA be the number of bricks in BA. We label the bricks

BA
1 , B

A
2 , . . . , B

A
k

going from left to right along row a+1 and then from left to right along row
a of GA as in the example above. Of course, it might happen that BA does
not contain any bricks (this is always true if e = 0), in which case k = 0.

For example, the following diagram shows the bricks in the (2, 3, 2)-Garnir
belt of µ =

(
(1), (7, 7, 4, 1)

)
when e = 2:

1

2 3 4 5 6 7 8

9 10 14 15 16 17 18

11 12 13 19

20

BA
2 BA

3

BA
1

Note that k = 3, there are two bricks BA
2 , BA

3 in row 2 and one brick BA
1 in

row 3 of the second component. Further, (3, 1, 2) and (2, 7, 2) are the only
nodes in the (2, 3, 2)-Garnir belt of GA which are not contained in a brick.

Assume now that k > 0 and let n = nA be the smallest entry in GA which
is contained in a brick in BA. In the example above, n = 12. Extending
(4.1), define

wAr =

n+re−1∏
a=n+re−e

(a, a+ e) ∈ Sd (1 ≤ r < k). (5.3)

Informally, wAr swaps the bricksBA
r andBA

r+1. The elements wA1 , w
A
2 , . . . , w

A
k−1

are the Coxeter generators of the symmetric group

SA := 〈wA1 , wA2 , . . . , wAk−1〉 ∼= Sk.

We call SA the (row) brick permutation group. By convention, SA is the
trivial group if k = 0.
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Let GarA be the set of all row-strict µ-tableaux which are obtained from
the Garnir tableau GA by brick permutations; that is, by acting with the
brick permutation group SA on GA. Note that all of the tableaux in GarA,
except for GA, are standard. Moreover, GA is the minimal element of GarA,
with respect to the Bruhat order, and there is a unique maximal tableaux
TA in GarA. Further, by definition, if T ∈ GarA then i(T) = i(GA). Conse-
quently, we let iA = i(GA) be this common residue sequence.

Define f = fA to be the number of A-bricks in row a of the Garnir belt
BA. Finally, let DA be the set of minimal length left coset representations
of Sf ×Sk−f in SA ∼= Sk. Note that by definition SA is a subgroup of Sd,

so DA is a subset of Sd and, in particular, its elements act on µ-tableaux.
Note that

GarA = {wTA | w ∈ DA}. (5.4)

Continuing the example above, TA is the tableau

TA =

1

2 3 4 5 6 7 8

9 10 12 13 14 15 18

11 16 17 19

20

B1 B2

B3

,

and GarA = {TA, S := wA2 T
A, GA = wA1 w

A
2 T

A}. Recall from section 2.2 that
the residues of the nodes are determined by a fixed choice of the multi-
charge κ. If we take κ = (0, 0) in our example above with e = 2 then the
residues of the nodes in µ are as follows:

0

0 1 0 1 0 1 0

1 0 1 0 1 0 1

0 1 0 1

1

Recalling the notation (3.16) and using Khovanov-Lauda diagrams, we have

ψTAe(iµ) =

0 0 1 0 1 0 1 0 1 0 1 11 0 1 0 1 0 1 0

,

ψSe(iµ) =

0 0 1 0 1 0 1 0 1 0 1 11 0 1 0 1 0 1 0

,
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and

ψGAe(iµ) =

0 0 1 0 1 0 1 0 1 0 1 11 0 1 0 1 0 1 0

.

The circles in these diagrams correspond to the bricks in the Garnir belt.
The degree statement in the following lemma is what will guarantee the

homogeneity of our Garnir relations. This result is implicit in the proof
of [6, Proposition 3.16].

Lemma 5.5. Suppose that µ ∈Pκ
d and A ∈ µ is a Garnir node. Then

GarA \ {GA} = {T ∈ St(µ) | TD GA and i(T) = iA}.
Moreover, deg(T) = deg(GA) for all T ∈ GarA.

5.3. The row permutation modules Mµ. Let µ ∈ Pκ
α be a multipar-

tition with (non-empty) rows R1, . . . , Rg counted from top to bottom. If a
row Ra has length N and the leftmost node of Ra has residue i we associate
the segment r(a) := s(i,N) to Ra. Let ~r = (r(1), . . . , r(g)), and, recalling
the definitions from section 3.6, put

Mµ = Mµ(O) := M(~r) 〈deg Tµ〉.
Note the degree shift by deg Tµ, the significance of which is explained by
Theorem 6.23 below. The moduleMµ is generated by the vectormµ := m(~r)
of degree deg Tµ. Recalling (3.16), for any µ-tableau T we define

mT := ψTmµ.

The following is a special case of Theorem 3.23:

Theorem 5.6. Suppose that α ∈ Q+ and µ ∈Pκ
α. Then

{mT | T is a row-strict µ-tableau}
is an O-basis of Mµ.

5.4. Universal row Specht modules Sµ. Fix a Garnir node A ∈ µ,
and let SA be the corresponding block permutation group with generators
wA1 , . . . , w

A
k−1 as defined in section 5.2. Using the notation of (5.3), we define

σAr := ψwAr e(i
A) and τAr := (σAr + 1)e(iA), (5.7)

cf. section 4.5. Any element u ∈ SA can written as a reduced product
u = wAr1 . . . w

A
ra of simple generators wA1 , . . . , w

A
k−1 of SA. In general, the

elements τAr do not have to satisfy Coxeter relations. However, if u is fully
commutative then the element

τAu := τAr1 . . . τ
A
ra

is well-defined, since τAr and τAs commute for |r − s| > 1. In particular, we
have well-defined elements

{τAu | u ∈ DA}.
(As operators on the brick permutation space Tµ,A, defined below, the ele-
ments τAr do satisfy Coxeter relations, see Theorem 5.11(ii).)
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Recall from (5.4) that GarA is the set of row-strict tableaux obtained
from the tableau TA by acting with the elements of DA. Note that for any

S ∈ GarA, we can write wS = uSwTA so that `(wS) = `(uS) + `(wTA) and

uS ∈ DA. Moreover, in view of Lemma 3.17, all elements wS, uS, and wTA

are fully commutative so the elements ψuS , ψ
TA and ψS = ψuSψ

TA are all
independent of the choice of preferred reduced decomposition. Set

mA := mTA = ψTAmµ ∈Mµ.

Definition 5.8. Suppose that µ ∈ Pκ
α and A ∈ µ is a Garnir node. The

(row) Garnir element is

gA :=
∑
u∈DA

τAu ψ
TA ∈ Rα.

In the module Mµ we have

gAmµ =
∑
u∈DA

τAu m
A.

By Lemma 5.5 all of the summands on the right hand side have the same

degree. Finally, if DA = {1}, we have GA = TA and gA = ψGA .

Definition 5.9. Let α ∈ Q+, d = ht(α), and µ ∈ Pκ
α. Define the univer-

sal graded (row) Specht module Sµ = Sµ(O) to be the graded Rα-module
generated by the vector zµ of degree deg(Tµ) subject only to the following
relations:

(i) e(j)zµ = δj,iµz
µ for all j ∈ Iα;

(ii) yrz
µ = 0 for all r = 1, . . . , d;

(iii) ψrz
µ = 0 for all r = 1, . . . , d− 1 such that r →Tµ r + 1;

(iv) (homogeneous Garnir relations) gAzµ = 0, for all (row) Garnir
nodes A in µ.

