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Abstract. This paper shows that the cyclotomic quiver Hecke algebras of
type A, and the gradings on these algebras, are intimately related to the

classical seminormal forms. We start by classifying all seminormal bases and

then give an explicit “integral” closed formula for the Gram determinants of the
Specht modules in terms of the combinatorics which utilizes the KLR gradings.

We then use seminormal forms to give a deformation of the KLR algebras of

type A. This makes it possible to study the cyclotomic quiver Hecke algebras
in terms of the semisimple representation theory and seminormal forms. As

an application we construct a new distinguished graded cellular basis of the

cyclotomic KLR algebras of type A.
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1. Introduction

The quiver Hecke algebras are a remarkable family of algebras which were
introduced independently by Khovanov and Lauda [20,21] and Rouquier [29]. These
algebras are attached to an arbitrary oriented quiver, they are Z-graded and they
categorify the negative part of the associated quantum group. Over a field, Brundan
and Kleshchev showed that the cyclotomic quiver Hecke algebras of type A, which
are certain quotients of the quiver Hecke algebras of type A, are isomorphic to the
cyclotomic Hecke algebras of type A.

The quiver Hecke algebras have a homogeneous presentation by generators and
relations. As a consequence they have well-defined integral forms. Unlike Hecke
algebras, which are generically semisimple, the cyclotomic quiver Hecke algebras are
intrinsically non-semisimple algebras. This implies that the cyclotomic quiver Hecke
algebras cannot be isomorphic to the cyclotomic Hecke algebras over an arbitrary
ring.
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The first main result of this paper shows that the cyclotomic quiver Hecke
algebras of type A admit a one-parameter deformation. Moreover, this deformation
is isomorphic to cyclotomic Hecke algebra defined over the corresponding ring.
Before we can state this result we need some notation.

Fix integers n ≥ 0 and e > 1 and let Γe be the oriented quiver with vertex set
I = Z/eZ and edges i → i + 1, for i ∈ I. Given i ∈ I let ı̂ ≥ 0 be the smallest
non-negative integer such that i = ı̂ + eZ. For each dominant weight Λ for the
corresponding Kac-Moody algebra g(Γe), there exists a cyclotomic quiver Hecke
algebra RΛ

n and a cyclotomic Hecke algebra HΛ
n . To each tuple i ∈ In we associate

the set of standard tableaux Std(i) with residue sequence i and for 1 ≤ r ≤ n we set

Er(i) = { cr(t)− ı̂r | t ∈ Std(i) } ⊂ Z,

where cr(t) ∈ Z is the content of r in the tableau t. These definitions ensure that
Er(i) ⊆ { ke | k ∈ Z }. All of these terms are defined in Section 3.1.

Like the cyclotomic quiver Hecke algebra, our deformation of RΛ
n is adapted to

the choice of e through the choice of base ring O which must be an e-idempotent
subring (Definition 4.1). This definition ensures that the cyclotomic Hecke algebras
are semisimple over the field of fractions of O and that HΛ

n(O)⊗OK is a cyclotomic
quiver Hecke algebra whenever K = O/m, for m a maximal ideal of O. For t ∈ O
and k ∈ Z let [k] = [k]t be the corresponding quantum integer.

We can now state our first main result.

Theorem A. Suppose that (O, t) is an e-idempotent subring of a field K . Then
the algebra HΛ

n(O) is generated as an O-algebra by the elements

{ fOi | i ∈ In } ∪ {ψOr | 1 ≤ r < n } ∪ { yOr | 1 ≤ r ≤ n }

subject only to the following relations:∏
c∈Er(i)

(yOr − [c])fOi = 0,

fOi f
O
j = δijf

O
i ,

∑
i∈Inf

O
i = 1, yOr f

O
i = fOi y

O
r ,

ψOr f
O
i = fOsr·iψ

O
r , yOr y

O
s = yOs y

O
r ,

ψOr y
O
r+1f

O
i = (yOr ψ

O
r + δirir+1)fOi , yOr+1ψ

O
r f
O
i = (ψOr y

O
r + δirir+1

)fOi ,

ψOr y
O
s = yOs ψ

O
r , if s 6= r, r + 1,

ψOr ψ
O
s = ψOs ψ

O
r , if |r − s| > 1,

(ψOr )2fOi =



(y
〈1+ρr(i)〉
r − yOr+1)(y

〈1−ρr(i)〉
r+1 − yOr )fOi , if ir � ir+1,

(y
〈1+ρr(i)〉
r − yOr+1)fOi , if ir → ir+1,

(y
〈1−ρr(i)〉
r+1 − yOr )fOi , if ir ← ir+1,

0, if ir = ir+1,

fOi , otherwise,(
ψOr ψ

O
r+1ψ

O
r − ψOr+1ψ

O
r ψ
O
r+1

)
fOi =

(y
〈1+ρr(i)〉
r + y

〈1+ρr(i)〉
r+2 − y〈1+ρr(i)〉

r+1 − y〈1−ρr(i)〉
r+1 )fOi , if ir+2 = ir � ir+1,

−t1+ρr(i)fOi , if ir+2 = ir → ir+1,

fOi , if ir+2 = ir ← ir+1,

0, otherwise,

where ρr(i) = ı̂r − ı̂r+1 and y
〈d〉
r = tdyOr + [d], for d ∈ Z.
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Almost all of the relations in Theorem A appear in the presentation of the
cyclotomic quiver Hecke algebra RΛ

n . The KLR relations of RΛ
n which are ‘deformed’

are the quadratic relations for ψOr , the “braid relations” of length 3 for the ψOr
and the “cyclotomic relation” for yO1 . Interestingly, only the “Jucys-Murphy like
elements” yOr need to be modified in order to define a deformation of RΛ

n . Over a
field K = O/m, the presentation in Theorem A collapses to give the KLR algebra
RΛ
n because the definition of an idempotent subring ensures that t1+ρr(i) ⊗ 1K = 1

and y
〈1±ρr(i)〉
r ⊗ 1K = yOr ⊗ 1K , for 1 ≤ r ≤ n.

Theorem A also imposes additional “cyclotomic relations” on yOr , for 2 ≤ r ≤ n,
which do not appear in the presentation of RΛ

n . These extra relations are probably
redundant, however, we use them to show that the algebra defined by the presentation
in Theorem A is finite dimensional. In this paper we show that analogues of these
“extra” relations hold in RΛ

n , thus giving new upper bounds on the nilpotency index
of the elements y1, . . . , yn in the cyclotomic quiver Hecke algebras of type A.

To prove Theorem A we work almost entirely inside the semisimple representation
theory of the cyclotomic Hecke algebras HΛ

n . We show that definition of the quiver
Hecke algebra RΛ

n , and its grading, is implicit in Young’s seminormal form. With
hindsight, using the perspective afforded by this paper, it is not too much of an
exaggeration to say that Murphy could have discovered the cyclotomic quiver Hecke
algebras in 1983 soon after writing his paper on the Nakayama conjecture [27].

Our proof of Theorem A gives an explanation for the KLR relations and a more
conceptual proof of one direction in Brundan and Kleshchev’s graded isomorphism
theorem [6]. Using our framework it is possible to give a completely new proof of the
isomorphisms RΛ

n(K) ∼= HΛ
n(K), when K is a field, however, it is more convenient

for us to use the existence of these isomorphisms to bound the dimension of the
algebras defined by the presentation in Theorem A.

For the algebras of type A the authors constructed a graded cellular basis
{ψst | (s, t) ∈ Std2(PΛ

n ) } for RΛ
n [15]. Here Std2(PΛ

n ) is the set of all pairs of stan-
dard tableaux of the same shape, which is a multipartition of n. The element ψst

is homogeneous of degree dege s + dege t, where dege : Std(PΛ
n )−→Z is the combi-

natorial degree function introduced by Brundan, Kleshchev and Wang [8]. Li [23]
has shown that {ψst} is a graded cellular basis of RΛ

n over an arbitrary ring. In
particular, the KLR algebra RΛ

n is always free of rank dimHΛ
n(K), for K a field.

One of the problems with the basis {ψst} is that, because the KLR generators ψr,
for 1 ≤ r < n, do not satisfy the braid relations, the basis elements ψst depend upon
a choice of reduced expression for the permutations d(s), d(t) ∈ Sn (see Section 2.4).
One of the consequences of Theorem A is that we obtain a new graded cellular basis
for HΛ

n which is independent of such choices.

Theorem B. Suppose that K is a field. Then HΛ
n(K) has a graded cellular basis

{Bst | (s, t) ∈ Std2(PΛ
n ) }

where degBst = dege s+dege t, for (s, t) ∈ Std2(PΛ
n ), such that Bst depends only on s

and t and not on the choice of reduced expressions for the coset representatives d(s)
and d(t).

For (s, t) ∈ Std2(PΛ
n ) the basis element Bst is uniquely determined in a way that

is reminiscent of the Kazhdan-Lusztig basis. That is, we show that there exists a
unique element BOst ∈ HΛ

n(O) such that

BOst = fst +
∑

(u,v)I(s,t)

pstuv(x−1)fuv,
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where pstuv(x) ∈ xK[x] and where {fst} is a seminormal basis of HΛ
n which is

adapted to the KLR setting. Moreover, if K is a field of characteristic zero then
deg pstuv(x) ≤ 1

2 (deg u− deg s + deg v− deg t).
To prove the two theorems above, we define a seminormal basis of a semisimple

Hecke algebra to be a basis of HΛ
n of simultaneous eigenvectors for the Gelfand-Zetlin

subalgebra of HΛ
n . Seminormal bases are classical objects which are ubiquitous in

the literature, having been rediscovered many times since were first introduced for
the symmetric groups by Young in 1900 [34].

This paper starts by classifying all seminormal bases in terms of seminormal
coefficient systems. As far as we are aware this is the first time a classification of
seminormal bases has appeared in the literature, however, the real surprise is that
seminormal coefficient systems encode the KLR grading.

