THE \mathbb{F}_{2}-COHOMOLOGY RINGS OF Sol 3-MANIFOLDS

J.A.HILLMAN

Abstract

We compute $H^{*}\left(N ; \mathbb{F}_{2}\right)$ for N a $\mathbb{S o l}^{3}$-manifold, and then determine the Borsuk-Ulam indices $B U(N, \phi)$ with $\phi \neq 0$ in $H^{1}\left(N ; \mathbb{F}_{2}\right)$.

The Borsuk-Ulam Theorem states that any continuous function f : $S^{n} \rightarrow \mathbb{R}^{n}$ takes the same value at some antipodal pair of points. This may be put in a broader context as follows. Let N be an n-manifold and let N_{ϕ} be the double cover associated to an epimorphism $\phi: \pi \rightarrow$ $Z / 2 Z$. Let t_{ϕ} be the covering involution. The Borsuk-Ulam index $B U(N, \phi)$ is the maximal value of k such that for all maps $f: N_{\phi} \rightarrow \mathbb{R}^{k}$ there is an $x \in N_{\phi}$ with $f(x)=f\left(t_{\phi}(x)\right)$. Then the Borsuk-Ulam Theorem is equivalent to the assertion that $B U\left(R P^{n}, \alpha\right)=n$, where $\alpha: \pi_{1}\left(R P^{n}\right) \rightarrow Z / 2 Z$ is the canonical epimorphism.

In low dimensions this invariant may be determined cohomologically, and is known for many pairs (N, ϕ), with N a Seifert fibred 3-manifold, including all those with geometry $\mathbb{E}^{3}, \mathbb{S}^{3}, \mathbb{S}^{2} \times \mathbb{E}^{1}, \mathbb{N} i l^{3}$ or $\mathbb{H}^{2} \times \mathbb{E}^{1}[1,2]$. Here we shall determine this invariant for all such pairs with N a closed $\mathbb{S o l}^{3}$-manifold. This follows easily once we know the mod- 2 cohomology rings of such manifolds. We compute these using Poincaré duality and elementary properties of cup-product in the low-degree cohomology of groups. (Our approach can also be applied to \mathbb{E}^{3} - and $\mathbb{N} i l^{3}$-manifolds.)

1. $\operatorname{Sol}{ }^{3}$-MANIFOLDS AND THEIR GROUPS

Let M be a closed $\mathbb{S o l}^{3}$-manifold. Then $\pi=\pi_{1}(M)$ has an unique maximal abelian normal subgroup $\sqrt{\pi}$, which is free abelian of rank 2. (This subgroup is in fact the Hirsch-Plotkin radical [5] of π.) The quotient $\pi / \sqrt{\pi}$ is virtually \mathbb{Z} (i.e., has two ends), and so is an extension of \mathbb{Z} or $D_{\infty}=Z / 2 Z * Z / 2 Z$ by a finite normal subgroup. The preimage of this finite normal subgroup is torsion-free, and so is either \mathbb{Z}^{2} or $\mathbb{Z} \rtimes_{-1} \mathbb{Z}$ (the Klein bottle group). Since $\operatorname{Out}\left(\mathbb{Z} \rtimes_{-1} \mathbb{Z}\right)$ is finite and π is not virtually abelian, this preimage must be $\sqrt{\pi}$. Hence $\pi / \sqrt{\pi} \cong \mathbb{Z}$ or D_{∞}.

[^0]Suppose first that $\pi / \sqrt{\pi} \cong \mathbb{Z}$. Then M is the mapping torus of a self-homeomorphism of $T=S^{1} \times S^{1}$, and $\pi \cong \mathbb{Z}^{2} \rtimes_{\Theta} \mathbb{Z}$, where $\Theta=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right) \in G L(2, \mathbb{Z})$. Thus π has a presentation

$$
\left\langle t, x, y \mid t x t^{-1}=x^{a} y^{b}, t y t^{-1}=x^{c} y^{d}, x y=y x\right\rangle .
$$

Let $\varepsilon=\operatorname{det}(\Theta)= \pm 1$ and $\tau=\operatorname{tr}(\Theta)=a+d$. Then M is orientable if and only if $\varepsilon=1$, in which case $|\tau|>2$, since π is not virtually nilpotent. Let θ be a root of the characteristic polynomial $\operatorname{det}(\Theta-$ $\left.X I_{2}\right)=X^{2}-\tau X+\varepsilon$. Then θ is a unit in the quadratic number field $\mathbb{Q}[\theta]$, and $\sqrt{\pi}$ is isomorphic to an ideal I in the ring $\mathbb{Z}[\theta]$. (The latter may not be the full ring of integers in $\mathbb{Q}[\theta]!$)

Conversely, if α is a quadratic algebraic unit and I is an ideal in $\mathbb{Z}[\alpha]$ then I is free abelian of rank 2 as an abelian group, and $\pi=I \rtimes_{\alpha} \mathbb{Z}$ is the group of the mapping torus of a self-homeomorphism of T. If α is not a root of unity this mapping torus is a $\mathbb{S o l}^{3}$-manifold. If $(\alpha,[I])$ and $(\beta,[J])$ are two such pairs the corresponding groups are isomorphic if and only if either $\beta= \pm \alpha$ and $[I]=[J]$ or $\beta= \pm \alpha^{-1}$ and $[I]=\overline{[J]}$. (Here [I] denotes the ideal class of I and the overbar denotes the Galois involution given by $\alpha \leftrightarrow \varepsilon \alpha^{-1}$.) Each such ring $\mathbb{Z}[\alpha]$ has finitely many ideal classes, by the Jordan-Zassenhaus Theorem.

