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Abstract

We consider Casimir elements for the orthogonal and symplectic Lie algebras

constructed with the use of the Brauer algebra. We calculate the images of these

elements under the Harish-Chandra isomorphism and thus show that they (together

with the Pfaffian-type element in the even orthogonal case) are algebraically inde-

pendent generators of the centers of the corresponding universal enveloping algebras.
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1 Introduction

It is well-known that the Schur–Weyl duality can be used to get natural constructions of

families of Casimir elements for the classical Lie algebras. For some particular choices of

parameters the images of such elements under the Harish-Chandra isomorphism can be

calculated in an explicit form. For the general linear Lie algebras glN this leads to an ex-

plicit construction of a linear basis of the center of the universal enveloping algebra U(glN).

The basis elements are known as the quantum immanants and their Harish-Chandra im-

ages are the factorial (or shifted) Schur functions; see [14] and [15]. Constructing quantum

immanant-type bases of the centers of the universal enveloping algebras U(oN) and U(spN)

for the orthogonal and symplectic Lie algebras remains an open problem; see, however [11],

[13], [16] and [17] for some results in that direction.

In this paper we consider generators of the centers of U(oN) and U(spN) obtained by an

application of the Brauer–Schur–Weyl duality. They are associated with one-dimensional

representations of the Brauer algebra and take the form of some versions of noncommutative

determinants and permanents. We give explicit formulas for the Harish-Chandra images

of these elements; the images turn out to coincide with the factorial (or double) complete

and elementary symmetric functions.

In more detail, we regard CN as the vector representation of each of the groups ON

and SpN (the latter with even N). The space of tensors

CN ⊗ . . .⊗ CN︸ ︷︷ ︸
m

(1.1)

carries the diagonal action of each group. By the Schur–Weyl duality, the centralizer of the

action of the orthogonal group ON or symplectic group SpN in End (CN)⊗m is generated by

the homomorphic image of the action of the respective Brauer algebra Bm(N) or Bm(−N).

Consider multiple tensor products

U(gN)⊗ EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

, (1.2)

where gN denotes one of the Lie algebras oN or spN . We let F = [Fij] denote the N ×N

matrix whose entries Fij are the standard generators of gN ; see definitions in Sec. 3. For

each a = 1, . . . ,m we denote by Fa the respective element of the algebra (1.2),

Fa =
N∑

i,j=1

Fij ⊗ 1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a), (1.3)

where eij ∈ EndCN denote the standard matrix units. We regard an arbitrary element

C of the respective Brauer algebra Bm(N) or Bm(−N) as an operator in the space (1.1).
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The adjoint action of the respective group GN = ON or GN = SpN on the corresponding

Lie algebra gN amounts to conjugations of the matrix F by elements of the group. Hence,

since the action of the group GN on the space (1.1) commutes with the action of the Brauer

algebra, we find that the elements

trC (F1 + u1) . . . (Fm + um), (1.4)

with the trace taken over all m copies of EndCN , belong to the subalgebra U(gN)
GN of

GN -invariants in U(gN). We are using the notation F +u to indicate the matrix F +u1. If

GN = ON with odd N or GN = SpN with even N , then the subalgebra U(gN)
GN coincides

with the center of U(gN). If GN = ON with even N , then U(gN)
GN is a proper subalgebra

of the center which contains an additional Pfaffian-type Casimir element.

Note that the quantum immanants of [14] are elements of the form (1.4), where F should

be replaced with the matrix E = [Eij] formed by the basis elements Eij of the general linear

Lie algebra, C is a primitive idempotent of C [Sm] associated with a standard tableau and

the ui are contents of the tableau.

In a recent work [9] an explicit construction of generators of the center of the affine

vertex algebra V (gN) at the critical level was given. Here V (gN) is the vacuum module over

the affine Kac–Moody algebra ĝN . Under the evaluation homomorphism the generators of

the center of V (gN) get mapped into Casimir elements of the form (1.4). More precisely,

in the orthogonal case the images of the central elements defined in [9] have the form of a

differential operator

trS(m) (−∂t + F1 t
−1) . . . (−∂t + Fm t−1), (1.5)

whose coefficients are Casimir elements, where S(m) denotes the symmetrizer in the Brauer

algebra. In the symplectic case with N = 2n the images of the central elements have the

form of (1.5) with the additional factor (n − m + 1)−1 and the values of m restricted to

1 6 m 6 2n. Multiplying the operator (1.5) from the left by tm we get an expression of the

form (1.4) with C = S(m) and the parameters specialized as ui = u+m− i for i = 1, . . . ,m,

where u = −t∂t.

To identify this family of central elements we calculate their eigenvalues in highest

weight representations of gN which is equivalent to finding their images under the Harish-

Chandra isomorphism. The key starting point in the orthogonal case gN = oN with N = 2n

or N = 2n+ 1 is Theorem 3.3 which implies that the Casimir elements

trS(2k) (F1 + k − 1) . . . (F2k − k), k = 1, . . . , n (1.6)

are algebraically independent generators of the algebra of invariants U(oN)
ON . Their eigen-

values in the highest weight representations with the highest weight (λ1, . . . , λn) coincide

with the factorial complete symmetric functions hk(l
2
1, . . . , l

2
n | a), where the li are the labels
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of the highest weight shifted by the half-sum of the positive roots and a = (ai) is a se-

quence of parameters; see Sec. 3.1. In the symplectic case gN = sp2n the Casimir elements

defined by (1.6) with a normalization factor are algebraically independent generators of the

center of U(sp2n). Their eigenvalues in the highest weight representations coincide with

the factorial elementary symmetric functions ek(l
2
1, . . . , l

2
n | a); see Sec. 3.1.

