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Abstract

The classical characteristic map associates symmetric functions to characters of

the symmetric groups. There are two natural analogues of this map involving the

Brauer algebra. The first of them relies on the action of the orthogonal or symplectic

group on a space of tensors, while the second is provided by the action of this group

on the symmetric algebra of the corresponding Lie algebra. We consider the second

characteristic map both in the orthogonal and symplectic case, and calculate the

images of central idempotents of the Brauer algebra in terms of the Schur polynomi-

als. The calculation is based on the Okounkov–Olshanski binomial formula for the

classical Lie groups. We also reproduce the hook dimension formulas for represen-

tations of the classical groups by deriving them from the properties of the primitive

idempotents of the symmetric group and the Brauer algebra.
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1 Introduction

By the classical Schur–Weyl duality, the natural actions of the symmetric group Sm and

the general linear group GLN = GLN(C) on the space of tensors

CN ⊗ . . .⊗ CN︸ ︷︷ ︸
m

(1.1)

centralize each other. This leads to the multiplicity free decomposition of the space (1.1)

as a representation of the group Sm ×GLN ,

(CN)⊗m ∼=
⊕

λ⊢m, ℓ(λ)6N

Vλ ⊗ L(λ), (1.2)

where Vλ and L(λ) are the respective irreducible representations ofSm and GLN associated

with a Young diagram λ which contains |λ| = m boxes, and the number of nonzero rows

ℓ(λ) does not exceed N .

For any element X ∈ EndCN and a = 1, . . . ,m we denote by Xa the corresponding

element of the tensor product

Xa = 1⊗(a−1) ⊗X ⊗ 1⊗(m−a) ∈ End (CN)⊗m.

An arbitrary element C of the group algebra C [Sm] will be regarded as an operator in the

space (1.1). We will identify the symmetric algebra S(glN) with the algebra of polynomial

functions on the Lie algebra glN . If we let X range over glN then the polynomial function

X 7→ trCX1 . . . Xm with the trace taken over all m copies of EndCN is a GLN -invariant

element of the algebra S(glN). This follows easily by noting that for any matrix Z ∈ GLN

we have

trC Z1X1Z
−1
1 . . . ZmXmZ

−1
m = trC Z1 . . . ZmX1 . . . XmZ

−1
1 . . . Z−1

m

= trZ−1
1 . . . Z−1

m C Z1 . . . ZmX1 . . . Xm = trCX1 . . . Xm,

where we used the cyclic property of trace and the fact that the action of the element C

commutes with the action of GLN . The algebra of invariants S(glN)
GLN is isomorphic to

the algebra of symmetric polynomials in N variables. An isomorphism is provided by the

restriction of polynomial functions to the subspace of diagonal matrices in glN . Hence,

the function which takes a diagonal matrix X with eigenvalues x1, . . . , xN to the trace

trCX1 . . . Xm is a symmetric polynomial in x1, . . . , xN . Thus we can define a linear map

ch : C [Sm] → C [x1, . . . , xN ]
SN , C 7→ 1

m!
trCX1 . . . Xm. (1.3)

Given any standard tableau T of shape λ consider the corresponding primitive idem-

potent ET ∈ C [Sm] and calculate its image under the map (1.3). To this end, we may
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assume without loss of generality that the matrix X is invertible so that X can be viewed

as an element of the group GLN . The space ET (CN)⊗m is an irreducible representation

of GLN isomorphic to L(λ). Therefore, the trace trETX1 . . . Xm coincides with the char-

acter of the representation L(λ) evaluated at the element X. This value is given by the

Weyl character formula so that the trace equals the Schur polynomial sλ evaluated at the

eigenvalues x1, . . . , xN of the matrix X,

trETX1 . . . Xm = sλ(x1, . . . , xN). (1.4)

The trace does not depend on the choice of the standard tableau T of shape λ so that this

relation allows us to calculate the image of the irreducible character χλ under the map

(1.3). Indeed,

χλ =
∑
s∈Sm

χλ(s) · s−1 =
m!

dimλ

∑
T

ET , (1.5)

where dimλ = dimVλ and the second sum is taken over the standard tableaux T of shape

λ. Hence

ch : χλ 7→ sλ(x1, . . . , xN). (1.6)

This argument essentially recovers the characteristic map providing an isomorphism be-

tween the algebra generated by the irreducible characters of the symmetric groups and the

algebra of symmetric functions; cf. [7, Sec. I.7].

Our goal in this paper is to extend the correspondence (1.6) to a map analogous to (1.3)

involving the Brauer algebra and the respective orthogonal or symplectic group. Now we

suppose that the orthogonal group ON or symplectic group SpN acts on the space (1.1).

The centralizer of this action in the endomorphism algebra of the tensor product space

coincides with the homomorphic image of the Brauer algebra Bm(ω) with the parameter ω

specialized to N and −N , respectively, in the orthogonal and symplectic case. This implies

the tensor product decomposition analogous to (1.2),

(CN)⊗m ∼=
⌊m/2⌋⊕
f=0

⊕
λ⊢m−2f
λ′
1+λ′

26N

Vλ ⊗ L(λ), (1.7)

where Vλ and L(λ) are the respective irreducible representations of Bm(N) and ON asso-

ciated with the diagram λ, and we denote by λ′ the conjugate diagram so that λ′
j is the

number of boxes in the column j of λ; see [15]. Given a diagram λ with λ′
1 + λ′

2 6 N

denote by λ∗ the diagram obtained from λ by replacing the first column with the column

containing N − λ′
1 boxes. The corresponding representations L(λ) and L(λ∗) of the Lie

algebra associated with ON are isomorphic. In what follows we will only be concerned with

the representations L(λ) corresponding to diagrams λ with at most n rows, i.e. λ′
1 6 n,

where N = 2n or N = 2n+ 1.
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Similarly, in the symplectic case with N = 2n,

(CN)⊗m ∼=
⌊m/2⌋⊕
f=0

⊕
λ⊢m−2f
λ16n

Vλ ⊗ L(λ′), (1.8)

where λi denotes the number of boxes in row i of λ, Vλ and L(λ′) are the respective

irreducible representations of Bm(−N) and SpN associated with λ and λ′; see loc. cit.