If $\pi / \sqrt{\pi} \cong D_{\infty}$ then $\pi \cong B *_{T} C$, where B and C are torsion-free, $T \cong \mathbb{Z}^{2}$ and $[B: T]=[C: T]=2$. Thus M is the union of two twisted I-bundles. Moreover, $\beta_{1}(\pi ; \mathbb{Q})=0$. Hence M is orientable, since $\chi(M)=0$, and so B and C must be copies of the Klein bottle group. Hence M is the union of two copies of the mapping cylinder of the double cover of the Klein bottle. The double cover of M corresponding to the preimage of $\sqrt{D_{\infty}}$ in π is a mapping torus.

In particular, π has a presentation
$\left\langle u, v, y, z \mid u y u^{-1}=y^{-1}, v z v^{-1}=z^{-1}, y z=z y, v^{2}=u^{2 a} y^{b}, z=u^{2 c} y^{d}\right\rangle$, where $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right) \in G L(2, \mathbb{Z})$ corresponds to the identification of \sqrt{C} with $T=\sqrt{B}$. This presentation simplifies immediately to

$$
\left\langle u, v, y \mid u y u^{-1}=y^{-1}, v^{2}=u^{2 a} y^{b}, v u^{2 c} y^{d} v^{-1}=u^{-2 c} y^{-d}\right\rangle
$$

Hence $\pi^{a b} \cong Z / 4 c Z \oplus Z / 4 Z$ if b is odd, and $\pi^{a b} \cong Z / 4 c Z \oplus(Z / 2 Z)^{2}$ if b is even. Let $x=u^{2}$. Then conjugation by $u v$ acts on $\langle x, y\rangle \cong \mathbb{Z}^{2}$ via $\Psi=\eta\left(\begin{array}{cc}a d+b c & 2 a c \\ 2 b d & a d+b c\end{array}\right)$, where $\eta=a d-b c= \pm 1$. We have $\operatorname{det}(\Psi)=1$, $\operatorname{tr}(\Psi) \equiv 2 \bmod (4), \Psi \equiv I_{2} \bmod (2)$ and $a b c d \neq 0$.

Conversely, any $\left(\begin{array}{cc}a & c \\ b & d\end{array}\right) \in G L(2, \mathbb{Z})$ with $a b c d \neq 0$ gives rise to such a Sol ${ }^{3}$-manifold, for then $|\operatorname{tr}(\Psi)|=2|a d+b c| \geq 6$. Moreover, suppose $P=\left(\begin{array}{cc}2 k+1 & 2 m \\ 2 n & 2 k+1\end{array}\right) \in S L(2, \mathbb{Z})$, where $m n \neq 0$. Then $k(k+1)=m n$, and so we may write $m=m_{1} m_{2}$ and $n=n_{1} n_{2}$, with $k=m_{1} n_{1}$
and $k+1=m_{2} n_{2}$. The \mathbb{S} ol ${ }^{3}$-rational homology sphere corresponding to $\left(\begin{array}{cc}m_{1} & -m_{2} \\ -n_{2} & n_{1}\end{array}\right) \in G L(2, \mathbb{Z})$, is doubly covered by the mapping torus asociated to P.

Every quadratic unit α such that $\alpha+\bar{\alpha} \equiv 2 \bmod (4)$ and $\alpha \bar{\alpha}=1$ is realized in this way. Which ideal classes are realized? The ideal class must be invariant under the conjugation $\alpha \mapsto \alpha^{-1}$.

Every subgroup of finite index in π can be generated by three elements, while proper subgroups of infinite index need at most two generators. If a nontrivial normal subgroup N has infinite index in π then it has Hirsch length ≤ 2. Hence it is abelian, and so has finite index in $\sqrt{\pi}$. Thus proper quotients of a $\mathbb{S o l}{ }^{3}$-group π either have two ends or are finite.

2. THE MOD-2 COHOMOLOGY RING

Martins has constructed an explicit free resolution $P_{*} \rightarrow \mathbb{Z}$ of the augmentation $\mathbb{Z}[\pi]$-module, and a partial diagonal approximation Δ : $P_{*} \rightarrow P_{*} \otimes P_{*}$, which he used to compute the integral cohomology ring, for semirect products $\pi \cong \mathbb{Z}^{2} \rtimes_{\Theta} \mathbb{Z}$ with $\Theta \in G L(2, \mathbb{Z})$ [4]. His formulae should (in principle) apply with coefficients \mathbb{F}_{2} also.

We shall take a somewhat different approach, first computing cup products into $H^{2}\left(\pi ; \mathbb{F}_{2}\right)$ and then using Poincaré duality. Our strategy in determing relations in $H^{2}\left(\pi ; \mathbb{F}_{2}\right)$ shall be to use restrictions to subgroups (such as $\sqrt{\pi}$) and epimorphisms to quotient groups (such as $\pi / \sqrt{\pi}$ or small finite 2-groups), with known cohomology rings.

We shall usually write $H_{*}(X)$ and $H^{*}(X)$ for the homology and cohomology of a space or group X, with coefficients \mathbb{F}_{2}, and denote the cup-product by juxtaposition. In each case considered below, the given generators for a group G represent a basis for $H_{1}(G)$, and we shall use the corresponding Kronecker dual bases for $H^{1}(G)=\operatorname{Hom}\left(H_{1}(G), \mathbb{F}_{2}\right)$.