In other words, Sµ = (Rα/J
µ
α)〈deg(Tµ)〉, where Jµα is the (homogeneous)

left ideal of Rα generated by the elements

(i) e(j)− δj,iµ for all j ∈ Iα;
(ii) yr for all r = 1, . . . , d;
(iii) ψr for all r = 1, . . . , d− 1 such that r →Tµ r + 1;
(iv) gA for all Garnir nodes A ∈ µ.

In view of (3.22), the elements (i)-(iii) generate a left ideal Kµ such that
Rα/K

µ ∼= Mµ. So we have a natural surjection Mµ�Sµ, with the kernel
Jµ of this surjection generated by the Garnir relations gAmµ = 0. This
surjection maps mµ to zµ and Jµ = Jµαmµ.

Remark 5.10. Our homogeneous Garnir relations are simpler than the
ones defined by Young and Garnir in that they have fewer summands. For
example, if GA is the only tableau in GarA, then the Garnir relation is simply

saying that ψGAzµ = 0. Note that we always have GarA = {GA} when e = 0
or e > d.

Our main goal is to obtain a basis for the universal Specht modules and
to relate them to the usual Specht modules for cyclotomic Hecke algebras.
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5.5. Row brick permutation space Tµ,A. Continuing with the notation
of the previous subsection, define the (row) brick permutation space Tµ,A ⊆
Mµ to be theO-span of all elements of the form σAr1 . . . σ

A
ram

A, cf. section 4.2.

Theorem 5.11. Suppose that α ∈ Q+, µ ∈ Pκ
α, A ∈ µ is a Garnir node

and let k = kA and f = fA. Then:

(i) Tµ,A is the O-span of all elements of the form τAr1 . . . τ
A
ram

A. In

particular, the elements τA1 , . . . , τ
A
k−1 act on Tµ,A.

(ii) As O-linear operators on Tµ,A, the elements τA1 , . . . , τ
A
k−1 satisfy

the Coxeter relations for the symmetric group Sk. Thus, we can
consider Tµ,A as an OSk-module.

(iii) Let O(f,k−f) be the trivial OSf,k−f -module. There is an isomor-
phism of OSk-modules

Tµ,A ∼= indOSkOS(f,k−f )O(f,k−f),

under which mA ∈ Tµ,A corresponds to the natural cyclic generator
of the induced module on the right hand side.

(iv) {τAu mA | u ∈ DA} is an O-basis of Tµ,A.

Proof. Let i = resA, and let n = nA be, as before, the smallest entry in GA

which is contained in a brick in BA. . Set i = iA := (i1 . . . , id). For any
j = (j1, . . . , jke) ∈ Ikδ define the tuple jA = (j1, . . . , jd) where jt = it for
t < n and t ≥ n + ek, and jn+s = js+1 for all s = 0, 1, . . . , ke− 1. There is
a (non-unital) embedding of algebras ιA : Rkδ↪→Rα such that

ιA : ψs 7→ ψs+n−1, yt 7→ yt+n−1, e(j) 7→ e(jA)

for all admissible s, t and j. From now on we are going to suppress the
notation ιA and simply identify Rkδ with the subalgebra ιA(Rkδ) inside Rα.

Consider the Rkδ-module Rkδ ·mA generated by the vector mA ∈Mµ. We
claim that this module is isomorphic to the permutation module M(i, (f, k−
f)) defined in section 4. Indeed, it is easy to check that e(j)mA = δj,s(i,ke)m

A,

ytm
A = 0, and ψsm

A = 0 unless s = ef . This shows that there is
an Rkδ-homomorphism from M(i, (f, k − f)) onto Rkδ · mA which maps
m(~s(i, (f, k − f))) to mA. An application of Theorem 3.23 now implies
that this homomorphism is an isomorphism. Hence, the result follows from
Theorem 4.12. �

Corollary 5.12. Suppose that µ ∈ Pκ
α, A ∈ µ is a Garnir node of µ, and

S = uTA ∈ GarA for some u ∈ DA, cf. (5.4). Then

mS = τAu m
A +

∑
w∈DA, w�u

cwτ
A
wm

A

for some cw ∈ O. In particular, {mT | T ∈ GarA} is an O-basis of Tµ,A.

Proof. Let u = wAr1 . . . w
A
ra be a reduced decomposition in SA. Then, using

(5.7),

mS = ψSmµ = ψuψ
TAmµ = ψum

A = σAr1 . . . σ
A
ram

A

= (τAr1 − 1) . . . (τAra − 1)mA,

which implies the result in view of Theorem 5.11. �
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5.6. A spanning set for the universal row Specht module. Let α ∈
Q+ with ht(α) = d, and µ ∈ Pκ

α. Recall that Sµ ∼= Mµ/Jµ and zµ =
mµ + Jµ. Also set

zA := mA + Jµ ∈ Sµ

for any Garnir node A ∈ µ.
Recall from (3.16) that for each µ-tableau T we have defined the element

ψT ∈ Rα, which depends on a fixed choice of reduced decomposition of
wT ∈ Sd. Hence, we can associate to T the homogeneous element

vT := ψTzµ = mT + Jµ ∈ Sµ.

Lemma 5.13. Suppose that µ ∈Pκ
α and A be a Garnir node of µ. Then

vG
A

=
∑

T∈GarA, T . GA

cTv
T

for some cT ∈ O.

Proof. In view of (5.4), for each T ∈ GarA, there exists a unique uT ∈ DA

with T = uTTA. By Corollary 5.12, there exist dT ∈ O such that

vG
A

= ψGAzµ =
(
τA
uGA

+
∑

T∈GarA, T 6=GA

dTτ
A
uT

)
zA

= gAzµ +
∑

T∈GarA, T 6=GA

(dT − 1)τAuTz
A.

Since gAzµ = 0 by Definition 5.9(iv), the result now follows by (inverting
the equations in) Corollary 5.12. �

We now make the first step towards describing a standard homogeneous
basis of Sµ. In Corollary 6.24 below we show that (5.15) is a basis.

Proposition 5.14. Let µ ∈Pκ
α. The elements of the set

{vT | T ∈ St(µ)} (5.15)

span Sµ over O. Moreover, we have deg(vT) = deg(T) for all T ∈ St(µ).

Proof. Note that vT = ψTe(iµ)zµ. Now, using [6, Corollary 3.14], we have
deg(ψTe(iµ)) = deg(T)−deg(Tµ), which implies the second statement of the
proposition, as deg(zµ) = deg(Tµ) by definition.

By Theorem 5.6, it suffices to show that for every row-strict tableau T

of shape µ, the vector vT ∈ Sµ is an O-linear combination of elements in
(5.15). We prove this by inverse induction on the Bruhat order on the row-
strict tableaux T. The induction starts when T = Tµ, the unique maximal
row-strict tableau. In this case T is standard so there is nothing to prove.

For the inductive step, assume that the result has been proved for all row
standard tableaux U . T. If the row strict tableau T is standard then there is
nothing to prove, so suppose that T is not standard. Then by Lemma 5.2,
there exists a Garnir tableaux G of shape µ and w ∈ Sd such that T = wG
and `(wT) = `(wG) + `(w). Using Proposition 3.15 for the second equality,
and then Lemma 5.13 for the last equality, we get

vT = ψTe(iµ)zµ = (ψwψ
Ge(iµ) + xe(iµ))zµ = ψwv

G + xzµ

=
∑
T . G

cTψwv
T + xzµ,
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where x is a linear combination of elements of the form ψuf(y)e(i) such
that u < w and f(y) is a polynomial in y1, . . . , yd. The result now follows
by induction. �

6. Cyclotomic Hecke algebras and Specht modules

Recall from Definition 5.9 that we have defined by generators and relations
the universal graded (row) Specht modules Sµ = Sµ(O) for the KLR algebra
Rα for all multipartitions µ ∈Pκ

α. In this section we connect these universal
Specht modules to the usual Specht modules for the affine Hecke algebras Hα

via the isomorphism between the cyclotomic quotients of the KLR algebras
and of the affine Hecke algebras constructed in [3]. This will allow us to
obtain a standard homogeneous basis for Sµ(O) using [6,11].