We let gN ⊂ glN denote the orthogonal Lie algebra oN or symplectic Lie algebra spN
which is associated with the corresponding Lie group GN = ON or GN = SpN . We will

regard any element C of the respective Brauer algebra Bm(N) or Bm(−N) as an operator

in the space (1.1). As with the Lie algebra glN , we regard the polynomial function taking

Y ∈ gN to the trace trCY1 . . . Ym as an element of the symmetric algebra S(gN). This

element is GN -invariant which is verified by the same calculation as with the corresponding

element of S(glN) above.

We will work with a particular presentation of the Lie algebra gN so that its Cartan

subalgebra consists of diagonal matrices. Suppose that y1, . . . , yn,−y1, . . . ,−yn are the

eigenvalues of a diagonal matrix Y for N = 2n and y1, . . . , yn,−y1, . . . ,−yn, 0 are the

eigenvalues of Y for N = 2n+1. Then the function which takes Y to the trace trCY1 . . . Ym

is a symmetric polynomial in the variables y21, . . . , y
2
n. Thus we get a linear map

ch : Bm(±N) → C [y21, . . . , y
2
n]

Sn , C 7→ 1

m!
trCY1 . . . Ym. (1.9)

The main result of this paper is the calculation of the image ch (ϕλ) of the normalized

central idempotent ϕλ of the Brauer algebra associated with each partition λ ofm satisfying

the respective conditions λ′
1 6 n and λ1 6 n in the orthogonal and symplectic case. We

show that ch (ϕλ) = 0 ifm is odd and give an explicit formula for the symmetric polynomial

ch (ϕλ) as a linear combination of the Schur polynomials sν(y
2
1, . . . , y

2
n) where ν runs over

partitions of l if m = 2l.

The starting point of our arguments is the analogue of relation (1.4) for the classical

group GN . Namely, suppose that T is a standard tableau of shape λ and let Z ∈ GN

be a diagonal matrix such that detZ = 1. We let ET denote the primitive idempotent

of the respective Brauer algebra Bm(N) or Bm(−N), which we regard as an operator in

the space (1.1). Due to the decompositions (1.7) and (1.8), the subspace ET (CN)⊗m is an

irreducible representation of GN isomorphic to L(λ) in the orthogonal case and to L(λ′)

in the symplectic case. Therefore, the trace trETZ1 . . . Zm equals the character of the

respective representation L(λ) or L(λ′) so that

trETZ1 . . . Zm = χoN
λ (z1, . . . , zn) (1.10)

in the orthogonal case, and

trETZ1 . . . Zm = χ
spN
λ′ (z1, . . . , zn) (1.11)
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in the symplectic case, where we denote by z1, . . . , zn, z
−1
1 , . . . , z−1

n the eigenvalues of Z for

N = 2n and by z1, . . . , zn, z
−1
1 , . . . , z−1

n , 1 the eigenvalues of Z for N = 2n + 1. Explicit

expressions for the characters are well known; they are implied by the Weyl character

formula and can be found e.g. in [13]. Although relations (1.10) and (1.11) are analogous

to (1.4), note a principal difference with the case of GLN . In that case, the matrix X in

(1.4) could be treated both as an element of the group GLN and as an element of the Lie

algebra glN . In contrast, the passage from the group GN to the Lie algebra gN requires an

additional step. To derive explicit formulas for the images of central idempotents of the

Brauer algebra under the map (1.9) we use the Okounkov–Olshanski binomial formula [13,

Theorem 1.2]. This allows us to express the characters occurring in (1.10) and (1.11) in

terms of the Schur polynomials in y21, . . . , y
2
n.

More precisely, by analogy with (1.5) set

ϕλ =
1

D(λ)

∑
T

ET (1.12)

in the orthogonal case, and

ϕλ =
1

D(λ′)

∑
T

ET (1.13)

in the symplectic case, where D(λ) = dimL(λ) and the sums are taken over standard

tableaux T of shape λ. Our main result (see Theorem 4.1 below) states that ch (ϕλ) = 0

unless m is even, m = 2l. In this case,

ch (ϕλ) =
∑
ν⊢l

sν(y
2
1, . . . , y

2
n)

C(ν)

∑
µ⊆λ

(−1)|µ|
sν(aρ| a)

H(µ)H(λ/µ)
, (1.14)

where ρ = µ and ρ = µ′ in the orthogonal and symplectic case, respectively, and we use the

following notation. For any skew diagram θ we denote by dim θ the number of standard

θ-tableaux with entries in {1, 2, . . . , |θ|} and set

H(θ) =
|θ|!
dim θ

. (1.15)

If θ is normal (nonskew), then H(θ) coincides with the product of the hooks of θ due to

the hook formula. Furthermore, the constant C(ν) = CgN (ν) is defined by

C(ν) =
∏

(i,j)∈ν

2
(
n+ j − i

)(
N − 1 + 2(j − i+ ε)

)
, (1.16)

where

ε =


0 for gN = o2n,

1/2 for gN = o2n+1,

1 for gN = sp2n.
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Finally, by sν(x | a) we denote the double (or factorial) Schur polynomial in the variables

x = (x1, . . . , xn) associated with the particular parameter sequence a = (ai | i ∈ Z) with

ai = (ε+ i−1)2. The polynomial sν(x | a) is symmetric in x1, . . . , xn and it can be given by

several equivalent formulas; see e.g. [7, Sec. I.3] (note that the sequence a there corresponds

to our sequence −a). In particular,

sν(x | a) =
∑
T

∏
α∈ν

(xT (α) − aT (α)+c(α)), (1.17)

summed over semistandard ν-tableaux T with entries in {1, . . . , n}, where c(α) = j − i

denotes the content of the box α = (i, j). For any partition µ with at most n parts we

denote by aµ the n-tuple

aµ = (aµ1+n, aµ2+n−1, . . . , aµn+1). (1.18)

We demonstrate below (Sec. 4.2) that the second sum in (1.14) simplifies if λ is a row

or column diagram. However, we do not know whether shorter expressions for this sum

exist for arbitrary λ.

