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1 Introduction

Integrable systems constitute a special class of models in mathematics and physics. Their

properties allow them to be solved exactly and thus they appear to be a very useful play-

ground for studying various systems. One common feature shared by these models is that

they are closely related to some underlying algebraic structures. Thus for most of the quan-

tum integrable systems there is some sort of large and powerful symmetry hidden in the

origins of it, for example a Yangian or a quantum affine algebra. A particularly interesting

example is the Hubbard model.

– 1 –



The Hubbard model, which was named after John Hubbard, is the simplest model of

interacting particles on a lattice, with only two terms in the Hamiltonian, the hopping

term (kinetic energy) and the Coulomb potential [1]. The model describes an ensemble of

particles in a periodic potential at sufficiently low temperatures such that all the particles

may be considered to be in the lowest Bloch band and also any long-range interactions

between the particles are considered to be weak enough and thus are ignored. It is based

on the tight-binding approximation of the superconducting systems and the motion of

electrons between the atoms of a crystalline solid. Despite its apparent simplicity, it is

very rich applications and generalizations describing including phase shifts and a plethora

of interesting phenomena. In the case when interactions between particles on different sites

of the lattice can not be neglected and are included, the model is often referred to as the

Extended Hubbard model. The particles can either be fermions, as in Hubbard’s original

work, or bosons, and the model is then referred as either the BoseHubbard model or the

boson Hubbard model that can be used to study systems such as bosonic atoms on an

optical lattice (for a decent overview of various generalizations see reprint volumes [2–4]

and also a more recent book [5]).

A very specific class of models are those that share features of the one-dimensional

Hubbard model and the supersymmetric t-J model [6]. The very interesting case being the

Alcaraz and Bariev model [7] having an extra spin-spin interaction term in the Hamilto-

nian and showing some characteristics of superconductivity. This model can be viewed as a

quantum deformation of the Hubbard model in much the same way as the Heisenberg XXZ

model is a quantum deformation of the XXX model. This model has a specific R-matrix

which can not be written as a function of the difference of two associated spectral param-

eters. This paradigm is related to the very interesting but at the same time complicated

algebraic properties of the model.

In recent years there has been renewed interest in integrable models arising from the

discovery of integrable structures in the context of the AdS/CFT correspondence. For a

recent review see [8] and references therein. The worldsheet S-matrix encountered there is

one of the central objects of research and it turns out to have a lot in common with the

specific cases of the Hubbard model considered in [9, 10]. Interestingly, the S-matrix of

such Hubbard model is obtained as a special limit of this worldsheet S-matrix [11].

The exact integrability of the one-dimensional Hubbard model was established by

B. Shastry [12] where it was shown that the model exhibits Y(su(2)) ⊕ Y(su(2)) Yangian

symmetry [13]. However this symmetry is insufficient to constrain the R-matrix completely.

Similarly, the worldsheet S-matrix for the AdS5 × S5 superstring also turns out to have

Yangian symmetry [14]. However the Yangian in this model is based on a larger Lie

algebra, the centrally extended su(2|2) Lie superalgebra. The underlying Lie superalgebra

turns out to be powerful enough to constrain the S-matrix [15–17] (up to an overall phase,

the so-called ‘dressing factor’ [18–20]) in the case where at least one of the representations

is fundamental. However, Yangian symmetry (or equivalently the Yang-Baxter equation)

is required in order to find the S-matrix describing the scattering of states that live in

higher representations [21, 22]. This specifically concerns bound states in the system which

transform in the supersymmetric short representations [23–26]. The bound state scattering

– 2 –



matrix can be explicitly constructed with the help of the underlying Yangian symmetry

[27].

Nevertheless, despite this success, there are still some problems concerning this infinite

dimensional algebra due to some unusual features. The centrally extended su(2|2) Lie

superalgebra has a degenerate Cartan matrix which prohibits the direct application of the

most of techniques related to the theory of Yangians. For the case at hand this has been

partially circumvented in several ways: by enlarging the algebra by an sl(2) automorphisms

[14], by considering the α→ 0 limits of the exceptional Lie algebra d(2, 1;α) [28] or building

the Drinfeld’s second realization [29]. However this still proves to be an obstacle when,

for example, one tries to construct the universal R-matrix [30, 31]. This object encodes

all the scattering data in the theory of a purely algebraic form. Another issue that is not

completely understood is the appearance of the so-called Secret symmetry [32]. This is an

additional symmetry of the S-matrix that does not have a Lie algebra analogue. Resolving

these issues could shed some light in understanding the complete underlying algebraic

structures and put the model and the methods used to solve it on a more firm footing.

A possible route on attacking these issues was put forward in [10]. Here the quantum

deformation Q of the extended su(2|2) algebra was studied. This q-deformed algebra has a

number of interesting features such as a rather symmetric realization of the different central

elements. The algebra Q also seems to be better behaved when attacking the problems

due to its rather simple and symmetric form. Just as in the non-deformed case, there is

a link to Hubbard models, more specifically to the class of the deformed supersymmetric

one-dimensional Hubbard models [10, 33]. The non-deformed model is revealed by taking

a specific limit of the R-matrices that belong to this deformed model [34]. Moreover, by

sending the quantum deformation parameter q → 1, the R-matrix under the consideration

reduces to AdS5 × S5 string worldsheet S-matrix. As such, this matrix encompasses both

different varieties of Hubbard models and the worldsheet S-matrices and seems to provide

a clear algebraic framework for describing this class of models.

The q-deformed S-matrix in the fundamental representation is constrained up to an

overall phase by requiring invariance under Q itself. However, in the light that both the

AdS5 × S5 and the Hubbard model S-matrices are actually invariant under an infinite di-

mensional symmetry algebra, it should not be surprising that such structure is also present

here. Indeed, the larger algebraic structure underlying this S-matrix is the quantum affine

algebra Q̂ [35]. This infinite dimensional algebra is obtained by adding an additional

fermionic node to the Dynkin diagram. In the q → 1 limit one can actually retrieve the

Yangian generators of centrally extended su(2|2) by considering the appropriate combi-

nations of Q̂ generators. This fuels the idea that Q̂ plays a similar role as the Yangian

in the undeformed case. More specifically, it is expected for the S-matrix in the higher

representations to be uniquely defined (up to an overall phase) by the underlying quantum

affine algebra Q̂. This indeed turns out to be the case as we will show in this paper.

The class of representations we are considering in this work are the supersymmetric

short representations. These representations are called short because the central elements

are not independent; they satisfy the so-called shortening condition [23]. In order to

construct these representations, we employ the formalism of quantum oscillators. It is
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the quantum version of the well-known harmonic oscillator algebra and is defined as

[N, a] = −a, [N, a†] = a
†, a a

† − q a†a = q−N .

The use of quantum oscillators in the context of quantum groups was investigated some

time ago in [36–38]. By employing the Fock space type modules, q-oscillators naturally

give rise to the representations of quantum groups. This was first done for Uq(sl(2)) but

later extended to the simple Lie (super)algebras of more general type, see e.g. [39]. Since

then the quantum oscillators become an important part of the theory of quantum deformed

algebras.

Apart from being an interesting mathematical playground for studying Q̂ and its S-

matrix, there is also a more elaborate motivation for considering these representations

and the corresponding S-matrix. Firstly, there might be some possible applications in the

context of the deformed Hubbard model. Secondly, it turns out that bound state states

transform exactly in these representations of q-oscillator algebra. It is important to study

bound states due to many reasons. For example, bound states usually play a crucial role

in the thermodynamics of the model. In the case of the non-deformed model in AdS/CFT,

the thermodynamic Bethe ansatz (TBA) formalism is a key in describing the complete

spectrum of the theory [40–43]. The bound state S-matrix then governs the large volume

solutions of both the TBA equations and the Y-system. Thus this is one of the first steps

towards the TBA and Y-system formalism for the q-deformed model. And, consequently,

it might give some useful insights in these structures in the context of the AdS5 × S5

superstring. For example, there might be an interesting link to the recently constructed

q-deformed Pohlmeyer reduced version of the AdS5 × S5 superstring [44, 45] which seems

to be closely related to the q-deformed model constructed in [10].

In this work we derive the general bound state S-matrix by employing the methods

used in the context of the AdS5 × S5 superstring [27], but rather than using the Yangian

symmetry we make use of the underlying quantum affine algebra. Our approach is based

on the identification of invariant subspaces in the scattering theory that are specified by

their invariance properties under the Cartan elements of the algebra. Then we use the

rest of the algebra generators to related the subspaces to each other in such way finding

the explicit form of the corresponding S-matrix. Just as in [27] we find the S-matrix in a

factorized form reminiscent of the Drinfeld twist [46].

The paper is organized as follows. In section 2 we discuss the quantum deformation

Q of the extended U(su(2|2)) algebra and its affine extension Q̂. Then in section 3 we

introduce the quantum oscillator formalism and construct the supersymmetric short rep-

resentations of Q̂. In section 4 we present the explicit derivation of the S-matrix for these

representations. Subsequently, in section 5, we specify some explicit cases, we reproduce

the fundamental R-matrix and also we give the precise form of the scattering matrix when

one of the spaces forms a fundamental representation. We end with a brief discussion on

the results and interesting directions for future research. The majority of the S-matrix

coefficients and results of the intermediate steps of the performed calculations are spelled

out in the appendices.
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Figure 1. Dynkin diagram for the su(2|2) algebra.

2 Quantum affine algebra of extended Uq(su(2|2))

In this section we review the quantum deformation of the extended su(2|2) algebra [10]

and its affine extension [35].

2.1 Quantum deformation of extended su(2|2)
The quantum deformed extended su(2|2) algebra Q was introduced in [10]. This algebra is

generated by the three sets of Chevalley-Serre generators {Ej ,Kj , Fj} (j = 1, 2, 3) where

Ej and Fj are raising and lowering generators respectively and Kj = qHj are the Cartan

generators. We will consider the case when E2 and F2 are fermionic generators and the

rest are bosonic. This corresponds to the su(2|2) Dynkin diagram in Figure 1. In addition,

this algebra has two central charges U and V = qC and two parameters: the deformation

parameter q and the coupling constant g. There is also a third parameter α, which describes

the relative scaling of E2 and F2. Even though it is possible absorb this parameter into

the generators by a suitable redefinition, we will keep it unspecified.

Algebra. The commutation relations which include the mixed Chevalley-Serre generators

are (j, k = 1, 2, 3)

KjEk = q+DAjkEkKj , KjFk = q−DAjkFkKj , [Ej , Fk} = Djjδjk
Kj −K−1

j

q − q−1
, (2.1)

where the associated Cartan matrix A and normalization matrix D are given by

A =




+2 −1 0

−1 0 +1

0 +1 −2


 , D = diag(+1,−1,−1) . (2.2)

There are also the unmixed commutation relations, called the Serre relations (j = 1, 3),

[E1, E3] = {E2, E2} =
[
Ej, [Ej , E2]

]
− (q − 2 + q−1)EjE2Ej = 0,

[F1, F3] = {F2, F2} =
[
Fj , [Fj , F2]

]
− (q − 2 + q−1)FjF2Fj = 0. (2.3)

In addition, this algebra satisfies the extended Serre relations that give rise to two central

elements U and V as follows,

gα(1 − U2V 2) =
{
[E2, E1], [E2, E3]

}
− (q − 2 + q−1)E2E1E3E2,

gα−1(V −2 − U−2) =
{
[F2, F1], [F2, F3]

}
− (q − 2 + q−1)F2F1F3F2. (2.4)

The central element V is also related to the Cartan generators through

V −2 = K1K
2
2K3 . (2.5)

The conventional Uq(su(2|2)) algebra is obtained in the limit g → 0.
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Figure 2. Dynkin diagram for the affine ŝu(2|2) algebra.

Coalgebra. The defining relations of Q are compatible with the following coalgebra

structure. The coproduct of the group like elements X ∈ {U, V,K} is ∆(X) = X ⊗X and

the coproducts of the Chevalley-Serre generators Ej and Fj (j = 1, 3) take the standard

forms. However the coproducts of the fermionic generators E2 and F2 involve an additional

braiding factor U , which is one of the central charges of the algebra alluded to in the

previous paragraph

∆(Ej) = Ej ⊗ 1 +K−1
j U+δj,2 ⊗ Ej , ∆(Fj) = Fj ⊗Kj + U−δj,2 ⊗ Fj . (2.6)

The coalgebra can actually be extended to a Hopf algebra. We will give the relevant

definitions of the antipode and counit later on.

2.2 Affine Extension

The infinite dimensional quantum affine algebra Q̂ is the affine extension of Q introduced in

[35]. The affine extension is obtained by adding an additional node into the Dynkin diagram

as depicted in Figure 2. The remarkable property of this diagram is that the additional

fermionic node is a copy of the second node. Therefore, we introduce the affine Chevalley-

Serre generators {E4, F4,K4} as a copy of {E2, F2,K2} and assume that they satisfy the

same commutation relations as are given in (2.1), (2.3) and (2.4) and also have the same

coalgebra structure (2.6). Thus, we also introduce an additional set of the parameters g, α

and central charges U, V . We distinguish these two sets by adhering subscripts to them

arising from the generators to which they are associated,

g → gk, α→ αk, U → Uk, V → Vk, with k = 2, 4. (2.7)

Next, we need to determine the commutation relations {E2, F4} and {E4, F2} in such way

that they would be compatible with the coalgebra structure

∆({E2, F4}) = {∆(E2),∆(F4)} and ∆({E4, F2}) = {∆(E4),∆(F2)} . (2.8)

Algebra. As a result, we obtain the quantum affine algebra Q̂ [35]. The mixed commu-

tation relations of it are given by (i, j = 1, 3)

KiEj = q+DAijEjKi, KiFj = q−DAijFjKi,

{E2, F4} = −g̃α̃−1(K4 − U2U
−1
4 K−1

2 ), {E4, F2} = g̃α̃(K2 − U4U
−1
2 K−1

4 ),

[Ej , Fj} = Djj

Kj −K−1
j

q − q−1
[Ei, Fj} = 0, for i 6= j, i+ j 6= 6 . (2.9)
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with the two new constants g̃ and α̃ and the associated supersymmetric Cartan matrix A

and normalization matrix D given by

A =




+2 −1 0 −1

−1 0 +1 0

0 +1 −2 +1

−1 0 +1 0


 , D = diag(1,−1,−1,−1). (2.10)

These are supplemented by the following Serre relations (j = 1, 3 and k = 2, 4)

[E1, E3] = E2E2 = E4E4 = {E2, E4} = 0 ,

[F1, F3] = F2F2 = F4F4 = {F2, F4} = 0 ,

[Ej , [Ej , Ek]]− (q − 2 + q−1)FjFkFj = 0 ,

[Fj , [Fj , Fk]]− (q − 2 + q−1)FjFkFj = 0 . (2.11)

The central charges are related to the quartic Serre relations as (k = 2, 4)

gkαk(1− U2
kV

2
k ) =

{
[Ek, E1], [Ek, E3]

}
− (q − 2 + q−1)EkE1E3Ek ,

gkα
−1
k (V −2

k − U−2
k ) =

{
[Fk, F1], [Fk, F3]

}
− (q − 2 + q−1)FkF1F3Fk . (2.12)

and the central charges Vk are related with Cartan charges through (k = 2, 4)

V −2
k = K1K

2
kK3 . (2.13)

Coalgebra. The group-like elements X ∈ {1,Kj , Uk, Vk} (j = 1, 2, 3, 4 and k = 2, 4) have

the coproduct ∆, the antipode S and the counit ε defined in the usual way,

∆(X) = X ⊗X, S(X) = X−1, ε(X) = 1, (2.14)

while the coproducts of the Chevalley-Serre generators are deformed by the central elements

Uk as follows (j = 1, 2, 3, 4),

∆(Ej) = Ej ⊗ 1 +K−1
j U

+δj,2
2 U

+δj,4
4 ⊗ Ej , S(Ej) = −U−δj,2

2 U
−δj,4
4 KjEj , ε(Ej) = 0,

∆(Fj) = Fj ⊗Kj + U
−δj,2
2 U

−δj,4
4 ⊗ Fj , S(Fj) = −U+δj,2

2 U
+δj,4
4 FjK

−1
j , ε(Fj) = 0.