Lemma 1. Let $w=w_{1}(\pi)$. Then $w \alpha \beta=\alpha^{2} \beta+\alpha \beta^{2}$, for all $\alpha, \beta \in$ $H^{1}(\pi)$. In particular, if $w=0$ then $\alpha^{2} \beta=\alpha \beta^{2}$ and $(\alpha+\beta)^{3}=\alpha^{3}+\beta^{3}$.

Proof. The first assertion follows from the Wu relation $S q^{1} z=w \cup z$ for all $z \in H^{n-1}(X)$, which holds for any $P D_{n}$-complex X. The second follows easily.

If G is a group let $X^{n}(G)=\left\langle g^{n} \mid g \in G\right\rangle$ be the subgroup generated by all $n^{\text {th }}$ powers. The next lemma is a refinement of Theorem 2 of [3] (which is restated here as part (1) of the lemma).

Lemma 2. Let G be a group, and $\rho, \phi, \psi \in H^{1}(G)$. Let $K=\operatorname{Ker}(\rho)$ and $L=K \cap \operatorname{Ker}(\phi)$. Then
(1) the kernel of cup product from the symmetric product $\odot^{2} H^{1}(G)$ to $H^{2}(G)$ is the dual of $X^{2}(G) / X^{4}(G)\left[G, X^{2}(G)\right]$;
(2) the canonical projections induce isomorphisms $H^{1}\left(G / X^{2}(K)\right) \cong H^{1}\left(G / X^{2}(L)\right) \cong H^{1}\left(G / X^{4}(G)\right) \cong H^{1}(G) ;$
(3) $\rho \phi=0$ in $H^{2}(G) \Leftrightarrow \rho \phi=0$ in $H^{2}\left(G / X^{2}(K)\right)$;
(4) $\phi^{2}=\rho \phi+\rho \psi$ in $H^{2}(G) \Leftrightarrow \phi^{2}=\rho \phi+\rho \psi$ in $H^{2}\left(G / X^{2}(L)\right)$.

Proof. Part (1) is Theorem 2 of [3], while part (2) is clear.
If $\phi \psi=0$ in $H^{2}(G)$ then there is a 1-cochain $F: G \rightarrow \mathbb{F}_{2}$ such that $\phi(g) \psi(h)=\delta F(g, h)=F(g h)+F(g)+F(h)$, for all $g, h \in G$. Part (3) follows easily, since F restricts to a homomorphism on K, and is constant on cosets of $X^{2}(K)$.

Part (4) is similar.
In most of the cases considered here, the coefficients in the linear relations determining the kernel of cup product may be found by restricting to 2-generator subgroups.

Lemma 3. Let $\{T, Y\}$ be the basis for $H^{1}\left(D_{8}\right)$ corresponding to the presentation $D_{8}=\langle t, y| t^{2}=y^{4}=1$, tyt $\left.{ }^{-1}=y^{-1}\right\rangle$. Then $(T+Y) Y=0$ in $H^{2}\left(D_{8}\right)$.
Proof. Let D_{∞} have the presentation $\left\langle u, v \mid u^{2}=v^{2}=1\right\rangle$, and let U, V be the dual basis for $H^{1}\left(D_{\infty}\right)$. Then $H^{*}\left(D_{\infty}\right)=\mathbb{F}_{2}[U, V] /(U V)$. Let $f: D_{\infty} \rightarrow D_{8}$ be the epimorphism given by $f(u)=t$ and $f(v)=$ $t y$. Then f induces an isomorphism $D_{\infty} / X^{4}\left(D_{\infty}\right) \cong D_{8}$, so $H^{2}(f)$ is injective. Since $f^{*} U=T+Y$ and $f^{*} V=Y$, we see that $(T+Y) Y=0$ in $H^{2}\left(D_{8}\right)$.

Let E be the "almost extraspecial" 2-group with presentation

$$
\left\langle t, u, v \mid t^{2}=1, u^{2}=v^{2}, t u t^{-1}=u^{-1}, t v=v t, u v=v u\right\rangle .
$$

Lemma 4. Let $\{T, U, V\}$ be the basis for $H^{1}(E)$ corresponding to the above presentation. Then $T U+U^{2}+V^{2}=0$ in $H^{2}(E)$.
Proof. Since $X^{2}(E) \cong Z / 2 Z$, the kernel of cup product from $\odot^{2} H^{1}(G)$ to $H^{2}(G)$ has dimension 1 [3]. Thus there is an unique nontrivial linear relation $a T^{2}+b U^{2}+c V^{2}+d T U+e T V+f U V=0$ in $H^{2}(E)$. The coefficients can be determined by restriction to the subgroups $\langle t\rangle \cong$ $Z / 4 Z,\langle t, u\rangle \cong D_{8},\langle t, v\rangle \cong Z / 4 Z \oplus Z / 2 Z$, and $\langle u, v\rangle \cong Z / 4 Z \oplus$ $Z / 2 Z$.