These results imply that the Casimir elements (1.6) respectively coincide, up to a con-

stant factor, with those found previously in [10] as an application of the twisted Yangians.

However, the expressions for those Casimir elements given in [10] are quite different from

(1.6) so the coincidence appears to be surprising.

Our proofs are based on the characterization theorem for the factorial Schur polynomials

(see [14] and [15]) as well as on the eigenvalues of the Jucys–Murphy elements for the Brauer

algebra in the irreducible representations found in [7] and [12]. This approach extends to

the Casimir elements of the form (1.4), where C is the anti-symmetrizer in the Brauer

algebra. Although such elements are studied in the literature and their Harish-Chandra

images are known (see e.g. [3], [5], [6], [10] and [18]), our arguments appear to be new

and they apply uniformly to both families of elements constructed with the use of the

symmetrizers and anti-symmetrizers.

We acknowledge the support of the Australian Research Council. N. I. and E.R. are

grateful to the University of Sydney for the warm hospitality during their visits. N. I. was

also partially supported by the Program of Fundamental Research of the Physics and As-

tronomy Division of NASU, and Joint Ukrainian-Russian SFFR-RFBR project F40.2/108.

2 Brauer algebra

We let m be a positive integer and ω an indeterminate. An m-diagram d is a collection of

2m dots arranged into two rows with m dots in each row connected by m edges such that

any dot belongs to only one edge. The product of two diagrams d1 and d2 is determined

by placing d1 above d2 and identifying the vertices of the bottom row of d1 with the

corresponding vertices in the top row of d2. Let s be the number of closed loops obtained

in this placement. The product d1d2 is given by ω s times the resulting diagram without

loops. The Brauer algebra Bm(ω) [1] is defined as the C(ω)-linear span of the m-diagrams

with the multiplication defined above. The dimension of the algebra is 1 · 3 · · · (2m − 1).

For 1 6 a < b 6 m denote by sab and ϵab the respective diagrams of the form

r r r r r rr r r r r r
������PPPPPP· · ·

· · ·
· · ·
· · ·

· · ·
· · ·

1 a b m

and r r r r r rr r r r r r� �
 	
· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

1 a b m
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The subalgebra of Bm(ω) generated over C by sa a+1 with a = 1, . . . ,m − 1 is isomorphic

to the group algebra of the symmetric group C [Sm] so that sab will be identified with the

transposition (a b). The Brauer algebra Bm−1(ω) will be regarded as a natural subalgebra

of Bm(ω).

The Jucys–Murphy elements x1, . . . , xm for the Brauer algebra Bm(ω) are given by the

formulas

x1 = 0, xb =
b−1∑
a=1

(sab − ϵab), b = 2, . . . ,m; (2.1)

see [7] and [12], where, in particular, the eigenvalues of the xb in irreducible representations

were calculated. The element xm commutes with the subalgebra Bm−1(ω). This implies

that the elements x1, . . . , xm of Bm(ω) pairwise commute.

Irreducible representations of the algebra Bm(ω) (over C(ω)) are parameterized by

the set of partitions of the numbers m − 2f with f ∈ {0, 1, . . . , ⌊m/2⌋}. We will identify

partitions with their diagrams so that if the parts of λ are λ1, λ2, . . . then the corresponding

diagram is a left-justified array of rows of unit boxes containing λ1 boxes in the top row, λ2

boxes in the second row, etc. We will denote by |λ| the number of boxes in the diagram and

by ℓ(λ) its length, i.e., the number of rows. The box in row i and column j of a diagram

will be denoted as the pair (i, j). An updown λ-tableau is a sequence T = (Λ1, . . . ,Λm) of m

diagrams such that for each r = 1, . . . ,m the diagram Λr is obtained from Λr−1 by adding

or removing one box, where Λ0 = ∅ is the empty diagram and Λm = λ. To each updown

tableau T we associate the corresponding sequence of contents (c1, . . . , cm), cr = cr(T ),

where

cr = j − i or cr = −ω + 1− j + i,

if Λr is obtained by adding the box (i, j) to Λr−1 or by removing this box from Λr−1,

respectively.

It is well-known that the Jucys–Murphy elements can be used to define the primitive

idempotents ET = Eλ
T ; see e.g. [4] for explicit formulas. When λ runs over all partitions of

m,m− 2, . . . and T runs over all updown λ-tableaux, the elements {ET} yield a complete

set of pairwise orthogonal primitive idempotents for Bm(ω). They have the properties

xr ET = ET xr = cr(T )ET , r = 1, . . . ,m; (2.2)

see [7] and [12]. In particular, if λ = (m) is the single row diagram with m boxes then

there is a unique updown λ-tableau which can also be regarded as the standard tableau

obtained by writing the numbers 1, . . . ,m into the boxes of λ from left to right. The

corresponding primitive idempotent is the symmetrizer S(m) ∈ Bm(ω) given in terms of

the Jucys–Murphy elements as

S(m) =
m∏
r=2

(1 + xr)(ω + r − 3 + xr)

r(ω + 2r − 4)
. (2.3)
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This element also admits an equivalent expression

S(m) =
1

m!