The close connections between the semisimple representation theory and the
KLR gradings is made even more explicit in the third main result of this paper
which gives a closed formula for the Gram determinants of the semisimple Specht
modules of these algebras. Closed formulas for these determinants already exist in
the literature [4, 16–18], however, all of these formulas describe these determinants
as rational functions (or rational numbers in the degenerate case). The theorem
below gives the first integral formula for these determinants.

In order to state the closed integral formulas for the Gram determinant of the
Specht module Sλ, for λ a multipartition, define

dege(λ) =
∑

t∈Std(λ)

dege(t) ∈ Z,

where Std(λ) is the set of standard λ-tableaux. Let Φe(t) ∈ Z[t] be the eth
cyclotomic polynomial for e > 1. We prove the following (see Theorem 3.22 for a
more precise statement).

Theorem C. Suppose that HΛ
n is a semisimple cyclotomic Hecke algebra over Q(t),

with Hecke parameter t. Let λ be a multipartition of n. Then the Gram determinant
of the Specht module Sλ is equal to

tN
∏
e>1

Φe(t)
dege(λ),

for a known integer N . In particular, dege(λ) ≥ 0, for all e ∈ {0, 2, 3, 4, . . . }.

As the integers dege(λ) are defined combinatorially, it should be possible to
give a purely combinatorial proof that dege(λ) ≥ 0. In Section 3.3 we give two
representation theoretic proofs of this result. The first proof is elementary but
not very informative. The second proof uses deep positivity properties of the
graded decomposition numbers of HΛ

n(C) to show that the tableaux combinatorics
of HΛ

n provides a framework for giving purely combinatorial formulas for the graded
dimensions of the simple HΛ

n -modules and for the graded decomposition numbers
of HΛ

n . Interestingly, we show that there is a close connection between the graded
dimensions of the simple HΛ

n -modules and the graded decomposition numbers
for HΛ

n . Note that in characteristic zero, the graded decomposition numbers of HΛ
n

are parabolic Kazhdan-Lusztig polynomials of type A [7], so our results show that
the tableaux combinatorics leads to combinatorial formulas for these polynomials.
Unfortunately, we are only able to prove that such formulas exist and we are not
able to make them explicit or to show that they are canonical in any way.

The outline of this paper is as follows. Chapter 2 defines the cyclotomic Hecke
algebras of type A, giving a uniform presentation for the degenerate and non-
degenerate algebras. Previously these algebras have been treated separately in the
literature. We then recall the basic results about these algebras that we need from
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the literature, including Brundan and Kleshchev’s graded isomorphism theorem [6].
Chapter 3 develops the theory of seminormal bases for these algebras in full generality.
We completely classify the seminormal bases of HΛ

n and then use them to prove
Theorem C, thus establishing a link between the semisimple representation theory
of HΛ

n and the quiver Hecke algebra RΛ
n . Using this we prove the existence of

combinatorial formulas for the graded dimensions of the simple modules and the
graded decomposition numbers of HΛ

n . In Chapter 4 we use the theory of seminormal
forms to construct a deformation of the cyclotomic quiver Hecke algebras of type A,
culminating with the proof of Theorem A. Chapter 5 builds on Theorem A to give
a quicker construction of the graded cellular basis of HΛ

n(K), over a field K, which
was one of the main results of [15]. Finally, in Chapter 6 we use Theorem A to show
that HΛ

n(K) has the distinguished graded cellular basis described in Theorem B.

2. Cyclotomic Hecke algebras

This chapter defines the cyclotomic Hecke and quiver Hecke algebras of type A
and it introduces some of the basic machinery that we need for understanding these
algebras. We give a new presentation for the cyclotomic Hecke algebras of type A,
which simultaneously captures the degenerate and non-degenerate cyclotomic Hecke
algebras which currently appear in the literature, and then we recall the results from
the literature that we need, including Brundan and Kleshchev’s graded isomorphism
theorem [6].

2.1. Quiver combinatorics. Fix an integer e ∈ {0, 2, 3, 4 . . . } and let Γe be the
oriented quiver with vertex set I = Z/eZ and edges i −→ i+ 1, for i ∈ I. If i, j ∈ I
and i and j are not connected by an edge in Γe then we write i /— j.

To the quiver Γe we attach the Cartan matrix (cij)i,j∈I , where

ci,j =


2, if i = j,

−1, if i→ j or i← j,

−2, if i� j,

0, otherwise,

Let ŝle be the corresponding Kac-Moody algebra [19] with fundamental weights
{Λi | i ∈ I }, positive weight lattice P+

e =
∑
i∈I NΛi and positive root lattice

Q+ =
⊕

i∈I Nαi. Let (·, ·) be the bilinear form determined by

(αi, αj) = cij and (Λi, αj) = δij , for i, j ∈ I.

More details can be found, for example, in [19, Chapter 1].
Fix, once and for all, a multicharge κ = (κ1, . . . , κ`) ∈ Z` which is a sequence

of integers such that if e 6= 0 then κl − κl+1 ≥ n for 1 ≤ l < `. Define Λ = Λe(κ) =
Λκ̄1

+ · · ·+ Λκ̄`
, where κ̄ = κ (mod e) . Equivalently, Λ is the unique element of P+

e

such that

(2.1) (Λ, αi) = # { 1 ≤ l ≤ ` | κl ≡ i (mod e) } , for all i ∈ I.

All of the bases for the modules and algebras in this paper depend implicitly on the
choice of κ even though the algebras themselves depend only on Λ.

2.2. Cyclotomic Hecke algebras. This section defines the cyclotomic Hecke
algebras of type A and explains the connection between these algebras and the
degenerate and non-degenerate Hecke algebras of type G(`, 1, n).

Fix an integral domain O which contains an invertible element ξ ∈ O×.
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2.2. Definition. Fix integers n ≥ 0 and ` ≥ 1. Then the cyclotomic Hecke
algebra of type A with Hecke parameter ξ ∈ O× and cyclotomic parameters
Q1, . . . , Q` ∈ O is the unital associative O-algebra Hn = Hn(O, ξ,Q1, . . . , Q`) with
generators L1, . . . , Ln, T1, . . . , Tn−1 which are subject to the relations∏̀

l=1

(L1 −Ql) = 0, (Tr + 1)(Tr − ξ) = 0,

LrLt = LtLr, TrTs = TsTr if |r − s| > 1,

TsTs+1Ts = Ts+1TsTs+1, TrLt = LtTr, if t 6= r, r + 1,

Lr+1(Tr − ξ + 1) = TrLr + 1,

where 1 ≤ r < n, 1 ≤ s < n− 1 and 1 ≤ t ≤ n.

2.3. Remark. If ξ = 1 then, by definition, Hn is a degenerate cyclotomic Hecke
algebra of type G(`, 1, n). If ξ 6= 1 then Hn is (isomorphic to) an integral cyclotomic
Hecke algebra of type G(`, 1, n). To see this define L′k = (ξ−1)Lk+1, for 1 ≤ k ≤ n,
and observe that Hn is generated by L′1, T1, . . . , Tn−1 subject to the usual relations
for these algebras as originally defined by Ariki and Koike [3]. It is now easy to
verify our claim. The presentation of Hn in Definition 2.2 unifies the definition
of the ‘degenerate’ and ‘non-degenerate’ Hecke algebras, which corresponds to the
cases where ξ = 1 or ξ 6= 1, respectively.

Let Sn be the symmetric group on n letters. For 1 ≤ r < n let sr = (r, r + 1)
be the corresponding simple transposition. Then {s1, . . . , sn−1} is the standard
set of Coxeter generators for Sn. A reduced expression for w ∈ Sn is a word
w = sr1 , . . . srk with k minimal and 1 ≤ rj < n for 1 ≤ j ≤ k. If w = sr1 . . . srk
is reduced then set Tw = Tr1 . . . Trk . Then Tw is independent of the choice of
reduced expression since the braid relations hold in Hn. It follows arguing as
in [3, Theorem 3.3] that Hn is free as a O-module with basis

{La1
1 . . . Lann Tw | 0 ≤ a1, . . . , an < ` and w ∈ Sn } .

Consequently, Hn is free as a O-module of rank `nn!, which is the order of the
complex reflection group of type G(`, 1, n).

We now restrict our attention to the case of integral cyclotomic parameters. To
define these recall that for any integer k and t ∈ O the quantum integer [k]t is

[k]t =

{
1 + t+ · · ·+ tk−1, if k ≥ 0,

−(t−1 + t−2 + · · ·+ tk), if k < 0.

When t is understood we simply write [k] = [k]t.
An integral cyclotomic Hecke algebra is a cyclotomic Hecke algebra Hn with

cyclotomic parameters of the form Qr = [κr]ξ, for κ1, . . . , κ` ∈ Z. The sequence of
integers κ = (κ1, . . . , κ`) ∈ Z`. is the multicharge of Hn.

Translating the Morita equivalence theorems of [11, Theorem 1.1] and [5, The-
orem 5.19] into the current setting, every cyclotomic Hecke algebras of type A is
Morita equivalent to a direct sum of tensor products of integral cyclotomic Hecke
algebras. Therefore, there is no loss of generality in restricting our attention to the
integral cyclotomic Hecke algebras of type A.

Recall that Λ ∈ P+
e and that we have fixed an integer e ∈ {0, 2, 3, 4, . . . }. Let

ξ ∈ O× be a primitive eth root of unity if e > 0 and a non-root of unity if e = 0
and fix a multicharge κ so that Λ = Λe(κ) as in (2.1).

Let HΛ
n = HΛ

n(O) be the integral cyclotomic Hecke algebra Hn(O, ξ,κ). Using
the definitions it is easy to see that, up to isomorphism, HΛ

n depends only on ξ
and Λ. In fact, by Theorem 2.14 below, it depends only on e and Λ. Nonetheless,
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many of the constructions which follow, particularly the definitions of bases, depend
upon the choice of κ.