3. MAPPING TORI

Suppose that $\pi \cong \mathbb{Z}^{2} \rtimes_{\Theta} \mathbb{Z}$, where $\Theta=\left(\begin{array}{cc}a & c \\ b & d\end{array}\right) \in G L(2, \mathbb{Z})$. Let $\varepsilon=a d-b c= \pm 1$ and $\tau=a+d$. Let $\Delta_{1}=\operatorname{det}\left(\Theta-I_{2}\right)=1-\tau+\varepsilon$ and
$\Delta_{2}=(a-1, b, c, d-1)$ be the elementary divisors of $\Theta-I_{2}$. Then Δ_{2}^{2} divides Δ_{1}, and

$$
\pi^{a b} \cong \mathbb{Z} \oplus Z /\left(\Delta_{1} / \Delta_{2}\right) Z \oplus Z / \Delta_{2} Z
$$

Let $\beta=\beta_{1}\left(\pi ; \mathbb{F}_{2}\right)$. Then $1 \leq \beta \leq 3$, and $\beta_{2}\left(\pi ; \mathbb{F}_{2}\right)=\beta$, by Poincaré duality. Let $\rho: \pi \rightarrow Z / 2 Z$ be the unique epimorphimorphism which factors through $\pi / \sqrt{\pi} \cong \mathbb{Z}$. If π is non-orientable then $\rho=w_{1}(M)$, and $K=\pi^{+}$, the maximal orientable subgroup of π.

1. If τ is odd then Δ_{1} is odd and $\pi^{a b} \cong \mathbb{Z} \oplus o d d$. In this case ρ is the unique epimorphism from π to $Z / 2 Z$, and

$$
H^{*}(\pi) \cong \mathbb{F}_{2}[\rho, \Xi] /\left(\rho^{2}, \Xi^{2}\right)
$$

where Ξ has degree 2, by Poincaré duality.
2. If $\tau \equiv \varepsilon-1 \bmod (4)$ then $\pi^{a b} \cong \mathbb{Z} \oplus Z / 2 Z \oplus o d d$, and $\beta=2$. Hence $H^{1}(\pi)=\langle\rho, \sigma\rangle$, where σ does not factor through $Z / 4 Z$. Moreover, if $G=\pi / X^{4}(\pi)$ then $X^{2}(G) \cong(Z / 2 Z)^{2}$ is central in G. Thus $\rho^{2}=\rho \sigma=$ 0 , by Lemma 2, while $\sigma^{2} \neq 0$. Hence $H^{2}(\pi)=\left\langle\sigma^{2}, \Xi\right\rangle$, for some Ξ of degree 2. Duality then implies that $\sigma^{3}=\rho \Xi \neq 0$. We may assume also that $\sigma \Xi=0$, and so

$$
H^{*}(\pi) \cong \mathbb{F}_{2}[\rho, \sigma, \Xi] /\left(\rho^{2}, \rho \sigma, \sigma \Xi, \rho \Xi+\sigma^{3}, \Xi^{2}\right)
$$

3. If $\tau \equiv \varepsilon+1 \bmod (4)$ and Δ_{2} is odd then $\pi^{a b} \cong \mathbb{Z} \oplus Z / 2^{k} Z \oplus$ odd, for some $k \geq 2$. Hence $H^{1}(\pi)=\langle\rho, \sigma\rangle$, where $\sigma^{2}=\rho^{2}=0$. Since $\rho \sigma=0$, by the nondegeneracy of Poincaré duality,

$$
H^{*}(\pi) \cong \mathbb{F}_{2}[\rho, \sigma, \Xi, \Omega] /\left(\rho^{2}, \rho \sigma, \sigma^{2}, \rho \Omega, \sigma \Xi, \rho \Xi+\sigma \Omega, \Xi^{2}, \Omega^{2}, \Xi \Omega\right)
$$

where Ξ and Ω have degree 2 .
In all the remaining cases $\beta=3$. For if $\tau \equiv \varepsilon+1 \bmod (4)$ and Δ_{2} is even then a and d are odd and b and c are even. Hence $\Delta_{1}=2^{k} q$ and $\Delta_{2}=2^{\ell} q^{\prime}$, where $0<\ell \leq \frac{k}{2}$ and q, q^{\prime} are odd. In this case $\pi^{a b} \cong \mathbb{Z} \oplus Z / 2^{k-\ell} Z \oplus Z / 2^{\ell} Z \oplus o d d$, so the images of $\{t, x, y\}$ form a basis for $H_{1}(\pi)$. Let $\{\rho, \sigma, \psi\}$ be the dual basis, so that

$$
\sigma(x)=\psi(y)=1 \quad \text { and } \quad \sigma(t)=\sigma(y)=\psi(t)=\psi(x)=0 .
$$

If $G=\pi / X^{4}(\pi)$ then $X^{2}(G)=\left\langle t^{2}, x^{2}, y^{2}\right\rangle \cong(Z / 2 Z)^{3}$ is central in G, so the kernel of cup product from $\odot^{2} H^{1}(\pi)$ to $H^{2}(\pi)$ has rank 3. It then follows from Poincaré duality that $H^{*}(\pi)$ is generated as a ring by $H^{1}(\pi)$. In each case, $\rho \sigma^{2}=\rho \rho \sigma=0$ and $\rho \psi^{2}=\rho \rho \psi=0$, by Lemma 1. Hence $\rho \sigma \psi \neq 0$, by the nondegeneracy of Poincaré duality. It then follows easily that $\rho \sigma, \rho \psi$ and $\sigma \psi$ are linearly independent, and so form a basis for $H^{2}(\pi)$. We may write

$$
\sigma^{2}=m \rho \sigma+n \rho \psi+p \sigma \psi \quad \text { and } \quad \psi^{2}=q \rho \sigma+r \rho \psi+s \sigma \psi,
$$

for some m, \ldots, s. On restricting to $\sqrt{\pi}$, we see that $p=s=0$, since $\left.\sigma^{2}\right|_{\sqrt{\pi}}=\left.\psi^{2}\right|_{\sqrt{\pi}}=0$ and $\left.\rho\right|_{\sqrt{\pi}}=0$, while $\left.\sigma \psi\right|_{\sqrt{\pi}} \neq 0$. Since $\rho \sigma^{2}=\rho^{2} \sigma=\rho \psi^{2}=\rho^{2} \psi=0$, taking cup products with σ and ψ gives

$$
\sigma^{3}=n \rho \sigma \psi, \quad \sigma^{2} \psi=m \rho \sigma \psi, \quad \psi^{3}=q \rho \sigma \psi \quad \text { and } \quad \sigma \psi^{2}=r \rho \sigma \psi
$$