As a consequence of our approach, we also demonstrate that the well-known hook

dimension formulas for representations of the classical groups can be obtained directly

from the properties of the primitive idempotents of the symmetric group and the Brauer

algebra via relations (1.4), (1.10) and (1.11) implied by the Schur–Weyl duality.

We are grateful to Arun Ram for valuable discussions and for providing us with the

preprints [2] and [3]. The second author would like to thank the School of Mathematics

and Statistics of the University of Sydney for warm hospitality during her visit.

2 Idempotents in the Brauer algebra

Let m be a positive integer and ω an indeterminate. An m-diagram d is a collection of

2m dots arranged into two rows with m dots in each row connected by m edges such that

any dot belongs to only one edge. The product of two diagrams d1 and d2 is determined

by placing d1 above d2 and identifying the vertices of the bottom row of d1 with the

corresponding vertices in the top row of d2. Let s be the number of closed loops obtained

in this placement. The product d1d2 is given by ω s times the resulting diagram without

loops. The Brauer algebra Bm(ω) [1] is defined as the C(ω)-linear span of the m-diagrams

with the multiplication defined above. The dimension of the algebra is 1 · 3 · · · (2m− 1).

For a = 1, . . . ,m− 1 denote by sa and ϵa the respective diagrams of the form

r r r r r rr r r r r r
�
�
@

@· · · · · ·
1 2 a a+ 1 m− 1 m

and r r r r r rr r r r r r� �
 	
· · · · · ·

1 2 a a+ 1 m− 1 m
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The following presentation of the Brauer algebra is well-known. The algebra Bm(ω) over

the field C(ω) is generated by the elements s1, . . . , sm−1, ϵ1, . . . , ϵm−1 subject only to the

relations

s2a = 1, ϵ2a = ω ϵa, saϵa = ϵasa = ϵa, a = 1, . . . ,m− 1,

sasb = sbsa, ϵaϵb = ϵbϵa, saϵb = ϵbsa, |a− b| > 1,

sasa+1sa = sa+1sasa+1, ϵaϵa+1ϵa = ϵa, ϵa+1ϵaϵa+1 = ϵa+1,

saϵa+1ϵa = sa+1ϵa, ϵa+1ϵasa+1 = ϵa+1sa, a = 1, . . . ,m− 2.

The subalgebra of Bm(ω) generated over C by s1, . . . , sm−1 is isomorphic to the group

algebra C [Sm] so that sa will be identified with the transposition (a, a + 1). Then for

any 1 6 a < b 6 m the transposition sab = (a, b) can be regarded as an element of

Bm(ω). Moreover, ϵab will denote the elements of Bm(ω) defined by ϵb−1 b = ϵb−1 and

ϵab = sa b−1 ϵb−1sa b−1 for a < b − 1. The Brauer algebra Bm−1(ω) will be regarded as a

natural subalgebra of Bm(ω).

The Jucys–Murphy elements x1, . . . , xm for the Brauer algebra Bm(ω) are given by the

formulas

xb =
ω − 1

2
+

b−1∑
a=1

(sab − ϵab), b = 1, . . . ,m; (2.1)

see [6] and [11], where, in particular, the eigenvalues of the xb in irreducible representations

were calculated. We have followed [11] to include the shift by (ω − 1)/2 in the definition

to simplify the formulas below. The element xm commutes with the subalgebra Bm−1(ω).

This implies that the elements x1, . . . , xm of Bm(ω) pairwise commute. A complete set of

pairwise orthogonal primitive idempotents for the Brauer algebra can be constructed with

the use of these elements. Suppose that λ is a partition of m. We will identify partitions

with their diagrams so that if the parts of λ are λ1, λ2, . . . then the corresponding diagram

is a left-justified array of rows of unit boxes containing λ1 boxes in the top row, λ2 boxes

in the second row, etc. The box in row i and column j of a diagram will be denoted as

the pair (i, j). A standard λ-tableau is a sequence T = (Λ1, . . . ,Λm) of diagrams such that

for each r = 1, . . . ,m the diagram Λr is obtained from Λr−1 by adding one box, where

we set Λ0 = ∅ (the empty diagram) and Λm = λ. Equivalently, T will be viewed as the

array obtained by writing r ∈ {1, . . . ,m} into the box of the diagram λ which is added to

the diagram Λr−1 to get Λr. To each standard tableau T we associate the corresponding

sequence of contents (c1, . . . , cm), ca = ca(T ), where

ca =
ω − 1

2
+ j − i (2.2)

if Λa is obtained by adding the box (i, j) to Λa−1. The primitive idempotents ET = Eλ
T

can now be defined by the following recurrence formula; see [5] and [8] (we omit the
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superscripts indicating the diagrams since they are determined by the standard tableaux).

Set µ = Λm−1 and consider the standard µ-tableau U = (Λ1, . . . ,Λm−1) so that U can be

viewed as the tableau obtained from T by removing the box containing m. Then

ET = EU
u− cm
u− xm

∣∣∣
u=cm

. (2.3)

3 Hook dimension formulas for classical groups

Consider the vector space CN with its canonical basis e1, . . . , eN . We will be using the

involution on the set of indices {1, . . . , N} defined by i 7→ i ′ = N − i + 1 and equip the

space CN with the following nondegenerate symmetric or skew-symmetric bilinear form

⟨ei, ej⟩ = gij, (3.1)

where N = 2n is even in the skew-symmetric case, and

gij =

{
δi j ′ in the symmetric case,

εi δi j ′ in the skew-symmetric case,
(3.2)

with εi = 1 for i = 1, . . . , n and εi = −1 for i = n+ 1, . . . , 2n.

The classical group GN = ON or GN = SpN is defined as the group of complex matrices

preserving the respective symmetric or skew-symmetric form (3.1),

GN = {Z ∈ MatN(C) | ZtGZ = G}, G = [gij].