In this section we will need to distinguish between the universal graded
(row) Specht modules Sµ = Sµ(O) for Rα and the usual graded (row) Specht
modules for Hα, which we will denote SµH . The Specht modules SµH are de-

fined as cell modules for the cellular algebra HΛ
α . We review their properties

below.

6.1. Ground field and parameters. Let F be a field, and ξ ∈ F× be an
invertible element. Let e be the smallest positive integer such that 1 + ξ +
· · ·+ξe−1 = 0, setting e := 0 if no such integer exists. This e allows us to use
the Lie theoretic notation of section 2.1. In particular, we have I = Z/eZ,
Γ, Q+, P+, etc.

For i ∈ I define the scalar ν(i) ∈ F as follows:

ν(i) :=

{
i if ξ = 1,

ξi if ξ 6= 1.
(6.1)

6.2. Cyclotomic Hecke algebra. Let Hd = Hd(F, ξ) be the affine Hecke
algebra over the ground field F associated to the symmetric group Sd with
parameter ξ. Thus, if ξ 6= 1, then Hd is the F -algebra generated by

T1, . . . , Td−1, X
±1
1 , . . . , X±1

d

subject only to the relations

T 2
r = (ξ − 1)Tr + ξ (1 ≤ r < d), (6.2)

TrTr+1Tr = Tr+1TrTr+1 (1 ≤ r < d− 1), (6.3)

TrTs = TsTr (1 ≤ r, s < d, |r − s| > 1). (6.4)

X±1
r X±1

s = X±1
s X±1

r (1 ≤ r, s ≤ d), (6.5)

XrX
−1
r = 1 (1 ≤ r ≤ d), (6.6)

TrXrTr = ξXr+1 (1 ≤ r < d), (6.7)

TrXs = XsTr (1 ≤ r < d, 1 ≤ s ≤ d, s 6= r, r + 1). (6.8)

If ξ = 1, then Hd is the F -algebra generated by

T1, . . . , Td−1, X1, . . . , Xd

subject only to the relations (6.2)–(6.4) and the relations:

XrXs = XsXr (1 ≤ r, s ≤ d), (6.9)

TrXr+1 = XrTr + 1 (1 ≤ r < d), (6.10)

TrXs = XsTr (1 ≤ r < d, 1 ≤ s ≤ d, s 6= r, r + 1). (6.11)
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Recall that in (2.3) and (2.4) we have fixed a level l, a tuple κ = (k1, . . . , kl),
and the corresponding weight Λ = Λk1 + · · · + Λkl ∈ P+. The cyclotomic
Hecke algebra HΛ

d = HΛ
d (F, ξ) is the quotient

HΛ
d := Hd

/〈 ∏
i∈I(X1 − ν(i))(Λ,αi)

〉
= Hd

/
〈
∏l
m=1(X1 − ν(km))

〉
. (6.12)

6.3. Weight spaces and idempotents. Let i = (i1, . . . , id) ∈ Id, and
let M be a finite dimensional HΛ

d -module. Define the i-weight space of M
as follows:

Mi = {v ∈M | (Xr − ν(ir))
Nv = 0 for N � 0 and r = 1, . . . , d}.

It is known (see e.g. [10, Lemma 4.7] and [18, Lemma 7.1.2]) that all eigen-
values of X1, . . . , Xd in M are of the form ν(i), for i ∈ I, and so we have a
weight space decomposition:

M =
⊕
i∈Id

Mi.

Using the weight space decomposition of the left regular HΛ
d -module, one

gets a system of orthogonal idempotents

{e(i) | i ∈ Id} (6.13)

in HΛ
d , all but finitely many of which are zero, such that

∑
i∈Id e(i) = 1,

and
e(i)M = Mi (i ∈ Id)

for any finite dimensional HΛ
d -module M .

If α ∈ Q+ is of height d, define eα :=
∑
i∈Iα e(i) ∈ HΛ

d . By [20] and [2,

Theorem 1], eα is either zero or it is a primitive central idempotent in HΛ
d .

Hence the algebra
HΛ
α := eαH

Λ
d (6.14)

is either zero or it is a single block of the algebra HΛ
d .

6.4. The Isomorphism Theorem. Define elements of HΛ
α as follows:

yr :=


∑
i∈Iα(1− ν(ir)

−1Xr)e(i), if ξ 6= 1,∑
i∈Iα(Xr − ν(ir))e(i), if ξ = 1,

(6.15)

for 1 ≤ r ≤ d. Next, if 1 ≤ r < d and i ∈ Id we define

ψr :=
∑
i∈Iα(Tr + Pr(i))Qr(i)

−1e(i). (6.16)

where Pr(i) and Qr(i)
−1 are certain polynomials in F [yr, yr+1] which are

explicitly defined in [3]. This gives us the following elements of HΛ
α :

{e(i) | i ∈ Iα} ∪ {y1, . . . , yd} ∪ {ψ1, . . . , ψd−1}. (6.17)

Note that these elements have the same names as the generators of the
KLR algebras in (3.1). This is not a coincidence in view of the following
Isomorphism Theorem:

Theorem 6.18. [3, Theorem 1.1] Suppose that α ∈ Q+ has height d and
Λ ∈ P+. Then HΛ

α is generated by the elements (6.17) subject only to the
relations (3.2)–(3.11). In other words, HΛ

α (F, ξ) ∼= RΛ
α(F ).

In what follows we identify HΛ
α (F, ξ) and RΛ

α(F ). In particular, HΛ
α (F, ξ)

is now Z-graded.
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6.5. Graded Specht modules SµH for Hecke algebras. Let α ∈ Q+ be
of height d and fix a multipartition µ ∈Pκ

α. The graded (row) Specht module
SµH = SµH(F ) for HΛ

α is defined in [6]. These graded Specht modules turn

out to be the cell modules for HΛ
α considered as a graded cellular algebra

as in [11]. We will not need the exact definition, only the following key
properties of these modules. Recall the notation of section 2.3.

Lemma 6.19. [14, Proposition 3.7] Let µ ∈Pκ
α. There is a homogeneous

generator zµH of SµH with deg(zµH) = deg(Tµ), zµH ∈ e(i
µ)SµH , and yrz

µ
H = 0,

for all r = 1, . . . , d.

Let T be a µ-tableau. Recall from (3.16) that we have defined the element
ψT = ψwT in RΛ

α(F ) = HΛ
α (F ). Set

vTH := ψTzµH ∈ S
µ
H .

Just like ψw the vector vTH will, in general, depend upon on the choice of
preferred reduced decomposition of wT ∈ Sd. Note that zµH = vT

µ

H .

Lemma 6.20. [6, Lemma 4.9] Let µ ∈Pκ
d and T ∈ St(µ). If r ↓T r + 1 or

r →T r + 1 then

ψrv
T
H =

∑
S∈St(µ), S . T, i(S)=i(srT)

aSv
S
H .

for some aS ∈ F . In particular, ψrz
µ
H = 0 whenever r →Tµ r + 1.