4. If $\ell \geq 2$ then $a \equiv d \equiv 1$ and $b, c \equiv 0 \bmod (4)$, so $\varepsilon \equiv 1 \bmod (4)$ also, i.e., π is orientable. In this case $\sigma^{2}=\psi^{2}=\rho^{2}=0$, and so

$$
H^{*}(\pi) \cong \mathbb{F}_{2}[\rho, \sigma, \psi] /\left(\rho^{2}, \sigma^{2}, \psi^{2}\right)
$$

Suppose now that $\ell=1$.
5. If π is orientable and $\Delta_{1} \equiv 0 \bmod (8)$ we may assume that one of σ, ψ or $\sigma+\psi$ factors through $Z / 4 Z$. Thus either $\sigma^{2}=0, \psi^{2}=0$ or $\sigma^{2}=\psi^{2}$. We may assume that $\sigma^{2} \neq 0$. Then $\rho \sigma^{2}=\rho^{2} \sigma=0$ and $\psi \sigma^{2}=\psi^{2} \sigma=0$, and so $\sigma^{3} \neq 0$, by the nonsingularity of Poincaré duality. Hence

$$
H^{*}(\pi) \cong \mathbb{F}_{2}[\rho, \sigma, \psi] /\left(\rho^{2}, \rho \psi+\sigma^{2}, \psi^{2}\right)
$$

In this case we see that $\phi^{3}=0 \Leftrightarrow \phi^{2}=0$.
If π is orientable and $\Delta_{1} \equiv 4 \bmod (8)$ then $\tau \equiv 6 \bmod (8)$ and a, d are odd, and so $a \equiv d \bmod (4)$. In this case $\psi^{2} \neq 0$ and $(\sigma+\psi)^{2} \neq 0$ also, and so $\sigma^{2}=m \rho \sigma+n \rho \psi$ and $\psi^{2}=q \rho \sigma+r \rho \psi$ are linearly independent. Hence $m r+n q=1$ in \mathbb{F}_{2}. Since $w=0, \sigma^{2} \psi=\sigma \psi^{2}$ and so $m=r$.
6. Suppose first that $a \equiv 1 \bmod (4)$. Then $b c \equiv 4 \bmod (8)$, and so $b \equiv c \equiv 2 \bmod (4)$. Let $L_{\phi}=\operatorname{Ker}(\rho) \cap \operatorname{Ker}(\phi)$. Then $\pi / X^{2}\left(L_{\phi}\right)$ has a presentation

$$
\left\langle t, x, y \mid t^{4}=x^{4}=y^{2}=1, t x=x t, t y t^{-1}=x^{2} y, x y=y x\right\rangle .
$$

Let $J=\langle t, x\rangle \cong(Z / 4 Z)^{2}$. Then $\left.\sigma^{2}\right|_{J}=\left.\rho \psi\right|_{J}=0$, while $\left.\rho \sigma\right|_{J} \neq 0$. Applying part (3) of Lemma 2, we see that $m=0$, and so $\sigma^{2}=\rho \psi$ and $\psi^{2}=\rho \sigma$. (Note, however, that Lemma 2 does not assert that the relation $\psi^{2}=q \rho \sigma+r \rho \psi$ also holds in $\pi / X^{2}\left(L_{\phi}\right)$! For this, we could use $L_{\psi}=\operatorname{Ker}(\rho) \cap \operatorname{Ker}(\psi)$ instead.) Hence

$$
H^{*}(\pi) \cong \mathbb{F}_{2}[\rho, \sigma, \psi] /\left(\rho^{2}, \rho \psi+\sigma^{2}, \rho \sigma+\psi^{2}\right)
$$

In particular, $\sigma^{3}=\psi^{3}=(\rho+\sigma)^{3}=(\rho+\psi)^{3} \neq 0$.
If $a \equiv-1 \bmod (4)$ then $b c \equiv 0 \bmod (8)$. If, say, $b \equiv 2 \bmod (4)$ (so $c \equiv 0 \bmod (4))$ then the change of basis $x^{\prime}=x, y^{\prime}=x y$ reduces this case to the one just considered. In terms of the given basis, we have

$$
H^{*}(\pi) \cong \mathbb{F}_{2}[\rho, \sigma, \psi] /\left(\rho^{2}, \rho \sigma+\sigma^{2}, \rho \psi+\sigma^{2}+\psi^{2}\right)
$$

In this case $\sigma^{3} \neq 0$, but $\psi^{3}=0$. A similar result holds if $b \equiv 0 \bmod (4)$ and $c \equiv 2 \bmod (4)$.
7. If, however, $a \equiv-1 \bmod (4)$ and $b \equiv c \equiv 0 \bmod (4)$ then $\pi / X^{4}(\pi)$ has a presentation

$$
\left\langle t, x, y \mid t^{4}=x^{4}=y^{4}=1, t x t^{-1}=x^{-1}, t y t^{-1}=y^{-1}, x y=y x\right\rangle .
$$