Observe that if Z = 1 is the identity matrix, then the values provided by the expressions

(1.10) and (1.11) coincide with the dimensions dimL(λ) and dimL(λ′) of the respective

representations of the groups ON and SpN . It is well-known by El Samra and King [4]

that these dimensions are given by the hook formulas. We will calculate partial traces of

the images of the idempotents ET in the representation spaces. In particular, this provides

another proof of the hook dimension formulas of [4]; see also [14]. To make our arguments

clearer, we first go over a technically simpler case of GLN to reproduce Robinson’s formula;

see e.g. [4] and [7, Sec. I.3, Example 4] for other proofs.

3.1 Dimension formulas for GLN

The symmetric group version of the recurrence relation (2.3) takes exactly the same form

[8] with the respective definitions of the objects associated with Sm. Here, as above, T

is a standard tableau of shape λ ⊢ m and U is obtained from T by removing the box

occupied by m. The content ca = ca(T ) of the box (i, j) of T occupied by a is now found
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by ca = j − i and the Jucys–Murphy elements xa are now given by xa = s1 a + · · ·+ sa−1 a;

cf. (2.1). Note that since the algebra C [Sm] is finite-dimensional, the fraction in (2.3)

involving xm reduces to a polynomial in xm whose coefficients are rational functions in u.

In the group algebra we have the relation sm−1xm = xm−1sm−1 + 1 which implies

sm−1 +
1

u− xm

= (u− xm−1) sm−1
1

u− xm

. (3.3)

Hence,
1

u− xm

= sm−1
1

u− xm−1

(
sm−1 +

1

u− xm

)
= sm−1

1

u− xm−1

sm−1 + sm−1
1

(u− xm−1)(u− xm)
.

Therefore, applying (3.3) once again we come to the identity

1

u− xm

= sm−1
1

u− xm−1

sm−1 +
1

u− xm−1

(
sm−1 +

1

u− xm

) 1

u− xm−1

. (3.4)

Consider the action of the symmetric group Sm in the space (1.1) so that the image of

the element sab ∈ Sm with a < b is found by sab 7→ Pab,

Pab =
N∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ eji ⊗ 1⊗(m−b), (3.5)

where the eij ∈ EndCN denote the standard matrix units. From now on we use this action

to regard elements of the group algebra C [Sm] as elements of the algebra End
(
(CN)⊗m

)
which is naturally identified with the tensor product of the endomorphism algebras,

End
(
(CN)⊗m

) ∼= EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

. (3.6)

The trace map tr : EndCN → C is defined in a usual way as a linear map taking the

matrix unit eij to δij. For each a = 1, . . . ,m we will consider the partial trace tra as a

linear map (EndCN)⊗m → (EndCN)⊗(m−1) applied to the a-th copy of the endomorphism

algebra. Note that tra(Pab) = 1. Furthermore, since

trm

(
sm−1

1

u− xm−1

sm−1

)
= trm−1

( 1

u− xm−1

)
,

we get a recurrence relation for the rational functions

Am(u) = trm

( 1

u− xm

)
(3.7)

in the form

Am(u) = Am−1(u) +
1

(u− xm−1)2
(
1 + Am(u)

)
,
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that is,

Am(u) =
(u− xm−1)

2

(u− xm−1)2 − 1
Am−1(u) +

1

(u− xm−1)2 − 1
.

Since for m = 1 we have A1(u) = N/u, solving the recurrence relation we find that

Am(u) =
u+N

u

m−1∏
a=1

(u− xa)
2

(u− xa)2 − 1
− 1.

This calculation and the recurrence formula (2.3) allow us to find the partial trace trmET

of the idempotent ET regarded as an element of the algebra (3.6). By the properties of the

Jucys–Murphy elements,

xa EU = EU xa = ca EU , a = 1, . . . ,m− 1. (3.8)

Therefore,

trmET = EU

[
(u− cm)Am(u)

]
u=cm

= (N + cm)EU

[ u− cm
u

m−1∏
a=1

(u− ca)
2

(u− ca)2 − 1

]
u=cm

.

The evaluation of the rational function in u is well-defined and it depends only on the

shape µ of the standard tableau U but does not depend on U . The result of the evaluation

is easily calculated (cf. [8]); it gives

trmET = (N + cm)
H(µ)

H(λ)
EU . (3.9)

By (1.4), the dimension of the irreducible representation L(λ) of GLN is found as the trace

of ET taken over all m copies of the endomorphism space EndCN . Hence, applying (3.9)

we arrive at the well-known Robinson formula for this dimension. If λ is a partition with

at most N parts, the dimension of the irreducible representation L(λ) of GLN is given by

dimL(λ) =
1

H(λ)

∏
(i,j)∈λ

(N + j − i).

3.2 Dimension formulas for ON and SpN

To prove analogues of the hook dimension formula for the orthogonal and symplectic

groups, consider the recurrence relation (2.3) in the Brauer algebra Bm(ω). The starting

point will be an analogue of the identity (3.4) for Bm(ω) given in the next lemma. This

identity goes back to [11, Sec. 4.1] where it is proved for the degenerate affine Wenzl algebra

and used in the description of the center of that algebra; see also [2] for generalizations to

the affine BMW algebras. Recall that now the Jucys–Murphy elements xa and the contents

ca are defined by (2.1) and (2.2).

10



Lemma 3.1. We have the identity of rational functions in u,

1

u− xm

= sm−1
1

u− xm−1

sm−1 +
1

u− xm−1

sm−1
1

u− xm−1

+
1

(u− xm−1)2
1

(u− xm)
− 1

u− xm−1

ϵm−1
1

(u+ xm−1)(u− xm−1)

− 1

u+ xm−1

ϵm−1
1

u+ xm−1

+
1

(u+ xm−1)(u− xm−1)
ϵm−1

1

u+ xm−1

− 1

u+ xm−1

ϵm−1
1

u− xm−1

ϵm−1
1

u+ xm−1

.