(2.15)

It is important to note that the above coproducts are compatible with all the defining rela-

tions, including the commutators {E2, F4} and {E4, F2} in (2.9). The opposite coproduct

is defined as ∆op = P∆P with P being the graded permutation operator.

Parameter constraints. In general, the quantum affine algebra Q̂ has seven parameters

gk, αk, α̃, g̃, q (k = 2, 4). A suitable choice of them which lead to an interesting fundamental

representation was performed in [35]:

g2 = g4 = g, α2 = α4 α̃
−2 = α, g̃2 =

g2

1− g2(q − q−1)2
. (2.16)

This choice of parameters is also compatible with the bound state representations. Thus

in this paper we only consider the quantum affine algebra Q̂, parametrized by four inde-

pendent parameters g, α, α̃, q given in the relations above.
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3 Quantum oscillators and representations

In this section we will provide all the necessary background for constructing the bound

state S-matrix for the q-deformed Hubbard model. We will build the bound state repre-

sentation by introducing q-oscillator formalism linking it to the aforementioned quantum

affine algebra.

3.1 q-Oscillators

We first introduce the notion of q-oscillators and discuss how to obtain the representations

of the quantum deformed algebras using q-oscillators. A concise overview of the q-oscillators

and their relation to such representations may be found in [47, 48].

Definitions. The q-oscillator (q-Heisenberg-Weyl algebra) Uq(h4) is the associative unital

algebra consisting of the generators {a†, a, w,w−1} that satisfy the following relations

w a
† = q a†w, qw a = aw, (3.1)

ww−1 = w−1w = 1, a a
† − q a†a = w−1.

From the defining relations one can see that the element w−1(a†a− w−w−1

q−q−1 ) is central. As

such, we will set it to zero in the remainder. Then one easily obtains

a
†
a =

w − w−1

q − q−1
, a a

† =
qw − q−1w−1

q − q−1
. (3.2)

We will also need to consider the fermionic version of the q-oscillator. The above notion is

extended to include fermionic operators by adjusting the defining relations in the following

way (we keep the same notation for bosonic and fermionic a, a† for now)

w a
† = q a†w, qw a = aw, (3.3)

ww−1 = w−1w = 1, a a
† + q a†a = w.

In this case, the central element is w(a†a − w−w−1

q−q−1 ). Again we set this element to zero,

resulting in the following identities

a
†
a =

w − w−1

q − q−1
, a a

† =
qw−1 − q−1w

q − q−1
. (3.4)

Of course in the fermionic case the operators a, a† square to zero.

Fock space. The q-oscillator algebra can be used to define representations of Uq(sl(2))

in a very simple way. Let us first build the Fock representation of Uq(h4). For this purpose

consider a vacuum state |0〉 such that

a|0〉 = 0, (3.5)
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then the Fock vector space F generated by the states of the form

|n〉 = (a†)n|0〉 , (3.6)

is an irreducible module of Uq(h4). Let us first consider the bosonic q-oscillators. With

the help of the defining relations (3.1) and (3.2) one finds that the action of the oscillator

algebra generators on this module is

a
†|n〉 = |n+ 1〉, a|n〉 = [n]q|n− 1〉, w|n〉 = qn|n〉. (3.7)

This makes it natural to identify w ≡ qN , where N is understood as a number operator.

Analogously, fermionic generators are found to act as

a
†|n〉 = |n+ 1〉, a|n〉 = [2− n]q|n− 1〉, w|n〉 = qn|n〉. (3.8)

However, due to the fermionic nature, n can only take the values 0 and 1 and thus the

identity [2− n]q = [n]q holds.

Next consider two copies of bosonic q-oscillators ai, a
†
i , wi = qNi which mutually com-

mute. Then the Fock space is naturally spanned by vectors of the form

|m,n〉 = (a†1)
m(a†2)

n|0〉. (3.9)

It is easy to see that under the identification

E = a
†
2a1, F = a

†
1a2, H = N2 −N1, (3.10)

the Fock space forms an infinite dimensional Uq(sl(2))-representation. Moreover, the sub-

space FM = span{ |m,M −m〉 | m = 0, . . . ,M } is an irreducible Uq(sl(2))-representation

of dimensionM+1. This can be straightforwardly generalized to sl(n) and more generally,

by including fermionic oscillators, this space is extended to the representations of sl(n|m)

[39].

Representations of centrally extended Uq(su(2|2)). We will now construct the bound

state representation for centrally extended Uq(su(2|2)) in the q-oscillator language. We need

to consider two copies of sl(2), a bosonic and a fermionic one. Thus we need four sets of q-

oscillators ai, a
†
i , wi = qNi , where the index i = 1, 2 denotes bosonic oscillators and i = 3, 4

– fermionic ones. Using these we write

E1 = a
†
2a1, F1 = a

†
1a2, H1 = N2 −N1, (3.11)

E2 = a a
†
4a2 + b a†1a3 F2 = c a†3a1 + d a

†
2a4, H2 = −C +

N1 +N3 −N2 −N4

2
, (3.12)

E3 = a
†
3a4, F3 = a

†
4a3, H3 = N4 −N3, (3.13)

where C is central. It is then straightforward to check that this set of generators forms a

representation of Uq(su(2|2)) on the Fock space when restricting to the subspace of total

particle number M upon setting

ad =
[C + M

2 ]q

[M ]q
, bc =

[C − M
2 ]q

[M ]q
, ab =

P

[M ]q
, cd =

K

[M ]q
. (3.14)
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In the above K,P correspond to the right hand side of the Serre relations (2.12) following

[10]. As a consequence, the central charges satisfy the shortening condition

[C]2q −PK =
[
M
2

]2
q
. (3.15)

Here the q-numbers are defined as

[k]q =
qk − q−k

q − q−1
. (3.16)

This way of constructing representations of the centrally extended algebra reminds us of

the procedure used in, e.g. [30], where long representations were be obtained by twisting

sl(n|m) in a similar way.

In the q → 1 limit the q-oscillators get reduced to the regular oscillators and the

representations of them coincide with the superspace formalism introduced in [21]. The

identification is as follows

a1,2 ↔
∂

∂w1,2
, a

†
1,2 ↔ w1,2, a3,4 ↔

∂

∂θ3,4
, a

†
3,4 ↔ θ3,4. (3.17)

Parameterization and central elements. Introducing V = qC and U as in [35], we

rewrite (3.14) as

ad =
q

M
2 V − q−

M
2 V −1

qM − q−M
, bc =

q−
M
2 V − q

M
2 V −1

qM − q−M
,

ab =
gα

[M ]q
(1− U2V 2), cd =

gα−1

[M ]q
(V −2 − U−2). (3.18)

which altogether lead to a constraint for U and V ,

g2

[M ]2q
(V −2 − U−2)(1 − U2V 2) =

(V − qMV −1)(V − q−MV −1)

(qM − q−M)2
. (3.19)

This constraint agrees with the one in [35] by identifying q → qM , g → g/[M ]q . The

explicit parametrization of the labels a, b, c, d shall be given a bit further.

3.2 Affine extension

Next we want to consider the affine extension introduced in [35]. Here we will show that

our representation allows an affine extension. Analogously to [35] we make the ansatz that

the affine charges act as copies of E2, F2,H2. In other words, we set

E4 = a4 a
†
4a2 + b4 a

†
1a3, F4 = c4 a

†
3a1 + d4 a

†
2a4, H4 = −C4 +

N1 +N3 −N2 −N4

2
.

(3.20)

Checking all of the commutation relations is straightforward. Also, due to the defining

relations (3.18), the equivalent expressions for the affine representation parameters are
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obtained

a4d4 =
q

M
2 V4 − q−

M
2 V −1

4

qM − q−M
, b4c4 =

q−
M
2 V4 − q

M
2 V −1

4

qM − q−M
,

a4b4 =
g4α4

[M ]q
(1− U2

4V
2
4 ), c4d4 =

g4α
−1
4

[M ]q
(V −2

4 − U−2
4 ). (3.21)

However the commutators between the generators E2 and E4 and also between F2 and F4

induce relations between a2, a4, etc. These are found to be

a2d4 =
g̃α̃−1

[M ]q
(q

M
2 U2U

−1
4 V2 − q−

M
2 V −1

4 ), b2c4 =
g̃α̃−1

[M ]q
(q−

M
2 U2U

−1
4 V2 − q

M
2 V −1

4 ),

c2b4 =
g̃α̃

[M ]q
(q

M
2 V −1

2 − q−
M
2 U−1

2 U4V2), d2a4 =
g̃α̃

[M ]q
(q−

M
2 V −1

2 − q
M
2 U−1

2 U4V2), (3.22)

and agree with [35] upon sending q → qM , g̃ → g̃
[M ]q

, as in the non-affine case. The tilded

g̃, α̃ are not independent but constrained parameters; thus there are 12 constraints for 12

parameters {ak, bk, ck, dk, Uk, Vk}.

Hopf algebra and variables. The Hopf algebra structure is as discussed in Section 2.

Here we will introduce Zhukowksy variables that will parameterize the representation labels

{ak, bk, ck, dk} and central elements Uk, Vk for the bound-state representation. Following

[35] we choose

g2 = g4 = g, α2 = α4 α̃
−2 = α, g̃2 =

g2

1− g2(q − q−1)2
. (3.23)

Note that the powers of q in the expressions above are 1 and not M because g2(q − q−1)2

is invariant under the bound state map (g, q) 7→ (g/[M ]q , q
M ), thus these equations are

identical to the ones for the fundamental representation.

Also, there is a relation between the central elements of the algebra,

U4 = ±U−1
2 , V4 = ±V −1

2 , (3.24)

that are called the two-parameter family of the representation [35]. We shall be using the

plus relation in our calculations.

The mass-shell constraint (multiplet shortening condition) obtained from the expres-

sions (3.18) and (3.21) reads as

(akdk − qMbkck)(akdk − q−Mbkck) = 1, (3.25)

and holds independently for k = 2, 4. In terms of the conventional x± parametrization it

becomes
1

qM

(
x+ +

1

x+

)
− qM

(
x− +

1

x−

)
=

(
qM − 1

qM

)(
ξ +

1

ξ

)
, (3.26)

where ξ = −ig̃(q − q−1). One can further introduce a function ζ(x)

ζ(x) = −x+ 1/x+ ξ + 1/ξ

ξ − 1/ξ
, (3.27)

– 11 –



in terms of which (3.26) becomes q−Mζ(x+) = qMζ(x−). This parametrization leads to

the following expressions of the labels ak, bk, ck, dk of a ‘canonical form’:

ak =

√
g

[M ]q
γk, bk =

√
g

[M ]q

αk

γk

x−k − x+k
x−k

,

ck =

√
g

[M ]q

γk
Vk αk

i q
M
2 g̃

g(x+k + ξ)
, dk =

√
g

[M ]q

Vk g̃ q
M
2

i g γk

x+k − x−k
ξx+k + 1

, (3.28)

where the central charges are

U2
k =

1

qM
x+k + ξ

x−k + ξ
= qM

x+k
x−k

ξx−k + 1

ξx+k + 1
, V 2

k =
1

qM
ξx+k + 1

ξx−k + 1
= qM

x+k
x−k

x−k + ξ

x+k + ξ
, (3.29)

and the relations between x±2 , γ2 and x±4 , γ4 are constrained by (3.22) to be

x±2 = x±, x±4 =
1

x±
, γ2 = γ, γ4 =

iα̃γ

x+
. (3.30)

The relation between normalization coefficients α2 and α4 was given in (3.23). Finally, the

convenient multiplicative evaluation parameter z for the bound state representation is

z = q−Mζ(x+) = qM ζ(x−). (3.31)

3.3 Summary

For the convenience of the reader we want to summarize all expressions that will be used

in the consequent calculations of the bound state S-matrix. We will slightly change the

notation for parameters related to the fermionic nodes. We rename the representation

parameters and the central elements of the algebra as

(a2, b2, c2, d2, U2, V2) → (a, b, c, d, U, V ),

(a4, b4, c4, d4, U4, V4) → (ã, b̃, c̃, d̃, Ũ , Ṽ ), (3.32)

in order to reserve the subscript position for discriminating states living in different tensor

spaces. We will also give some relations that we found to be very useful and handy to use.