Theorem 6.21. [6] Suppose that µ ∈Pκ
α. Then

(i) For any µ-tableau T we have vTH ∈ e(i(T))SµH .
(ii) If µ ∈ St(µ), then deg(vTH) = deg(T).
(iii) {vTH | T ∈ St(µ)} is a basis of SµH(F ). Moreover, for any µ-tableau T,

we have
vTH =

∑
S∈St(µ)

SD T,i(S)=i(T)

bSv
S
H

for some constants bS ∈ F .

The following corollary should be compared with Lemma 5.13.

Corollary 6.22. Suppose that µ ∈Pκ
d and that G = GA, where A ∈ µ is a

Garnir node. Then
vGH =

∑
T∈GarA, T . G

cTv
T
H

for some cT ∈ F .

Proof. This comes from Theorem 6.21 and Lemma 5.5. �

6.6. Connecting the universal row Specht modules with the cell
modules. Since we have identified the algebras HΛ

α (F ) and RΛ
α(F ) we may

consider the Specht modules SµH(F ) as an RΛ
α(F )-module. Inflating from

RΛ
α(F ) to the affine KLR algebra Rα(F ), we can now consider SµH(F ) as

an Rα(F )-module. The following theorem shows that, as a graded Rα(F )-
module, SµH(F ) is isomorphic to the universal row Specht module Sµ(F )
from Definition 5.9.
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Theorem 6.23. Let µ ∈ Pκ
α. Then the linear map, which sends the basis

elements vTH ∈ S
µ
H(F ) to vT ∈ Sµ(F ) for all T ∈ St(µ), is a homogeneous

isomorphism SµH(F )
∼−→ Sµ(F ) of graded Rα(F )-modules.

Proof. In this proof all modules and algebras are vector spaces over F , so
we will suppress F from our notation. We will construct the isomorphism in
the other direction: Sµ

∼−→ SµH . By Lemmas 6.19, 6.20 and the defining re-
lations for Mµ, cf. (3.22), there exists a surjective degree zero homogeneous
homomorphism π : Mµ�SµH of graded Rα-modules which maps mT to vTH
for any row-strict µ-tableau T. By Theorem 6.21 and Proposition 5.14, it
now suffices to check that the homogeneous Garnir relations gAzµH = 0 hold
in SµH , for all Garnir nodes A ∈ µ.

Fix a Garnir node A. Let k = kA, f = fA and SA ∼= Sk be the brick
permutation group defined in section 5.2. By Corollary 5.12, {mT | T ∈
GarA} is an F -basis of Tµ,A. Note that GA is the only non-standard tableaux
in GarA. As π(Tµ,A) is spanned by the vectors {vTH = π(mT) | T ∈ GarA},
Corollary 6.22 shows that {vTH | T ∈ GarA \ {GA}} is a basis of π(Tµ,A). So
dimπ(Tµ,A) = dimTµ,A − 1.

Recall from Theorem 5.11 that the group SA acts on the brick permuta-
tion subspace Tµ,A with its simple reflections acting as τA1 , . . . , τ

A
k−1. More-

over, with respect to this action, Tµ,A ∼= indFSk
FS(f,k−f)

F(f,k−f). Since the

elements of SA act on Tµ,A as specific elements of Rα, and π is an Rα-
homomorphism, π induces an FSA-homomorphism Tµ,A −→ π(Tµ,A). By
the dimension observations in the previous paragraph, the kernel of this map

is a one dimensional FSk submodule of Tµ,A = indFSk
FS(f,k−f)

F(f,k−f). There-

fore, unless k = 2, f = 1, and charF 6= 2, this kernel is the unique trivial

submodule of indFSk
FS(f,k−f)

F(f,k−f). Hence, in this case, kerπ is spanned by∑
u∈DA τAu m

A = gAmµ. Hence gAzµH = π(gAmµ) = 0, so that the Garnir
relation holds in the Specht module SµH , as desired.

It remains to consider the exceptional case k = 2, f = 1, charF 6= 2. In
this case we claim that (τA1 + 1)zA = 0, for this we need to rule out the
possibility that (τA1 − 1)zA = 0. Since τA1 z

A = (σA1 + 1)zA, we just need to
prove that σA1 z

A 6= 0. Let A = (a, b,m), and r be the entry which occupies
the node (a+ 1, b,m) in GA. But by Lemma 4.5, we have

ψrσ
A
1 z

A = −2ψrz
A = −2vsrT

A 6= 0,

since the tableau srT
A is standard and charF 6= 2. �

We can now improve on Proposition 5.14:

Corollary 6.24. Let µ ∈Pκ
α. Then the universal row Specht module Sµ(O)

for Rα(O) has O-basis
{vT | T ∈ St(µ)}. (6.25)

Proof. As Sµ(O) ∼= Sµ(Z) ⊗Z O, we may assume that O = Z. By Proposi-
tion 5.14, the elements (6.25) span Sµ(Z). Suppose that we have a relation∑

T∈St(µ) cTv
T = 0 with cT ∈ Z. Extending scalars to C, we get the relation∑

T∈St(µ) cTv
T = 0 in Sµ(C). Pick a parameter ξ ∈ C which is a primitive

eth root of unity in C if e > 0 and not a root of unity if e = 0. Then by
Theorem 6.23, we get the relation

∑
T∈St(µ) cTv

T
H = 0 in SµH(C), which is
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the usual Specht module for HΛ
α (C, ξ). By Theorem 6.21(iii), cT = 0 for all

T ∈ St(µ). �

Corollary 6.26. Let µ ∈ Pκ
α. The universal row Specht module Sµ(O)

factors through the natural surjection Rα(O)�RΛ
α(O) so that Sµ(O) is nat-

urally a graded RΛ
α(O)-module.

Proof. In view of (3.11), we just need to prove that

y
(Λ,αi1 )
1 e(i)Sµ(O) = 0 (i = (i1, . . . , id) ∈ Iα).

We may assume that O = Z. Next, since Sµ(Z)↪→Sµ(Z) ⊗ C = Sµ(C), we
may now assume thatO = C. Choose ξ ∈ C as in the proof of Corollary 6.24.
Then by Theorem 6.23, we have Sµ(C) = SµH(C), which is the usual Specht

module for HΛ
α (C, ξ). Hence, Sµ(C) is a RΛ

α(C) module since HΛ
α (C, ξ) ∼=

Rλα(C). Hence, the action of Rαα(C) satisfies the cyclotomic relation (3.11),
implying that Sµ(O) is an RΛ

α(O)-module as we wanted to show. �

Now the following is clear:

Corollary 6.27. Let µ ∈Pκ
α.

(i) As a graded RΛ
α(O)-module, the universal row Specht module Sµ(O)

is generated by the homogeneous element zµ of degree deg(Tµ) sub-
ject only to the relations (i)–(iv) from Definition 5.9.

(ii) As a graded HΛ
α -module, the row Specht module SµH is generated by

the homogeneous element zµ of degree deg(Tµ) subject only to the
relations (i)–(iv) from Definition 5.9.

7. Column Specht modules

Having a presentation for a module does not automatically imply a pre-
sentation for the dual module. In this section, we define a column version
Sµ of the universal graded Specht module corresponding to a multipartition
µ. Then in Theorem 7.25 we show that the universal column Specht module
Sµ is isomorphic to (a degree shift of) the homogeneous dual (Sµ)~ of the
universal row Specht module Sµ.

In the section we again work over an arbitrary commutative unital ground
ring O, unless otherwise stated. We fix α ∈ Q+, µ ∈Pκ

α, and set d := ht(α).