Proof. Note the following relations in Bm(ω) satisfied by the Jucys–Murphy elements:

ϵm−1 xm = −ϵm−1xm−1, (3.10)

sm−1xm = xm−1sm−1 + 1− ϵm−1. (3.11)

By (3.11) we have sm−1(u − xm) = (u − xm−1) sm−1 − (1 − ϵm−1). Multiply both sides of

this relation by (u−xm−1)
−1 from the left and by (u−xm)

−1 from the right and rearrange

to get

sm−1
1

u− xm

=
1

u− xm−1

sm−1 +
1

u− xm−1

(1− ϵm−1)
1

u− xm

(3.12)

which implies

1

u− xm

= sm−1
1

u− xm−1

sm−1 + sm−1
1

(u− xm−1)(u− xm)

− sm−1
1

u− xm−1

ϵm−1
1

u− xm

.

The desired identity will follow after rewriting the second and third terms on the right

hand side with the use of (3.10), (3.12) and the property that the elements xm−1 and xm

commute. The second term takes the form

sm−1
1

(u− xm)(u− xm−1)
=

1

u− xm−1

sm−1
1

u− xm−1

+
1

(u− xm−1)2(u− xm)

− 1

u− xm−1

ϵm−1
1

(u+ xm−1)(u− xm−1)
,

while for the third term we have

sm−1
1

u− xm−1

ϵm−1
1

u− xm

=

=
( 1

u− xm

sm−1 −
1

(u− xm)(u− xm−1)
+

1

u− xm

ϵm−1
1

u− xm−1

)
ϵm−1

1

u− xm

=
1

u+ xm−1

ϵm−1
1

u+ xm−1

− 1

(u− xm−1)(u+ xm−1)
ϵm−1

1

u+ xm−1

+
1

u+ xm−1

ϵm−1
1

u− xm−1

ϵm−1
1

u+ xm−1

,

completing the proof.
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Now consider the natural action of the orthogonal group ON in the space of tensors

(1.1) and the commuting action of the Brauer algebra Bm(N) so that the parameter ω is

specialized to N . The action of Bm(N) in the space (1.1) is defined by the assignments

sab 7→ Pab, ϵab 7→ Qab, a < b, (3.13)

where Pab is defined in (3.5), and

Qab =
N∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ ei′j′ ⊗ 1⊗(m−b). (3.14)

Note that tra(Qab) = 1 for 1 6 a < b 6 m, and for any element X ∈ EndCN we have

the property QabXaQab = tr(X)Qab. Now we use Lemma 3.1 and regard elements of

the algebra Bm(N) as elements of the algebra (3.6). Define the functions Am(u) by the

same formula (3.7) as for the symmetric group, but with the new definition (2.1) of the

Jucys–Murphy elements. Calculating the partial trace trm on both sides of the identity of

Lemma 3.1 we get the recurrence relation

Am(u) = Am−1(u) +
1

(u− xm−1)2
+

1

(u− xm−1)2
Am(u)−

1

(u− xm−1)2(u+ xm−1)

− 1

(u+ xm−1)2
+

1

(u+ xm−1)2(u− xm−1)
− 1

(u+ xm−1)2
Am−1(u)

which simplifies to(
1− 1

(u− xm−1)2

)
Am(u) =

(
1− 1

(u+ xm−1)2

)
Am−1(u) +

2 (2u− 1)xm−1

(u− xm−1)2(u+ xm−1)2
.

For m = 1 we have A1(u) = N/(u − c1), where c1 = (N − 1)/2 and the relation is easily

solved by using the substitution

Am(u) = Ãm(u)−
2u− 1

2u
.

The solution reads (cf. closely related calculations in [3]):

Am(u) =
m−1∏
a=1

(u− xa)
2

(u− xa)2 − 1

m−1∏
a=1

(u+ xa)
2 − 1

(u+ xa)2

( 2N

2u−N + 1
+

2u− 1

2u

)
− 2u− 1

2u
.

For any diagram λ with λ′
1 6 n set

D(λ) =
1

H(λ)

∏
(i,j)∈λ

(
N − 1 + d(i, j)

)
, (3.15)
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where

d(i, j) =

{
λi + λj − i− j + 1 if i 6 j,

−λ′
i − λ′

j + i+ j − 1 if i > j.

Let T be a standard tableau of shape λ. Denote by U the standard tableau obtained from

T by deleting the box occupied by m and let µ be the shape of U . As with the group

algebra C [Sm] in Sec. 3.1, the recurrence formula (2.3) allows us to find the partial trace

trmET of the idempotent ET regarded as an element of the algebra (3.6). The following

proposition also recovers the hook dimension formula [4, (3.28)]. Note that it is given there

in an equivalent form which amounts to a change in the definition of d(i, j): the inequalities

i 6 j and i > j are respectively replaced by i > j and i < j.

Proposition 3.2. We have the relation

trmET = EU
D(λ)

D(µ)
. (3.16)

Moreover, the dimension of the irreducible representation L(λ) of ON equals D(λ).

Proof. We have

trmET = EU

[
(u− cm)Am(u)

]
u=cm

and using the above formula for Am(u) we get

trmET = EU

[u− cm
u− c1

m−1∏
a=1

(u− ca)
2

(u− ca)2 − 1

]
u=cm

m−1∏
a=1

(cm + ca)
2 − 1

(cm + ca)2

(
N+

(2cm − 1)(cm − c1)

2cm

)
.

As we found in Sec. 3.1 (see (3.9)),

[u− cm
u− c1

m−1∏
a=1

(u− ca)
2

(u− ca)2 − 1

]
u=cm

=
H(µ)

H(λ)
.

Furthermore, observe that

N +
(2cm − 1)(cm − c1)

2cm
=

(cm + c1)(2cm + 1)

2cm
.