Explicit representation. The bound state representation is defined as

|m,n, k, l〉 = (a†3)
m(a†4)

n(a†1)
k(a†2)

l |0〉. (3.33)

The total number of excitations is k + l +m + n = M . The triple corresponding to the

bosonic sl(2) is given by

H1|m,n, k, l〉 = (l − k)|m,n, k, l〉,
E1|m,n, k, l〉 = [k]q |m,n, k − 1, l + 1〉, F1|m,n, k, l〉 = [l]q |m,n, k + 1, l − 1〉. (3.34)

The fermionic part is

H3|m,n, k, l〉 = (n−m)|m,n, k, l〉,
E3|m,n, k, l〉 = |m+ 1, n − 1, k, l〉, F3|m,n, k, l〉 = |m− 1, n+ 1, k, l〉. (3.35)
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The action of the supercharges is given by

H2|m,n, k, l〉 = −
{
C − k − l +m− n

2

}
|m,n, k, l〉,

E2|m,n, k, l〉 = a (−1)m[l]q |m,n + 1, k, l − 1〉+ b |m− 1, n, k + 1, l〉,
F2|m,n, k, l〉 = c [k]q |m+ 1, n, k − 1, l〉+ d (−1)m |m,n− 1, k, l + 1〉. (3.36)

The parameters a, b, c, d are related to the central charges via (3.14). The affine charges

are defined exactly in the same way,

H4|m,n, k, l〉 = −
{
C̃ − k − l +m− n

2

}
|m,n, k, l〉,

E4|m,n, k, l〉 = ã (−1)m[l]q|m,n+ 1, k, l − 1〉+ b̃ |m− 1, n, k + 1, l〉,
F4|m,n, k, l〉 = c̃ [k]q |m+ 1, n, k − 1, l〉+ d̃ (−1)m |m,n− 1, k, l + 1〉. (3.37)

The representation labels a, b, c, d are given by

a =

√
g

[M ]q
γ, b =

√
g

[M ]q

α

γ

x− − x+

x−
,

c =

√
g

[M ]q

γ

α V

i q
M
2 g̃

g(x+ + ξ)
, d =

√
g

[M ]q

g̃ q
M
2 V

i g γ

x+ − x−

ξx+ + 1
, (3.38)

and the affine parameters ã, b̃, c̃, d̃ are acquired by replacing V → Ṽ = V −1, γ → iα̃γ
x+ ,

α→ α α̃2 and x± → 1
x± ; the corresponding central elements are given by V = qC , Ṽ = qC̃ .

Useful relations. The evaluation parameter z may be expressed explicitly in terms of

x± parametrization as

z (q − q−1)(ξ − ξ−1) = − 1

[M ]q

(
x+ − x− +

1

x+
− 1

x−

)
. (3.39)

Then using the identity

ξ − ξ−1 =
g̃

i(q − q−1)g2
, (3.40)

one can further show that it is related to the representation labels (3.38) and their affine

partners in a very nice way,

z =
g

g̃ α α̃
(ab̃− bã),

1

z
=
g α α̃

g̃
(cd̃ − dc̃), (3.41)

while the consistency conditions (3.22) give

z =
1− U2V 2

V 2 − U2
=

1− Ũ2Ṽ 2

Ṽ 2 − Ũ2
. (3.42)
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Rational limit. The rational limit is usually obtained by substituting q = 1 + h and

then finding the h→ 0 limit. Thus by defining the evaluation parameter (3.31) as z = q−2u

we can expand it in series of h as [35]

z = 1− 2hu +O(h2), where u =
ig

2
(x+ + x−)(1 + 1/x+x−). (3.43)

It is noted that the x± parameters in (3.43) satisfies the leading order of the following

relation which is stemming from the mass-shell constraint (3.26) in the h→ 0 limit,

x+ +
1

x+
− x− − 1

x−
=
iM

g
+ 2hMu+O(h2). (3.44)

In fact, this is consistent with the rational constraint for x± parameters [27]. Finally, it

would be important to see how the representation parameters reduce in the rational limit.

The representation labels (3.38) in the q → 1 limit reduce to the usual (undeformed) labels

(a, b, c, d) of [27]. On the other hand, the affine parameters are related to the non-affine

ones (ã, b̃, c̃, d̃) through [35]

MT̃ =

(
z−1 0

0 1

)
T

(
w−1 0

0 wz

)
with M =

(
0 αα̃

−α−1α̃−1 0

)
, T =

(
a −b
−c d

)
(3.45)

where z is the evaluation parameter given in (3.31), (3.42) and w is defined by

w =
g̃V

gq1/2
qU2 − 1

V 2U2 − 1
=
gq1/2

g̃V

U2 − V 2

U2 − q
. (3.46)

Since the central elements specialize to (U, V ) → (
√

x+

x− , 1) in the limit q → 1, it is easy to

see that the matrix relation (3.45) reduces the following simple form,

MT̃ = T. (3.47)

4 The S-matrix

We shall consider the bound state S-matrix which is an intertwining matrix of the tensor

space furnished by the vectors

|m1, n1, k1, l1〉 ⊗ |m2, n2, k2, l2〉. (4.1)

Here 0 ≤ m1, n1,m2, n2 ≤ 1 and k1, l1, k2, l2 ≥ 0 denote the numbers of fermionic and

bosonic excitations respectively with the bound state number Mi being the total number

of excitations Mi = mi + ni + ki + li. Thus the S-matrix is the automorphism of the

quantum deformed tensor space and is required to be invariant under the coproducts of

the affine algebra Q̂,

S∆(J) = ∆op(J)S, for any J ∈ Q̂. (4.2)
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We normalize the S-matrix in such a way that the state |0, 0, 0,M1〉⊗|0, 0, 0,M2〉 is invariant
under the scattering. Therefore we will denote the state

|0〉 = |0, 0, 0,M1〉 ⊗ |0, 0, 0,M2〉, (4.3)

as the vacuum state.

The invariance under bosonic symmetries ∆H1 and ∆H3 requires the total number of

fermions and the total number of fermions of one type1

Nf = m1 +m2 + n1 + n2 + 2l1 + 2l2,

Nf3 = m1 +m2 + l1 + l2. (4.4)

to be conserved. This conservation divides the space (4.1) into five types of invariant

subspaces of the S-matrix:

I |0, 1, k1, l1〉 ⊗ |0, 1, k2, l2〉,

Ib |1, 0, k1, l1〉 ⊗ |1, 0, k2, l2〉,

II {|0, 0, k1, l1〉 ⊗ |0, 1, k2, l2〉, |1, 1, k1, l1〉 ⊗ |0, 1, k2, l2〉,
|0, 1, k1, l1〉 ⊗ |0, 0, k2, l2〉, |0, 1, k1, l1〉 ⊗ |1, 1, k2, l2〉},

IIb {|0, 0, k1, l1〉 ⊗ |1, 0, k2, l2〉, |1, 1, k1, l1〉 ⊗ |1, 0, k2, l2〉,
|1, 0, k1, l1〉 ⊗ |0, 0, k2, l2〉, |1, 0, k1, l1〉 ⊗ |1, 1, k2, l2〉},

III {|0, 0, k1, l1〉 ⊗ |0, 0, k2, l2〉, |0, 0, k1, l1〉 ⊗ |1, 1, k2, l2〉, |1, 1, k1, l1〉 ⊗ |0, 0, k2, l2〉,
|1, 1, k1, l1〉 ⊗ |1, 1, k2, l2〉, |0, 1, k1, l1〉 ⊗ |1, 0, k2, l2〉, |1, 0, k1 , l1〉 ⊗ |0, 1, k2, l2〉}.

Subspaces I, Ib and II, IIb are isomorphic, hence we need to find the S-matrix for one

of the isomorphic subspaces only. In the following we will consider the scattering in the

subspaces I, II and III only.

The invariant subspaces differ by the numbers Nf,f3 . By considering the action of the

algebra charges it is easy to see that the different subspaces are related to each other in

the way shown in figure 3.

Finally we want to give a remark on our choice of the basis. The q-oscillator basis we

are considering is orthogonal, but not orthonormal,

〈m′, n′, k′, l′|m,n, k, l〉 = 1

[k]! [l]!
δm,m′δn,n′δk,k′δl,l′ , (4.5)

where [n]! = [n]q[n−1]q · · · [1]q is the quantum factorial. We shall choose the normalization

for the bra vectors to be

〈m,n, k, l| := 1

[k]! [l]!
|m,n, k, l〉†. (4.6)

1Note that a bosonic excitation may be interpreted as a combined excitation of two fermionic ones of a

different type.
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¢F4¢F4

¢F2¢F2

¢F2¢F2

¢E2¢E2
¢E4¢E4
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¢F4¢F4
¢F2¢F2
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Figure 3. The invariant subspaces of the S-matrix and the algebraic relations between them.

which helps us to normalize the scalar product to unity and avoid the appearance of

unpleasant numerical factors of the form
(
[k]![l]!

)−1/2
in the derivations. The price we

have to pay for this choice of the basis is that the S-matrix elements are not hermitian.

However it is easy to obtain the hermitian ones,

SA′B′

AB Hermitian =

(
[A′]! [B′]!

[A]! [B]!

)1/2

SA′B′

AB , (4.7)

where A = (m,n, k, l) and [A]! = [k]! [l]! represents the set of quantum numbers describing

the ket vector, while primed A′ describe bra vector, and similarly for B, B′.

For further convenience we introduce these shorthands

M =M1 +M2, δM =M1 −M2, K = k1 + k2, δK = k1 − k2,

k̄i =Mi − ki − 1, δki = k̄i − ki =Mi − 2ki − 1, z12 = z1/z2, δu = u1 − u2. (4.8)

4.1 Scattering in subspace I

The conserved fermionic numbers (4.4) for the subspace I areNf = 2K+2 and Nf3 = K+2.

Thus for the fixed K (0 ≤ K ≤M1 +M2 − 2) the dimension of the space is K +1 and the

states in this space are defined as

|k1, k2〉I = |0, 1, k1,M1 − k1 − 1〉 ⊗ |0, 1, k2,M2 − k2 − 1〉. (4.9)

We start by considering the highest weight state (the state with k1 = k2 = 0). The

invariance under ∆H1 and ∆H3 requires it to be an eigenstate of the S-matrix,

S |0, 0〉I = D |0, 0〉I. (4.10)

Let us compute D . First, we construct the highest weight state by acting with the combi-

nation ∆E2∆E4 on the vacuum state (4.3) (we use the notation ai ≡ a(pi) etc.)

∆E2∆E4 |0〉 = q
M1
2 [M1]q[M2]q (a1ã2 Ũ1Ṽ1 − a2ã1 U1V1) |0, 0〉I. (4.11)
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This construction let us to rewrite (4.10) as

S |0, 0〉I = S∆E2∆E4

q
M1
2 [M1]q[M2]q (a1ã2 Ũ1Ṽ1 − a2ã1 V1U1)

|0〉

=
∆opE2∆

opE4 S

q
M1
2 [M1]q[M2]q (a1ã2 Ũ1Ṽ1 − a2ã1 V1U1)

|0〉

= −q
M2−M1

2
a2ã1 Ũ2Ṽ2 − a1ã2 V2U2

a1ã2 Ũ1Ṽ1 − a2ã1 V1U1

|0, 0〉I, (4.12)

where we have used the invariance condition (4.2) when going from the first to the second

line. Comparing (4.12) with (4.10) we find D to be

D = −q
M2−M1

2
a2ã1 Ũ2Ṽ2 − a1ã2 V2U2

a1ã2 Ũ1Ṽ1 − a2ã1 V1U1

= q−δM/2U2V2
U1V1

x+1 − x−2
x−1 − x+2

. (4.13)

In the q → 1 limit this is an inverse of the result found in [27] due to the interchange of ∆

and ∆op with respect to the ones in [27].

Next we define the action of the S-matrix on the subspace I to be

S |k1, k2〉I =
K∑

n=0

X
k1,k2
n |n,K − n〉I. (4.14)

The strategy for finding coefficients X
k1,k2
n will be based on building the generic state

|k1, k2〉I by starting from the highest weight state |0, 0〉I. This will let us relate X
k1,k2
n

with any k1, k2 and n to the already known coefficient D . Thus we need to construct

k1- and k2-raising operators. We start from inspecting the action of the coproduct of the

bosonic charge F1 giving

∆F 1|k1, k2〉I = [k̄1]q q
δk2 |k1 + 1, k2〉I + [k̄2]q |k1, k2 + 1〉I, (4.15)

and

∆opF 1|k1, k2〉I = [k̄1]q |k1 + 1, k2〉I + [k̄2]q q
δk1 |k1, k2 + 1〉I. (4.16)

These coproducts do not have the desired properties we want, but are very close. However,

with the help of E2, E3 and E4 we can construct a new charge with a similar action:

F̂1 =
g

g̃ α α̃
{E2, [E4, E3]}. (4.17)

We call this new charge ‘the affine partner’ of the raising charge F1. The action of F̂1 on

the state of the form |0, 1, k, l〉 is

F̂1|0, 1, k, l〉 = z [l]q |0, 1, k + 1, l − 1〉, (4.18)
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where we have used (3.39) implicitly2. Then it is straightforward to see that the new affine

raising charge acts on generic states in subspace I as

∆F̂ 1 |k1, k2〉I = z1 [k̄1]q |k1 + 1, k2〉I + z2 q
δk1 [k̄2]q |k1, k2 + 1〉I. (4.20)

And the action of ∆opF̂1 is

∆opF̂1 |k1, k2〉I = z1 q
δk2 [k̄1]q |k1 + 1, k2〉I + z2 [k̄2]q |k1, k2 + 1〉I. (4.21)

By combining ∆F̂ 1 with ∆F 1 we obtain composite operators having the action of the

desired form – raising k1 and k2 separately:

|k1 + 1, k2〉I =
1

[k̄1]q

∆F̂ 1 − z2 q
δk1∆F 1

z1 − z2 qδk1+δk2
|k1, k2〉I, (4.22)

|k1, k2 + 1〉I = 1

[k̄2]q

z1 ∆F 1 − qδk2∆F̂ 1

z1 − z2 qδk1+δk2
|k1, k2〉I. (4.23)

Then by induction we find that the generic state |k1, k2〉I may be constructed as

|k1, k2〉I =
∏k2−1

j2=0 (z1 ∆F 1 − qδj2∆F̂ 1)
∏k1−1

i1=0 (∆F̂ 1 − z2 q
δi1∆F 1)

∏k1
i=1[M1 − i]q

∏k2
j=1[M2 − j]q

∏k1+k2
j=1 (z1 − z2qM−2j)

|0, 0〉I. (4.24)

Finding X
k1,k2
n is then straightforward. We only need to act with the S-matrix on the

expression above and sandwich with bra-vector as

X
k1,k2
n = I〈n,K − n| S |k1, k2〉I. (4.25)

Performing similar steps as we did in (4.12) and employing the relations

(∆opF̂1 − z2 q
δk1∆opF 1) |n1, n2〉I

= [n̄2]q z2 (1− qδk1+δn1) |n1, n2 + 1〉I + [n̄1]q (z1 q
δn2 − z2 q

δk1) |n1 + 1, n2〉I, (4.26)

(z1 ∆
opF 1 − qδk2∆opF̂1) |n1, n2〉I

= [n̄1]q z1 (1− qδn2+δk2) |n1 + 1, n2〉I + [n̄2]q (z1q
δn1 − z2q

δk2)|n1, n2 + 1〉I, (4.27)

2For the consistency of the algebra we also give a definition of the ‘affine lowering charge’ Ê1:

Ê1 =
g α α̃

g̃
{F2, [F4, F3]}, Ê1|0, 1, k, l〉 =

[l]q
z

|0, 1, k − 1, l + 1〉. (4.19)
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we find the coefficients of the S-matrix in the subspace I to be

X
k1,k2
n = D

∏n
i=1[M1 − i]q

∏K−n
j=1 [M2 − j]q

∏k1
i=1[M1 − i]q

∏k2
j=1[M2 − j]q

1
∏K

l=1(z12 − qM−2l)

×
k1∑

m=0

(
zn−m
12 qk2(n−m)−k1m−k22









k1
m









q









k2
n−m









q

×
m−1∏

p=0

(z12 q
M2+2p − qM1)

k1∏

p=1+m

(1− q2(M1−p))

×
n−m∏

p=1

(1− q2(M2−K+n−p))

k2−n−1∏

p=−m

(z12 q
M1+2p − qM2)


 , (4.28)

where z12 = z1
z2

and the q-binomials are defined as









a

b









q

≡ [a]q!