7.1. Column block intertwiners. In this section we assume that e > 0.
Recall from (2.2) that δ is the null root and observe that δ′ = δ in the
notation of section 8.2. Therefore, sgn is an automorphism of Rkδ, see (3.14).

Fix i ∈ I and a composition λ = (λ1, . . . , λn) of k. Define

~s(i,−λ) := (s(i,−eλ1), . . . , s(i,−eλn)).

We consider the corresponding permutation moduleM(i,−λ) := M(~s(i,−λ))
for Rkδ as in section 3.6. Let j = (j1, . . . , jke) := j(~s(i,−λ)) as defined
in (3.21). We have j = s(i,−ke). Let e(i,−λ) := e(j) and m(i,−λ) =
m(~s(i,−λ)) ∈M(i,−λ) as in (3.20).

Recall from section 8.2 that if M is an Rkδ-module then Msgn is the
Rkδ-module obtained from M by twisting with the sign automorphism sgn.

Lemma 7.1. We have

(i) sgn(e(i,−λ)) = e(−i, λ).
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(ii) There is an isomorphism M(i,−λ) ∼= M(−i, λ)sgn of graded Rkδ-
modules, under which m(i,−λ) corresponds to m(−i, λ).

Proof. (i) is clear from (3.14), and (ii) is clear from (3.22). �

From section 4, we have the elements wr ∈ Ske, σr = ψwre(−i, λ) and
τr = (σr + 1)e(−i, λ), for 1 ≤ r < k. Set

σr := (−1)eψwre(i,−λ) and τ r = (σr + 1)e(i,−λ),

for r = 1, . . . , k − 1, and define the column block permutation subspace
T (i,−λ) ⊆M(i,−λ) to be the O-span of all vectors of the form

σr1 . . . σram(i,−λ). (7.2)

Lemma 7.3. We have

(i) sgn(σr) = σr and sgn(τ r) = τr, for 1 ≤ r < k.
(ii) Under the isomorphism of Lemma 7.1(ii), T (i,−λ) corresponds to

T (−i, λ)

Proof. Since `(wr) = e2, we have sgn(ψwr) = (−1)e
2
ψwr = (−1)eψwr . So

Lemma 7.1(i) yields (i). Part (ii) follows from (i) and Lemma 7.1(ii). �

Lemma 7.3 and Theorem 4.12 now imply the following.

Proposition 7.4. Suppose that 1 ≤ r, s < k and v ∈ T (i,−λ). Then

(i) (τ r)2v = v.
(ii) If |r − s| > 1 then τ rτ sv = τ sτ rv.

(iii) If r < k − 1 then τ rτ r+1τ rv = τ r+1τ rτ r+1v.

Consequently, Sk acts on T (i,−λ), and the elements τum(i,−λ) for u ∈
Sk are well-defined. Finally, T (i,−λ) ∼= indOSkOSλ Oλ as OSk-modules, and

T (i,−λ) has O-basis {τum(i,−λ) | u ∈ Dλ}.

7.2. Column Garnir tableau. We now rework the combinatorics of row
Garnir tableaux for column Garnir tableaux. A node A = (a, b,m) ∈ µ is
a column Garnir node of µ if (a, b + 1,m) is a node of µ. The (column)
A-Garnir belt BA is the set of nodes

BA = { (c, b,m) ∈ µ | c ≥ a } ∪ { (c, b+ 1,m) ∈ µ | c ≤ a } .
Recall from (2.16) that if T ∈ St(µ) then TµE T and wT ∈ Sd is the

permutation such that T = wTTµ. Let u = Tµ(a, b,m) and v = Tµ(a+1, b,m).
The (column) A-Garnir tableau GA is the µ-tableaux which agrees with Tµ
outside of BA and where the numbers u, u + 1, . . . , v are inserted into the
Garnir belt in order, from top right to left bottom.

Just as in section 5.1 we have the following two results.

Lemma 7.5. Suppose that A ∈ µ is a column Garnir node and S ∈ St(µ).
If GA / S then S agrees with Tµ outside of BA.

Lemma 7.6. Suppose that T is a column strict µ-tableaux which is not
standard. Then there exists a column Garnir tableaux G and w ∈ Sd such
that T = wG and `(wT) = `(wG) + `(w).
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7.3. Column bricks. A (column A-)brick is a set of e nodes

{(c, d,m), (c+ 1, d,m), . . . , (c+ e− 1, d,m)} ⊆ BA

such that res(c, d,m) = resA. The Garnir belt BA is a disjoint union of
the bricks that it contains together with less than e nodes at the bottom of
column a which are not contained in a brick and less than e nodes at the
top of column a+ 1 which are not contained in a brick.

For example, if e = 2, then the (3, 1, 2)-Garnir belt of µ =
(
(1), (7, 7, 4, 1)

)
contains two bricks:

GA =

20

1 3 8 11 14 16 18

2 4 9 12 15 17 19

6 5 10 13

7

.

Let k = kA be the number of bricks in BA. Label the bricksB1
A, B

2
A, . . . B

k
A

in BA from top to bottom first down column b+ 1 and then down column b
of µ. Set k = 0 if BA does not contain any bricks.

If k > 0 let n = nA be the smallest number in GA which is contained in a
brick in BA. In the example above, k = 2 and n = 4. Define

wrA =

n+re−1∏
a=n+re−e

(a, a+ e) ∈ Sd (1 ≤ r < k).

The (column) brick permutation group is the subgroup SA of Sd generated

by w1
A, w

2
A, . . . , w

k−1
A . Then SA

∼= Sk.
Let GarA be the set of all column-strict µ-tableaux which are obtained

from the Garnir tableau GA by acting with the brick permutation group SA

on GA. All tableaux in GarA are standard except for GA, GA is the maximal
element of GarA, and there is a unique minimal tableaux TA in GarA. If
T ∈ GarA then i(T) = i(GA). We let iA := i(GA).

Define f = fA to be the number of A-bricks in column b of the Garnir
belt BA and let DA be the set of minimal length left coset representations
of Sf ×Sk−f in SA

∼= Sk. Just as in (5.4), we have

GarA = {wTA | w ∈ DA}. (7.7)

Finally, as in Lemma 5.5, we have:

Lemma 7.8. Let A ∈ µ be a column Garnir node. Then

GarA \ {GA} = {T ∈ St(µ) | TE GA and i(T) = iA}.
Moreover, codeg(T) = codeg(GA) for all T ∈ GarA.

7.4. The column permutation modulesMµ. Let C1, . . . , Cg be the non-

empty columns of µ counted from left to right in the component µ(l), then
from left to right in the component µ(l−1), and so on, until from left to right
in the component µ(1) of µ. We emphasize that the order of the components
of µ is reversed here.
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To each 1 ≤ a ≤ g we associate the segment c(a) := s(i,−N), where the
column Ca has length N and i is the residue of the top node of Ca. Let
~c = (c(1), . . . , c(g)), and, recalling the definitions from section 3.6, set

Mµ = Mµ(O) := M(~c) 〈codeg Tµ〉.
The module Mµ is generated by the vector mµ := m(~c) of degree codeg Tµ.
For any µ-tableau T, define mT := ψTmµ. As a special case of Theorem 3.23,
we have:

Theorem 7.9. {mT | T is a column-strict µ-tableau} is an O-basis of Mµ.