Hence, to complete the proof of (3.16) we need to verify the identity

(cm + c1)(2cm + 1)

2cm

m−1∏
a=1

(cm + ca)
2 − 1

(cm + ca)2

=
∏

(i,j)∈λ

(
N − 1 + dλ(i, j)

)/ ∏
(i,j)∈µ

(
N − 1 + dµ(i, j)

)
, (3.17)
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where dλ(i, j) and dµ(i, j) denote the parameters d(i, j) associated with the diagrams λ

and µ, respectively. The diagram λ is obtained from µ by adding one box. Let (k, l) be

this box so that l = λk and cm = λk − k + c1. First consider the case k 6 l. The product

on the left hand side does not depend on the standard tableau U and only depends on its

shape µ. Therefore, the product can be written as

m−1∏
a=1

(cm + ca)
2 − 1

(cm + ca)2
=

∏
(i,j)∈µ

(cm + c(i, j))2 − 1

(cm + c(i, j))2
,

where c(i, j) = j − i+ (N − 1)/2 is the content of the box (i, j). We split the product into

two parts by multiplying all terms corresponding to the subset of boxes (i, j) with i < l

and those corresponding to the subset of boxes (i, j) with i > l. After canceling common

factors, the first part of the product will take the form

cm + c(l − 1, 1)− 1

cm + c(1, 1)

l−1∏
i=1

cm + c(i, µi) + 1

cm + c(i, µi)

=
cm + c(l − 1, 1)− 1

cm + c(1, 1)

(2cm)
2

(2cm)2 − 1

l−1∏
i=1

cm + c(i, λi) + 1

cm + c(i, λi)
,

while the second part of the product can be written as

cm + c(l, λl) + 1

cm + c(l, 1)

µl∏
j=1

cm + c(λ′
j, j)− 1

cm + c(λ′
j, j)

.

Therefore, the left hand side of (3.17) equals

2cm (cm + c(l, λl) + 1)

2cm − 1

l−1∏
i=1

cm + c(i, λi) + 1

cm + c(i, λi)

µl∏
j=1

cm + c(λ′
j, j)− 1

cm + c(λ′
j, j)

. (3.18)

To see that this coincides with the right hand side of (3.17), note that for most of the pairs

(i, j) the corresponding factors in the numerator and denominator of the fraction cancel.

The remaining pairs are divided into five types: (i, k) with 1 6 i < k; (k, k); (k, j) with

k < j < l; (k, l); and (l, j) with 1 6 j 6 µl. Examining the factors for each of the five

types we conclude that their product coincides with (3.18).

The argument in the case k > l is quite similar and will be omitted. This concludes

the proof of the first part of the proposition. By (1.10), the dimension dimL(λ) equals the

trace tr1,...,mET so that the second part follows from the first by an obvious induction.

Now we turn to the symplectic group SpN , N = 2n, acting in the space of tensors (1.1)

and the commuting action of the Brauer algebra Bm(−N). The action of Bm(−N) in the

space (1.1) is now defined by

sab 7→ −Pab, ϵab 7→ −Qab, a < b, (3.19)
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where Pab is defined in (3.5), and

Qab =
N∑

i,j=1

εiεj 1
⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ ei′j′ ⊗ 1⊗(m−b). (3.20)

We use Lemma 3.1 in the same way as for the orthogonal group and write down a

recurrence relation for the respective functions Am(u) defined by (3.7) with the definition

(2.1) of the Jucys–Murphy elements. It takes the form(
1− 1

(u− xm−1)2

)
Am(u) =

(
1− 1

(u+ xm−1)2

)
Am−1(u)−

2 (2u− 1)xm−1

(u− xm−1)2(u+ xm−1)2
.

Noting that A1(u) = N/(u− c1) with c1 = (−N − 1)/2 and using the substitution

Am(u) = Ãm(u) +
2u− 1

2u

we come to the solution

Am(u) =
m−1∏
a=1

(u− xa)
2

(u− xa)2 − 1

m−1∏
a=1

(u+ xa)
2 − 1

(u+ xa)2

( 2N

2u+N + 1
− 2u− 1

2u

)
+

2u− 1

2u
.

For any diagram ρ with at most n rows set

D(ρ) =
1

H(ρ)

∏
(i,j)∈ρ

(
N + 1 + d(i, j)

)
, (3.21)

where the parameters d(i, j) are now defined by

d(i, j) =

{
ρi + ρj − i− j + 1 if i > j,

−ρ ′
i − ρ ′

j + i+ j − 1 if i 6 j.

The following proposition recovers the symplectic version of the hook dimension formula

[4, (3.29)]. We suppose that T is a standard tableau of shape λ ⊢ m such that the first

row of λ does not exceed n, and U is the tableau obtained from T by removing the box

occupied by m. The diagram µ is the shape of U .

Proposition 3.3. We have the relation

trmET = EU
D(λ′)

D(µ′)
. (3.22)

Moreover, the dimension of the irreducible representation L(ρ) of SpN equals D(ρ).
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Proof. Applying again (2.3), we get

trmET = EU

[
(u− cm)Am(u)

]
u=cm

so that by the above formula for Am(u) we have

trmET =
(2cm + 1)(−cm − c1)

2cm
EU

[u− cm
u− c1

m−1∏
a=1

(u− ca)
2

(u− ca)2 − 1

]
u=cm

m−1∏
a=1

(cm + ca)
2 − 1

(cm + ca)2
.

As with the orthogonal case (Proposition 3.2), the proof is reduced to verifying the identity

(−cm − c1)(2cm + 1)

2cm

m−1∏
a=1

(cm + ca)
2 − 1

(cm + ca)2

=
∏

(i,j)∈λ

(
N + 1 + dλ′(i, j)

)/ ∏
(i,j)∈µ

(
N + 1 + dµ′(i, j)

)
,

where dλ′(i, j) and dµ′(i, j) denote the respective parameters d(i, j) associated with the

diagrams ρ = λ′ and ρ = µ′. This identity holds because after the replacement of N

by −N it turns into (3.17), while the latter can be regarded as an identity of rational

functions in a variable N . Finally, the dimension of L(λ′) equals tr1,...,mET by (1.11), so

that an obvious induction yields dimL(λ′) = D(λ′).

4 Images of central idempotents

We consider the cases of orthogonal group ON and symplectic group SpN (the latter with

N = 2n), simultaneously, unless stated otherwise. Suppose that λ is a diagram with m

boxes such that λ′
1 6 n in the orthogonal case and λ1 6 n in the symplectic case. Define

the respective normalized central idempotents ϕλ by (1.12) and (1.13) and regard them as

elements of the algebra (3.6) under the action of the Brauer algebra defined by (3.13) and

(3.19). We aim to calculate the images ch (ϕλ) of ϕλ under the characteristic maps (1.9).