[b]q![a− b]q!
. (4.29)

Apart from the prefactor D , this expression only depends on the quotient z12 and on simple

q-factors. The expression above has exactly the form that one would expect to obtain by

an educated guess relying on the one given in [27].

Quantum 6j-Symbol. The coefficients X
k1,k2
n of the bound state S-matrix may be

regarded as the coefficients which arise in the fusion rule of the irreducible representations

of Uq(su(2)), thus it is expected that the expression (4.28) is related to the quantum 6j-

symbol, which is the q-deformation of 6j-symbol and was first introduced in [49].

In order to see the relation with the quantum 6j-symbol, we first rewrite (4.28) in

terms of quantum factorials. This can be done by introducing the notation z12 = q−2δu

and using the following identity several times,

qA − qB

q − q−1
= q

A+B
2

[
A−B

2

]

q

. (4.30)

Secondary, we shift the index of summation m to M1 − 2 −m. After some computation,

we obtain the following form,

X
k1,k2
n = D q(k1−n)(k2−n+δu+ δM

2
) [M2 − k2 − 1]!

[M1 − n− 1]!

[δu+ M
2 − 1−K]!

[δu+ M
2 − 1]!

× [k1]![k2]![δu + δM
2 ]![δu − δM

2 − k2 + n+ 1]!

×
∑

m≥0

[m+ 1]! ([m−M1 + 2 + k1]! [m−M1 + 2 + n]! [k2 − n+M1 − 2−m]!

× [m+ δu− M
2 + 2]! [δu + M

2 − 1−m]! [M1 − 2−m]! [M −K − 3−m]!
)−1

.

(4.31)

where the summation index m runs over the non-negative integers such that all arguments

of the quantum factorials, which do not include δu, are non-negative. Finally, replacing the
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six variables (M1,M2, k1, k2, n, δu) by the appropriate combinations of (j1, j2, j3, j4, j5, j6)

as (see also [27]),

j1 =
1
2 (K − n+ δM

2 + δu), j4 =
1
2 (

δM
2 − 1 + k2 − δu),

j2 =
1
2 (

M
2 − 2− k2 − δu), j5 =

1
2 (

M
2 − 1−K + n+ δu),

j3 =
1
2 (M1 − 2− k1 − n), j6 =

1
2 (M2 − 1), (4.32)

we have found that the expression (4.28) obtains a quite elegant form

X
k1,k2
n = D (−1)j1−j3−j4+2j5+j6q(j1−j2+j3)(j1+j2−j4−j5) [j1 + j2 − j3]!

[1 + j1 + j2 + j3]!

[j1 + j5 − j6]!

[j1 + j5 + j6]!

× [j3 − j4 + j5]! [j3 + j4 − j5]! [j2 − j4 + j6]! [−j2 + j4 + j6]!

∣

∣

∣

∣

∣

∣

∣

∣

j1 j2 j3
j4 j5 j6

∣

∣

∣

∣

∣

∣

∣

∣

, (4.33)

where we have defined the rescaled quantum 6j-symbol by
∣

∣

∣

∣

∣

∣

∣

∣

j1 j2 j3
j4 j5 j6

∣

∣

∣

∣

∣

∣

∣

∣

=
∑

m≥0

(−1)m[m+ 1]!
(
[j1245 −m]! [j1346 −m]! [j2356 −m]!

× [m− j123]! [m− j345]! [m− j246]! [m− j156]!
)−1

. (4.34)

Here we have used the bookkeeping notations jabc = ja+jb+jc and jabcd = ja+jb+jc+jd.

The above expression is related with the quantum 6j-symbol introduced in [49] as














j1 j2 j3
j4 j5 j6















=
√
2j3 − 1

√
2j6 − 1 (−1)−j1−j2+2j3+j4+j5

×∆(j1, j2, j3)∆(j1, j5, j6)∆(j2, j4, j6)∆(j3, j4, j5)

∣

∣

∣

∣

∣

∣

∣

∣

j1 j2 j3
j4 j5 j6

∣

∣

∣

∣

∣

∣

∣

∣

, (4.35)

where the triangle coefficient ∆(a, b, c) is defined to be

∆(a, b, c) =

(
[a+ b− c]! [b + c− a]! [c + a− b]!

[1 + a+ b+ c]!

)1/2

. (4.36)

Rational Limit. In order to find the rational limit of the matrix X (4.28) we first use

the expansion (3.43) for the spectral parameter z. This leads to

X
k1,k2
n = D

∏n
i=1[M1 − i]q

∏K−n
j=1 [M2 − j]q

∏k1
i=1[M1 − i]q

∏k2
j=1[M2 − j]q

1
∏K

l=1(z
1/2
12 [δu]q + qM/2−l[M2 − l]q)

×
k1∑

m=0

(
zn−m
12 qk2(n−m)−k1m−k22









k1
m









q









k2
n−m









q

×
m−1∏

p=0

(
z
1/2
12 qM2/2+p

[
δu− M2

2
− p

]

q

+ qM1/2

[
M1

2

]

q

)

×
k2−n−1∏

p=−m

(
z
1/2
12 qM1/2+p

[
δu − M1

2
− p

]

q

+ qM2/2

[
M2

2

]

q

)

×
k1∏

p=1+m

qM1−p[M1 − p]q

n−m∏

p=1

qM2−K+n−p[M2 −K + n− p]q


 , (4.37)
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where δu = u1 −u2. Now we are ready to find q → 1 limit. The q-numbers [x]q coalesce to

x, thus (4.37) becomes

X
k1,k2
n = D

∏n
i=1(M1 − i)

∏K−n
j=1 (M2 − j)

∏k1
i=1(M1 − i)

∏k2
j=1(M2 − j)

1
∏K

l=1(δu+ M
2 − l)

×
k1∑

m=0

(








k1
m

















k2
n−m









m−1∏

p=0

(
δu+

δM

2
− p

) k2−n−1∏

p=−m

(
δu− δM

2
− p

)

×
k1∏

p=1+m

(M1 − p)

n−m∏

p=1

(M2 −K + n− p)


 . (4.38)

This result coincides exactly with the expression obtained in [27]3

Classical Limit. It is also important to find the classical limit g → ∞ of (4.28). This

limit corresponds to the case ‘T(h)’ in the analysis of the classical algebra [34], where the

deformation parameter q is expanded as

q = 1 +
h

2g
+O(g−2), (4.39)

and the x± parameters become

x± = x

[
1± hM

2g

(x+ h̃)(1 + 1/xh̃)

x− x−1
+O(g−2)

]
, where h̃ = − ih√

1− h2
. (4.40)

The above expressions are compatible with the constraint (3.26) up to a given order. Since

ξ → h̃ and x± → x in the classical limit, it is easy to see that the evaluation parameter z

reduces to4

z = −(x+ h̃)(1 + 1/xh̃)

h̃− h̃−1
= −C +D

C −D
, (4.41)

where elements C and D are the classical limits of U = qD and V = qC respectively, and

are given by

D = 1
2 (z + 1) q̃, C = 1

2(z − 1) q̃, where q̃ = −M h̃− h̃−1

x− x−1
. (4.42)

3The normalization of the evaluation parameter is slightly different in here, uhere = −2u[27].
4The classical evaluation parameter given in [34] is related with ours as zcl[34] = (zclhere)

−1 and the classical

parameter is x[34] = −ihh̃−1(xhere + h̃).
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With these preliminaries, we find the classical limit of (4.28) to be

X
k1,k2
n ∼ (1 + Dcl)

∏n
i=1(M1 − i)

∏K−n
j=1 (M2 − j)

∏k1
i=1(M1 − i)

∏k2
j=1(M2 − j)

(
1 +

h

g

k1+k2∑

l=1

M
2 − l

z12 − 1

)

×
k1∑

m=0

[(
−h
g

1

z12 − 1

)k1+n−2m

zn−m
12









k1
m

















k2
n−m









×
(
1 +

h

g

m−1∑

p=0

z12
(
M2
2 + p

)
− M1

2

z12 − 1
+
h

g

k2−n−1∑

p=−m

z12
(
M1
2 + p

)
− M2

2

z12 − 1

+
h

2g

(
k2(n−m)− k1m− k22

)
)

k1∏

p=1+m

(M1 − p)

n−m∏

p=1

(M2 −K + n− p)


,

(4.43)

where Dcl is O(g−1) term of D in (4.28). Since the binomial coefficients force the index

m to be m ≤ min{k1, n}, we will discuss the two possible cases separately. They are the

n 6= k1 case (off-diagonal sector) and the n = k1 case (diagonal sector).

Off-diagonal sector. In the case when n is different from k1, it is further classified by two

more cases – if n is bigger or smaller than k1. Firstly, in the n > k1 case, the leading order

of (4.43) is O(g−(n−k1)) with m = k1. Therefore the O(g−1) term, which contributes to the

classical r-matrix, is obtained by setting n = k1 +1. In this situation, the classical limit of

(4.43) turns out to be of a simple form,

X
k1,k2
k1+1 ∼ −h

g

z1
z1 − z2

k2(M1 − k1 − 1) . (4.44)

Secondary, in the n < k1 case, the leading order is O(g−(k1−n)) with m = n. Therefore,

the O(g−1) contribution is given by n = k1 − 1. In this case the amplitude becomes

X
k1,k2
k1−1 ∼ −h

g

z2
z1 − z2

k1(M2 − k2 − 1) . (4.45)

The other matrix elements do not contribute to the classical r-matrix.

Diagonal sector. This is the n = k1 case and it needs a more elaborate treatment in

comparison with the off-diagonal sector. In this case the leading order in (4.43) is O(1)

with m = k1 = n. Thus the classical limit turns out to be

X
k1,k2
k1

∼ 1 + Dcl −
h

2g
(k21 + k22) +

h

g

1

z1 − z2

[
k1+k2∑

l=1

z2

(
M

2
− l

)

+

k1−1∑

p=0

(
z1M2 − z2M1

2
+ z1p

)
+

k2−k1−1∑

p=−k1

(
z1M1 − z2M2

2
+ z1p

)
 . (4.46)
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Full Rational Limit. It is noted that the classical limit still depends on the deformation

parameter h. This allows us to take h → 0 limit further, which corresponds to the case

“R(full)” in the analysis of [34]. In this limit, the classical evaluation parameter (4.41)

reads,

z ∼ 1− h

g
u+O(h2), with u = x+

1

x
. (4.47)

Then the off-diagonal elements of the classical r-matrix (4.44) and (4.45) turns out to be

X
k1,k2
k1+1 ∼ 1

δu
k2(M1 − k1 − 1) , X

k1,k2
k1−1 ∼ 1

δu
k1(M2 − k2 − 1) . (4.48)

On the other hand, the diagonal elements (4.46) reduce to

X
k1,k2
k1

∼ 1 + Dcl −
1

δu



k1+k2∑

l=1

(
M
2 − l

)
+

k1−1∑

p=0

(
− δM

2 + p
)
+

k2−k1−1∑

p=−k1

(
δM
2 + p

)

 . (4.49)

The above expressions (4.48) and (4.49) agree with the classical limits of rational case [27].