2.3. Graded algebras and cellular bases. This section recalls the definitions
and results from the representation theory of (graded) cellular algebras that we
need.

Let A be a unital associative O-algebra which is free and of finite rank as an
O-module. In this paper a graded module will always mean a Z-graded module.
That is, an O-module M which has a decomposition M =

⊕
n∈ZMd as an O-module.

If m ∈Md, for d ∈ Z, then m is homogeneous of degree d and we set degm = d.
If M is a graded O-module and s ∈ Z let M〈s〉 be the graded O-module obtained
by shifting the grading on M up by s; that is, M〈s〉d = Md−s, for d ∈ Z.

Similarly a graded algebra is a unital associative O-algebra A =
⊕

d∈ZAd
which is a graded O-module such that AdAe ⊆ Ad+e, for all d, e ∈ Z. It follows
that 1 ∈ A0 and that A0 is a graded subalgebra of A. A graded (right) A-module
is a graded O-module M such that M is an A-module and MdAe ⊆Md+e, for all
d, e ∈ Z, where M and A mean forgetting the Z-grading structures on M and A
respectively. Graded submodules, graded left A-modules and so on are all defined
in the obvious way.

The following definition extends Graham and Lehrer’s [12] definition of cellular
algebras to the graded setting.

2.4. Definition (Graded cellular algebras [12, 15]). Suppose that A is an O-algebra
which is free of finite rank over O. A cell datum for A is an ordered triple (P, T, C),
where (P,B) is the weight poset, T (λ) is a finite set for λ ∈ P, and

C :
∐
λ∈P

T (λ)× T (λ)−→A; (s, t) 7→ cst,

is an injective function such that:

(GC1) { cst | s, t ∈ T (λ) for λ ∈ P } is an O-basis of A.
(GC2) If s, t ∈ T (λ), for some λ ∈ P, and a ∈ A then there exist scalars rtv(a),

which do not depend on s, such that

csta =
∑

v∈T (λ)

rtv(a)csv (mod ABλ) ,

where ABλ is the O-submodule of A spanned by { cab | µ B λ and a, b ∈ T (µ) }.
(GC3) The O-linear map ? :A−→A determined by (cst)

? = cts, for all λ ∈ P and
all s, t ∈ T (λ), is an anti-isomorphism of A.

A cellular algebra is an algebra which has a cell datum. If A is a cellular algebra
with cell datum (P, T, C) then the basis { cst | λ ∈ P and s, t ∈ T (λ } is a cellular
basis of A with ∗ its cellular algebra anti-automorphism.

If, in addition, A is a Z-graded algebra then a graded cell datum for A is a
cell datum (P, T, C) together with a degree function

deg :
∐
λ∈P

T (λ)−→Z

such that

(GCd) the element cst is homogeneous of degree deg cst = deg(s) + deg(t), for all
λ ∈ P and s, t ∈ T (λ).

In this case, A is a graded cellular algebra with graded cellular basis {cst}.

Fix a (graded) cellular algebra A with graded cellular basis {cst}. If λ ∈ P then
the graded cell module is the O-module Cλ with basis { ct | t ∈ T (λ) } and with
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A-action

cta =
∑

v∈T (λ)

rtv(a)cv,

where the scalars rtv(a) ∈ O are the same scalars appearing in (GC2). One of the
key properties of the graded cell modules is that by [15, Lemma 2.7] they come
equipped with a homogeneous bilinear form 〈 , 〉 of degree zero which is determined
by the equation

(2.5) 〈ct, cu〉csv ≡ cstcuv (mod ABλ) ,

for s, t, u, v ∈ T (λ). The radical of this form

radCλ = {x ∈ Cλ | 〈x, y〉 = 0 for all y ∈ Cλ }

is a graded A-submodule of Cλ so that Dλ = Cλ/ radCλ is a graded A-module. It
is shown in [15, Theorem 2.10] that

{Dλ〈k〉 | λ ∈ P, Dλ 6= 0 and k ∈ Z }

is a complete set of pairwise non-isomorphic irreducible (graded) A-modules when O
is a field.

2.4. Multipartitions and tableaux. A partition of d is a weakly decreasing
sequence λ = (λ1, λ2, . . . ) of non-negative integers such that |λ| = λ1 + λ2 + · · · = d.
An `-multipartition of n is an `-tuple λ = (λ(1), . . . , λ(`)) of partitions such that
|λ(1)|+ · · ·+ |λ(`)| = n. We identify the multipartition λ with its diagram which is

the set of nodes JλK = { (l, r, c) | 1 ≤ c ≤ λ(l)
r for 1 ≤ l ≤ ` } , which we think of as

an ordered `-tuple of arrays of boxes in the plane. For example, if λ = (3, 12|2, 1|3, 2)
then

JλK =

( ∣∣∣∣∣
∣∣∣∣∣

)
.

In this way we talk of the rows, columns and components of λ.
Given two nodes α = (l, r, c) and β = (l′, r′, c′) then β is below α, or α is above

β, if (l, r, c) < (l′, r′, c′) in the lexicographic order.
The set of multipartitions of n becomes a poset ordered by dominance where λ

dominates µ, or λ D µ, if

l−1∑
k=1

|λ(k)|+
i∑

j=1

λ
(l)
j ≥

l−1∑
k=1

|µ(k)|+
i∑

j=1

µ
(l)
j ,

for 1 ≤ l ≤ ` and i ≥ 1. If λ D µ and λ 6= µ then we write λ B µ. Let PΛ
n = (PΛ

n ,D)
be the poset of multipartitions of n ordered by dominance and let (PΛ

n ,E) be the
opposite poset.

Fix a multipartition λ. Then a λ-tableau is a bijective map t : JλK−→{1, 2, . . . , n},
which we identify with a labelling of JλK by {1, 2, . . . , n}. For example,(

1 2 3

4

5

∣∣∣∣∣ 6 7

8

∣∣∣∣∣ 9 10 11

12 13

)
and

(
9 12 13

10

11

∣∣∣∣∣ 6 8

7

∣∣∣∣∣ 1 3 5

2 4

)

are both λ-tableaux when λ = (3, 12|2, 1|3, 2) as above. In this way we speak of
the rows, columns and components of tableaux. If t is a tableau and 1 ≤ k ≤ n set
compt(k) = l if k appears in the lth component of t.

A λ-tableau is standard if its entries increase along rows and columns in each
component. Both of the tableaux above are standard. Let Std(λ) be the set of
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standard λ-tableaux and let Std(n) =
⋃

λ∈PΛ
n

Std(λ). Similarly set Std2(λ) =

{ (s, t) | s, t ∈ Std(λ) } and Std2(PΛ
n ) = { (s, t) | s, t ∈ Std(λ) for some λ ∈ PΛ

n }.
If t is a λ-tableau set Shape(t) = λ and let t↓m be the subtableau of t which

contains the numbers {1, 2, . . . ,m}. If t is a standard λ-tableau then Shape(t↓m) is
a multipartition for all m ≥ 0. We extend the dominance ordering to the set of all
standard tableaux by defining s D t if

Shape(s↓m) D Shape(t↓m),

for 1 ≤ m ≤ n. As before, we write s B t if s D t and s 6= t. We extend the
dominance ordering to Std2(PΛ

n ) by declaring that (s, t) D (u, v) if s D u and t D v.
Similarly, (s, t) B (u, v) if (s, t) D (u, v) and (s, t) 6= (u, v)

It is easy to see that there are unique standard λ-tableaux tλ and tλ such that
tλ D t D tλ, for all t ∈ Std(λ). The tableau tλ has the numbers 1, 2, . . . , n entered in

order from left to right along the rows of tλ
(1)

, and then tλ
(2)

, . . . , tλ
(`)

and similarly,
tλ is the tableau with the numbers 1, . . . , n entered in order down the columns of

tλ
(`)

, . . . , tλ
(2)

, tλ
(1)

. When λ = (3, 12|2, 1|3, 2) then the two λ-tableaux displayed
above are tλ and tλ.

Given a standard λ-tableau t define d(t) ∈ Sn to be the permutation such that
t = tλd(t). Let ≤ be the Bruhat order on Sn with the convention that 1 ≤ w for
all w ∈ Sn. By a well-known result of Ehresmann and James, if s, t ∈ Std(λ) then
s D t if and only if d(s) ≤ d(t); see, for example, [24, Theorem 3.8].

Recall from Section 2.1 that we have fixed a multicharge κ ∈ Z`. The residue of
the node A = (l, r, c) is res(A) = κl + c− r (mod e) (where we adopt the convention
that i ≡ i (mod 0) , for i ∈ Z). Thus, res(A) ∈ I. A node A is an i-node if
res(A) = i. If t is a µ-tableaux and 1 ≤ k ≤ n then the residue of k in t is
rest(k) = res(A), where A ∈ µ is the unique node such that t(A) = k. The residue
sequence of t is

res(t) = (rest(1), rest(2), . . . , rest(n)) ∈ In.

As an important special case we set iµ = res(tµ), for µ ∈ PΛ
n .

Refine the dominance ordering on the set of standard tableaux by defining s I t
if s D t and res(s) = res(t). Similarly, we write (s, t) I (u, v) if (s, t) D (u, v),
res(s) = res(u) and res(t) = res(v) and (s, t) I (u, v) now has the obvious meaning.

Following Brundan, Kleshchev and Wang [8, Definition. 3.5] we now define the
degree of a standard tableau. Suppose that µ ∈ PΛ

n . A node A is an addable node
of µ if A /∈ µ and µ∪{A} is (the diagram of) a multipartition of n+ 1. Similarly, a
node B is a removable node of µ if B ∈ µ and µ\{B} is a multipartition of n−1.
Suppose that A is an i-node and define integers

dA(µ) = #
{

addable i-nodes of µ
strictly below A

}
−#

{
removable i-nodes of µ

strictly below A

}
.