∏
16a<b6m

(
1 +

sab
b− a

− ϵab
ω/2 + b− a− 1

)
, (2.4)

where the product is taken in the lexicographic order on the pairs (a b); see [4] and [9] for

some other equivalent formulas for S(m). We have the properties

sabS
(m) = S(m)sab = S(m) and ϵabS

(m) = S(m) ϵab = 0 (2.5)

for all 1 6 a < b 6 m.

Similarly, if λ = (1m) is the single column diagram with m boxes then the unique

updown λ-tableau can be regarded as the standard tableau obtained by writing the numbers

1, . . . ,m into the boxes of λ from top to bottom. The corresponding primitive idempotent

is the anti-symmetrizer A(m) ∈ Bm(ω). It is well-known that A(m) coincides with the

anti-symmetrizer in the group algebra for the symmetric group Sm and has the properties

sabA
(m) = A(m)sab = −A(m) and ϵabA

(m) = A(m) ϵab = 0 (2.6)

for all 1 6 a < b 6 m.

Consider now the action of the Brauer algebra on the tensor space (1.1). In the orthog-

onal case, ω = N and the generators of Bm(N) act by the rule

sab 7→ Pab, ϵab 7→ Qab, a < b, (2.7)

where Pab is defined by

Pab =
N∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ eji ⊗ 1⊗(m−b), (2.8)

while

Qab =
N∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ ei′j′ ⊗ 1⊗(m−b) (2.9)

and we use the involution on the set of indices {1, . . . , N} defined by i 7→ i ′ = N − i+ 1.

In the symplectic case, ω = −N (where N = 2n is even) and the action of Bm(−N) in

the space (1.1) is now defined by

sab 7→ −Pab, ϵab 7→ −Qab, a < b, (2.10)

where Pab is defined in (2.8), and

Qab =
N∑

i,j=1

εiεj 1
⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ ei′j′ ⊗ 1⊗(m−b) (2.11)

with εi = 1 for i = 1, . . . , n and εi = −1 for i = n+ 1, . . . , 2n.
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3 Harish-Chandra images

Consider the Lie algebra glN with its standard basis elements Eij, 1 6 i, j 6 N . The

Lie subalgebra of glN spanned by the elements Fij = Eij − Ej′i′ is isomorphic to the

orthogonal Lie algebra oN . Similarly, the Lie subalgebra of gl2n spanned by the elements

Fij = Eij − εiεjEj′i′ is isomorphic to the symplectic Lie algebra sp2n. We will keep the

notation gN for the Lie algebra oN (with N = 2n or N = 2n+ 1) or spN (with N = 2n).

Using the notation (1.3) we can write the defining relations of the universal enveloping

algebra U(gN) in the matrix form as

F1 F2 − F2 F1 = (P −Q)F2 − F2 (P −Q) (3.1)

together with the relation F + F ′ = 0, where the prime denotes the matrix transposition

defined by

(A ′)ij =

{
Aj′i′ in the orthogonal case,

εiεj Aj′i′ in the symplectic case.
(3.2)

In the following lemma we identify the elements of the respective Brauer algebra Bm(N)

or Bm(−N) with their images under the actions (2.7) or (2.10).

Lemma 3.1. Let u1, . . . , um be complex parameters. For any permutations σ, τ ∈ Sm and

for C = S(m) or C = A(m) we have

tr (Fσ(1) + uτ(1)) . . . (Fσ(m) + uτ(m))C = tr (F1 + u1) . . . (Fm + um)C. (3.3)

Proof. Let Pπ denote the image of any element π ∈ Sm in the algebra (1.2). Since PπFa =

Fπ(a)Pπ, using the cyclic property of trace and applying the conjugation by the element

Pσ−1 in the left hand side of (3.3) we find that it suffices to verify the relation for the case

where σ is the identity permutation. Note that by (3.1),

(Fa + u)(Fa+1 + v)− (Fa+1 + v)(Fa + u)

= (Pa a+1 −Qa a+1)Fa+1 − Fa+1 (Pa a+1 −Qa a+1),

and by (2.5) and (2.6)

C (Pa a+1 −Qa a+1) = (Pa a+1 −Qa a+1)C = ±C.

Hence, the claim follows from the cyclic property of trace and the first part of the proof.

Given any n-tuple of complex numbers λ = (λ1, . . . , λn) the corresponding irreducible

highest weight representation L(λ) of the Lie algebra gN is generated by a nonzero vector

ξ ∈ L(λ) such that

Fij ξ = 0 for 1 6 i < j 6 N, and

Fii ξ = λi ξ for 1 6 i 6 n.
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We will denote by GN the orthogonal group ON or the symplectic group SpN . Recall

that finite-dimensional irreducible representations of the orthogonal group ON are param-

eterized by all diagrams λ with the property λ′
1 + λ′

2 6 N , where λ′
j denotes the number

of boxes in the column j of λ. The corresponding representation will be denoted by V (λ).

Let λ∗ be the diagram obtained from λ by replacing the first column with the column

containing N − λ′
1 boxes. If N = 2n+ 1 and λ′

1 6 n then the associated representation of

the Lie algebra oN in the space V (λ) is irreducible and isomorphic to the representation

L(λ) whose highest weight coincides with λ; if λ′
1 > n then the associated representation

of oN is isomorphic to L(λ∗).

If N = 2n and λ′
1 < n then the associated representation of the Lie algebra oN in

the space V (λ) is irreducible and isomorphic to L(λ), while for λ′
1 > n the associated

representation of oN is isomorphic to L(λ∗). If N = 2n and λ′
1 = n then the associated

representation of oN in V (λ) is isomorphic to the direct sum of two irreducible represen-

tations L(λ) and L(λ̃) with λ̃ = (λ1, . . . , λn−1,−λn).