4.2 Scattering in subspace II

The S-matrix in the subspace II is defined to be

S |k1, k2〉IIi =
K∑

n=0

4∑

j=1

|n,K− n〉IIj
(
Y

k1,k2
n

)j
i
, (4.50)

and the standard 4N + 2–dimensional basis is

|k1, k2〉II1 = |0, 1, k1,M1 − k1 − 1〉 ⊗ |0, 0, k2,M2 − k2〉,
|k1, k2〉II2 = |0, 0, k1,M1 − k1〉 ⊗ |0, 1, k2,M2 − k2 − 1〉,
|k1, k2〉II3 = |0, 1, k1,M1 − k1 − 1〉 ⊗ |1, 1, k2 − 1,M2 − k2 − 1〉,
|k1, k2〉II4 = |1, 1, k1 − 1,M1 − k1 − 1〉 ⊗ |0, 1, k2,M2 − k2 − 1〉. (4.51)

We shall express the coefficients (Y k1,k2
n )ji in terms of already known X

k1,k2
n with the help

of the charges ∆E2 and ∆E4 that relate the states in the subspace II to the states in

subspace I:

∆E2 |k1, k2〉IIj = Qj(k1, k2) |k1, k2〉I, ∆E4 |k1, k2〉IIj = Q̃j(k1, k2) |k1, k2〉I. (4.52)

The coefficients Qj(k1, k2), Q̃j(k1, k2) and their partners for ∆opE2 and ∆opE4 are spelled

out in the Appendix A.1.
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The strategy of finding X
k1,k2
n is the following. We start by considering the matrix

element

I〈n,K− n|∆opE2 S |k1, k2〉IIi =

4∑

j=1

K∑

m=0

I〈n,K− n|∆opE2 |m,K−m〉IIj
(
Y

k1,k2
m

)j
i

=
4∑

j=1

K∑

m=0

I〈n,K− n|m,K−m〉I Qop
j (m,K−m)

(
Y

k1,k2
m

)j
i

=

4∑

j=1

Qop
j (n,K− n)

(
Y

k1,k2
n

)j
i
. (4.53)

Next, using the invariance of the S-matrix ∆opE2 S = S∆E2, we could rewrite (4.53) as

I〈n,K− n|S∆E2 |k1, k2〉IIi =I 〈n,K− n|S |k1, k2〉IQi(k1, k2)

=

N∑

m=0

I〈n,K− n|m,K−m〉I X k1,k2
m Qi(k1, k2)

= X
k1,k2
n Qi(k1, k2). (4.54)

Also we get a similar set of relations by considering the charge E4. These relations can be

conveniently summarized in terms of matrix equation

(
Qop

1 (n,K− n) Qop
2 (n,K− n) Qop

3 (n,K− n) Qop
4 (n,K− n)

Q̃op
1 (n,K− n) Q̃op

2 (n,K− n) Q̃op
3 (n,K− n) Q̃op

4 (n,K− n)

)
Y

k1,k2
n =

= X
k1,k2
n

(
Q1(k1, k2) Q2(k1, k2) Q3(k1, k2) Q4(k1, k2)

Q̃1(k1, k2) Q̃2(k1, k2) Q̃3(k1, k2) Q̃4(k1, k2)

)
, (4.55)

giving a total number of 8 constraints. However, there is a further need of 8 more con-

straints. These can be obtained by considering a composite operator

Ě2 = e0

(
e1 F̂1F3F2 + e2 F1F3F2 + e3 F3F2F1

)
, (4.56)

where

e0 = q1+K+
M1
2 (qMz1 − q2K+2z2)

−1, e1 = (q − q−1),

e2 = qM2+2n(q−2−2Kz1 − q2−Mz2), e3 = −qM2+2n(q−1−2Kz1 − q1−Mz2), (4.57)

and its affine partner Ě4. These operators act on the states in the subspace II as

∆Ě2|k1, k2〉IIi =Zi(k1, k2)|k1, k2〉I + Z+
i (k1, k2)|k1 + 1, k2 − 1〉I

+ Z−
i (k1, k2)|k1 − 1, k2 + 1〉I, (4.58)
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giving

I〈n,K− n| ∆opĚ2 S |k1, k2〉IIi =

4∑

j=1

K∑

m=0

I〈n,K− n| ∆opĚ2 |m,K −m〉IIj
(
Y

k1,k2
m

)j
i

=

4∑

j=1

(
Zop
j (n,K− n)

(
Y

k1,k2
n

)j
i
+ Z+,op

j (n− 1,K− n+ 1)
(
Y

k1,k2
n−1

)j
i

+ Z−,op
j (n+ 1,K− n− 1)

(
Y

k1,k2
n+1

)j
i

)
. (4.59)

The coefficients (4.57) are chosen in a such way that the ‘non-diagonal’ part of this relation

is vanishing, Z+,op
j (n − 1,K− n + 1) = Z−,op

j (n + 1,K− n − 1) = 0. Therefore the only

surviving part of (4.59) is

I〈n,K− n| ∆opĚ2 S |k1, k2〉IIi =

4∑

j=1

Zop
j (n,K− n)

(
Y

k1,k2
n

)j
i
. (4.60)

This results in the following matrix equation for Zop
j (n,K− n):

(
Zop
1 (n,K− n) Zop

2 (n,K− n) Zop
3 (n,K− n) Zop

4 (n,K− n)
)

Y
k1,k2
n

=
(
Z1(k1, k2) Z2(k1, k2) Z3(k1, k2) Z4(k1, k2)

)
X

k1,k2
n

+
(
Z+
1 (k1, k2) 0 Z

−
3 (k1, k2) 0

)
X

k1+1,k2−1
n

+
(
0 Z−

2 (k1, k2) 0 Z−
4 (k1, k2)

)
X

k1−1,k2+1
n , (4.61)

plus a similar set of equations arising from the affine charge Ě4. Both sets can further be

united into a compact matrix form

AY
k1,k2
n = BX

k1,k2
n +B+

X
k1+1,k2−1
n +B−

X
k1−1,k2+1
n , (4.62)

which multiplied from the left by A−1 defines all coefficients of Y
k1,k2
n in terms of already

known X
k1,k2
n , X

k1±1,k2∓1
n . The explicit expressions of matrices A, A−1, B, B±, their

q → 1 limit and the coefficients Zi(k1, k2), Z
op
j (n,K− n) and their affine partners are

spelled out the Appendix A.1.

To finalize we want to note that not all of the constraints in (4.61) are linearly inde-

pendent. The set of independent constraints is chosen in such way that the inverse matrix

A−1 would exist.

4.3 Scattering in subspace III

We will compute the S-matrix components in the subspace III in a very similar way as

we did in the previous section for the scattering in subspace II. We start by defining the

S-matrix for the subspace III as

S |k1, k2〉IIIi =
K∑

n=0

6∑

j=1

|n,K − n〉IIIj

(
Z

k1,k2
n

)j
i
, (4.63)
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where the standard basis for the 6N -dimensional vector space is

|k1, k2〉III1 = |0, 0, k1,M1 − k1〉 ⊗ |0, 0, k2,M2 − k2〉,
|k1, k2〉III2 = |0, 0, k1,M1 − k1〉 ⊗ |1, 1, k2 − 1,M2 − k2 − 1〉,
|k1, k2〉III3 = |1, 1, k1 − 1,M1 − k1 − 1〉 ⊗ |0, 0, k2,M2 − k2〉,
|k1, k2〉III4 = |1, 1, k1 − 1,M1 − k1 − 1〉 ⊗ |1, 1, k2 − 1,M2 − k2 − 1〉,
|k1, k2〉III5 = |1, 0, k1 − 1,M1 − k1〉 ⊗ |0, 1, k2,M2 − k2 − 1〉,
|k1, k2〉III6 = |0, 1, k1,M1 − k1 − 1〉 ⊗ |1, 0, k2 − 1,M2 − k2〉. (4.64)

Next we shall employ the same strategy as before. We perform the same steps as in

(4.53) and (4.54) only with ∆opE2, giving

II
i 〈n,K− n|∆opE2 S |k1, k2〉IIIj =

6∑

l=1

(
Gop(n,K − n)

)i
l

(
Z

k1,k2
n

)l
j
,

II
i 〈n,K− n|S∆E2 |k1, k2〉IIIj =

4∑

m=1

(
Y

k1,k2
n

)i
m

(
G(k1, k2)

)m
j
, (4.65)

where G(op) are the matrix representations of the charges ∆(op)E2. Once again these equa-

tions (together with the affine ones coming from E4) do not provide enough constraints to

define the matrix Z
k1,k2
n uniquely, and we need additional constraints. They are obtained

with the help of ∆(op)(F3F2), namely

II
i 〈n− θi,K− n+ θi − 1|∆op(F3F2)S |k1, k2〉IIIj =

6∑

l=1

(
Hop(n, n−K)

)i
l

(
Z

k1,k2
n

)l
j
,

II
i 〈n− θi,K− n+ θi − 1|S∆(F3F2) |k1, k2〉IIIj =

4∑

m=1

(
Y

k1,k2
n

)i
m

(
H(k1, k2)

)m
j
, (4.66)

where θi is defined by θi = (1 − (−1)i)/2 and H(op) is the matrix representation of

∆(op)(F3F2). Here we have also introduced Y
k1,k2
n as

(
Y

k1,k2
n

)i
j
=
(
Y

k1−θj ,k2+θj−1
n−θi

)i
j
. (4.67)

These equations may be written in a compact way using matrix notation

Gop(n,K− n)Z
k1,k2
n = Y

k1,k2
n G(k1, k2),

Hop(n,K − n)Z
k1,k2
n = Y

k1,k2
n H(k1, k2). (4.68)

The explicit realization of the matrices in the expressions above are spelled out in the

Appendix A.2.

Similarly as in the previous case, not all rows and columns of G(op) and H(op) are

linearly independent, thus we have to select only the independent ones. Therefore by

taking the following linear combinations

G
(op)

= qK−n−M2
2
(
ã2G

(op) − a2G̃
(op)
)

and H
(op)

= c̃2V1H
(op) − c2V

−1
1 H̃(op) , (4.69)
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where the tilded matrices are the affine counterparts and selecting the first three rows of

each, we are able to combine them into the non-singular quadratic matrix A (6 × 6) and

the rectangular matrix B (8× 6) as follows (j = 1, · · · , 6),

(A)ij =

{
(G

op
)ij , i = 1, 2, 3 ,

(H
op
)i−3
j , i = 4, 5, 6 ,

and (B)ij =

{
(G)ij , i = 1, 2, 3, 4 ,

(H)i−4
j , i = 5, 6, 7, 8 .

(4.70)

This approach let us to rewrite the constraints (4.68) in terms of a single matrix relation

AZ
k1,k2
n = Y̌

k1,k2
n B , giving Z

k1,k2
n = A−1

Y̌
k1,k2
n B . (4.71)

This relation let us to obtain any matrix element (Z k1,k2
n )ij of the scattering in the subspace

III. Here we have also introduced the block diagonal matrix Y̌
k,l
n (6 × 8) as

(
Y̌

k,l
n

)i
j
,=





(
Y

k,l
n

)i
j
, i = 1, 2, 3 , and j = 1, 2, 3, 4 ,

(
Y

k,l
n

)i−3

j−4
, i = 4, 5, 6 , and j = 5, 6, 7, 8 ,

0 , the rest .

(4.72)

The explicit form of matrices A, A−1, B and their q → 1 limit are given in Appendix A.2.

5 Special cases of the S-matrix

In this section we consider the reduction of the S-matrix in the case when one or both

factors of the tensor space (4.1) are transforming in the fundamental representation.

5.1 Fundamental S-matrix

As a most simple case of the derivations presented in section 4, we want to compute the

fundamental S-matrix found in [10]. The fundamental representation is defined by setting

M1 = M2 = 1 and the corresponding S-matrix is 16 × 16 – dimensional. In order to make

the comparison with [10] more explicit, let us denote

a
†
1,2 = φ1,2, and a

†
3,4 = ψ1,2. (5.1)

Then, starting with the subspaces I and Ib, we find

S |ψαψα〉 = D |ψαψα〉, (5.2)

where D is given by (4.13). Further, due to our normalization

S |φaφa〉 = |φaφa〉. (5.3)

Here we would like to remark that our normalization differs from [10] where the S-matrix

is normalized such that S |ψαψα〉 = −|ψαψα〉. In other words, the quantities given here

need to be divided by an additional factor of D .

Next we proceed to the subspaces II and IIb. For the subspace II (and analogously

for IIb) the parameters k1, k2, n indexing the matrix Y can take the values 0 and 1, but
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fortunately, we find that Y is the same for both of these values. Next it is easy to observe

that the matrices A (A.4) and B (A.5) get reduced to the upper left 2× 2 blocks

A =

(
−a2 q1/2U2V2a1
−ã2 q1/2Ũ2Ṽ2ã1

)
, B =

(
−a2

√
qU1V1 a1

−ã2
√
qŨ1Ṽ1 ã1

)
, (5.4)

while the matrices B+ and B− do not contribute at all. This gives the following solution

of (4.62)

Y
0,0
0 = D




√
q(a2ã1U2

1V
2
1 −a1ã2U2

2V
2
2 )

U1V1(a2ã1−a1ã2U2
2V

2
2 )

a1ã1(1−U2
2V

2
2 )

a1ã2U2
2V

2
2 −a2ã1

a2ã2U2(U2
1V

2
1 −1)V2

U1V1(a2ã1−a1ã2U2
2V

2
2 )

(a2ã1−a1ã2)U2V2√
q(a2ã1−a1ã2U2

2V
2
2 )




=




q1/2U2V2
x−
2

−x−
1

x
+
2 −x

−

1

γ1
γ2

U2V2
U1V1

x+
2 −x−

2

x+
2 −x−

1

γ2
γ1

x+
1 −x−

1

x+
2 −x−

1

1
q1/2U1V1

x+
2 −x+

1

x+
2 −x−

1


 . (5.5)

Then the corresponding explicit form of the fundamental S-matrix acting on the inequiva-

lent states is

S|ψαφb〉 = q1/2U2V2
x−2 − x−1
x+2 − x−1

|ψαφb〉+ γ2
γ1

x+1 − x−1
x+2 − x−1

|φbψα〉 ,

S|φaψβ〉 = γ1
γ2

U2V2
U1V1

x+2 − x−2
x+2 − x−1

|ψβφa〉+ 1

q1/2U1V1

x+2 − x+1
x+2 − x−1

|φaψβ〉 . (5.6)

Finally we turn to the subspace III which is four dimensional in this case. Analogously

to our strategy presented section 4.2, we inspect the action of ∆E2 and ∆E4 obtaining

∆E2|1, 0〉III1 =
U1V1√
q
a2|1, 0〉II2 , ∆E2|1, 0〉III5 = b1|1, 0〉II2 ,

∆E2|0, 1〉III1 = a1|0, 0〉II1 , ∆E2|0, 1〉III6 = −U1V1
√
q b2|0, 0〉II1 , (5.7)

plus similar expressions for E4. For completeness, let us spell out the opposite coproduct

as well

∆opE2|1, 0〉III1 = a2|1, 0〉II2 , ∆opE2|1, 0〉III5 = b1U2V2
√
q|1, 0〉II2 ,

∆opE2|0, 1〉III1 = a1
U2V2√
q

|0, 0〉II1 , ∆opE2|0, 1〉III6 = −b2|0, 0〉II1 . (5.8)

The equation (4.71) in this case becomes
(
a2 b1

√
qU2V2

ã2 b̃1
√
qŨ2Ṽ2

)(
(Z 1,0

1 )11 (Z 1,0
1 )51

(Z 1,0
1 )51 (Z 1,0

1 )55

)
=

(
U1V1√

q a2 b1
Ũ1Ṽ1√

q ã2 b̃1

)
(Y 1,0

1 )22 , (5.9)

the explicit solution of which is
(
(Z 1,0

1 )11 (Z 1,0
1 )51

(Z 1,0
1 )51 (Z 1,0

1 )55

)
=




(1−x−

2 x+
1 )(x+

1 −x+
2 )

(1−x−

1 x−

2 )(x−

1 −x+
2 )

x−

1

qx+
1

α(x−

1 −x+
1 )(x−

2 −x+
2 )(x+

1 −x+
2 )

√
qU1V1γ1γ2(x

−

1 x−

2 −1)(x−

1 −x+
2 )

γ1γ2(x
+
1 −x+

2 )

U2V2α(1−x−

1 x−

2 )(x+
2 −x−

1 )

x−

1

q3/2x+
1

(1−x−

1 x+
2 )(x+

1 −x+
2 )

(1−x−

1 x−

2 )(x−

1 −x+
2 )

U2V2
U1V1

x−

2

qx+
2


 .