4.1 Main theorem

We let Y run over the Cartan subalgebra of the Lie algebra gN so that Y is a diagonal

matrix

Y = diag(y1, . . . , yn,−yn, . . . ,−y1) or Y = diag(y1, . . . , yn, 0,−yn, . . . ,−y1)

for N = 2n or N = 2n+ 1, respectively.
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Consider the map F : gN → GN [13, Theorem 5.2], defined in a neighborhood of 0 by

the formula

F (Y ) = 1 + Y 2/2 + Y (1 + Y 2/4)1/2.

We let t be a complex variable and let Z = Z(t) be the image of the matrix tY under this

map,

Z = diag(z1, . . . , zn, z
−1
n , . . . , z−1

1 ) or Z = diag(z1, . . . , zn, 1, z
−1
n , . . . , z−1

1 ),

respectively. In particular, writing Z = F (tY ) as a power series in t we have the following

first few terms

Z = 1 + tY +
1

2
t2Y 2 + . . . .

Therefore, ch (ϕλ) will be found from the coefficient of tm in the power series expansion

trϕλ (Z1 − 1) . . . (Zm − 1) = m! tm ch (ϕλ) + . . . , (4.1)

where the trace is taken over all m copies of EndCN in (3.6). We have

trϕλ (Z1 − 1) . . . (Zm − 1) =
m∑
k=0

(−1)m−k
∑

a1<···<ak

trϕλ Za1 . . . Zak .

Each product Za1 . . . Zak can be written as P Z1 . . . Zk P
−1, where P is the image in (3.6)

of a permutation p ∈ Sm such that p(r) = ar for r = 1, . . . , k. Since ϕλ is proportional

to a central idempotent, it commutes with P , and by the cyclic property of trace we can

bring the above expression to the form

trϕλ (Z1 − 1) . . . (Zm − 1) =
m∑
k=0

(−1)m−k

(
m

k

)
trϕλ Z1 . . . Zk.

Propositions 3.2 and 3.3 imply the formula for the partial trace,

trm ϕλ =
∑
µ

ϕµ,

summed over the diagrams µ obtained from λ by removing one box. Hence for any value

of the parameter k = 0, . . . ,m we have the formula for multiple partial traces taken over

the copies k + 1, . . . ,m of EndCN ,

trk+1,...,m ϕλ =
∑

µ⊢k, µ⊆λ

dimλ/µ ϕµ,

where, as before, dimλ/µ is the number of standard tableaux with entries in {k+1, . . . ,m}
of the skew shape λ/µ. Therefore,

trϕλ (Z1−1) . . . (Zm−1) =
m∑
k=0

∑
µ⊢k, µ⊆λ

(−1)|λ|−|µ| dimλ/µ

(
|λ|
|µ|

)
tr1,...,k ϕµ Z1 . . . Zk. (4.2)
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On the other hand, by (1.10) and (1.11),

tr1,...,k ϕµ Z1 . . . Zk =
dimµ

D(µ)
χoN
µ (z1, . . . , zn)

in the orthogonal case, and

tr1,...,k ϕµ Z1 . . . Zk =
dimµ

D(µ′)
χ
spN
µ′ (z1, . . . , zn)

in the symplectic case. Now, using the notation (1.16), (1.17) and (1.18), we apply the

binomial formula of [13, Theorem 1.2] which gives

χρ(z1, . . . , zn)

D(ρ)
=

∑
ν

sν(aρ | a) sν(t2y21, . . . , t2y2n)
C(ν)

, (4.3)

summed over partitions ν of length not exceeding n, where χρ(z1, . . . , zn) denotes any one

of the characters χoN
ρ (z1, . . . , zn) or χ

spN
ρ (z1, . . . , zn).

This formula implies that if m odd, then the coefficient of tm on the right hand side of

(4.2) is zero. Now we assume that m is even, m = 2l. Then the coefficient of t2l in the

right hand side of (4.3) can only come from the terms with the partition ν having exactly

l boxes. Hence, using (4.1) and (4.2) we find that ch (ϕλ) is the linear combination of the

Schur polynomials sν(y
2
1, . . . , y

2
n) with ν ⊢ l occurring with the respective coefficients

1

C(ν)

∑
µ⊆λ

(−1)|µ|
dimµ

|µ|!
dimλ/µ

(|λ| − |µ|)!
sν(aρ | a),

where ρ = µ and ρ = µ′ in the orthogonal and symplectic case, respectively. Thus, recalling

the notation (1.15) we arrive at the main result.

Theorem 4.1. Suppose that λ is a diagram with m boxes such that λ′
1 6 n in the orthogonal

case and λ1 6 n in the symplectic case. Then the image ch (ϕλ) of the normalized central

idempotent ϕλ under the respective characteristic map (1.9) is zero if m is odd. If m = 2l

is even, then the image is found by

ch (ϕλ) =
∑
ν⊢l

sν(y
2
1, . . . , y

2
n)

C(ν)

∑
µ⊆λ

(−1)|µ|
sν(aµ| a)

H(µ)H(λ/µ)
(4.4)

in the orthogonal case, and

ch (ϕλ) =
∑
ν⊢l

sν(y
2
1, . . . , y

2
n)

C(ν)

∑
µ⊆λ

(−1)|µ|
sν(aµ′| a)

H(µ)H(λ/µ)
(4.5)

in the symplectic case.
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Note that by the vanishing theorem [12] we have sν(aρ | a) = 0 unless ν ⊆ ρ. Therefore,

the first sum in (4.4) is restricted to the partitions ν contained in λ, while the second sum

is restricted to the partitions µ containing ν. Similarly, the first sum in (4.5) is restricted

to the partitions ν contained in λ′, while the second sum is restricted to the partitions µ

containing ν ′.

Example 4.2. Consider the orthogonal case with λ = (22). By (4.4), the image ch (ϕ(22)) is

a linear combination for the Schur polynomials sν(y
2
1, . . . , y

2
n) with ν = (2) and ν = (12).