Finite-dimensional irreducible representations V (λ) of the symplectic group SpN with

N = 2n are parameterized by partitions λ whose lengths do not exceed n. The associated

representation of the Lie algebra spN in V (λ) is irreducible and isomorphic to L(λ).

Any element z ∈ U(gN)
GN acts in V (λ) by multiplying each vector by a scalar χ(z).

In the case of gN = o2n the eigenvalues of any element z ∈ U(o2n)
O2n in L(λ) and L(λ̃)

coincide and they are equal to χ(z).

When regarded as a function of the highest weight, χ(z) is a symmetric polynomial in

the variables l21, . . . , l
2
n, where li = λi + ρi and ρi = n− i+ ε with

ε =


0 for gN = o2n,
1
2

for gN = o2n+1,

1 for gN = sp2n.

(3.4)

The mapping z 7→ χ(z) defines an algebra isomorphism

χ : U(gN)
GN → C [l21, . . . , l

2
n]

Sn

known as the Harish-Chandra isomorphism; see e.g. [2, Ch. 7].

3.1 Characterization properties for symmetric polynomials

Following [10], we will be using the factorial (or double) elementary and complete sym-

metric polynomials and their characterization properties; see [14] and [15] for more details.

Here we recall the corresponding results to be used in the proofs below.

Consider the algebra of symmetric polynomials in the independent variables z1, . . . , zn
over C and fix a sequence a = (a1, a2, . . . ) of complex numbers. The factorial elementary
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and complete symmetric polynomials are defined by the respective formulas

ek(z1, . . . , zn |a) =
∑

16p1<···<pk6n

(zp1 − ap1)(zp2 − ap2−1) . . . (zpk − apk−k+1), (3.5)

hk(z1, . . . , zn |a) =
∑

16p16···6pk6n

(zp1 − ap1)(zp2 − ap2+1) . . . (zpk − apk+k−1), (3.6)

so that ek(z1, . . . , zn |a) = 0 for k > n. These polynomials are particular cases of the

factorial (or double) Schur polynomials; see e.g. [8]. When a is specialized to the sequence

of zeros, then (3.5) and (3.6) become the elementary and complete symmetric polynomials

ek(z1, . . . , zn) and hk(z1, . . . , zn).

For any partition λ = (λ1, . . . , λn) whose length ℓ(λ) does not exceed n introduce the

n-tuple aλ of complex numbers by

aλ = (aλ1+n, aλ2+n−1, . . . , aλn+1).

The polynomials (3.5) and (3.6) possess vanishing properties of the form:

if ℓ(λ) < k then ek(aλ |a) = 0,

if λ1 < k then hk(aλ |a) = 0.

We will need two particular cases of the characterization theorem for the factorial Schur

polynomials [14]. Now we will be assuming that all elements ai of the sequence a are

distinct. Suppose that f(z1, . . . , zn) is a symmetric polynomial of degree 6 k whose com-

ponent of degree k coincides with ek(z1, . . . , zn) or hk(z1, . . . , zn). If

f(aλ) = 0 for all λ with |λ| < k

then f(z1, . . . , zn) equals ek(z1, . . . , zn |a) or hk(z1, . . . , zn |a), respectively.
From now on, we will work with particular sequences a defined by

a = (ε2, (ε+ 1)2, (ε+ 2)2, . . . ), (3.7)

where ε is introduced in (3.4), so that ai = (ε + i − 1)2. Furthermore, the n-tuple aλ
associated with the sequence (3.7) has the form

aλ =
(
(λ1 + n− 1 + ε)2, . . . , (λn − 1 + ε)2

)
= (l21, . . . , l

2
n).

Note that any element z ∈ U(gN)
GN is uniquely determined by the eigenvalues χ(z) in

the irreducible modules L(λ), where λ = (λ1, . . . , λn) runs over the set of partitions with

ℓ(λ) 6 n. Hence, we come to the following characterization properties of Casimir elements;

cf. [10, Corollary 2.5]. We use the canonical filtration on the universal enveloping algebra

U(gN).

Proposition 3.2. Suppose that z ∈ U(gN)
GN is an element of degree 6 2k which vanishes

in each representation L(λ) with |λ| < k. If the homogeneous component of χ(z) of de-

gree 2k coincides with ek(λ
2
1, . . . , λ

2
n) or hk(λ

2
1, . . . , λ

2
n) then χ(z) equals ek(l

2
1, . . . , l

2
n |a) or

hk(l
2
1, . . . , l

2
n |a), respectively.
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3.2 Casimir elements for the orthogonal Lie algebras

As we pointed out in the Introduction, any element of the universal enveloping algebra

U(gN) of the form (1.4) belongs to the subalgebra of invariants U(gN)
GN . We will be

concerned with two choices of the element C ∈ Bm(ω); namely, C = S(m) and C = A(m).

Moreover, the parameters ua in (1.4) will be specialized accordingly so that all differences

ua − ua+1 have the same value 1 or −1 for all a = 1, . . . ,m− 1.

We will be assuming here that gN = oN . For any m > 0 set

αm =
N + 2m− 2

N +m− 2
. (3.8)

We start by taking even values m = 2k and particular specializations of the parameters.