(5.10)

The remaining matrix elements are then easily deduced from similar derivations. These

results are in agreement with [10]. For a complete list of all the scattering elements we

refer to the Appendix B.1.
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5.2 The S-matrix SQ1

In this section we will derive the S-matrix describing the scattering of an arbitrary bound

state with a fundamental one, SQ1. Once again, we will follow the derivations performed

in section 4 step by step. First, by setting M2 = 1, we find that the states in subspaces I

and Ib scatter almost trivially

S |k, 0〉I = D |k, 0〉I. (5.11)

However the scattering in the subspace II does not get simplified that much. Nevertheless,

for fixed k1 + k2, the corresponding vector space gets restricted to

{|k1, 0〉II1 , |k1 − 1, 1〉II1 , |k1, 0〉II2 , |k1, 0〉II4 }. (5.12)

This is because the states |k1, k2〉II3 haveM2 ≥ 2 and thus they are not present. By reducing

our general expressions to accommodate these 4 states, we are lead to 16 inequivalent

scattering elements, however we found 2 of them to be vanishing. The rest may be casted

in quite compact form as

S |k, 0〉II1 = (Y k,0
0 )11|k, 0〉II1 + (Y k,0

1 )11|k−1, 1〉II1 + (Y k,0
0 )21|k, 0〉II2 + (Y k,0

0 )41|k, 0〉II4 ,
S |k−1, 1〉II1 = (Y k−1,1

0 )11|k, 0〉II1 + (Y k−1,1
1 )11|k−1, 1〉II1 + (Y k−1,1

0 )21|k, 0〉II2 + (Y k−1,1
0 )41|k, 0〉II4 ,

S |k, 0〉II2 = (Y k,0
0 )12|k, 0〉II1 + (Y k,0

1 )12|k−1, 1〉II1 + (Y k,0
0 )22|k, 0〉II2 ,

S |k, 0〉II4 = (Y k,0
0 )14|k, 0〉II1 + (Y k,0

1 )14|k−1, 1〉II1 + (Y k,0
0 )44|k, 0〉II4 . (5.13)

The explicit expressions of the coefficients above are given in Appendix B.2. Upon setting

M1 = 1 the coefficients with indices 1 and 2 reduce to the ones of the fundamental S-matrix

(5.6) derived previously.

The scattering in the subspace III simplifies considerably. It is easy to see, that the

states |k1, k2〉III2,4 need not to be considered. Thus we are led to the reduced case of our

general expressions for subspace III that involve the states (5.12) and

{|k, 0〉III1 , |k, 0〉III3 , |k, 0〉III5 , |k − 1, 1〉III1 , |k − 1, 1〉III3 , |k − 1, 1〉III6 } (5.14)

only. However, there is a more straightforward way to obtain the S-matrix in this particular

case.

There are 36 scattering coefficients in subspace III that need to be determined, but

not all of them are independent. Firstly we can relate the half of them to the other half

by considering the identity

∆E3|k − 1, 0〉I = |k, 0〉III5 + q−1|k − 1, 1〉III6 , (5.15)

giving

S |k − 1, 1〉III6 = D
(
|k, 0〉III5 + q |k − 1, 1〉III6

)
− q S |k, 0〉III5 . (5.16)
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Subsequently we can express the states |k − 1, 1〉III1 , |k − 1, 1〉III3 as follows

∆F 1∆E1 − q[k]q[M − k + 1]q
[k]q

|k, 0〉III1 = |k − 1, 1〉III1 ,

∆F 1∆E1 − q[k − 1]q[M − k]q
[k − 1]q

|k, 0〉III3 = |k − 1, 1〉III3 . (5.17)

The explicit constraints that follow from these identities are listed in the Appendix B.2.

Then instead of reducing the general expression of the matrix Z , we follow its deriva-

tion path. By considering the action of the charges F2 and F4 on the subspace II states we

are able to find simple expressions that relate subspaces III to subspace II as

|k, 0〉III1 =
c̃1V2∆F 2 − c1Ṽ2∆F 4

c̃1d2Ũ1V2 − c1d̃2U1Ṽ2
|k, 0〉II2 , |k, 0〉III3 =

d̃1V2∆F 2 − d1Ṽ2∆F 4

d̃1d2Ũ1V2 − d̃2d1U1Ṽ2
|k, 0〉II4 ,

|k, 0〉III5 =

√
q

[k]q

d̃2U1∆F 2 − d2Ũ1∆F 4

c1d̃2U1Ṽ2 − c̃1d2Ũ1V2
|k, 0〉II2 . (5.18)

This approach let us to find the expressions of the matrix elements of Z in terms of the

matrix elements of Y for this particular case in quite an easy way. The explicit expressions

are once again given in the Appendix B.2.

6 Discussion and outlook

In this work we have constructed the supersymmetric short representations of the quantum

affine algebra Q̂ based on the centrally extended su(2|2) by making use of quantum oscilla-

tor algebra. These representations are of great importance as they accommodate the bound

states of the model. We found that the bound state representation of the affine extension

shows a lot of similarities with the fundamental one constructed in [35]. In particular, we

found that the affine central elements are inverse to their non-affine partners, exactly as

for the fundamental representation. Moreover, the parameterization can be derived from

the fundamental one simply by applying the map (q, g) → (qM , g/[M ]q).

The affine extension plays a key role in the construction of the bound state S-matrix.

Indeed, the affine generators E4 and F4 are crucial in constructing the elements X and Y .

In other words, the bound state S-matrix is uniquely fixed by requiring invariance under

the affine algebra Q̂.

We have also spelled out the explicit coefficients of the S-matrix when one of the spaces

is the fundamental representation. And in particular, we have checked that our formalism

correctly reproduces the fundamental S-matrix found in [10]. Furthermore, our results are

in a very good agreement with those of [27], where a similar derivation based on the Yangian

symmetry related to the same underlying Lie super algebra was performed. More precisely,

the S-matrix we have obtained in the q → 1 limit for the subspace I coalesce exactly to

the one found in [27]. However we can not make a direct comparison for subspaces II and

III as the intermediate expressions are different, due to the fact that the affine rather than

Yangian generators are used. Nevertheless, the expressions we have obtained in this work
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are of more symmetric form than those of [27]. This is an expected result, as the deformed

quantum affine algebra itself is of more symmetric form than its Yangian limit.

We have not checked the Yang-Baxter equation in full generality due to this being

extremely challenging from the technical point of view. However, we have performed a

series of checks for a wide variety of states using numerical computations and found that it

was perfectly satisfied. This is to be expected as this S-matrix is uniquely defined by the

algebra Q̂.

In order to complete the investigations concerning the S-matrix it would be interest-

ing to consider the crossing symmetry and the corresponding solutions for a q-deformed

dressing phase.

A particularly interesting direction for future research would be to study representa-

tions and their S-matrices for q being a root of unity. It is well known that the represen-

tation theory for these values of q differs from the one for real q. Due to the bound state

map being of the form q → qM , it is not difficult to see that there appears to be some

intrinsic periodicity to these representations. One could hope, for example in the context

of the thermodynamic Bethe ansatz, that this would result in a finite number of bound

states. Thus such approach could lead to some useful insights.

A different topic related to this, would be to investigate the algebraic Bethe ansatz

and the bound state transfer matrices. This could perhaps be used to find a q-deformed

version of the T -system.

One more possible direction of investigations is to consider the boundary conditions

and boundary scattering for the deformed Hubbard Chain. A good starting point for

this approach would be to consider the boundary conditions equivalent to the ones of the

Y = 0 and Z = 0 giant gravitons in the framework of AdS5 × S5 correspondence [50].

We expect some sort of deformed (twisted) coideal subalgebra of Q̂ to be governing the

boundary scattering of the aforementioned type that in the rational limit would reproduce

the twisted Yangian algebras constructed in [51–53].

Other, more open questions on the more algebraic side include algebraic R-matrix and

a detailed investigation of the classical limit along the lines of [34]. It would also be in-

teresting to extend the classical limit to the next order. For the undeformed case it was

found that this order coincides with the square of the classical r-matrix [54].
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A Elements of the S-matrix

In this Appendix we have spelled out various coefficients and matrices that have been

heavily used in the intermediate steps in deriving the final expressions of the S-matrix for

the subspaces II and III.

A.1 Subspace II

The coefficients for the charge ∆E2 in (4.52) are

Q1(k1, k2) = −qM1/2−k1 a2 U1V1 [k̄2 + 1]q, Q2(k1, k2) = a1 [k̄1 + 1]q,

Q3(k1, k2) = −qM1/2−k1 b2 U1V1, Q4(k1, k2) = b1. (A.1)

Similarly, the coefficients for the charge ∆opE2 are

Qop
1 (k1, k2) = −a2 [k̄2 + 1]q, Qop

2 (k1, k2) = qM2/2−k2 a1 U2V2 [k̄1 + 1]q,

Qop
3 (k1, k2) = −b2, Qop

4 (k1, k2) = qM2/2−k2 b1 U2V2. (A.2)

By replacing a, b → ã, b̃ and U, V → Ũ , Ṽ , one obtains Q̃i(k1, k2) and Q̃op
i (k1, k2) related

to the affine charge E4.

The coefficients in (4.61) are

Zop
1 (n,K− n) = c2 Ṽ1 [M2 −K + n]q, Zop

2 (n,K− n) = c1 Ũ2 [n−M1]q q
n−K−M1

2 ,

Zop
3 (n,K− n) = d2 Ṽ1 q

−M2 , Zop
4 (n,K− n) = −d1 Ũ2 q

n−K+
M1
2 . (A.3)

and

Z1(k1, k2) =
c2Ũ1 [k̄2 + 1]q

qMz12 − q2(K+1)
qM1/2−k1+M2

(
q2nz12 − qδM

(
q2(n−k̄1) − 1

)
− q2k2+δM

)
,

Z2(k1, k2) =
z12 c1Ṽ2 [k̄1 + 1]q

qMz12 − q2(K+1)
q−δM/2+2

(
q2nz21 − qδM

(
q2(n+k̄2) − q2K

)
− q2k2+δM

)
,

Z3(k1, k2) =
d2Ũ1

qMz12 − q2(K+1)
qM1/2−k1

(
q2nz12 − qM

(
q2(n−k̄1) − 1

)
− q2k2+δM

)
,

Z4(k1, k2) =
z12 d1Ṽ2

qMz12 − q2(K+1)
qM/2+2

(
q2nz21 − q−M

(
q2(n+k̄2) − q2K

)
− q2k2+δM

)
.

The matrices in (4.62) are defined as

A =




Qop
1 (n,K− n) Qop

2 (n,K− n) Qop
3 (n,K− n) Qop

4 (n,K− n)

Q̃op
1 (n,K− n) Q̃op

2 (n,K− n) Q̃op
3 (n,K− n) Q̃op

4 (n,K− n)

Zop
1 (n,K− n) Zop

2 (n,K− n) Zop
3 (n,K− n) Zop

4 (n,K− n)

Z̃op
1 (n,K− n) Z̃op

2 (n,K− n) Z̃op
3 (n,K− n) Z̃op

4 (n,K− n)


 , (A.4)

B =




Q1(k1, k2) Q2(k1, k2) Q3(k1, k2) Q4(k1, k2)

Q̃1(k1, k2) Q̃2(k1, k2) Q̃3(k1, k2) Q̃4(k1, k2)

Z1(k1, k2) Z2(k1, k2) Z3(k1, k2) Z4(k1, k2)

Z̃1(k1, k2) Z̃2(k1, k2) Z̃3(k1, k2) Z̃4(k1, k2)


 , (A.5)
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and

B+ =




0 0 0 0

0 0 0 0

Z+
1 (k1, k2) 0 Z

+
3 (k1, k2) 0

Z̃+
1 (k1, k2) 0 Z̃

+
3 (k1, k2) 0


 , B− =




0 0 0 0

0 0 0 0

0 Z−
2 (k1, k2) 0 Z−

4 (k1, k2)

0 Z̃−
2 (k1, k2) 0 Z̃−

4 (k1, k2)


 . (A.6)

The latter two have a quite compact explicit form

B+ = [k̄1]q
q1+k1−k2−M1

2

(q − q−1)−1

qM1+2k2z12 − qM2+2(n+1)

qMz12 − q2(K+1)




0 0 0 0

0 0 0 0

−c2Ũ1[k2]q 0 d2Ũ1 0

−c̃2U1[k2]q 0 d̃2U1 0


 , (A.7)

B− = [k̄2]q
q1−k1+

δM
2

(q − q−1)−1

qM2+2nz12 − qM1+2(k2+1)

qMz12 − q2(K+1)




0 0 0 0

0 0 0 0

0 −c1Ṽ2[k1]q 0 d1Ṽ2
0 −c̃1V2[k1]q 0 d̃1V2


 , (A.8)

The inverse of A has a very complex form, however it can be decomposed intro three quite

compact matrices as A−1 = CVD, where

C =




z12 b̃2
[M2−K+n]q

0 z12α̃b2
[M2−K+n]q

0

0 qK−
M2
2 −nα̃b1U2V2

[n−M1]q
0 qK−

M2
2 −n b̃1

[M1−n]qU2V2

−z12ã2 0 −z12α̃a2 0

0 qK−M2
2

−nα̃a1U2V2 0 − qK−
M2
2 −nã1

U2V2



, (A.9)

D = diag

(
igξ

g̃αα̃z2
,

igξ

g̃αα̃2z2
,
q

M2
2

Ṽ1Ṽ2α̃
,
q

M2
2

V1V2

)
, (A.10)

V =
1

W




1
iξ

[
Uzξ2−Vz+

ṼzVz−ŨzUzξ2

z12

]
Vz − Uz iξUz −Vz

Ũz − Ṽz
i
ξ

(
Ṽz − Ũzξ

2
)

Ṽz iŨzξ

Ṽz − Ũz
i
ξ

[
Ũzξ2−Ṽz+

ṼzVz−ŨzUzξ2

z12

]
−Ṽz −iŨzξ

i
ξ

(
Vz − Uzξ

2
)

Vz − Uz iUzξ −Vz



, (A.11)

here

W = ṼzVz − ŨzUzξ
2, Uz = z12 − U2

1U
2
2 , Ũz = z12 − Ũ2

1 Ũ
2
2 , (A.12)

plus similar expressions for Vz.
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Rational limit. The matrices B+ (A.7) and B− (A.8) in the q → 1 + h (h → 0) limit

become

B+ = 2h k̄1
δu− δM

2 − k2 + n+ 1

δu− M
2 +K + 1




0 0 0 0

0 0 0 0

−k2c2/U1 0 d2/U1 0

k2a2U1/αα̃ 0 −b2U1/αα̃ 0


 , (A.13)