If t is a standard µ-tableau define its degree inductively by setting dege(t) = 0,
if n = 0, and if n > 0 then

(2.6) dege(t) = dege(t↓(n−1)) + dA(µ),

where A = t−1(n). When e is understood we write deg(t).
The following result shows that the degrees of the standard tableau are almost

completely determined by the Cartan matrix (cij) of Γe.

2.7. Lemma (Brundan, Kleshchev and Wang [8, Proposition 3.13]). Suppose that s
and t are standard tableaux such that s B t = s(r, r + 1), where 1 ≤ r < n and
i ∈ In. Let i = res(s). Then dege(s) = dege(t) + cirir+1 .
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2.5. The Murphy basis and cyclotomic Specht modules. The cyclotomic
Hecke algebra HΛ

n is a cellular algebra with several different cellular bases. This
section introduces one of these bases, the Murphy basis, and uses it to define the
Specht modules and simple modules of HΛ

n .
Fix a multipartition λ ∈ PΛ

n . Following [10, Definition 3.14] and [4, §6], if
s, t ∈ Std(λ) define mst = Td(s)−1mλTd(t), where mλ = uλxλ where

uλ =
∏

1≤l<`

|λ(1)|+···+|λ(l)|∏
r=1

ξ−κl+1(Lr − [κl+1]) and xλ =
∑
w∈Sλ

Tw.

2.8. Theorem ( [10, Theorem 3.26] and [4, Theorem 6.3]). The cyclotomic Hecke
algebra HΛ

n is free as a O-module with cellular basis

{mst | s, t ∈ Std(λ) for λ ∈ PΛ
n }

with respect to the weight poset (PΛ
n ,D).

Proof. This theorem can be proved uniformly in all cases by modifying the argument
of [10, Theorem 3.26], however, for future reference we explain how to deduce this
result from the literature for the degenerate and non-degenerate algebras.

First suppose that ξ = 1. Then the element mλ, for λ ∈ PΛ
n , coincides exactly

with the corresponding elements defined for the non-degenerate cyclotomic Hecke
algebras in [4, §6]. It follows that {mst | (s, t) ∈ PΛ

n } is the Murphy basis of the
degenerate cyclotomic Hecke algebra HΛ

n defined in [4, §6] and that the theorem is
just a restatement of [4, Theorem 6.3] when ξ = 1.

Now suppose that ξ 6= 1 and, as in Remark 2.3, let L′r = (ξ − 1)Lr + 1 be the
‘non-degenerate’ Jucys-Murphy elements for HΛ

n , for 1 ≤ r ≤ n. An application of
the definitions shows that if κ ∈ Z then

ξ−κ(Lr − [κ]) =
ξ−κ

ξ − 1
(L′r − ξκ).

Therefore, uλ is a scalar multiple of the element u+
λ given by [10, Definition 3.1,3.5].

Consequently, if (s, t) ∈ Std2(PΛ
n ) then mst is a scalar multiple of the corresponding

Murphy basis element from [10, Definition 3.14]. Hence, the theorem is an immediate
consequence of [10, Theorem 3.26] in the non-degenerate case. �

Suppose that λ ∈ PΛ
n . The (cyclotomic) Specht module Sλ is the cell module

associated to λ using the (ungraded) cellular basis {mst | (s, t) ∈ Std2(PΛ
n ) }. We

underline Sλ to emphasise that Sλ is not graded. When O is a field let Dλ =
Sλ/ radSλ and set KΛ

n = {λ ∈ PΛ
n | D

λ 6= 0 }. Ariki [2] has given a combinatorial
description of the set KΛ

n . By the theory of cellular algebras [12], {Dµ | µ ∈ KΛ
n }

is a complete set of pairwise non-isomorphic irreducible HΛ
n -modules.

The following well-known fact is fundamental to all of the results in this paper.

2.9. Lemma. Suppose that 1 ≤ r < n and that s, t ∈ Std(λ), for λ ∈ PΛ
n . Then

mstLr ≡ [cr(t)]mst +
∑
vBt

v∈Std(λ)

rvmsv (mod HBλ
n ) ,

for some rv ∈ O.

Proof. If ξ = 1 then this is a restatement of [4, Lemma 6.6]. If ξ 6= 1 then

mstL
′
r = ξcr(t)mst +

∑
vBt

r′vmst (mod HBλ
n ) ,

for some r′v ∈ O, by [17, Proposition 3.7] (and the notational translations given in
the proof of Theorem 2.8). As Lr = (L′r − 1)/(ξ − 1) the result follows. �
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2.6. Cyclotomic quiver Hecke algebras. Brundan and Kleshchev [6] have given
a very different presentation of HΛ

n . This presentation is more difficult to work with
but it has the advantage of showing that HΛ

n is a Z-graded algebra.

2.10. Definition (Brundan-Kleshchev [6]). Suppose that n ≥ 0 and e ∈ {0, 2, 3, 4, . . . }.
The cyclotomic quiver Hecke algebra, or cyclotomic Khovanov-Lauda–
Rouquier algebra, of weight Λ and type Γe is the unital associative O-algebra
RΛ
n = RΛ

n(O) with generators

{ψ1, . . . , ψn−1} ∪ {y1, . . . , yn} ∪ { e(i) | i ∈ In }

and relations

y
(Λ,αi1

)
1 e(i) = 0, e(i)e(j) = δije(i),

∑
i∈Ine(i) = 1,

yre(i) = e(i)yr, ψre(i) = e(sr·i)ψr, yrys = ysyr,

ψryr+1e(i) = (yrψr + δirir+1)e(i), yr+1ψre(i) = (ψryr + δirir+1)e(i),(2.11)

ψrys = ysψr, if s 6= r, r + 1,(2.12)

ψrψs = ψsψr, if |r − s| > 1,

ψ2
re(i) =



0, if ir = ir+1,

(yr − yr+1)e(i), if ir → ir+1,

(yr+1 − yr)e(i), if ir ← ir+1,

(yr+1 − yr)(yr − yr+1)e(i), if ir � ir+1

e(i), otherwise,

ψrψr+1ψre(i) =



(ψr+1ψrψr+1 − 1)e(i), if ir+2 = ir → ir+1,

(ψr+1ψrψr+1 + 1)e(i), if ir+2 = ir ← ir+1,(
ψr+1ψrψr+1 + yr − 2yr+1 + yr+2

)
e(i),

if ir+2 = ir � ir+1,

ψr+1ψrψr+1e(i), otherwise,

for i, j ∈ In and all admissible r and s. Moreover, RΛ
n is naturally Z-graded with

degree function determined by

deg e(i) = 0, deg yr = 2 and degψse(i) = −cis,is+1
,

for 1 ≤ r ≤ n, 1 ≤ s < n and i ∈ In.

2.13. Remark. The presentation of RΛ
n given in Definition 2.10 differs by a choice of

signs with the definition given in [6, Theorem 1.1]. The presentation of RΛ
n given

above agrees with that used in [22] as the orientation of the quiver is reversed in [22].

The connection between the cyclotomic quiver Hecke algebras of type Γe and the
cyclotomic Hecke algebras of type G(`, 1, n) is given by the following remarkable
result of Brundan and Kleshchev.

2.14. Theorem (Brundan-Kleshchev’s graded isomorphism theorem [6, Theo-
rem 1.1]). Suppose that O = K is a field, ξ ∈ K as above, and that Λ = Λ(κ). Then

there is an isomorphism of algebras RΛ
n
∼= HΛ

n .

We prove a stronger version of Theorem 2.14 in Theorem 4.32 below. For now
we note the following simple corollary of Theorem 2.14. Recall that a choice of
multicharge κ determines a dominant weight Λe(κ).

2.15. Corollary. Suppose that n ≥ 0, κ = (κ1, . . . , κ`) ∈ Z` and that

e > max {n+ κk − κl | 1 ≤ k, l ≤ ` } .
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Fix invertible scalars ξ0 ∈ K and ξe ∈ K such that ξ0 is not a root of unity and

ξe is a primitive eth root of unity. Then the cyclotomic Hecke algebras HΛ0(κ)
K,ξ0

and

HΛe(κ)
K ,ξe

are isomorphic Z-graded K-algebras.

Proof. Let RΛ
n(0) ∼= Hn(K, ξ0,κ) and RΛ

n(e) ∼= Hn(K, ξe,κ) be the corresponding
cyclotomic quiver Hecke algebras as in Theorem 2.14. By [15, Lemma 4.1], e(i) 6= 0
if and only if i = res(t), for some standard tableau t ∈ Std(PΛ

n ). The definition of e
ensures that if i = it then ir = ir+1 or ir = ir+1± 1 if and only if ir ≡ ir+1 (mod e)
or ir ≡ ir+1 ± 1 (mod e) . Therefore, RΛ

n(0) ∼= RΛ
n(e) arguing directly from the

presentations of the cyclotomic quiver Hecke algebras given in Definition 2.10. Hence,
the result follows by Theorem 2.14. �

Therefore, without loss of generality, we may assume that e > 0. In the appendix
we show how to modify the results and definitions in this paper to cover the case
when e = 0 directly.

Under the assumptions of the Corollary we note that the algebras HΛ
K,ξ0

and

HΛ
K,ξe

are Morita equivalent by the main result of [11]. That these algebras are
actually isomorphic is another miracle provided by Brundan and Kleshchev’s graded
isomorphism theorem.

The following consequence of Theorem 2.14 will be needed later.

2.16. Corollary. Suppose that 1 ≤ r ≤ n and i ∈ In. Then y
Nr(i)
r e(i) = 0, where

Nr(i) = # Std(i).