Theorem 3.3. For any k > 1 the image of the Casimir element

tr (F1 + k − 1) . . . (F2k − k)S(2k) ∈ U(oN)
ON (3.9)

under the Harish-Chandra isomorphism coincides with α2k hk(l
2
1, . . . , l

2
n |a).

Proof. Denote the Casimir element (3.9) by Dk. We will use Proposition 3.2 and start by

showing that Dk vanishes in all representations L(λ) of oN , where the partitions λ satisfy

|λ| < k. We employ a realization of L(λ) in tensor spaces as follows. Let r = |λ|. Consider
the action of the Lie algebra oN on CN defined by

Fij 7→ −eji + ei′j′ , 1 6 i, j 6 N,

so that this representation is isomorphic to L(1, 0, . . . , 0). The space of tensors (CN)⊗r

then also becomes a representation of oN . Using the matrix notation (1.3), under the

corresponding homomorphism

φ : U(oN)⊗ End (CN)⊗2k → End (CN)⊗r ⊗ End (CN)⊗2k

we have

φ(Fa) =
r∑

b=1

(−Pb r+a +Qb r+a), a = 1, . . . , 2k, (3.10)

where we use the operators (2.8) and (2.9). The decomposition of (CN)⊗r into a direct

sum of irreducible representations of oN contains L(λ) with a nonzero multiplicity. Hence,

the desired vanishing condition of Proposition 3.2 will follow if we show that(
φ(F1) + k − 1

)
. . .

(
φ(F2k)− k

)
S ′(2k) = 0, (3.11)

where S ′(2k) denotes the image of the symmetrizer in the Brauer algebra B2k(N) acting of

the last 2k copies of the tensor product space (CN)⊗(r+2k). Due to (3.10) and relations

(2.5), the desired identity (3.11) can be written in the form

(−xr+1 + k − 1) . . . (−xr+2k + k − 1)S ′(2k) = 0, (3.12)
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where xr+1, . . . , xr+2k denote the images of the Jucys–Murphy elements (2.1) of the Brauer

algebra Br+2k(N) under its action in (CN)⊗(r+2k). To prove (3.12) we note that the two

operators (−xr+1 + k − 1) . . . (−xr+2k + k − 1) and S ′(2k) on the vector space (CN)⊗(r+2k)

commute with the action of ON and show that their images have zero intersection. To

describe the image of the first operator, represent the vector space as the direct sum of

irreducible representations of ON ,

(CN)⊗(r+2k) =

⌊ r
2
⌋+k∑

l=0

∑
ν⊢r+2k−2l

∑
U

EU(CN)⊗(r+2k),

where the last sum is taken over all updown tableaux U = (Λ1, . . . ,Λr+2k) of shape ν

associated with the Brauer algebra Br+2k(N). We claim that if U is an updown tableau of

shape ν = Λr+2k with ν1 > k then

(−xr+1 + k − 1) . . . (−xr+2k + k − 1)EU = 0. (3.13)

Indeed, since r < k there exists a pair of diagrams (Λr+a,Λr+a+1) with a ∈ {0, 1, . . . , 2k−1}
with the property that the second diagram is obtained from the first by adding the box

(1, k). The content of this box is k − 1 so that (3.13) follows from relations (2.2). Thus,

as a representation of ON the image

(−xr+1 + k − 1) . . . (−xr+2k + k − 1) (CN)⊗(r+2k)

is contained in a direct sum of representations V (ν) with ν1 < k.

On the other hand, the operator S ′(2k) projects the vector space (CN)⊗(r+2k) onto the

tensor product (CN)⊗r ⊗ V (2k, 0, . . . , 0) of representations of ON . For the irreducible

decomposition of the tensor product of representations of ON we have

CN ⊗ V (µ) ∼=
⊕
µ̃

V (µ̃),

where µ̃ is obtained from µ by adding or removing one box. Hence, as a representation of

ON , the image S ′(2k)(CN)⊗(r+2k) is contained in a direct sum of representations V (ν) with

ν1 > k + 1. This completes the proof of (3.12) and hence (3.11).

The leading term of the symmetric polynomial χ(Dk) was calculated in [9] and [11].

It coincides with α2khk(λ
2
1, . . . , λ

2
n) so that the proof is completed by the application of

Proposition 3.2.

Remark 3.4. (i) Theorem 3.3 together with Theorem 3.8 below show that the elements

(3.9) and (3.19) are proportional to the respective Casimir elements given in [10, Theo-

rems 3.2 and 3.3] by completely different formulas. It would be interesting to find a direct

argument connecting these families.
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(ii) It is possible to give an independent proof of Theorems 3.3 without relying on

the calculation of the leading term of the symmetric polynomial χ(Dk) in [9] and [11]. To

this end, we could use a different version of the characterization theorem from [14] where

the assumption |λ| < k is replaced by λ1 < k. The vanishing condition is verified in a

similar way and it determines the polynomial χ(Dk), up to a constant factor. The latter

is calculated by finding the leading term in the case where λ is the one box diagram.

Now we turn to more general Casimir elements of the form (1.4) and (1.5). Let u be

a variable. Consider the polynomials in u whose coefficients are Casimir elements for oN
given by

Dm(u) = tr
(
F1 + u+

m− 1

2

)(
F2 + u+

m− 3

2

)
. . .

(
Fm + u− m− 1

2

)
S(m).

We use notation (3.8).