B− = 2h k̄2
δu+ δM

2 + k2 − n+ 1

δu− M
2 +K + 1




0 0 0 0

0 0 0 0

0 −k1c1 0 d1
0 k1a1/αα̃ 0 −b1/αα̃


 . (A.14)

The matrices A (A.4) and B (A.5) in the q → 1 limit become

A =




−(M2−K+n)g2γ2 (M1−n)g1U2γ1 −αg2(x
−

2 −x+
2 )

γ2x
−

2

αg1U2(x
−

1 −x+
1 )

γ1x
−

1

− i(M2−K+n)α̃g2γ2
x+
2

i(M1−n)α̃g1γ1
U2x

+
1

− iαα̃g2(x
−

2 −x+
2 )

γ2

iαα̃g1(x
−

1 −x+
1 )

U2γ1

i(M2−K+n)g2γ2
αx+

2

− i(M1−n)g1γ1
αU2x

+
1

ig2(x
−

2 −x+
2 )

γ2
− ig1(x

−

1 −x+
1 )

U2γ1

− (M2−K+n)g2γ2
αα̃

(M1−n)g1U2γ1
αα̃ − g2(x

−

2 −x+
2 )

α̃γ2x
−

2

g1U2(x
−

1 −x+
1 )

α̃γ1x
−

1




, (A.15)

B =




−(M2−k2)g2U1γ2 (M1−k1)g1γ1 −αg2U1(x
−

2 −x+
2 )

γ2x
−

2

αg1(x
−

1 −x+
1 )

γ1x
−

1

− i(M2−k2)α̃g2γ2
U1x

+
2

i(M1−k1)α̃g1γ1
x+
1

− iαα̃g2(x
−

2 −x+
2 )

U1γ2

iαα̃g1(x
−

1 −x+
1 )

γ1

i(M2−k2)g2γ2
αU1x

+
2

− i(M1−k1)g1γ1
αx+

1

ig2(x
−

2 −x+
2 )

U1γ2
− ig1(x

−

1 −x+
1 )

γ1

− (M2−k2)g2U1γ2
αα̃

(M1−k1)g1γ1
αα̃ − g2U1(x

−

2 −x+
2 )

α̃γ2x
−

2

g1(x
−

1 −x+
1 )

α̃γ1x
−

1




. (A.16)

The notation used in here is gi =
√

g
Mi

and Ui =

√
x+
i

x−

i

.

It might seem that the matrices B+ and B− do not contribute in the q → 1 limit

as they are of order O(h), however the combinations A−1B+ and A−1B− in (4.62) are of

order O(1), thus are defined correctly. We do not spell out the explicit expression of A−1

in the q → 1 limit as it is quite sizy and also not much illuminative.

A.2 Subspace III

The coefficients’ matrices in the expressions (4.68)

Gop(n,K− n)Z
k1,k2
n = Y

k1,k2
n G(k1, k2),

Hop(n,K − n)Z
k1,k2
n = Y

k1,k2
n H(k1, k2),
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are

Gop =




q
M2
2 −K+n[M1−n]q a1

Ũ2Ṽ2
0 q

M2
2 −K+nb1
Ũ2Ṽ2

0 0 −b2

[M2−K+n]qa2 b2 0 0 q
M2
2 −K+nb1
Ũ2Ṽ2

0

0
q
M2
2 −K+n[M1−n]qa1

Ũ2Ṽ2
0 q

M2
2 −K+nb1
Ũ2Ṽ2

0 [M2−K+n]qa2

0 0 [M2−K+n]qa2 b2
q
M2
2 −K+n[M1−n]qa1

−Ũ2Ṽ2
0




,

(A.17)

G =




[M1−k1]qa1 0 b1 0 0 q
M1
2 −k1b2
−Ũ1Ṽ1

q
M1
2 −k1 [M2−k2]qa2

Ũ1Ṽ1

q
M1
2 −k1b2
Ũ1Ṽ1

0 0 b1 0

0 [M1−k1]qa1 0 b1 0 q
M1
2 −k1 [M2−k2]a2

Ũ1Ṽ1

0 0
q
M1
2 −k1 [M2−k2]qa2

Ũ1Ṽ1

q
M1
2 −k1b2
Ũ1Ṽ1

−[M1−k1]qa1 0




,

(A.18)

and

Hop =




[n]qc1
U2

0 − d1
U2

0 − qn−
M1
2 d2

V1
0

qn−
M1
2 [K−n]qc2

V1

qn−
M1
2 d2

−V1
0 0 0 d1

U2

0
[n]qc1
U2

0 − d1
U2

− qn−
M1
2 [K−n]qc2

V1
0

0 0
qn−

M1
2 [K−n]qc2

V1

qn−
M1
2 d2

−V1
0

[n]qc1
U2




,

(A.19)

H =




qk2−
M2
2 [k1]qc1
V2

0 qk2−
M2
2 d1

−V2
0 −d2Ũ1 0

[k2]qc2Ũ1 −d2Ũ1 0 0 0 qk2−
M2
2 d1

V2

0
qk2−

M2
2 [k1]qc1
V2

0 qk2−
M2
2 d1

−V2
−[k2]qc2Ũ1 0

0 0 [k2]qc2Ũ1 −d2Ũ1 0
qk2−

M2
2 [k1]qc1
V2




.

(A.20)

Their affine counterparts G̃, G̃op and H̃, H̃op are obtained by the replacing non-affine (or

affine) parameter to affine (or non-affine) ones. The matrix Y
k1,k2
n is a slightly modified

version of Y
k1,k2
n ,

Y
k1,k2
n ≡




(Y k1−1,k2
n−1 )11 (Y k1,k2−1

n−1 )12 (Y k1−1,k2
n−1 )13 (Y k1,k2−1

n−1 )14
(Y k1−1,k2

n )21 (Y k1,k2−1
n )22 (Y k1−1,k2

n )23 (Y k1,k2−1
n )24

(Y k1−1,k2
n−1 )31 (Y k1,k2−1

n−1 )32 (Y k1−1,k2
n−1 )33 (Y k1,k2−1

n−1 )34
(Y k1−1,k2

n )41 (Y k1,k2−1
n )42 (Y k1−1,k2

n )43 (Y k1,k2−1
n )44


 . (A.21)
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The coefficient matrices in (4.71), AZ
k1,k2
n = Y̌

k,l
n B, are

A =




− [M1−n]A3

U2V2
0 A1

U2V2
0 0 q2z̃2

0 −q2z̃2 0 0 A1
U2V2

0

0 − [M1−n]A3

U2V2
0 A1

U2V2
0 0

− [n]qA2

U2V1
0 − A4

U2V1
0 g̃2q1

g2z̃2
0

0 g̃2q1
g2z̃2

0 0 0 A4
U2V1

0 − [n]qA2

U2V1
0 − A4

U2V1
0 0




, (A.22)

A−1 =




− U2V2

A0A−1
4

g̃2q1U2
2V1V2

g2A0z̃2
0 − U2V1

A0A−1
1

q2U2
2V1V2z̃2
A0

0

0 0 − U2V2

A0A−1
4

0 0 − U2V1

A0A−1
1

[n]qU2V2

A0A−1
2

g̃2[M1−n]q1U2
2V1V2

g2A0A1A−1
3 z̃2

g̃2q1q2U3
2V1V 2

2
−g2A0A1

[M1−n]U2V1

−A0A−1
3

[n]qq2U2
2V1V2z̃2

−A0A−1
2 A4

g̃2q1q2U3
2V

2
1 V2

−g2A0A4

0 0
[n]qU2V2

A0A−1
2

0 0 − [M1−n]U2V1

A0A−1
3

0 U2V2
A1

− q2U2
2V

2
2 z̃2

A0A1A−1
4

0 0 − q2U2
2V1V2z̃2
A0

0 0
g̃2q1U2

2V1V2

g2A0z̃2
0 U2V1

A4

g̃2q1U2
2V

2
1

g2A0A−1
1 A4z̃2




,

(A.23)

here we have defined z̃i =
g̃αα̃
g zi and A0 = [n]q A1A2 + [M1 − n]q A3A4 where

A1 = b1ã2U
2
2V

2
2 − a2b̃1, A2 = c2c̃1U

2
2 − c1V

2
1 c̃2,

A3 = a2ã1 − a1ã2U
2
2V

2
2 , A4 = d1c̃2V

2
1 − c2d̃1U

2
2 . (A.24)

B =




−[M1−k1]qq2B3 0 q2B2 0 0 − q3B1

q1U1V1

− [M2−k2]qq3B7

q1U1V1

q3B1

q1U1V1
0 0 q2B2 0

0 −[M1−k1]qq2B3 0 q2B2 0 − [M2−k2]qq3B7

q1U1V1

0 0 − [M2−k2]qq3B7

q1U1V1

q3B1

q1U1V1
[M1−k1]qq2B3 0

− [k1]qq3B4

V1V2
0 − q3B5

V1V2
0 − B6

U1V1
0

− [k2]qB8

U1V1
− B6

U1V1
0 0 0 q3B5

V1V2

0 − [k1]qq3B4

V1V2
0 − q3B5

V1V2

[k2]qB8

U1V1
0

0 0 − [k2]qB8

U1V1
− B6

U1V1
0 − [k1]qq3B4

V1V2




, (A.25)

here we are using the shorthand notation q1 = qn−
M1
2 , q2 = qK−n−M2

2 , q3 = qk2−
M2
2 and

B1 = b2ã2U
2
1V

2
1 − a2b̃2, B2 = b1ã2 − a2b̃1,

B3 = a2ã1 − a1ã2, B4 = c2c̃1V
2
2 − c1c̃2V

2
1 ,

B5 = d1c̃2V
2
1 − c2d̃1V

2
2 , B6 = d2c̃2V

2
1 − c2d̃2U

2
1 ,

B7 = a2ã2(1− U2
1V

2
1 ), B8 = c2c̃2(U

2
1 − V 2

1 ). (A.26)
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The matrix Y̌
k1,k2
n is defined as

Y̌
k1,k2
n =

(
Y

k1,k2
n 0

0 Y
k1,k2
n

)
, (A.27)

where only first three rows of both Y
k1,k2
n and Y

k1,k2
n are taken.

Rational limit. In the rational limit q → 1 the coefficients (A.24) and (A.26) acquire

quite compact expressions

A1

α α̃
= α α̃A4 = i

√
g

M1

√
g

M2

(
x−1 − x+1

) (
1− x−1 x

−
2

)
γ2

x−1 x
−
2 γ1

,

A3

α̃
= α̃A2 = i

√
g

M1

√
g

M2

(
x−2 − x+1

)
γ1γ2

x−2 x
+
1

, (A.28)

giving

A0 = − g2

αM2

(
1− x−1 x

−
2

) (
x−1 − x+1

) (
x−2 − x+1

)
γ22

x−1 (x
−
2 )

2x+1
, (A.29)

and also

B1

α α̃
= α α̃B6 = i

g

M2

(
x−2 − x+2

) (
x+1 − x−1 x

−
2 x

+
2

)

x−1 x
−
2 x

+
2

,

B2

α α̃
= α α̃B5 = i

√
g

M1

√
g

M2

(
x−1 − x+1

) (
1− x−1 x

+
2

)
γ2

x−1 x
+
2 γ1

,

B3

α̃
= α2α̃B4 = −i

√
g

M1

√
g

M2

(
x+1 − x+2

)
γ1γ2

x+1 x
+
2

,

B7

α̃
= α2α̃B8 = i

g

M2

(
x−1 − x+1

)
γ22

x−1 x
+
2

. (A.30)

B Elements of the special cases of the S-matrix

B.1 Elements of the fundamental S-matrix

The fundamental S-matrix for the space III acquires the following form,

S |φ1φ2〉 = (Z 1,0
1 )11|φ1φ2〉+ (Z 1,0

0 )11|φ2φ1〉+ (Z 1,0
1 )51|ψ1ψ2〉+ (Z 1,0

0 )61|ψ2ψ1〉,
S |φ2φ1〉 = (Z 0,1

1 )11|φ1φ2〉+ (Z 0,1
0 )11|φ2φ1〉+ (Z 0,1

1 )51|ψ1ψ2〉+ (Z 0,1
0 )61|ψ2ψ1〉,

S |ψ1ψ2〉 = (Z 1,0
1 )15|φ1φ2〉+ (Z 1,0

0 )15|φ2φ1〉+ (Z 1,0
1 )55|ψ1ψ2〉+ (Z 1,0

0 )65|ψ2ψ1〉,
S |ψ2ψ1〉 = (Z 0,1

1 )16|φ1φ2〉+ (Z 0,1
0 )16|φ2φ1〉+ (Z 0,1

1 )56|ψ1ψ2〉+ (Z 0,1
0 )66|ψ2ψ1〉. (B.1)
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In order to find these coefficients Z it is sufficient to consider the first relation of (4.68)

and its affine counterpart only. In fact, the constraints read as follows,

(
(Gop)21 (Gop)25
(G̃op)21 (G̃op)25

)
(1, 0)

(
(Z 1,0

1 )11 (Z 1,0
1 )15

(Z 1,0
1 )51 (Z 1,0

1 )55

)
= (Y 1,0

1 )22

(
(G)21 (G)25
(G̃)21 (G̃)25

)
(1, 0) ,

(
(Gop)21 (Gop)25
(G̃op)21 (G̃op)25

)
(1, 0)

(
(Z 0,1

1 )11 (Z 0,1
1 )16

(Z 0,1
1 )51 (Z 0,1

1 )56

)
= (Y 0,1

1 )21

(
(G)11 (G)16
(G̃)11 (G̃)16

)
(0, 1) ,

(
(Gop)11 (Gop)16
(G̃op)11 (G̃op)16

)
(0, 1)

(
(Z 1,0

0 )11 (Z 1,0
0 )15

(Z 1,0
0 )61 (Z 1,0

0 )65

)
= (Y 1,0

0 )12

(
(G)21 (G)25
(G̃)21 (G̃)25

)
(1, 0) ,

(
(Gop)11 (Gop)16
(G̃op)11 (G̃op)16

)
(0, 1)

(
(Z 0,1

0 )11 (Z 0,1
0 )16

(Z 0,1
0 )61 (Z 0,1

0 )66

)
= (Y 0,1

0 )11

(
(G)11 (G)16
(G̃)11 (G̃)16

)
(0, 1) . (B.2)

It is easy to solve these relations for Z and we find that they agree with [10]. For the

completeness, we have listed the relations of our elements Z to those of [10]5

(
(Z 1,0

1 )11 (Z 1,0
1 )15

(Z 1,0
1 )51 (Z 1,0

1 )55

)
=

(
(Z 0,1

0 )11 (Z 0,1
0 )16

(Z 0,1
0 )61 (Z 0,1

0 )66

)
=

1

A12

(
A12−B12
q+q−1 − F12

q+q−1

C12
q+q−1 −D12−E12

q+q−1

)
,

(
(Z 0,1

1 )11 (Z 0,1
1 )16

(Z 0,1
1 )51 (Z 0,1

1 )56

)
=

1

A12

(
q−1A12+qB12

q+q−1
qF12

q+q−1

− qC12

q+q−1 − q−1D12+qE12

q+q−1

)
,

(
(Z 0,1

0 )11 (Z 0,1
0 )16

(Z 0,1
0 )61 (Z 0,1

0 )66

)
=

1

A12

(
qA12+q−1B12

q+q−1
q−1F12

q+q−1

− q−1C12

q+q−1 − qD12+q−1E12

q+q−1

)
. (B.3)

B.2 Elements of the S-matrix SQ1

Here we list the explicit forms of the coefficients of the matrix SQ1.