7.5. Universal column Specht modules Sµ. Fix a column Garnir node

A ∈ µ, and let SA = 〈w1
A, . . . , w

k−1
A 〉 be the corresponding block per-

mutation group. For any S ∈ GarA, we can write wS = uSwTA with
`(wS) = `(uS) + `(wTA) and uS ∈ DA. By Lemma 3.17, wS, uS, and wTA are
fully commutative so we have elements ψS, ψuS and ψTA , with ψS = ψuSψTA ,
each of which is independent of the choice of preferred decomposition.

Set mA := mTA = ψTAmµ and define

σrA := (−1)eψwrAe(iA) and τ rA := (σrA + 1)e(iA).

Any element u ∈ SA can written as a reduced product u = wAr1 . . . w
A
rm . If u

is fully commutative then τuA := τ r1A . . . τ rmA is independent of the choice of
the reduced expression by Lemma 3.17, so we have well-defined elements
{τuA | u ∈ DA}.

Definition 7.10. Suppose that A ∈ µ is a column Garnir node. The column
Garnir element is

gA :=
∑
u∈DA

τuAψTA ∈ Rα.

Since ψTAmµ = mA, we have gAmµ =
∑

u∈DA
τuAmA, and, by Lemma 7.8,

all summands on the right hand side have the same degree. If k = 0 then
DA = {1}, GA = TA and gA = ψGA .

Definition 7.11. The universal graded column Specht module Sµ = Sµ(O)
is the graded Rα-module generated by the vector zµ of degree codeg(Tµ)
subject only to the following relations:

(i) e(j)zµ = δj,iµzµ for all j ∈ Iα;
(ii) yrzµ = 0 for all r = 1, . . . , d;
(iii) ψrzµ = 0 for all r = 1, . . . , d− 1 such that r ↓Tµ r + 1;
(iv) (homogeneous (column) Garnir relations) gAzµ = 0 for all (column)

Garnir nodes A in µ.

In other words, Sµ = (Rα/Jα,µ)〈codeg(Tµ)〉, where Jα,µ is the left ideal of
Rα generated by the elements

(i) e(j)− δj,iµ for all j ∈ Iα;
(ii) yr for all r = 1, . . . , d;
(iii) ψr for all r = 1, . . . , d− 1 such that r ↓Tµ r + 1;
(iv) gA for all column Garnir nodes A ∈ µ.

Since the elements (i)-(iii) generate the left ideal Kµ with Rα/Kµ
∼= Mµ,

we have a natural surjection Mµ�Sµ, which maps mµ to zµ, and the kernel
Jµ = Jα,µmµ of this surjection is generated by the Garnir relations.
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7.6. Column brick permutation space Tµ,A. The (column) brick per-
mutation space Tµ,A ⊆Mµ is theO-span of all elements of the form σr1A . . . σraA mA.
Repeating the argument of Theorem 5.11 now gives:

Theorem 7.12. Suppose that A ∈ µ is a column Garnir node, and let k =
kA and f = fA. Then:

(i) Tµ,A the O-span of all elements of the form τ r1A . . . τ raA mA. In par-

ticular, the elements τ1
A, . . . , τ

k−1
A act on Tµ,A.

(ii) As O-linear operators on Tµ,A, the elements τ1
A, . . . , τ

k−1
A satisfy

the Coxeter relations for the symmetric group Sk. Thus, we can
consider Tµ,A as an OSk-module.

(iii) There is an isomorphism of OSk-modules

Tµ,A ∼= indOSkOS(f,k−f )O(f,k−f)

under which mA corresponds to the natural cyclic generator of the
induced module on the right hand side.

(iv) {τuAmA | u ∈ DA} is an O-basis of Tµ,A.

Corollary 7.13. Suppose that A ∈ µ is a column Garnir node of µ, and
S = uTA ∈ GarA for some u ∈ DA. Then

ψSmµ = τuAmA +
∑

w∈DA, w�u

cwτ
w
AmA

for some cw ∈ O. In particular, {mT | T ∈ GarA} is an O-basis of Tµ,A.

7.7. A spanning set for the universal column Specht module. Recall
from section 7.5 that Sµ ∼= Mµ/Jµ and zµ = mµ + Jµ. Also set zA :=
mA + Jµ ∈ Sµ for any column Garnir node A ∈ µ. Recall from (3.16) that
for each µ-tableau T we have defined the element ψT ∈ Rα, which depends
on a fixed choice of reduced decomposition of wT ∈ Sd. We associate to T

the homogeneous element vT := ψTzµ ∈ Sµ.
Adapting the arguments from section 5.6 we obtain the following result.

Proposition 7.14. The elements {vT | T ∈ St(µ)} span Sµ over O. More-
over, we have deg(vT) = codeg(T) for all T ∈ St(µ).

7.8. Graded column Specht modules SHµ for Hecke algebras. The

graded column Specht modules for the cyclotomic Hecke algebra HΛ
α were

defined in [11, §6] as cell modules for certain graded cellular structure on
HΛ
α (different from the one used to define cell modules SµH). We review the

key properties of these modules, paralleling section 6.5.
Recall the definition of the conjugate multipartition µ′ and conjugate

tableaux from section 2.3. If µ ∈ Pκ
α then in general µ′ /∈ Pκ

α. Be-
cause of this we will use a different labelling of the column Specht modules
than [11]. Let SHMµ (F ) be the graded column Specht module for HΛ

α (F )

constructed in [11, §6.4]. That is, SHMµ (F ) is a graded cell module with
basis {ψ′T | T ∈ St(µ) }, where deg(ψ′T) = codeg(T′) for T ∈ St(µ), using the
cellular basis notation of [11, §6.4]. Define

SHµ (F ) := SHMµ′ (F ) and zHµ := ψ′
Tµ
′ .

The following lemma was proved in [14, Proposition 3.7]:
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Lemma 7.15. Let α ∈ Q+, d = ht(α), and µ ∈ Pκ
α. As an HΛ

α -module,
SHµ is generated by zHµ , deg(zHµ ) = codeg(Tµ), zHµ ∈ e(iµ)SHµ , and yrz

H
µ = 0,

for all r = 1, . . . , d.

Proof. Since (Tµ
′
)′ = Tµ, the first three claims follow from [11, Proposi-

tion 6.10]. That yrz
H
µ = 0 for all r, can be deduced from [11, (6.2)] and

(6.15). Alternatively, it is a special case of [12, Corollary 3.11]. �

For each µ-tableau T, define vHT = ψT z
H
µ ∈ SHµ . By [11, Definition 6.9],

vHT is the same as the element ψ′T′ in the notation of [11]. In particular,

zHµ = vHTµ .

Lemma 7.16. Suppose that T ∈ St(µ). If r ↓T r + 1 or r →T r + 1 then

ψrv
H
T =

∑
S∈St(µ), S / T, i(S)=i(srT)

aSv
H
S .

for some aS ∈ F . In particular, ψrz
H
µ = 0 whenever r ↓Tµ r + 1.

Proof. This can be deduced from [11, Proposition 6.10(c)] using standard
properties of the (ungraded) dual Murphy basis. Alternatively, it follows
immediately from [12, Corollary 3.12]. �

The next result is the analogue of Theorem 6.21.

Theorem 7.17. We have

(i) If T is a µ-tableau then vHT ∈ e(i(T))SHµ .

(ii) If T ∈ St(µ) then deg(vHT ) = codeg(T).
(iii) {vHT | T ∈ St(µ)} is a basis of SHµ (F ). Moreover, for any µ-

tableau T,

vHT =
∑

S∈St(µ),SE T,i(S)=i(T)

bSv
H
S

for some constants bS ∈ F .