Corollary 3.5. For the images under the Harish-Chandra isomorphism we have

χ : Dm(u) 7→ αm

⌊m
2
⌋∑

r=0

(
N +m− 2

m− 2r

)
hr(l

2
1, . . . , l

2
n |a)

m−2r−1∏
i=0

(
u− m− 1

2
+ r + i

)
and

χ : tr (−∂t + F1 t
−1) . . . (−∂t + Fm t−1)S(m) 7→

αm

⌊m
2
⌋∑

r=0

(
N +m− 2

m− 2r

)
hr(l

2
1, . . . , l

2
n |a) t−2r (−∂t + rt−1)m−2r.

Proof. Observe that by the property of trace, Dm(u) is stable under the transposition (3.2)

applied simultaneously to each of the m copies of the algebra EndCN . The symmetrizer

S(m) is also stable under this transposition. On the other hand, since F ′ = −F , using

Lemma 3.1, for the image of Dm(u) we find

Dm(u) = tr
(
−F1 + u+

m− 1

2

)
. . .

(
−Fm + u− m− 1

2

)
S(m)

= (−1)m tr
(
F1 − u− m− 1

2

)
. . .

(
Fm − u+

m− 1

2

)
S(m)

= (−1)m tr
(
F1 − u+

m− 1

2

)
. . .

(
Fm − u− m− 1

2

)
S(m) = (−1)mDm(−u).

This shows that the polynomials D2k(u) are even, while the polynomials D2k−1(u) are odd.

In particular, D2k−1(0) = 0, while the value χ(D2k(1/2)) = χ(D2k(−1/2)) is found from

Theorem 3.3. These values agree with the Harish-Chandra images provided in the state-

ment of the corollary. Hence, the proof will be completed if we show that the polynomials

12



Dm(u) and the polynomials which are claimed to be their Harish-Chandra images satisfy

the same recurrence relations. We show first that

Dm(u+ 1/2)−Dm(u− 1/2) =
(N +m− 3)(N + 2m− 2)

N + 2m− 4
Dm−1(u), m > 1, (3.14)

where we set D0(u) = 1. By Lemma 3.1,

Dm(u+ 1/2) = tr
(
F1 + u+

m

2
− 1

)
. . .

(
Fm−1 + u− m

2
− 1

)(
Fm + u+

m

2

)
S(m),

so that

Dm(u+ 1/2)−Dm(u− 1/2) = m tr
(
F1 + u+

m

2
− 1

)
. . .

(
Fm−1 + u− m

2
− 1

)
S(m).

By [9, Lemma 4.1], the partial trace of the symmetrizer is found by

trm S(m) =
(N +m− 3)(N + 2m− 2)

m (N + 2m− 4)
S(m−1)

thus verifying (3.14). A simple calculation shows that the same relation is satisfied by the

polynomials which are claimed to be the images χ(Dm(u)) as stated in the corollary.

To prove the second part, note that by the relation

tm (−∂t + F1 t
−1) . . . (−∂t + Fm t−1) = (−t∂t + F1 +m− 1) . . . (−t∂t + Fm)

the polynomial Dm(u) can be written in the form

tm tr (−∂t + F1 t
−1) . . . (−∂t + Fm t−1)S(m)

after the subsequent replacement of −t∂t with u− (m− 1)/2. Similarly, for any k > 0,

tk (−∂t + rt−1)k = (−t∂t + r + k − 1) . . . (−t∂t + r),

so that the second relation follows from the first.

In what follows we state analogues of Theorem 3.3 and Corollary 3.5, where the role

of the symmetrizer S(m) is taken by the anti-symmetrizer A(m). The arguments are quite

similar so we only indicate the key steps in the proofs. The corresponding Casimir elements

turn out to coincide with those already appeared in the literature; cf. e.g. [5], [10] and

[18].

Theorem 3.6. For any 1 6 k 6 n the image of the Casimir element

tr (F1 − k + 1) . . . (F2k + k)A(2k) ∈ U(oN)
ON (3.15)

under the Harish-Chandra isomorphism coincides with (−1)k ek(l
2
1, . . . , l

2
n |a).
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Proof. Denote the Casimir element (3.15) by Ck. We use Proposition 3.2 and show that Ck

vanishes in all representations L(λ) of oN , where the partitions λ satisfy |λ| < k. Using the

same realization of L(λ) as in the proof of Theorem 3.3, we come to showing the following

analogue of (3.11):

(φ(F1)− k + 1
)
. . .

(
φ(F2k) + k

)
A ′(2k) = 0. (3.16)

Here the homomorphism φ is defined in (3.10) and A ′(2k) denotes the image of the anti-

symmetrizer in the Brauer algebra B2k(N) acting of the last 2k copies of the tensor product

space (CN)⊗(r+2k) with r = |λ|. By (2.6), the identity (3.16) can be written in the form

(−xr+1 − k + 1) . . . (−xr+2k − k + 1)A ′(2k) = 0.

To verify this relation, we show exactly as in the proof of Theorem 3.3 that the image

of the operator (−xr+1 − k + 1) . . . (−xr+2k − k + 1) on the vector space (CN)⊗(r+2k) is

contained in a direct sum of representations V (ν) of ON with ℓ(ν) < k, while the image of

the operator A ′(2k) is contained in a direct sum of representations V (ν) with ℓ(ν) > k+ 1.

It was shown in [9] and [11] that the leading term of the symmetric polynomial χ(Ck)

coincides with (−1)k ek(λ
2
1, . . . , λ

2
n).