In this case $J=\langle t, x\rangle$ is non-abelian, and $\left.\sigma^{2}\right|_{J} \neq 0$, while $\left.\rho \psi\right|_{J}=0$. Hence we must have $m=r=1$. It is clear from the symmetry of the presentation for $\pi / X^{4}(\pi)$ that we must also have $n=q$ in this case, and so $n=q=0$. Thus

$$
H^{*}(\pi) \cong \mathbb{F}_{2}[\rho, \sigma, \psi] /\left(\rho^{2}, \rho \sigma+\sigma^{2}, \rho \psi+\psi^{2}\right)
$$

We now find that $\phi^{3}=0$ for all $\phi \in H^{1}(\pi)$.
If $\ell=1$ and M is non-orientable then a and d are odd, and $\Delta_{1}=$ $-a-d \equiv 0 \bmod (4)$. In this case $\rho=w_{1}(M)$, and so $\sigma^{2} \psi+\sigma \psi^{2}=$ $\rho \sigma \psi \neq 0$, by Lemma 1. After swapping x and y, if necessary, we may assume that $a \equiv 1 \bmod (4)$.
8. If $b c \equiv 0 \bmod (8)$ then, after a further change of basis of the form $x^{\prime}=x, y^{\prime}=x y$ or $x^{\prime}=x y, y^{\prime}=y$, if necessary, we may assume that $b \equiv c \equiv 0 \bmod (4)$. Then $\sigma^{2}=0$, and $\pi /\left\langle\left\langle t^{2}, x, y^{4}\right\rangle\right\rangle \cong D_{8}$, so $(\rho+\psi) \psi=0$ also. Hence

$$
H^{*}(\pi) \cong \mathbb{F}_{2}[\rho, \sigma, \psi] /\left(\rho^{2}, \sigma^{2}, \rho \psi+\psi^{2}\right) .
$$

In particular, $(\sigma+\psi)^{3}=(\rho+\sigma+\psi)^{3} \neq 0$, and all other classes have cube 0 . In terms of the given bases, the other cases are:

If $b \equiv 0$ and $c \equiv 2 \bmod (4)$ then

$$
H^{*}(\pi) \cong \mathbb{F}_{2}[\rho, \sigma, \psi] /\left(\rho^{2}, \sigma^{2}+\psi^{2}, \rho \psi+\psi^{2}, \sigma^{2} \psi\right)
$$

Here $\sigma^{3}=(\rho+\sigma)^{3} \neq 0$ and all other classes have cube 0 .
If $b \equiv 2$ and $c \equiv 0 \bmod (4)$ then

$$
H^{*}(\pi) \cong \mathbb{F}_{2}[\rho, \sigma, \psi] /\left(\rho^{2}, \sigma^{2}, \psi^{2}+\rho \sigma+\rho \psi\right)
$$

Here $\psi^{3}=(\rho+\psi)^{3} \neq 0$ and all other classes have cube 0 .
9. If $b \equiv c \equiv 2 \bmod (4)$ then σ^{2} and ψ^{2} are linearly independent. There are three distinct epimorphisms from π to the almost extraspecial group E, given by $\left.f(x)=u^{-1} v\right), f(y)=u ; g(x)=v, g(y)=u v^{-1}$; and $h(x)=v, h(y)=u$. Using these epimorphisms to pull back the relation given in Lemma 3, we find that

$$
H^{*}(\pi) \cong \mathbb{F}_{2}[\rho, \sigma, \psi] /\left(\rho^{2}, \sigma^{2}+\rho \psi, \psi^{2}+\rho \sigma+\rho \psi\right)
$$

In particular, every epimorphism $\phi \neq \rho$ has nonzero cube.

4. UNIONS OF TWISTED I-BUNDLES

Suppose that $\pi / \sqrt{\pi} \cong D_{\infty}$. Then π is orientable, and has a presentation

$$
\left\langle u, v, y \mid u y u^{-1}=y^{-1}, v^{2}=u^{2 a} y^{b}, v u^{2 c} y^{d} v^{-1}=u^{-2 c} y^{-d}\right\rangle,
$$

where $a d-b c= \pm 1$ and $a b c d \neq 0$. Let $B=\langle u, y\rangle$ and $C=\left\langle v, u^{2 c} y^{d}\right\rangle$.
If b is odd then $\pi^{a b} \cong Z / 4 c Z \oplus Z / 4 Z$, where the summands are generated by u and $u^{-a} v$, respectively. Let $U(u)=V(v)=1, U(v)=a$ and $V(u)=0$. Then

$$
H^{*}(\pi) \cong \mathbb{F}_{2}[U, V, \Xi, \Omega] /\left(U^{2}, U V, V^{2}, U \Xi+V \Omega, \Xi^{2}, \Omega^{2}, \Xi \Omega\right),
$$

where Ξ and Ω have degree 2 .
If b is even then $\pi^{a b} \cong Z / 4 c Z \oplus(Z / 2 Z)^{2}$ and the images of u, v and y represent a basis for $H_{1}(\pi)$. Let $\{U, V, Y\} \in H^{1}(\pi)$ be the dual basis. Then U^{2}, V^{2} and Y^{2} are all nonzero, but $W=U+V$ lifts to a homomorphism from π to $Z / 4 Z$, and so $W^{2}=0$. Hence $U^{2}=V^{2}$. Since U and V are induced from classes in $H^{1}\left(D_{\infty}\right)$ we have $U V=0$. We also have $\left.U Y\right|_{B}=\left.Y^{2}\right|_{B}$ and $\left.V Y\right|_{C}=\left.Y^{2}\right|_{C}$, while $\left.U\right|_{C},\left.V\right|_{B},\left.U^{2}\right|_{B}$ and $\left.V^{2}\right|_{C}$ are all 0 .