Proof. Everything except for the second part of (iii) is clear from results
in [11] and the remarks above. Part (iii) can be deduced from [11, Proposi-
tion 6.10(c)]. Alternatively, it can be deduced from [12, Theorem 3.9]. �

Corollary 7.18. Suppose that A ∈ µ is a column Garnir node. Then

vHGA =
∑

T∈GarA, T / GA

cTv
H
T

for some cT ∈ F .

7.9. Connecting the universal column Specht modules with the cell
modules. As in the last section let SHµ (F ) be the graded column Specht

module for HΛ
α , where F is a field. As in section 6.6 we consider SHµ (F ) as

an Rα(F )-module.
Mimicking the proof of Theorem 6.23 and using, in particular, the results

in section 7.8, Theorem 7.12 and Corollary 7.18, we can now show that
SHµ (F ) ∼= Sµ(F ) as an Rα(F )-module. As the argument is similar to the
proof of Theorem 6.23 we leave the details to the reader.
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Theorem 7.19. There is a homogeneous isomorphism SHµ (F )
∼−→ Sµ(F )

of graded Rα(F )-modules, which maps vHT ∈ SHµ (F ) to vT ∈ Sµ(F ) for all
T ∈ St(µ).

The following three Corollaries of Theorem 7.19 are proved in exactly the
same way as the corresponding results in section 6.6.

Corollary 7.20. {vT | T ∈ St(µ)} is an O-basis of Sµ(O).

Corollary 7.21. The universal column Specht module Sµ(O) factors through
the natural surjection Rα(O)�RΛ

α(O) so that Sµ(O) is naturally a graded
RΛ
α(O)-module.

Corollary 7.22. We have

(i) As a graded RΛ
α(O)-module, the universal column Specht module

Sµ(O) is generated by the homogeneous element zµ of degree codeg(Tµ)
subject only to the relations (i)–(iv) from Definition 7.11.

(ii) As a graded HΛ
α -module, the column Specht module SHµ is generated

by the homogeneous element zµ of degree codeg(Tµ) subject only to
the relations (i)–(iv) from Definition 7.11.

7.10. Contragredient duality for Specht modules. Recall from sec-
tion 3.2 that M~ denotes the graded dual of the Rα-module M . We now
use [11] to show that Sµ(O)~ ∼= Sµ(O), up to an explicit degree shift, as
graded Rα(O)-modules for any integral domain O.

Recall that { vT | T ∈ St(µ) } is a basis of Sµ(O) and that { vT | T ∈ St(µ) }
is a basis of Sµ(O). Let { fT | T ∈ St(µ) } and { fT | T ∈ St(µ) } be the cor-
responding dual bases of Sµ(O)~ and Sµ(O)~, respectively, so that

fS(v
T) = δS,T = fS(vT),

where S, T ∈ St(µ). By definition, deg fT = −deg vT = −deg T and deg fT =
− codeg T. Recalling (2.14), we now have

deg fT = codeg T− def α and deg fT = deg T− def α. (7.23)

Lemma 7.24. As Rα-modules, Sµ(O)~ is generated by fTµ and Sµ(O)~ is

generated by fT
µ
.

Proof. We only prove that Sµ(O)~ = RαfTµ . The proof of the second state-
ment is similar.

We claim that if T ∈ St(µ) then there exist scalars cS ∈ O such that

fT = ψTfTµ +
∑

S∈St(µ)

cSfS,

where cS 6= 0 only if `(wS) > `(wT). The claim implies that fT ∈ RαfTµ , for
all T ∈ St(µ), so that Sµ(O)~ = RαfTµ by the remarks above.

To prove the claim we argue by downwards induction on the dominance
order. If T = Tµ then wTµ = 1 = ψTµ so that indeed fTµ = ψTµfTµ . Next
suppose that T / Tµ and let S ∈ St(µ). Then, by definition,

(ψTfTµ)(vS) = fTµ(ψw−1
T
vS) = fTµ(ψw−1

T
ψwSzµ).

By Lemma 2.18(iii), wTµ = w−1
T wT and `(wTµ) = `(w−1

T ) + `(wT). Conse-
quently, if `(wS) ≤ `(wT) and S 6= T then wTµ can not appear as a subex-
pression of w−1

T wS so that (ψTfTµ)(vS) = 0 by Proposition 3.15. Therefore,
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the coefficient of fS in ψTfTµ is zero whenever `(wS) < `(wT). Finally, con-
sider the case when S = T. By Proposition 3.15, there exist polynomials
pu(y) ∈ O[y1, . . . , yd] such that

ψw−1
T
ψwTzµ = ψTµzµ +

∑
u<wTµ

ψupu(y)zµ

= vTµ +
∑
u<wTµ

puψuz
µ,

where pu = pu(0) ∈ O and the last equality follows from Lemma 6.19. It
follows that (ψTfTµ)(vT) = 1. Hence, if we write ψTfTµ with respect to the
basis {fS} then fT appears with coefficient 1. This completes the proof of
the claim and, hence, of the lemma. �

We can now prove the main result of this section.

Theorem 7.25. As graded Rα(O)-modules,

Sµ(O) ∼= Sµ(O)~〈def α〉 and Sµ(O) ∼= Sµ(O)~〈def α〉

Proof. The two isomorphisms are equivalent so we consider only the first
isomorphism. By Lemma 7.24 and (7.23) it is enough to show that fT

µ

satisfies the defining relations from Definition 5.9 for the element zµ as,
taking into account our basis results, this will imply that there is a unique
isomorphism Sµ(O)

∼−→ Sµ(O)~〈def α〉 which sends zµ to fT
µ
. From the

definitions, e(i)fT
µ

= δiiµ , so it remains to show that

(ii) yrf
Tµ = 0 for all r = 1, . . . , d;

(iii) ψrf
Tµ = 0 for all r = 1, . . . , d− 1 such that r →Tµ r + 1;

(iv) gAfT
µ

= 0 for all row Garnir nodes A in µ.

By freeness it is sufficient to consider the case when O = Z and, since Sµ(Z)~

embeds into Sµ(C)~, it is enough to verify the relations when O = C.
As in Section 6.6, let ξ = exp(2πi/e) if e > 0 and if e = 0 take ξ to be

any non-root of unity in C. Then, by Theorem 6.18, RΛ
α(C) ∼= HΛ

α (C, ξ), so
we can invoke results from [11]. Hence, as graded Rα-modules,

Sµ(C) ∼= SµH(C), by Theorem 6.23,

∼= SHµ (C)~〈def α〉, by [11, Proposition 6.19],

∼= Sµ(C)~〈def α〉, by Theorem 7.19.

To complete the proof we scrutinize the second isomorphism above.
In our notation, the proof of [11, Proposition 6.19] shows that there exists

a homogeneous associative bilinear form

{ , } : SµH × S
H
µ 〈def α〉 −→ C; (a, b) 7→ {a, b},

such that {vSH , vHT } = 0 unless TD S. (When comparing our notation with [11]
the reader should remember that SHµ = SHMµ′ as defined in section 7.8.)

The isomorphism SµH(C)
∼−→ SHµ (C)~〈def α〉 is then the map which sends

a ∈ SµH(C) to ϕa ∈ SHµ (C)~〈def α〉, where ϕa(b) = {a, b}, for all b ∈
SHµ (C)~〈def α〉. Observe that the triangularity of the form { , } implies

that ϕvTµ is a scalar multiple of fT
µ
. Therefore, since the map a 7→ ϕa is

an isomorphism, it follows from Definition 5.9 and Corollary 7.22 that ϕvTµ ,
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and hence fT
µ ∈ Sµ(C)~, satisfies the three relations (ii)–(iv) above. Con-

sequently, fT
µ ∈ Sµ(Z)~ also satisfies these relations and the theorem is

proved. �

Remark 7.26. In principle, it should be possible to prove Theorem 7.25
directly by verifying that fT

µ
satisfies the relations in Definition 5.9. This

appears to be an involved calculation.