Proof. This is a well-known application of Theorem 2.14 and Lemma 2.9. �

3. Seminormal forms for Hecke algebras

In this chapter we develop the theory of seminormal forms in a slightly more
general context than appears in the literature. In particular, in this paper a
seminormal basis will be a basis for HΛ

n rather than a basis of a Specht module
of HΛ

n . We also treat all of the variations of the seminormal bases simultaneously as
this will give us the flexibility to change seminormal forms when we use them in the
next chapter to study the connections between HΛ

n and the cyclotomic quiver Hecke
algebra RΛ

n .

3.1. Content functions and the Gelfand-Zetlin algebra. Underpinning Brun-
dan and Kleshchev’s graded isomorphism theorem (Theorem 2.14) is the decom-
position of any HΛ

n -module into a direct sum of generalised eigenspaces for the
Jucys-Murphy elements L1, . . . , Ln. This section studies the action of the Jucys-
Murphy elements on HΛ

n . The results in this section are well-known, at least to
experts, but they are needed in the sequel.

The content of the node γ = (l, r, c) is the integer

cγ = κl − r + c

If t ∈ Std(λ) is a standard λ-tableau and 1 ≤ k ≤ n then the content of k in t is
ck(t) = cγ , where t(γ) = k for γ ∈ JλK.

3.1. Definition. Let O be a commutative integral domain and suppose that t ∈ O×
is an invertible element of O. The pair (O, t) separates Std(PΛ

n ) if

[n]!t
∏

1≤l<m≤`

∏
−n<d<n

[κl − κm + d]t ∈ O×.

Fix a multicharge κ ∈ Z` and let HΛ
n(O) be the Hecke algebra defined over O

with parameter t. In spite of our notation, note that HΛ
n(O) depends only on κ and
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not directly on Λ = Λe(κ). Let K be a field which contains the field of fractions
of O. Then HΛ

n(K ) = HΛ
n(O)⊗O K .

Throughout this chapter we are going to work with the Hecke algebras HΛ
n(O) and

HΛ
n(K ) = HΛ

n(O)⊗O K , however, we have in mind the situation of Theorem 2.14.
By assumption e > 0, so we can replace the multicharge κ with (κ1 + a1e, κ2 +
a2e, . . . , κ` + a`e), for any integers a1, . . . , a` ∈ Z, without changing the dominant
weight Λ = Λe(κ). In view of Definition 3.1 we therefore assume that

(3.2) κl − κl+1 ≥ n, for 1 ≤ l < `.

Until further notice, we fix a multicharge κ ∈ Z` satisfying (3.2) and consider the
algebra HΛ

n(O) with parameter t.
Although we do not need this, we remark that it follows from [1] and [4, The-

orem 6.11] that HΛ
n(K , t) is semisimple if and only if (K , t) separates Std(PΛ

n ).
Our main use of the separation condition is the following fundamental fact which is
easily proved by induction on n; see, for example, [17, Lemma 3.12].

3.3. Lemma. Suppose that O is an integral domain and t ∈ O× is invertible. Then
(O, t) separates Std(PΛ

n ) if and only if

s = t if and only if [cr(s)] = [cr(t)] for 1 ≤ r ≤ n,
for all s, t ∈ Std(PΛ

n ).

Following [28], define the Gelfand-Zetlin subalgebra of HΛ
n to be the algebra

L (O) = 〈L1, . . . , Ln〉. The aim of this section is to understand the semisimple
representation theory of L = L (O). It follows from Definition 2.2 that L is a
commutative subalgebra of HΛ

n .
If O is an integral domain then it follows from Lemma 2.9 that, as an (L ,L )-

bimodule, HΛ
n(O) has a composition series with composition factors which are

O-free of rank 1 upon which Lr acts as multiplication by cr(s) from the left and as
multiplication by cr(t) from the right. Obtaining a better description of L , and
of HΛ

n as an (L ,L )-bimodule, in the non-semisimple case is likely to be important.
For example, the dimension of L over a field is not known in general.

3.4. Proposition (cf. [3, Proposition 3.17]). Suppose that (K , t) separates Std(PΛ
n ),

where K is a field and 0 6= t ∈ K . Then HΛ
n(K ) is a semisimple

(
L ,L )-bimodule

with decomposition

HΛ
n(K ) =

⊕
λ∈PΛ

n

s,t∈Std(λ)

Hst,

where Hst = {h ∈ HΛ
n | Lrh = [cr(s)]h and hLr = [cr(t)]h, for 1 ≤ r ≤ n } is one

dimensional.

Proof. By Lemma 2.9, the Jucys-Murphy elements L1, . . . , Ln are a family of JM-
elements for HΛ

n in the sense of [26, Definition 2.4]. Therefore, the result is a special
case of [26, Theorem 3.7]. �

Key to the proof of the results in [26] are the following elements which have their
origins in the work of Murphy [27]. For t ∈ Std(PΛ

n ) define

(3.5) Ft =

n∏
k=1

∏
c∈E

[ck(t)] 6=[c]

Lk − [c]

[ck(t)]− [c]

where E = { cr(t) | 1 ≤ r ≤ n and t ∈ Std(n) } is the set of the possible contents
that can appear in a standard tableau of size n. By definition, Ft ∈ L (K ) and it
follows directly from Proposition 3.4 that if huv ∈ Huv then

(3.6) FshuvFt = δsuδvthst,
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for all (s, t), (u, v) ∈ Std2(PΛ
n ). Therefore, Hst = FsHΛ

nFt.
By Proposition 3.4 we can write 1 =

∑
s,t est for unique est ∈ Hst. Since

Ft = F ∗t , the last displayed equation implies that Ft = ett ∈ Htt is an idempotent.
Consequently,

L (K ) =
⊕

t∈Std(PΛ
n )

Htt =
⊕

t∈Std(PΛ
n )

K Ft.

In particular, Ft is a primitive idempotent in L (K ). If follows that L (K ) is a
split semisimple algebra of dimension # Std(PΛ

n ).

3.2. Seminormal forms. Seminormal bases forHΛ
n are well-known in the literature,

having their origins in the work of Young from [34]. Many examples of “seminormal
bases” appear in the literature. In this section we classify the seminormal bases
of HΛ

n . This characterisation of seminormal forms appears to be new, even in the
special of the symmetric groups, although some of the details will be familiar to
experts.

Throughout this section we assume that K is a field, 0 6= t ∈ K and that
(K , t) separates Std(PΛ

n ). Recall the decomposition HΛ
n =

⊕
(s,t)∈Std2(PΛ

n )Hst from

Proposition 3.4.
Define an involution on an algebra A to be an algebra anti-automorphism of A

of order 2.

3.7. Definition. Suppose that (K , t) separates Std(PΛ
n ) and let ι be an involu-

tion on HΛ
n(K ). An ι-seminormal basis of HΛ

n(K ) is a basis of the form
{ fst | fst = ι(fts) ∈ Hst for (s, t) ∈ Std2(PΛ

n ) }.

For now we take ∗ to be the unique anti-isomorphism of HΛ
n(K ) which fixes each

of the generators T1, . . . , Tn−1, L1, . . . , Ln of Definition 2.2. Then m∗st = mts, for all
(s, t) ∈ Std2(PΛ

n ). The assumption that f∗st = fts is not essential for what follows
but it is natural because we want to work within the framework of cellular algebras.

In order to describe the action of HΛ
n on its seminormal bases, if t ∈ Std(PΛ

n )
then define the integers

(3.8) ρr(t) = cr(t)− cr+1(t), for 1 ≤ r < n.

Then ρr(t) is the ‘axial distance’ between r and r + 1 in the tableau t.
A ∗-seminormal coefficient system for HΛ

n(K ) is a set of scalars

α = {αr(s) | 1 ≤ r < n and s ∈ Std(n) }
in K such that if 1 ≤ r < n and t ∈ Std(PΛ

n ) then

αr(t)αr+1(tsr)αr(tsrsr+1) = αr+1(t)αr(tsr+1)αr+1(tsr+1sr)(3.9)

and, setting v = t(r, r + 1), then αr(t) = 0 if v /∈ Std(λ) and otherwise

αr(t)αr(v) =
[1 + ρr(t)][1 + ρr(v)]

[ρr(t)][ρr(v)]
.(3.10)

We will see that condition (3.9) ensures that the braid relations of length 3 are
satisfied by T1, . . . , Tn−1 and that (3.10) corresponds to the quadratic relations.
Quite surprisingly, as the proof of Theorem 3.22 below shows, (3.10) also encodes
the KLR grading on HΛ

n .
Usually, we omit the ∗ and simply call α a seminormal coefficient system.

3.11. Example A nice ‘rational’ seminormal coefficient system is given by

αr(t) =

{
[1+ρr(t)]

[ρr(t)] , if t(r, r + 1) is standard,

0, otherwise,

for t ∈ Std(PΛ
n ) and 1 ≤ r < n. 3
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3.12. Example By Proposition 3.18 below, the following seminormal coefficient
system is associated with the Murphy basis of HΛ

n : if t ∈ Std(PΛ
n ) set v = t(r, r + 1)

and define

αr(t) =


1 if v is standard and t B v,
[1+ρr(t)][1+ρr(v)]

[ρr(t)][ρr(v)] , if v is standard and v B t,

0, otherwise,

for 1 ≤ r < n. 3

Another seminormal coefficient system, which is particularly well adapted to
Brundan and Kleshchev’s Graded Isomorphism Theorem 2.14, is given in Section 5.1.

3.13. Lemma. Suppose that (K , t) separates Std(PΛ
n ) and that {fst} is a seminor-

mal basis of HΛ
n . Then there exists a unique seminormal coefficient system α such

that if 1 ≤ r ≤ n and (s, t) ∈ Std2(PΛ
n ) then

fstTr = αr(t)fsv −
1

[ρr(t)]
fst,

where v = t(r, r + 1).