Consider the polynomials in u whose coefficients are Casimir elements for oN given by

Cm(u) = tr
(
F1 + u+

m− 1

2

)(
F2 + u+

m− 3

2

)
. . .

(
Fm + u− m− 1

2

)
A(m).

Corollary 3.7. For the images under the Harish-Chandra isomorphism we have

χ : Cm(u) 7→
⌊m

2
⌋∑

r=0

(−1)r
(
N − 2r

m− 2r

)
er(l

2
1, . . . , l

2
n |a)

m−2r−1∏
i=0

(
u− m− 1

2
+ r + i

)
and

χ : tr (−∂t + F1 t
−1) . . . (−∂t + Fm t−1)A(m) 7→

⌊m
2
⌋∑

r=0

(−1)r
(
N − 2r

m− 2r

)
er(l

2
1, . . . , l

2
n |a) t−2r (−∂t + rt−1)m−2r.

Proof. We argue as in the proof of Corollary 3.5. Using Lemma 3.1 we show first that

Cm(u) = (−1)mCm(−u). In particular, C2k−1(0) = 0 and χ(C2k(1/2)) = χ(C2k(−1/2)) is

found from Theorem 3.6. As the next step, we verify that

Cm(u+ 1/2)− Cm(u− 1/2) = (N −m+ 1)Cm−1(u), m > 1, (3.17)

where C0(u) = 1. This follows easily from Lemma 3.1, and the calculation of the partial

trace of the anti-symmetrizer which is found by

trmA(m) =
N −m+ 1

m
A(m−1)
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thus verifying (3.17). The same relation is satisfied by the polynomials which are claimed

to be the images χ(Cm(u)) as stated in the corollary. The second part follows from the

first; see the proof of Corollary 3.5.

3.3 Casimir elements for the symplectic Lie algebras

Now take gN = sp2n. Consider the action of the Brauer algebra Bm(−2n) on the space

(1.1) defined by (2.10). Note that the image of the symmetrizer S(m) (see (2.3) and (2.4))

under this action is well-defined for m 6 n + 1 and it is zero for m = n + 1, while the

specialization of S(m) at ω = −2n is not defined for n + 2 6 m 6 2n. Nevertheless, the

expression
1

n−m+ 1
trS(m)(F1 + u1) . . . (Fm + um) (3.18)

still defines a Casimir element for sp2n for all 1 6 m 6 2n, where u1, . . . , um are arbitrary

complex numbers. Indeed, assuming that m 6 n, using (2.3) and calculating first the

partial trace trm in (3.18) over the m-th copy of EndC2n we get an expression involving

the symmetrizer S(m−1) with the extra factor (n−m+1)/(n−m+2). The latter expression

is well-defined for m 6 n+ 1 thus allowing us to extend the value of (3.18) to m = n+ 1.

Continuing with a similar calculation and taking further partial traces we extend the

definition of (3.18) to all values m 6 2n; see [9, Sec. 3.3] for more details.

Recall that the factorial elementary symmetric polynomials er(l
2
1, . . . , l

2
n |a) with the

sequence a defined as in (3.7) with ε = 1 are algebraically independent generators of the

algebra C [l21, . . . , l
2
n]

Sn . Now we let m be fixed and let n run over integer values > m/2.

Set k = ⌊m/2⌋. It is clear from the above argument and from the explicit formulas for

the symmetrizer S(m) that the Harish-Chandra image of the Casimir element (3.18) can

be written as the following linear combination∑
π

c(m)
π (u1, . . . , um)

k∏
r=1

er(l
2
1, . . . , l

2
n |a)pr ,

where π runs over the k-tuples of nonnegative integers π = (p1, . . . , pk) satisfying the

condition p1 + 2p2 + · · · + kpk 6 m/2. Moreover, the c
(m)
π (u1, . . . , um) are symmetric

polynomials in u1, . . . , um whose coefficients are rational functions in n. Since a rational

function is uniquely determined by its values at infinitely many points, the Harish-Chandra

image of the Casimir element (3.18) is uniquely determined by its values at infinitely many

values of n.

Theorem 3.8. For any 1 6 k 6 n the image of the Casimir element

n− k + 1

n− 2k + 1
tr (F1 − k + 1) . . . (F2k + k)S(2k) ∈ U(sp2n)

Sp2n (3.19)

under the Harish-Chandra isomorphism coincides with (−1)k ek(l
2
1, . . . , l

2
n |a).
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Proof. As explained above, it will be sufficient to prove the statement for any fixed k

under the assumption that n > 2k. We will use the same argument as in the proof of

Theorem 3.3. Let Dk denote the Casimir element (3.19). Relying on Proposition 3.2 we

show that Dk vanishes in all representations V (λ) of Sp2n, where the partitions λ satisfy

|λ| < k. Set r = |λ| and consider the action of the Lie algebra sp2n on C2n defined by

Fij 7→ −eji + εiεj ei′j′ , 1 6 i, j 6 2n.

Under the corresponding representation in the tensor space

φ : U(sp2n)⊗ End (C2n)⊗2k → End (C2n)⊗r ⊗ End (C2n)⊗2k

we have

φ(Fa) =
r∑

b=1

(−Pb r+a +Qb r+a), a = 1, . . . , 2k, (3.20)

where we use the operators (2.8) and (2.11). The vanishing condition of Proposition 3.2

will be verified if we show that if |λ| < k then(
φ(F1)− k + 1

)
. . .