8. Two applications

In this section we work again over an arbitrary commutative unital ringO.

8.1. Specht modules for higher levels as induced modules. Let µ =
(µ(1), . . . , µ(l)) ∈ Pκ

α with α(m) = cont(µ(m)), for m = 1, . . . , l. Then α =

α(1) + · · · + α(l). Consider each partition µ(m) as an element of P
(km)

α(m) ;

that is, as a partition whose (1, 1)-node has residue km. Then we have

the universal graded Specht modules Sµ
(m)

for the algebras R
Λkm
α(m) , for m =

1, . . . , l. Inflating along the surjection Rα(m)�R
Λkm
α(m) we may consider Sµ

(m)

as a graded Rα(m)-module. Note that this graded module is generated by

the element zµ
(m)

of degree deg(Tµ
(m)

).

As in (3.19), considered the graded Rα-module S(µ(1))◦· · ·◦S(µ(l)) which
is generated by the element

zµ
(1),...,µ(l) := 1⊗

(
zµ

(1) ⊗ · · · ⊗ zµ(l)
)

(8.1)

of degree deg Tµ
(1)

+ · · ·+ deg Tµ
(l)

.
Our new definition of Specht modules by generators and relations makes

the following useful result almost obvious. Note that in [28], [5, (3.24)] the
right hand side of (8.3) was taken as the definition of the Specht module.

Theorem 8.2. Suppose that µ = (µ(1), . . . , µ(l)) ∈Pκ
α. Then

Sµ ∼= Sµ
(1) ◦ · · · ◦ Sµ(l)〈dµ〉, (8.3)

where
dµ := deg(Tµ)− deg(Tµ

(1)
)− · · · − deg(Tµ

(l)
).

as graded Rα-modules. In particular, Sµ
(1) ◦ · · · ◦ Sµ(l)〈dµ〉 factors through

the surjection Rα�RΛ
α , and the isomorphism (8.3) is also an isomorphism

of graded RΛ
α-modules.

Proof. The vector zµ
(1),...,µ(l) from (8.1) satisfies the defining relations on

the vector zµ ∈ Sµ from Definition 5.9. This yields a homogeneous module

homomorphism Sµ −→ Sµ
(1) ◦ · · · ◦Sµ(l)〈dµ〉 which maps zµ onto zµ

(1),...,µ(l) .
To construct the inverse homomorphism, by Frobenius Reciprocity, it suffices
to construct a homomorphism of Rα(1),...,α(l)-modules

Sµ
(1)
� · · ·� Sµ(l) −→ Resα

α(1),...,α(m)S
µ,

which maps zµ
(1)⊗· · ·⊗zµ(l) onto zµ. Such homomorphism arises by Defini-

tion 5.9 again, using defining relations for the modules Sµ
(1)
, . . . , Sµ

(l)
. �
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8.2. Column Specht modules as signed row Specht modules. In this
final section we investigate the analogue of tensoring the Specht modules
with the sign representation. Recall the isomorphism sgn : Rα → Rα′ from
(3.14) and the sgn-twist Msgn ∈ Rα-Mod of a module M ∈ Rα′-Mod. We
determine what happens to the Specht modules of Rα′ under this twist.

For each µ ∈Pκ
α we have row Specht module Sµ and column Specht mod-

ule Sµ with bases {vT} and {vT}, respectively, parametrized by T ∈ St(µ).

Similarly, for each ν ∈ Pκ′
α′ we have row Specht module Sν and column

Specht module Sν , with bases {vS} and {vS}, respectively, parametrized by
S ∈ St(ν). The definition of these modules and bases depends on κ and κ′,
respectively.

In section 2.2 we defined the conjugate multipartition µ′ ∈Pκ′
α′ of the mul-

tipartition µ ∈Pκ
α. Recall from section 2.3 that the definition of degree and

codegree of a tableau T depends on κ. We write degκ(T), codegκ(T), resκA,
etc., when we want to emphasize dependence on κ. Finally, the conjugate
tableau T′ is defined in section 2.3, and if i ∈ Iα then −i ∈ Iα′ is defined in
(3.13).

For any node A = (a, b,m) define A′ := (b, a, l−m+ 1). Note that A ∈ µ
if and only if A′ ∈ µ′, in which case T(A) = T′(A′). Moreover, we have

resκA ≡ − resκ
′
A′ by (2.6), and A is above B if and only if A′ is below B′.

The following lemma now follows from definitions.

Lemma 8.4. Suppose that µ ∈Pκ
α and T ∈ St(µ). Then iκ

′
(T′) = −iκ(T),

degκ(T) = codegκ
′
(T′) and codegκ(T) = degκ

′
(T′).

The main result of this section is:

Theorem 8.5. Suppose that α ∈ Q+ with d = ht(α), and µ ∈Pκ
α. Then

Sµ ∼= (Sµ′)
sgn and Sµ ∼= (Sµ

′
)sgn

as graded Rα(O)-modules.

Proof. We claim that there are degree zero homomorphisms of gradedRα(O)-
modules

θµ : Sµ −→ (Sµ′)
sgn and θµ′ : (Sµ′)

sgn −→ Sµ

such that θµ(zµ) = zµ′ and θµ′(zµ′) = zµ. As zµ and zµ′ generate the two
Specht modules, this claim implies the theorem.

Note that

deg zµ = degκ(Tµ) = codegκ
′
(Tµ′) = deg zµ′

by Lemma 8.4. So to prove the existence of θµ, it suffices to check that
zµ′ ∈ (Sµ′)

sgn satisfies the defining relations of Sµ from Definition 5.9. The
map θµ′ is constructed similarly using Definition 7.11 instead, so we only
give details for θµ.

By Lemma 8.4, iµ = i(Tµ) = −i(Tµ′) = −iµ′ . Therefore, if j ∈ Iα then

e(j) · zµ′ = e(−j)zµ′ = δ−j,iµ′zµ′ = δ−j,−iµzµ′ = δj,iµzµ′ .

Therefore, zµ′ satisfies Definition 5.9(i). Moreover, yr · zµ′ = −yrzµ′ = 0 for
all 1 ≤ r ≤ d. Next observe that if 1 ≤ r < d then r →Tµ r + 1 if and
only if r ↓Tµ′ r + 1. Hence, ψr · zµ′ = −ψrzµ′ = 0, by Definition 5.9(iii) and

Definition 7.11(iii).
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It remains to check that zµ′ ∈ (Sµ′)
sgn satisfies the row Garnir relations

from Definition 5.9(iv). Recall the node correspondence A ↔ A′ defined
before Lemma 8.4 which sends a node A ∈ µ to A′ ∈ µ′. If A ∈ µ is a
row Garnir node then A′ ∈ µ′ is a column Garnir node and, further, this
correspondence sends row bricks in µ to column bricks in µ′. In particular,
kA = kA′ , where kA is the number of row bricks in BA and kA′ is the number
of column bricks in BA′ . Moreover, sgn(τAr ) = τ rA′ by Lemma 7.3(i), for

1 ≤ r < kA, so that sgn(gA) = gA′ . Therefore,

gA · zµ′ = sgn(gA)zµ′ = gA′zµ′ = 0,

where the last equality is a column Garnir relation in Sµ′ . �
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