Proof. The uniqueness statement is automatic, since {fst} is a basis of HΛ
n(K ), so

we need to prove that such a seminormal coefficient system α exists.
Fix (s, t) ∈ Std2(PΛ

n ) and 1 ≤ r < n and write

fstTr =
∑

(u,v)∈Std2(PΛ
n )

auvfuv,

for some auv ∈ K . Multiplying on the left by Fs it follows that auv 6= 0 only
if u = s. If k 6= r, r + 1 then Lk commutes with Tr so it follows asv 6= 0 only if
[ck(v)] = [ck(t)], for k 6= r, r+ 1. Using Definition 3.1, and arguing as in Lemma 3.3,
this implies that asv 6= 0 only if v ∈ {t, t(r, r + 1)}. Therefore, we can write

fstTr = αr(t)fsv + α′r(t)fst,

for some αr(t), α
′
r(t) ∈ K , where v = t(r, r + 1). (Here, and below, we adopt the

convention that fsv = 0 if either of s or v is not standard.) By Definition 2.2,
TrLr = Lr+1(Tr− t+ 1)− 1, so multiplying both sides of the last displayed equation
on the right by Lr and comparing the coefficient of fst on both sides shows that

[cr+1(t)]
(
α′r(t)− t+ 1

)
− 1 = α′r(t)[cr(t)].

Hence, α′r(t) = −1/[ρr(t)] as claimed. If v is not standard then we set αr(t) = 0.
If v is standard then comparing the coefficient of fst on both sides of(

αr(t)fsv −
1

[ρr(t)]
fst

)
Tr = fstT

2
r = fst

(
(t− 1)Tr + t

)
shows that αr(t)αr(v) = [1+ρr(t)][1+ρr(v)]

[ρr(t)][ρr(v)] in accordance with (3.10).

Finally, it remains to show that (3.9) holds. If 1 ≤ r < n then TrTr+1Tr =
Tr+1TrTr+1 by Definition 2.2. On the other hand, if we set t1 = t(r, r + 1),
t2 = t(r+ 1, r+ 2), t12 = t1(r+ 1, r+ 2) t21 = t2(r, r+ 1) and t121 = t212 = t(r, r+ 2)
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then direct calculation shows that 0 = fst(TrTr+1Tr − Tr+1TrTr+1) is equal to

−
( 1

[ρr(t)]2[ρr+1(t)]
− 1

[ρr(t)][ρr+1(t)]2
+
αr(t)αr(t1)

[ρr+1(t1)]
− αr+1(t)αr+1(t2)

[ρr(t2)]

)
fst

+αr(t)
( 1

[ρr(t1)][ρr+1(t1)]
+

1

[ρr(t)][ρr+1(t)]
− 1

[ρr+1(t)][ρr+1(t1)]

)
fst1

−αr+1(t)
( 1

[ρr(t2)][ρr+1(t2)]
+

1

[ρr(t)][ρr+1(t)]
− 1

[ρr(t)][ρr(t2)]

)
fst2

−αr(t)αr+1(t1)
( 1

[ρr(t12)]
− 1

[ρr+1(t)]

)
fst12

+αr+1(t)αr(t2)
( 1

[ρr+1(t21)]
− 1

[ρr(t)]

)
fst21

+
(
αr(t)αr+1(t1)αr(t12)− αr+1(t)αr(t2)αr+1(t21)

)
fst121

.

By our conventions, if any tableau t? is not standard then fst? and the corresponding
α-coefficient are both zero. As the coefficient of fst121

in the last displayed equation
is zero it follows that (3.9) holds. Consequently, α = {αr(t)} is a seminormal
coefficient system, completing the proof. (It is not hard to see, using (3.10) and
identities like ρr(t1) = −ρr(t) and ρr(t12) = ρr+1(t), that the remaining coefficients
in the last displayed equation are automatically zero.) �

Lemma 3.13 really says that acting from the right on a seminormal basis deter-
mines a seminormal coefficient system. Similarly, the left action on a seminormal
basis determines a seminormal coefficient system. In general, the seminormal co-
efficient systems attached to the left and right actions will be different, however,
because we are assuming that our seminormal bases are ∗-invariant these left and
right coefficient systems coincide. Thus, for (s, t) ∈ Std2(PΛ

n ) and 1 ≤ r < n we also
have Trfst = αr(s)fut − 1

[ρr(s)]fst, where u = s(r, r + 1).

Exactly as eigenvectors are not uniquely determined by their eigenvalues, semi-
normal bases are not uniquely determined by seminormal coefficient systems. We
now fully characterize seminormal bases — and prove a converse to Lemma 3.13.

Recall that a set of idempotents in an algebra is complete if they sum to 1.

3.14. Theorem (The Seminormal Basis Theorem). Suppose that (K , t) separates
Std(PΛ

n ) and that α is a seminormal coefficient system for HΛ
n(K ). Then HΛ

n(K )
has a ∗-seminormal basis { fst | (s, t) ∈ Std2(PΛ

n ) } such that if (s, t) ∈ Std2(PΛ
n )

then

(3.15) f∗st = fts, fstLk = [ck(t)]fst and fstTr = αr(t)fsv −
1

[ρr(t)]
fst,

where v = t(r, r+ 1) and fsv = 0 if v is not standard. Moreover, there exist non-zero
scalars γt ∈ K , for t ∈ Std(PΛ

n ), such that

(3.16) FufstFv = δusδtvfst, fstfuv = δtuγtfsv, and Ft =
1

γt
ftt.

Furthermore, {Ft | t ∈ Std(PΛ
n ) } is a complete set of pairwise orthogonal prim-

itive idempotents. In particular, every irreducible HΛ
n(K )-module is isomorphic

to FsHΛ
n(K ), for some s ∈ Std(PΛ

n ), and FsHΛ
n(K ) ∼= FuHΛ

n(K ) if and only if
Shape(s) = Shape(u).

Finally, the basis { fst | s, t ∈ Std(λ) for λ ∈ PΛ
n } is uniquely determined by the

choice of seminormal coefficient system α and the scalars { γtλ | λ ∈ PΛ
n } ⊆ K ×.

Proof. For each λ ∈ PΛ
n fix an arbitrary pair of tableaux and a non-zero element

fst ∈ Hst. Then fst is a simultaneous eigenvector for all of the elements of L , where
they act from the left and from the right.
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Now, suppose that 1 ≤ r < n and that v = t(r, r+ 1) is standard. Then αr(t) 6= 0
so we can set fsv = 1

αr(t)fst(Tr + 1
[ρr(t)] ). Equivalently, fstTr = αr(t)fsv − 1

[ρr(t)]fst.

Then using the relations in HΛ
n(K ) and the defining properties of the seminormal

coefficient system α, it is straightforward to check that fsvLk = [ck(v)]fsv, so that
fsv ∈ Hsv. Moreover, fsv 6= 0 since fst = 1

αr(v)fsv(Tr + 1
[ρr(v)] ).

More generally, it is easy to see that if v is any λ-tableau then there is a sequence
of standard tableaux v0 = s, v1, . . . , vz = v such that vi+1 = vi(ri, ri + 1), for some
integers 1 ≤ ri < n. Therefore, continuing in this way it follows that given two
tableaux u, v ∈ Std(λ) we can define non-zero elements fuv ∈ Huv which satisfy
(3.15). It follows that, once fst is fixed, there is at most one choice of elements
{ fuv | u, v ∈ Std(λ) }, such that (3.15) holds.

To complete the proof that the seminormal coefficient system determines a
seminormal basis we need to check that the elements fuv from the last paragraph
are well-defined. That is, we need to show that fuv is independent of the choice of
the sequences of simple transpositions which link u and v to s and t, respectively.
Equivalently, we need to prove that the action of HΛ

n(K ) given by (3.15) respects
the relations of HΛ

n(K ). Using (3.15), all of the relations in Definition 2.2 are easy
to check except for the braid relations of length three which hold by virtue of the
argument of Lemma 3.13. Hence, by choosing elements fst ∈ Hst, for (s, t) ∈ Std(λ)
and λ ∈ PΛ

n , the seminormal coefficient system determines a unique seminormal
basis.

Using (3.6) it is straightforward to prove (3.16) so we leave these details to the
reader; cf. [26, Theorem 3.16]. In particular, this shows that Fs = 1

γs
fss is an

idempotent. To show that Fs is primitive, suppose that a is a non-zero element
of FsHΛ

n(K ). By (3.15), a =
∑

v∈Std(λ) rvfsv, for some rv ∈ K . Fix t ∈ Std(λ)

such that rt 6= 0. Then fst = 1/rtaFt ∈ FsHΛ
n(K ). Using (3.15) we deduce that

FsHΛ
n(K ) has basis { fsv | v ∈ Std(λ) }. Consequently, aHΛ

n = FsHΛ
n(K ), showing

that FsHΛ
n(K ) is irreducible. Therefore, Fs is a primitive idempotent in HΛ

n(K ).
The last paragraph, together with (3.10), implies that if s, u ∈ Std(λ) then

FsHΛ
n
∼= FuHΛ

n where an isomorphism is given by fst 7→ fut, for t ∈ Std(λ).
Consequently, if s and u are standard tableaux of different shape then FsHΛ

n 6∼=
FuHΛ

n because the multiplicity of Sλ ∼= FsHΛ
n(K ) in HΛ

n(K ) is # Std(λ) by the
Wedderburn theorem.

Finally, it remains to show that the basis {fst} is uniquely determined by α and
the choice of the γ-coefficients { γtλ | λ ∈ PΛ

n }. If s, t ∈ Std(λ) then we have shown
that, once fst is fixed, there is a unique seminormal basis { fuv | u, v ∈ Std(λ) }
satisfying (3.15). In particular, taking s = tλ = t and fixing ftλtλ determines
these basis elements. By (3.16) the choice of ftλtλ also uniquely determines γtλ .
Conversely, by setting ftλtλ = γtλFtλ for any choice of non-zero scalars γtλ ∈ K ,
for λ ∈ K , the seminormal coefficient system α determines a unique seminormal
basis. �

The results which follow are independent of the choice of seminormal coefficient
system α, however, the choice of γ-coefficients will be important — and in what
follows it will be useful to be able to vary both the seminormal coefficient system α
and the γ-coefficients.