(
φ(F2k) + k

)
S ′(2k) = 0, (3.21)

where S ′(2k) denotes the image of the symmetrizer in the Brauer algebra B2k(−2n) acting

of the last 2k copies of the tensor product space (C2n)⊗(r+2k). Due to (3.20) and relations

(2.5), the desired identity (3.21) can be written in the form

(xr+1 − k + 1) . . . (xr+2k − k + 1)S ′(2k) = 0,

where xr+1, . . . , xr+2k denote the images of the Jucys–Murphy elements (2.1) of the Brauer

algebra Br+2k(−2n) under its action (2.10) in (C2n)⊗(r+2k). It is verified by the same

argument as in the proof of Theorem 3.3. The leading term of χ(Dk) coincides with

(−1)kek(λ
2
1, . . . , λ

2
n) as shown in [9] and [11].

For 1 6 m 6 2n consider the polynomials in a variable u whose coefficients are Casimir

elements for sp2n given by

Dm(u) =
n−m/2 + 1

n−m+ 1
tr
(
F1 + u+

m− 1

2

)(
F2 + u+

m− 3

2

)
. . .

(
Fm + u− m− 1

2

)
S(m).

Corollary 3.9. For the images under the Harish-Chandra isomorphism we have

χ : Dm(u) 7→
⌊m

2
⌋∑

r=0

(−1)r
(
2n− 2r + 1

m− 2r

)
er(l

2
1, . . . , l

2
n |a)

m−2r−1∏
i=0

(
u− m− 1

2
+ r + i

)
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and

χ :
n−m/2 + 1

n−m+ 1
tr (−∂t + F1 t

−1) . . . (−∂t + Fm t−1)S(m) 7→
⌊m

2
⌋∑

r=0

(−1)r
(
2n− 2r + 1

m− 2r

)
er(l

2
1, . . . , l

2
n |a) t−2r (−∂t + rt−1)m−2r.

Proof. Exactly as in the proof of Corollary 3.5, we use Lemma 3.1 to verify the relations

Dm(u) = (−1)mDm(−u) and

Dm(u+ 1/2)−Dm(u− 1/2) = (2n−m+ 2)Dm−1(u), m > 1,

with D0(u) = 1. Since the same relation is satisfied by the polynomials which are claimed

to be the images χ(Dm(u)), the statement follows from Theorem 3.8.

Finally, we obtain analogues of Theorem 3.8 and Corollary 3.9, where S(m) is replaced

by A(m). We keep the notation A(m) for the image of the anti-symmetrizer under the action

(2.10). Note that due to the minus signs in that formula, the operator A(m) acts in the

tensor space (1.1) as the symmetrization operator . The corresponding Casimir elements

coincide with those constructed in [6] and [10].

Theorem 3.10. For any k > 1 the image of the Casimir element

tr (F1 + k − 1) . . . (F2k − k)A(2k) ∈ U(sp2n)
Sp2n (3.22)

under the Harish-Chandra isomorphism coincides with hk(l
2
1, . . . , l

2
n |a).

Proof. Denote the Casimir element (3.22) by Ck. We use Proposition 3.2 and show that

Ck vanishes in all representations V (λ) of Sp2n, where the partitions λ satisfy |λ| < k.

Using the same realization of V (λ) as in the proof of Theorem 3.8, we come to showing

the following analogue of (3.21):(
φ(F1) + k − 1

)
. . .

(
φ(F2k)− k

)
A ′(2k) = 0.

We verify that the image of the operator (−xr+1+k− 1) . . . (−xr+2k +k− 1) on the vector

space (C2n)⊗(r+2k) is contained in a direct sum of representations V (ν) of Sp2n with ν1 < k,

while the image of the operator A ′(2k) is contained in a direct sum of representations V (ν)

with ν1 > k + 1. An easy calculation shows that the leading term of χ(Ck) coincides with

hk(λ
2
1, . . . , λ

2
n).

Now consider the polynomials in u given by

Cm(u) = tr
(
F1 + u+

m− 1

2

)(
F2 + u+

m− 3

2

)
. . .

(
Fm + u− m− 1

2

)
A(m).

Their coefficients are Casimir elements for sp2n.
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Corollary 3.11. For the images under the Harish-Chandra isomorphism we have

χ : Cm(u) 7→
⌊m

2
⌋∑

r=0

(
2n+m− 1

m− 2r

)
hr(l

2
1, . . . , l

2
n |a)

m−2r−1∏
i=0

(
u− m− 1

2
+ r + i

)
and

χ : tr (−∂t + F1 t
−1) . . . (−∂t + Fm t−1)A(m) 7→

⌊m
2
⌋∑

r=0

(
2n+m− 1

m− 2r

)
hr(l

2
1, . . . , l

2
n |a) t−2r (−∂t + rt−1)m−2r.

Proof. Lemma 3.1 implies Cm(u) = (−1)mCm(−u) so that for the odd values m = 2k − 1

we have C2k−1(0) = 0, while χ(C2k(1/2)) = χ(C2k(−1/2)) is found from Theorem 3.10.

Furthermore, we verify that

Cm(u+ 1/2)− Cm(u− 1/2) = (2n+m− 1)Cm−1(u), m > 1, (3.23)

where C0(u) = 1. This follows from Lemma 3.1 and the relation for the partial trace of

the operator A(m) found by

trm A(m) =
2n+m− 1

m
A(m−1)

thus verifying (3.23). The same relation is satisfied by the polynomials which are claimed

to be the images χ(Cm(u)) as stated in the corollary.
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