Suppose that $p U^{2}+q Y^{2}+r U Y+s V Y=0$ in $H^{2}(\pi)$. On restricting to the subgroups B and C, we find that $q+r=q+s=0$. Since $U^{2} \neq 0$ we must have $q=r=s=1$. Multiplying by U and V, we find that $U Y^{2}+$ $U^{2} Y=0$ and $V Y^{2}+V^{2} Y=0$. Poincaré duality for π now implies that $\left\{U^{2}, Y^{2}, U Y\right\}$ is a basis for $H^{2}(\pi)$, while $U Y^{2}=U^{2} Y=V Y^{2}$ generates $H^{3}(\pi)$. We see also that $U^{3}=U^{2} V=U V^{2}=V^{3}=(U+V)^{3}=0$, while $(U+Y)^{3}=(V+Y)^{3}=(U+V+Y)^{3}=Y^{3}$.

Suppose first that $b \equiv 0 \bmod (4)$. Then $G=\pi /\left\langle\left\langle u v, u^{2}, y^{4}\right\rangle\right\rangle \cong D_{8}$. Hence $(U+V+Y) Y=0$ in $H^{3}(\pi)$. It follows easily that $Y^{3}=0$, and so all cubes are 0 in $H^{3}(\pi)$.

If $b \equiv 2 \bmod (4)$ then $\pi /\left\langle\left\langle u^{2},(u v)^{2}, v^{4}, y^{4}\right\rangle\right\rangle$ has a presentation

$$
\left\langle u, v, y \mid u^{2}=(u v)^{2}=v^{4}=1, u y u^{-1}=v y v^{-1}=y^{-1}, v^{2}=y^{2}\right\rangle
$$

Hence there is an epimorphism $f: \pi \rightarrow E$, given by $f(u)=t, f(v)=u$ and $f(y)=u^{-1} t^{-1} v$. Since $f^{*} T=U+Y, f^{*} U=V+Y, f^{*} V=Y$ and $U V=0$, it follows from Lemma 4 that $U Y+V Y+V^{2}+Y^{2}=0$ in $H^{2}(\pi)$. Multiplying by Y, we find that $U Y^{2}+Y^{3}=0$ and so $Y^{3} \neq 0$. In this case, only the cubes induced from $H^{*}(\pi / \sqrt{\pi})$ are zero.

5. THE BORSUK-ULAM INDEX

We may identify an epimorphism ϕ with a nonzero class in $H^{1}\left(N ; \mathbb{F}_{2}\right)$. Then $B U(N, \phi)=1 \Leftrightarrow \phi$ lifts to an integral class $\Phi \in H^{1}(N ; \mathbb{Z})$, while $B U(N, \phi)=n \Leftrightarrow \phi^{n} \neq 0$ in $H^{n}\left(N ; \mathbb{F}_{2}\right)$ In general, $1 \leq B U(N, \phi) \leq n$.

See [1]. When $n=3$ the remaining possibility is that $B U(M, \phi)=2 \Leftrightarrow$ $\phi^{2}=0$ but ϕ is not the reduction of an integral class.

Suppose first that $\pi / \sqrt{\pi} \cong \mathbb{Z}$. Then the following results are immediate from $\S 3$.

1. If $\rho: \pi \rightarrow Z / 2 Z$ is the unique epimorphism which factors through $\pi / \sqrt{\pi} \cong \mathbb{Z}$ then $B U(M, \rho)=1$.
2. If $\tau \equiv \varepsilon-1 \bmod (4)$ then $B U(M, \phi)=3$ for all $\phi \neq \rho$.
3. If $\tau \equiv \varepsilon+1 \bmod (4)$ and either Δ_{2} is odd or $a \equiv d \equiv 1 \bmod (4)$ and b, c are divisible by 4 , then $B U(M, \phi)=2$ for all $\phi \neq \rho$.
4. If $\varepsilon=1, \Delta_{1} \equiv 0 \bmod (8)$ and $\Delta_{2} \equiv 2 \bmod (4)$ then $B U(M, \phi)=2$ for the two epimorphisms $\phi \neq \rho$ such that $\phi^{2}=0$ (i.e, that factor through $Z / 4 Z)$ and $B U(M, \phi)=3$ for the four such that $\phi^{2} \neq 0$.
5. If $\varepsilon=1, \Delta_{1} \equiv 4 \bmod (8)$ and $\Theta \equiv-I_{2} \bmod (4)$ then $B U(M, \phi)=2$ for all $\phi \neq \rho$.
6. If $\varepsilon=1$ and $\Delta_{1} \equiv 4 \bmod (8)$, but $\Theta \not \equiv-I_{2} \bmod (4)$, then $B U(M, \phi)=2$ for the two epimorphisms $\phi \neq \rho$ such that $\phi^{2}=0$ and $B U(M, \phi)=3$ for the four such that $\phi^{2} \neq 0$.
7. If $\varepsilon=-1, \tau \equiv 0 \bmod (4), \Delta_{2} \equiv 2 \bmod (4)$ and $b c \equiv 0 \bmod (8)$ then $B U(M, \phi)=2$ for the four epimorphisms $\phi \neq \rho$ such that $\phi^{3}=0$ and $B U(M, \phi)=3$ for the two such that $\phi^{3} \neq 0$.
8. If $\varepsilon=-1, \tau \equiv 0 \bmod (4), \Delta_{2} \equiv 2 \bmod (4)$ and $b c \equiv 4 \bmod (8)$ then $B U(M, \phi)=3$ for all $\phi \neq \rho$.