The proof of Theorem 3.14 implies that the choice of γtλ determines all of the
scalars γs, for s ∈ Std(λ). In what follows we need the following result which makes
the relationship between these coefficients more explicit.

3.17. Corollary. Suppose that t ∈ Std(PΛ
n ) and that v = t(r, r + 1) is standard,

where 1 ≤ r < n. Then αr(v)γt = αr(t)γv.
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Proof. Applying (3.15) and (3.16) several times each,

γvfvv = fvvfvv =
1

αr(t)
fvt

(
Tr +

1

[ρr(t)]

)
fvv =

1

αr(t)
fvtTrfvv

=
1

αr(t)
fvt

(
αr(v)ftv −

1

[ρr(v)]
fvv

)
=
αr(v)

αr(t)
fvtftv

=
αr(v)

αr(t)
γtfvv.

Comparing coefficients, αr(t)γv = αr(v)γt as required. �

3.3. Seminormal bases and the Murphy basis. In this section we compute the
Gram determinant of the Specht modules of HΛ

n , with respect to the Murphy basis,
as a product of primes. These determinants are already explicitly known [4,16–18]
but all existing formulas describe them as products of rational functions, or of
rational numbers in the degenerate case.

By Theorem 2.8, the Murphy basis {mst} is a cellular basis for HΛ
n over an

arbitrary ring. In this section we continue to work with the generic Hecke algebra
HΛ
n = HΛ

n(O) with parameter t and multicharge κ satisfying (3.2).
As (K , t) separates Std(PΛ

n ), for s, t ∈ Std(λ) we can define

fst = FsmstFt.

By Lemma 2.9, fst ≡ mst+
∑
ruvmuv (mod HBλ

n ) , for some ruv ∈ K where ruv 6= 0
only if (u, v) B (s, t). It follows that {fst} is a seminormal basis of HΛ

n(K ) in the
sense of Definition 3.7.

3.18. Proposition. The basis { fst | s, t ∈ Std(λ) for λ ∈ PΛ
n } is the ∗-seminormal

basis of HΛ
n(K ) determined by the seminormal coefficient system defined in Exam-

ple 3.12 and the choices

γtλ = [λ]!t
∏

1≤l<m≤`

∏
(l,r,c)∈[λ]

[κl − r + c− κm],

for λ ∈ PΛ
n .

Proof. This is equivalent to [25, Theorem 2.11] in the non-degenerate case and
to [4, Proposition 6.8] in the degenerate case, however, rather than translating the
notation from these two papers it is easier to prove this directly.

As noted above, (O, t) separates Std(PΛ
n ) and fst ≡ mst+

∑
ruvmuv (mod HBλ

n ) ,
for some ruv ∈ K where ruv 6= 0 only if (u, v) B (s, t). Therefore, in view of (3.16),
{ fst | (s, t) ∈ Std(PΛ

n ) } is a ∗-seminormal basis of HΛ
n(K ). By Theorem 3.14, this

basis is determined by a seminormal coefficient system α and by a choice of scalars
{ γtλ | λ ∈ PΛ

n }. If t B v = t(r, r + 1) then, by definition, mstTr = msv. The
transition matrix between the {mst} and {fst} is unitriangular so, in view of Theo-
rem 3.14, fstTr = fsv − 1

[ρr(t)]fst. Therefore, by (3.10), the seminormal coefficient

system corresponding to the basis {fst} is the one appearing in Example 3.12.
It remains to determine the scalars { γtλ | λ ∈ PΛ

n } corresponding to {fst}. It
is well-known, and easy to prove using the relations in HΛ

n , that x2
λ = [λ]!txλ.

Therefore, by Lemma 2.9,

f2
tλtλ ≡ [λ]!tmλuλ ≡ [λ]!t

∏
1≤l<m≤`

∏
(l,r,c)∈[λ]

[κl − r + c− κm] ·mλ (mod HBλ
n ) .

Hence, γtλ = [λ]!t
∏

1≤l<m≤`
∏

(l,r,c)∈[λ][κl − r + c− κm] by (3.16). �

As noted after Theorem 2.8, the Murphy basis {mst | (s, t) ∈ Std(PΛ
n ) } of HΛ

n

gives a basis {mt | t ∈ Std(λ) } of each Specht module Sλ, for λ ∈ PΛ
n . For example,
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we can set mt = mtλt +HBλ
n , for t ∈ Std(λ). By (2.5), the cellular basis equips

each Specht module Sλ with an inner product 〈 , 〉. The matrix

Gλ =
(
〈ms,mt〉

)
s,t∈Std(λ)

is the Gram matrix of Sλ with respect to the Murphy basis. Similarly, the
seminormal basis yields a second basis { ft | t ∈ Std(λ) } of Sλ(K ), where ft =
mtFt = ftλt +HBλ

n , for t ∈ Std(λ). The transition matrix between these two bases
is unitriangular, so by (3.16) we have

(3.19) detGλ = det
(
〈fs, ft〉

)
=

∏
t∈Std(λ)

γt.

This ‘classical’ formula for detGλ is well-known as it is the cornerstone used to

prove the classical formula for detGλ as a rational function in [17, Theorem 3.35].

The following definition will allow us to give an ‘integral’ closed formula for detGλ.

3.20. Definition. Suppose that e ∈ {0, 2, 3, 4, . . . }, p is a prime integer and that
λ ∈ PΛ

n is a multipartition of n. Define

dege(λ) =
∑

t∈Std(λ)

dege t and Degp(λ) =
∑
k≥1

degpk(λ).

By definition, dege(λ) and Degp(λ) are integers which, a priori, could be positive,
negative or zero. In fact, the next result shows that they are always non-negative
integers, although we do not known of a direct combinatorial proof of this. By
definition, the integers dege(λ) and Degp(λ) depend on κ and e. Our definitions
ensure that the tableau degrees dege(t), for t ∈ Std(λ), coincide with (2.6) when
Λ = Λe(κ).

For k ∈ N, let Φk = Φk(t) be the kth cyclotomic polynomial in t. As is well-known,
these polynomials are pairwise distinct irreducible polynomials in Z[t] and

(3.21) [n] =
∏

1<d|n

Φd(t),

whenever n ≥ 1.

3.22. Theorem. Suppose that κl − κl+1 > n, for 1 ≤ l < `, and that O = Z[t, t−1].
Then

detGλ = t`(λ)
∏
e≥2

Φe(t)
dege(λ),

where `(λ) =
∑

t∈Std(λ) `(d(t)).

Proof. As remarked above, detGλ =
∏

t γt. Therefore, to prove the theorem it is
enough to show that if t ∈ Std(λ) then

γt = t`(d(t))
∏
e>1

Φe(t)
dege(t).

We prove this by induction on the dominance ordering.
Suppose first that t = tλ. Then Proposition 3.18 gives an explicit formula for γtλ

and, using (2.6), it is straightforward to check by induction on n that our claim is
true in this case. Suppose then that tλ B t. Then we can write t = s(r, r + 1) for
some s ∈ Std(λ) such that s B t, and where 1 ≤ r < n. Therefore, using induction,
Corollary 3.17 and the seminormal coefficient system of Proposition 3.18,

γt = t`(d(s)) [1 + ρr(s)][1 + ρr(t)]

[ρr(s)][ρr(t)]

∏
e>1

Φe(t)
dege(s).
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By definition, [k] = −tk[−k], for any k ∈ Z. Now ρr(s) = −ρr(t) > 0 by (3.2), so

[1 + ρr(s)][1 + ρr(t)]

[ρr(s)][ρr(t)]
= t

[1 + ρr(s)][−ρr(t)− 1]

[ρr(s)][−ρr(t)]
= t

∏
e>1

Φe(t)
de ,

where, according to (3.21), the integer de is given in terms of the quiver Γe by

de =


−2, if ir = ir+1,

2, if ir � ir+1,

1, if ir ← ir+1 or ir → ir+1,

0, otherwise.

Applying Lemma 2.7 now completes the proof of our claim — and hence proves the
theorem. �

3.23. Remark. We can remove the factor t`(λ) from Theorem 3.22 by rescaling the
generators T1, . . . , Tn−1 so that the quadratic relations in Definition 2.2 become

(Tr − t
1
2 )(Tr + t−

1
2 ), for 1 ≤ r < n. Note that the integer de in the proof of

Theorem 3.14 is equal to the degree of the homogeneous generator ψre(i) in the
cyclotomic KLR algebra RΛ

n .

Setting t = 1 gives the degenerate cyclotomic Hecke algebras. As a special case,
the next result gives an integral closed formula for the Gram determinants of the
Specht modules of the symmetric groups.

3.24. Corollary. Suppose that κl − κl+1 > n, for 1 ≤ l < `, and that O = Z and
t = 1. Then

detGλ =
∏

1<p prime

pDegp(λ),

for λ ∈ PΛ
n .

Proof. This follows by setting t = 1 in Theorem 3.22 and using the following
well-known property of the cyclotomic polynomials:

Φe(1) =

{
p, if e = pk for some k ≥ 1,

1, otherwise.

�

3.25. Corollary. Suppose that e ∈ {0, 2, 3, 4, 5, . . . } and that p > 0 is an integer
prime. Then dege(λ) ≥ 0 and Degp(λ) ≥ 0, for all λ ∈ PΛ

n .