Space II. First we give the coefficients of the matrix Y in the case of a bound state

scattering with a fundamental particle. There are four different combinations of the pa-

rameters k1, k2, n that contribute. Thus we have to consider the case where k2 = 0 and

k1 = n = k leading to

(Y k,0
k−1)

1
1 = q

1
2
+kU2V2

x−1 − x−2
x−1 − x+2

z12 − qQ−2k−1

z12 − qQ−1
, (Y k,0

k−1)
2
2 =

1

q
Q
2 U1V1

x+1 − x+2
x−1 − x+2

,

(Y k,0
k−1)

1
2 = q

1−Q
2

[Q− k]q√
[Q]q

x−2 − x+2
x−1 − x+2

U2V2
U1V1

γ1
γ2
, (Y k,0

k−1)
2
1 =

1√
[Q]q

x−1 − x+1
x−1 − x+2

γ2
γ1
,

(Y k,0
k−1)

1
4 =

q
1−Q
2 α√
[Q]q

U2V2
U1V1

[x−1 − x+1 ][x
−
2 − x+2 ][x

−
2 − x+1 ]

(x−1 − x+2 )(x
−
1 x

−
2 − 1)γ1γ2

, (Y k,0
k−1)

4
2 = (Y k,0

k−1)
2
4 = 0, (B.4)

(Y k,0
k−1)

4
1 =

q−Q[k]q√
[Q]q

x+1 − x−2
(x−1 − x+2 )(1− x−1 x

−
2 )

x−1
x+1

γ1γ2
α

, (Y k,0
k−1)

4
4 =

q−
Q
2

U1V1

x+1 − x−1
x−1 − x+2

1− x−1 x
+
2

1− x−1 x
−
2

.

5We remind that our x± parameterization is based on the one of [35] which are related to those of [10] by

x±

[35] = gg̃−1(x±

[10] + ξ). This point must be taken into account when performing the concrete comparison.
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Next we have three elements corresponding to k2 = 1 and k1 + 1 = n = k giving

(Y k,0
k−1)

1
1 = q

1
2
−QU2V2

x−1 − x−2
x−1 − x+2

(q2(k+1) − q2Q)z12
z12 − qQ−1

, (Y k,0
k−1)

2
1 =

q1+k−Q

√
[Q]q

x−1 − x+1
x−1 − x+2

γ2
γ1
,

(Y k,0
k−1)

4
1 =

[Q− k − 1]q

qQ−k−1
√

[Q]q

x−2 − x+1
(x−1 − x+2 )(1 − x−1 x

−
2 )

x−1
x+1

γ1γ2
α

. (B.5)

Then we have another three scattering entries for k2 = 0 and k1 = n+ 1 = k contributing

(Y k,0
k−1)

1
1 = q

1
2
+QU2V2

x−1 − x−2
x−1 − x+2

1− q−2k

qQ − qz12
, (Y k,0

k−1)
1
2 = q

1+Q−2k
2

[k]q√
[Q]q

x−2 − x+2
x−1 − x+2

U2V2
U1V1

γ1
γ2
,

(Y k,0
k−1)

1
4 = −q−k(Y k,0

k )14. (B.6)

Finally, there is one element with k2 = 1 and k1 = n = k − 1 providing the last element

(Y k−1,1
k−1 )11 = q

1
2
−kU2V2

x−1 − x−2
x−1 − x+2

q2k − q1+Qz12
qQ − qz12

. (B.7)

Space III. There are 36 elements of the matrix Z that need be determined. As men-

tioned in Section 5, it follows that (5.16) becomes

S |k − 1, 1〉III6 = D
(
|k, 0〉III5 + q |k − 1, 1〉III6

)
− q S |k, 0〉III5 . (B.8)

Acting with the S-matrix on both sides of the equations (5.17) and using its invariance

property allows us to express the elements of the S-matrix of the left hand side to the ones

on the right hand side. Explicitly we find

(Z k−1,1
k )11 =(Z k,0

k )11[Q− k + 1]q(q
2k−Q−2 − q) + (Z k,0

k−1)
1
1

[Q− k + 1]q
[k]q

,

(Z k−1,1
k−1 )11 =(Z k,0

k )11 +
[k − 1]q[Q− k + 2]q(q

2k−Q−4 − q)− [Q− 2k + 1]q
[k]q

(Z k,0
k−1)

1
1 ,

(Z k−1,1
k )31 =(Z k,0

k )31
[k − 1]q[Q− k]qq

2k−Q−2 − q[k]q[Q− k + 1]q
[k]q

+ (Z k,0
k−1)

3
1

[Q− k]q
[k]q

,

(Z k−1,1
k−1 )31 =(Z k,0

k−1)
3
1

[k − 2]q[Q− k + 1]qq
2k−Q−4 + q[k − 1]q[k −Q− 2]q + [2k −Q− 1]q

[k]q

+ (Z k,0
k )31

[k − 1]q)

[k]q
,

(Z k−1,1
k )51 =(Z k,0

k )51
([k − 1]qq

2k−3−Q − q[k]q)[Q− k + 1]q
[k]q

,

(Z k−1,1
k−1 )61 =(Z k,0

k−1)
6
1

([k − 1]qq
2k−3−Q − q[k]q)[Q− k + 1]q

[k]q
,

(Z k−1,1
k )13 =(Z k,0

k )13

[
[k]q[Q− k + 1]qq

2k−Q−2

[k − 1]q
− q[Q− k]q

]
+ (Z k,0

k−1)
1
3

[Q− k + 1]q
[k − 1]q

,

(Z k−1,1
k−1 )13 =(Z k,0

k−1)
1
3

[
[Q− k + 2]q
qQ+4−2k

+ [k −Q+ 1]q −
[k − 2]qq

Q−k+1

[k − 1]q

]
+ (Z k,0

k )13
[k]q

[k − 1]q
,

(Z k−1,1
k )33 =(Z k,0

k )33[Q− k]q(q
2k−Q−2 − q) + (Z k,0

k−1)
3
3

[Q− k]q
[k − 1]q

,
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(Z k−1,1
k−1 )33 =(Z k,0

k−1)
3
3

[
[k − 2]q[Q− k + 1]q
qQ−2k+4[k − 1]q

+
q[k]q[k −Q+ 1]q− q2[2k −Q− 1]q

[k − 1]q

]
+ (Z k,0

k )33 ,

(Z k−1,1
k )53 =(Z k,0

k )51([Q− k + 1]qq
2k−Q−3 − q[Q− k]) ,

(Z k−1,1
k−1 )63 =(Z k,0

k−1)
6
1([Q− k + 1]qq

2k−Q−3 − q[Q− k]) . (B.9)

Finally, the remaining elements are

(Z k,0
k )15 =

α

U1V1

(x−1 − x+1 )(x
−
2 − x+2 )

[
(ξx+

1 +1)[Q−k]q(q(ξ+x−

2 )−x+
2 −ξ)

(ξ2−1)qQ
− [k]q(x

+
1 − x+2 )

]

γ1γ2[k]q
√

[Q](1− x−1 x
−
2 )(x

−
1 − x+2 )q

Q
2

,

(Z k,0
k−1)

1
5 =

α

U1V1

(x−1 − x+1 )(x
−
2 − x+2 )[q(ξ + x−2 )(ξx

+
1 + 1)− (ξ + x+1 )(ξx

+
2 + 1)]

γ1γ2(ξ2 − 1)
√

[Q](1− x−1 x
−
2 )(x

−
1 − x+2 )q

k+Q
2

,

(Z k,0
k )35 =

γ1

γ2q
Q
2

[Q− k]q√
[Q]q

(x−2 − x+2 )[q(ξ + x−1 )(ξ + x−2 )− (ξx−1 + 1)(ξx+2 + 1)]

(ξ2 − 1)(1 − x−1 x
−
2 )U1V1(x

−
1 − x+2 )

,

(Z k,0
k−1)

3
5 =

γ1
γ2

[k − 1]q√
[Q]q

(x−2 − x+2 )[q(ξ + x−1 )(ξ + x−2 )− (ξx−1 + 1)(ξx+2 + 1)]

(ξ2 − 1)(1− x−1 x
−
2 )U1V1(x

−
1 − x+2 )q

k−Q
2

,

(Z k,0
k )55 =

(x+1 − x+2 )[(ξx
−
1 + 1)(ξx+2 + 1)− q(ξ + x−1 )(ξ + x−2 )]

(ξ2 − 1)(x−1 x
−
2 − 1)(x−1 − x+2 )U1V1U2V2q

Q+1
2

,

(Z k,0
k−1)

6
5 =

z12(x
−
2 − x+2 )(x

+
1 (ξx

−
2 + 1)(ξx+2 + 1)− V 4

1 x
−
1 (ξ + x−2 )(ξ + x+2 ))

(ξ2 − 1)V 2
1 x

+
2 (x

−
1 x

−
2 − 1)(x−1 − x+2 )q

1+Q
2

U2V2
U1V1

,

(Z k,0
k )11 =

x−2 (x
−
1 − x+1 )[Q− k]Q[(ξx

−
1 + 1)(ξx+1 + 1)− V 2

2 (ξ + x−1 )(ξ + x+1 )]

(ξ2 − 1)x+1 z12[Q]q(x
−
1 x

−
2 − 1)(x−1 − x+2 )q

Q
+

+
x−1 (x

−
2 x

+
1 − 1)(x+1 − x+2 )q

k−2Q

x+1 (x
−
1 x

−
2 − 1)(x−1 − x+2 )

,

(Z k,0
k−1)

1
1 =

x−2 [k]qq
−k(x−1 − x+1 )[(ξx

−
1 + 1)(ξx+1 + 1)− V 2

2 (ξ + x−1 )(ξ + x+1 )]

(1− ξ2)x+1 z12[Q]q(1− x−1 x
−
2 )(x

−
1 − x+2 )

,

(Z k,0
k )31 =

γ21x
−
1 [k]qq

−Q−1(ξx+2 + 1)[Q− k]q[qx
+
2 (ξ + x−2 )− x−2 (ξ + x+2 )]

α(ξ2 − 1)x+1 x
+
2 [Q]q(1− x−1 x

−
2 )(x

−
1 − x+2 )

,

(Z k,0
k−1)

3
1 =

γ21x
−
1 [k − 1]q[k]q

−k−1(ξx+2 + 1)[qx+2 (ξ + x−2 )− x−2 (ξ + x+2 )]

α(ξ2 − 1)x+1 x
+
2 [Q]q(1− x−1 x

−
2 )(x

−
1 − x+2 )

,

(Z k,0
k )51 =

γ1γ2(V
2
2 − 1)x−1 x

−
2 [k]qq

−Q− 3
2 (x+1 − x+2 )(ξ + x+2 )(ξx

+
2 + 1)

α(ξ2 − 1)x+1 x
+
2

√
[Q]q(1− x−1 x

−
2 )(x

−
1 − x+2 )(x

−
2 − x+2 )U2V2

,

(Z k,0
k−1)

6
1 =

γ1γ2x
−
1 [k]qq

−Q− 3
2 (x+1 − x+2 )

αx+1
√
[Q]q(x

−
1 x

−
2 − 1)(x−1 − x+2 )U2V2

,

(Z k,0
k )13 =

αq(1− V 2
2 )(x

−
1 − x+1 )

2(ξ + x−2 )(ξx
−
2 + 1)

γ21(ξ
2 − 1)[Q]q(x

−
1 x

−
2 − 1)(x−1 − x+2 )

,

(Z k,0
k−1)

1
3 =

α(1 − V 2
2 )q

k−3(x−1 − x+1 )
2(ξ + x−2 )(ξx

−
2 + 1)

γ21(ξ
2 − 1)[Q]q(1 − x−1 x

−
2 )(x

−
1 − x+2 )

,
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(Z k,0
k )33 =

qk(x−1 − x−2 )(x
−
1 x

+
2 − 1)

(x−1 x
−
2 − 1)(x−1 − x+2 )

+

− x−2 [k]q(x
−
1 − x+1 )[V

2
2 (ξx

−
1 + 1)(ξx+1 + 1)− (ξ + x−1 )(ξ + x+1 )]

(ξ2 − 1)x+1 z12[Q]q(x
−
1 x

−
2 − 1)(x−1 − x+2 )

,

(Z k,0
k−1)

3
3 =

x−2 [k − 1]qq
−k(x−1 − x+1 )[V

2
2 (ξx

−
1 + 1)(ξx+1 + 1)− (ξ + x−1 )(ξ + x+1 )]

(ξ2 − 1)x+1 z12[Q]q(x
−
1 x

−
2 − 1)(x−1 − x+2 )

,

(Z k,0
k )53 =

√
q

[Q]q

(V 2
2 − 1)(x−1 − x+1 )(1 − x−1 x

+
2 )(ξ + x−2 )(ξx

−
2 + 1)

(ξ2 − 1)(x−1 x
−
2 − 1)(x−1 − x+2 )(x

−
2 − x+2 )

,

(Z k,0
k−1)

6
3 =

γ2q
−Q− 1

2 (x−1 − x+1 )(x
−
1 x

+
2 − 1)

γ1
√

[Q]q(x
−
1 x

−
2 − 1)(x−1 − x+2 )U2V2

. (B.10)
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