Suppose now that $\pi / \sqrt{\pi} \cong D_{\infty}$. Then the following results are immediate from $\S 4$.
9. If $\pi^{a b} \cong Z / 4 c Z \oplus Z / 4 Z$ then $B U(M, \phi)=2$ for all ϕ.
10. If $\pi^{a b} \cong Z / 4 c Z \oplus(Z / 2 Z)^{2}$ and $b \equiv 0 \bmod (4)$ then $B U(M, \phi)=2$ for all ϕ.
11. If $\pi^{a b} \cong Z / 4 c Z \oplus(Z / 2 Z)^{2}$ and $b \equiv 2 \bmod (4)$ then $B U(M, \phi)=2$ for epimorphisms ϕ which factors through $\pi / \sqrt{\pi}$, while $B U(M, \phi)=3$ otherwise.

6. OTHER GEOMETRIES

We remark finally that similar arguments may be used to determine the \mathbb{F}_{2}-cohomology rings and Borsuk-Ulam invariants for pairs (N, ϕ) with N a closed \mathbb{E}^{3} - or $\mathbb{N} i l^{3}$-manifold. These manifolds are all Seifert fibred over flat 2-orbifolds. Since they have been covered in [2], we shall confine ourselves to some brief observations.

The ten closed flat 3-manifolds may be easily treated individually. The only one admitting a class ϕ with $\phi^{3} \neq 0$ has group G_{4}, with holonomy $Z / 4 Z$ and abelianization $\mathbb{Z} \oplus Z / 2 Z$. Thus $H^{1}(\pi)=\langle T, X\rangle$, where $T^{2}=0$ and $X^{2} \neq 0$. We may deduce that $T X=0$ also, by
mapping G_{4} onto D_{8}. It follows easily that

$$
H^{*}\left(G_{4}\right) \cong \mathbb{F}_{2}[T, X, \Omega] /\left(T^{2}, T X, X \Omega, T \Omega+X^{3}, \Omega^{2}\right)
$$

where Ω has degree 2 . (Thus $X^{3}=(T+X)^{3} \neq 0$. These classes correspond to the two epimorphisms without integral lifts.)

The possible Seifert bases B of closed ${\mathbb{N} i l^{3} \text {-manifolds are the seven }}^{\text {- }}$ flat 2-orbifolds with no reflector curves: $B=T, K b, S(2,2,2,2)$, $S(2,4,4), S(2,3,6), S(3,3,3)$ or $P(2,2)$. Let $\beta=\pi_{1}^{\text {orb }}(B)$ be the orbifold fundamental group of the base. Then $\pi^{a b}$ is an extension of $\beta^{a b}$ by a finite cyclic group $Z / q Z$, if the base is orientable $(B \neq K b$ or $P(2,2))$, and by $Z /(2, q) Z$ otherwise. The ring $H^{*}(\pi)$ depends only on the base B and the residue of $q \bmod (4)$. If $B=T$ or $K b$ then $\pi \cong \mathbb{Z}^{2} \rtimes_{\Theta} \mathbb{Z}$, for some $\Theta \in G L(2, \mathbb{Z})$. These are in fact the cases requiring most effort. In all other cases $\pi^{a b}$ is finite, and the projection of π onto β induces an isomorphism $H_{1}(\pi) \cong H_{1}(\beta)$. When $B=S(2,3,6)$ or $S(3,3,3)$ this group is cyclic. (In particular, such $\mathbb{N} i l^{3}$-manifolds are not unions of twisted I-bundles.) When $B=S(2,4,4)$ we have $\pi / X^{4}(\pi) \cong \beta / X^{4}(\beta) \cong G_{4} / X^{4}\left(G_{4}\right)$. The cases of $S(2,2,2,2)$ and $P(2,2)$ are related to those of the flat 3-manifolds G_{2} and B_{4}, respectively.

References

[1] Gonçalves, D.L., Hayat, C., Zvengrowski, P. The Borsuk-Ulam theorem for manifolds, with applications to dimensions two and three, in Group actions and homogeneous spaces, Fak. Mat. Fyziky Inform. Univ. Komenského, Bratislava (2010), 9-28.
[2] Bauval, A., Gonçalves, D.L., Hayat, C. and Zvengrowski, P. The Borsuk-Ulam Theorem for Seifert manifolds, preprint (2009).
[3] Hillman, J.A. The kernel of integral cup product, J. Austral. Math. Soc. 43 (1987), 10-15.
[4] Martins, S.T. The cohomology ring of $(\mathbb{Z} \oplus \mathbb{Z}) \rtimes \mathbb{Z}$, poster, XVIII Encontro Brasiliero de Topologia, Aguas de Lindoia (2012).
[5] Robinson, D.J.S. A Course in the Theory of Groups,
Graduate Texts in Mathematics 80,
Springer-Verlag, Berlin - Heidelberg - New York (1982).
School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

E-mail address: jonathan.hillman@sydney.edu.au

[^0]: 1991 Mathematics Subject Classification. 57M25.
 Key words and phrases. Borsuk-Ulam Theorem, cohomology, Sol ${ }^{3}$-manifold.