Using [10, Proposition 3.2], we find

s(2)(a(2) | a) = (an+2 − an)(an+2 − an+1),

s(2)(a(2 1) | a) = (an+2 − an−1)(an+2 − an+1),

s(2)(a(22) | a) = (an+2 − an−1)(an+2 − an)

and
s(12)(a(12) | a) = (an+1 − an−1)(an − an−1),

s(12)(a(2 1) | a) = (an+2 − an−1)(an − an−1),

s(12)(a(22) | a) = (an+2 − an−1)(an+1 − an−1).

For the sequence ai = (ε+ i− 1)2 we have an+i − an+j = (i− j)(N + i+ j − 2). Hence the

sums in (4.4) are found by

s(2)(a(2) | a)
4

−
s(2)(a(2 1) | a)

3
+

s(2)(a(22) | a)
12

= 1

and
s(12)(a(12) | a)

4
−

s(12)(a(2 1) | a)
3

+
s(12)(a(22) | a)

12
= 1.

Thus,

ch (ϕ(22)) =
1

(N − 1)N(N + 1)(N + 2)
s(2)(y

2
1, . . . , y

2
n)

+
1

(N − 3)(N − 2)(N − 1)N
s(12)(y

2
1, . . . , y

2
n).

4.2 Symmetrizers and antisymmetrizers

Now we consider the particular cases, where λ is a row or column diagram with 2l boxes.

In each of these cases there is a unique standard tableau T of shape λ so that by (1.12)

and (1.13), ϕλ is proportional to the primitive idempotent ET . For λ = (2l) the primitive

idempotent coincides with the symmetrizer S(2l), while for λ = (12l) it coincides with the

antisymmetrizer A(2l) in the Brauer algebra. We will produce the images ch (S(2l)) and

ch (A(2l)) in an explicit form. Suppose first that λ = (2l) in the orthogonal case. Then the
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first sum in (4.4) contains only one term with ν = (l), while the second sum is taken over

row-diagrams µ = (k) with l 6 k 6 2l. By (1.17) we have

s(l)(x | a) =
∑

i16···6il

(xi1 − ai1) . . . (xil − ail+l−1)

=
∑

i16···6il

(xn−i1+1 − ai1) . . . (xn−il+1 − ail+l−1),

where the second relation holds since s(l)(x | a) is a symmetric polynomial. Recalling the

definition (1.18), we find a(k) = (ak+n, an−1, . . . , a1). Hence, taking x = a(k) we find that

the only nonzero summand corresponds to i1 = · · · = il = n,

s(l)(a(k) | a) = (ak+n − an) . . . (ak+n − an+l−1). (4.6)

Furthermore, recalling that ai = (ε+ i− 1)2 we find

s(l)(a(k) | a) =
(
(k + n+ ε− 1)2 − (n+ ε− 1)2

)
× · · · ×

(
(k + n+ ε− 1)2 − (n+ l + ε− 2)2

)
=

k! (N + k + l − 3)!

(k − l)! (N + k − 3)!
.

The sum in (4.4) then equals

2l∑
k=l

(−1)k
(N + k + l − 3)!

(k − l)! (N + k − 3)! (2l − k)!

=
l∑

r=0

(−1)l−r

(
N + 2l − 3

l − r

)(
N + 2l − 3 + r

r

)
= 1.

Thus, taking into account the constants D(λ) for λ = (2l) and C(ν) for ν = (l) we come

to the following corollary (for a different proof see [9, Proposition 3.4]).

Corollary 4.3. The image of the symmetrizer S(2l) ∈ B2l(N) under the characteristic map

is found by

ch (S(2l)) =
N + 4l − 2

(2l)! (N + 2l − 2)

∑
16i16···6il6n

y2i1 . . . y
2
il
.

Now let λ = (12l) with 2l 6 n. The second sum in (4.4) is now taken over column-

diagrams µ = (1k) with l 6 k 6 2l and ν = (1l). Using [10, Proposition 3.2], we find

that

s(1l)(a(1k) | a) = (an−l+2 − an−k+1) . . . (an+1 − an−k+1). (4.7)

Under the specialization ai = (ε+ i− 1)2 this simplifies to

s(1l)(a(1k) | a) =
k! (N − k)!

(k − l)! (N − k − l)!
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so that the sum in (4.4) equals

2l∑
k=l

(−1)k
(N − k)!

(k − l)! (2l − k)! (N − k − l)!
= (−1)l,

thus leading to the image of the antisymmetrizer.

Corollary 4.4. The image of the antisymmetrizer A(2l) ∈ B2l(N) under the characteristic

map is found by

ch (A(2l)) =
(−1)l

(2l)!

∑
16i1<···<il6n

y2i1 . . . y
2
il
.

Note that this result also follows easily from the observation that A(2l) coincides with

the antisymmetrizer in the group algebra C [S2l]. Indeed, it suffices to apply (1.4) with

λ = (12l) and replace X by the diagonal matrix Y .

The calculation in the symplectic case is quite similar. Suppose first that λ = (2l) with

2l 6 n. Then ν = (1l) in (4.5) and µ runs over diagrams (k) with l 6 k 6 2l. Using (4.7)

with the sequence ai = i2 and performing the same calculations as in the orthogonal case

we find the image of S(2l); see also [9, Proposition 3.5].

Corollary 4.5. The image of the symmetrizer S(2l) ∈ B2l(−2n) under the characteristic

map is found by

ch (S(2l)) =
(−1)l (n− 2l + 1)

(2l)! (n− l + 1)

∑
16i1<···<il6n

y2i1 . . . y
2
il
.

Finally, if λ = (12l) then ν = (l) in (4.5) and µ runs over diagrams (1k) with l 6 k 6 2l.

Applying now (4.6), we calculate the image of A(2l).

Corollary 4.6. The image of the antisymmetrizer A(2l) ∈ B2l(−2n) under the character-

istic map is found by

ch (A(2l)) =
1

(2l)!

∑
16i16···6il6n

y2i1 . . . y
2
il
.

This result also follows from the observation that A(2l) coincides with the symmetrizer

in the group algebra C [S2l]. It suffices to apply (1.4) with λ = (2l) and replace X by the

diagonal matrix Y .
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