Proof. As the Murphy basis is defined over Z[t, t−1], the Gram determinant detGλ
belongs to Z[t, t−1]. Therefore, dege(λ) ≥ 0 whenever e > 1 by Theorem 3.22.
Consequently, Degp(λ) ≥ 0. Finally, if e � 0 then deg0(t) = dege(t) for any

t ∈ Std(PΛ
n ), so dege(λ) ≥ 0 for e ∈ {0, 2, 3, 4, . . . } as claimed. �

The statement of Corollary 3.25 is purely combinatorial so it should have a direct
combinatorial proof. We sketch a second representation theoretic proof of this result
which suggests that a combinatorial proof may be difficult.

A graded set is a set D equipped with a degree function deg :D−→Z. Define

degD =
∑
d∈D

deg d ∈ Z.

If D is a graded set and z ∈ Z let qzD be the graded set where an element d ∈ D
has degree z + deg d. More generally, if f(q) ∈ N[q, q−1] let f(q)D be the graded
set which is the disjoint union of the appropriate number of shifted copies of D. For
example (2 + q)D = D tD t qD.
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If e ∈ {0, 2, 3, 4, . . . } let Stde(λ) be the graded set Std(λ) equipped with the
degree function t 7→ dege(t), for t ∈ Stde(λ).

Fix e ∈ {0, 2, 3, 4, . . . } and consider the Hecke algebra HΛ
n(C) over C with

parameter ξ, a primitive eth root of unity if e > 0 or a non-root of unity if e = 0.
Let Sλ be the graded Specht module introduced in [8] (see Section 5.2), and
let Dµ = Sµ/ radSµ be the graded simple quotient of Sµ, as in [15]. Let KΛ

n

be the set of Kleshchev multipartitions so that {Dµ〈k〉 | µ ∈ KΛ
n and k ∈ Z }

is a complete set of non-isomorphic graded simple HΛ
n -modules. As recalled in

Section 5.2, Sλ comes equipped with a homogeneous basis {ψt | t ∈ Std(λ) }. Let
dλµ(q) = [Sλ:Dµ]q be the corresponding graded decomposition number.

Fix a total ordering ≺ on Std(λ) which extends the dominance ordering. By
Gaussian elimination, there exists a graded subset DStde(λ) of Std(λ) and a
basis {Ct | t ∈ DStde(λ) } such that Ct = ψt +

∑
v≺t ctvψv + radSλ, for some

ctv ∈ C such that ctv 6= 0 only if deg v = deg t and res(v) = res(t). In particular,
DimDλ = deg DStde(λ). Repeating this argument with each factor of the radical
filtration of Sλ, it follows that there exists a bijection of graded sets

Θλ : Stde(λ)
∼−→

⊔
µ∈KΛ

n

dλµ(q) DStde(µ).

Now if µ ∈ KΛ
n then Dµ ∼= (Dµ)~, so that deg DStde(µ) = 0. It follows that

deg qz DStde(µ) = z dimDµ, for z ∈ Z. Therefore, using the bijection Θλ,

dege(λ) = deg Stde(λ) =
∑

µ∈KΛ
n

deg
(
dλµ(q) DStde(µ)

)
=
∑

µ∈KΛ
n

d′λµ(1) dimDµ,

where d′λµ(1) is the derivative of the graded decomposition number dλµ(q) evaluated

at q = 1. By [7, Corollary 5.15], dλµ(q) ∈ N[q] when K is a field of characteristic
zero, so we get that dege(λ) ≥ 0 and hence this gives an alternative proof of
Corollary 3.25.

In characteristic zero the graded cyclotomic Schur algebras are expected to be
Koszul (this is true when e = 0 by [14, Theorem C]). This conjecture implies that
the Jantzen and grading filtrations of the graded Weyl modules, and hence of the
graded Specht modules, coincide. Therefore, Corollary 3.25 is compatible with this
Koszulity Conjecture via Ryom-Hansen’s [30, Theorem 1] description of the Jantzen
sum formula; see also [35, Theorem 2.11].

The construction of the sets DStde(µ) given above is not unique because it
involves many choices. It natural to ask if there is are natural choices for the sets
DStde(µ) and the bijections Θλ so that they correspond to a basis of Sλ which is
uniquely determined in some way. For level 2 such bijections are implicit in [9, §9]
when e = 0 and in [14, Appendix] for e ≥ n. It is interesting to note that the sets
DStde(µ), together with the bijections Θλ, determine the graded decomposition
numbers because if s ∈ DStde(µ) then

dλµ(q) =
∑

t∈Θ−1
λ (s)

qdeg t−deg s,

where we abuse notation and let Θ−1
λ (s) be the set of tableaux in Std(λ) which are

mapped onto a (shifted) copy of s by Θλ. In particular, we can take s = tµ because
it is easy to see that tµ ∈ DStde(µ) whenever µ ∈ KΛ

n . That is, our arguments prove
the existence of a purely combinatorial formula for the parabolic Kazhdan-Lusztig
polynomials dλµ(q).
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4. Integral Quiver Hecke algebras

The Seminormal Basis Theorem 3.14 compactly describes much of the semisimple
representation theory of HΛ

n(K ). For symmetric groups, Murphy [27] showed that
seminormal bases can also be used to study the non-semisimple representation
theory. Murphy’s ideas were extended to the cyclotomic Hecke algebras in [25,26].
In this section we further extend Murphy’s ideas to connect seminormal bases and
the KLR grading on HΛ

n .

4.1. Lifting idempotents. As Section 3.2, we continue to assume that κ satisfies
(3.2) and that (K , t) separates Std(PΛ

n ), where K is a field and 0 6= t ∈ K . If O is
a subring of K then we identify HΛ

n(O) with the obvious O-subalgebra of HΛ
n(K )

so that HΛ
n(K ) ∼= HΛ

n(O)⊗O K as K -algebras.
Let J(O) be the Jacobson radical of O, the intersection of all of the maximal

ideals of O.

4.1. Definition. Suppose that O is a subring of K and t ∈ O×. Then (O, t), is an
e-idempotent subring of K if the following hold:

a) (O, t) separates Std(PΛ
n );

b) [k]t is invertible in O whenever k 6≡ 0 (mod e) , for k ∈ Z; and
c) [k]t ∈ J(O) whenever k ∈ eZ.

When e and t are understood, we simply call O an idempotent subring. Note that
if K contains the field of fractions of O then Definition 4.1(a) ensures that HΛ

n(K )
is semisimple and has seminormal bases. We fix such a ∗-seminormal basis {fst},
together with the corresponding seminormal coefficient system α and γ-coefficients,
until further notice.

Let (O, t) be an e-idempotent subring and suppose c 6≡ d (mod e) , for c, d ∈ Z.
Then [c]− [d] = td[c− d] is invertible in O. We use this fact below without mention.

4.2. Examples The following local rings are all examples of idempotent subrings.

a) Suppose that K = Q and t = 1. Then (K , t) separates Std(PΛ
n ) and

O = Z(p) is a p-idempotent subring of Q for any prime p.
b) Let K be any field and set K = K(x), where x is an indeterminate over K,

and t = x+ξ, where ξ is a primitive eth root of unity in K. Then O = K[x](x)

is an e-idempotent subring of K .
c) Let K = Q(x, ξ), where x is an indeterminate over Q and ξ = exp(2πi/e)

is a primitive eth root of unity in C. Let t = x+ ξ. Then (K , t) separates
Std(PΛ

n ) and O = Z[x, ξ](x) is an e-idempotent subring of K .
d) Maintain the notation of the last example and let p > 1 be a prime not

dividing e. Let Φe,p(x) be a polynomial in Z[x] whose reduction modulo p is
the minimum polynomial of a primitive eth root of unity in an algebraically
closed field of characteristic p. Then O = Z[x, ξ](x,p,Φe,p(ξ)) is an e-idempotent
subring of C(x).

3
Suppose that i ∈ In and set Std(i) = { t ∈ Std(PΛ

n ) | res(t) = i }. Define the
residue idempotent fOi by

(4.3) fOi =
∑

t∈Std(i)

Ft.

By Theorem 3.14, fOi is an idempotent in HΛ
n(K ). In the rest of this section, we fix

a seminormal basis {fst} of HΛ
n(K ) which is determined by a seminormal coefficient

system {αr(s)} and a choice of γtλ . Then we have that fOi =
∑

t∈Std(i)
1
γt
ftt.

4.4. Lemma. Suppose that O is an idempotent subring of K and that i ∈ In. Then
fOi ∈ L (O). In particular, fOi is an idempotent in HΛ

n(O).
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Proof. This result is proved when O is a discrete valuation ring in [26, Lemma 4.2],
however, our weaker assumptions necessitate a different proof. Motivated, in part,
by the proof of [27, Theorem 2.1], if t ∈ Std(i) define

F ′t =

n∏
k=1

∏
c∈E

ck(t)6≡c (mod e)

Lk − [c]

[ck(t)]− [c]
.

Since O is an e-idempotent subring, F ′t ∈ L (O) ⊂ HΛ
n(O). By Theorem 3.14,∑

s∈Std(PΛ
n ) Fs is the identity element of HΛ

n(K ) so, using (3.15), we see that

F ′t =
∑

s∈Std(PΛ
n )

F ′tFs =
∑

s∈Std(PΛ
n )

astFs,

where ast =
∏
k,c([ck(s)]− [c])/([ck(t)]− [c]) ∈ O. In particular, att = 1. If s /∈ Std(i)

then there exists an integer k such that resk(s) 6= resk(t), so [ck(s)]− [ck(t)] ∈ O×
and ast = 0. Therefore, F ′t =

∑
s∈Std(i) astFs. Consequently, fOi F

′
t = F ′t = F ′tf

O
i

by (3.16). Notice that F ′tF
′
s = F ′sF

′
t because L (K ) is a commutative subalgebra

of HΛ
n(K ). Therefore,∏

t∈Std(i)

(fOi − F ′t ) = fOi +
∑

t1,...,tk∈Std(i)
distinct with k>0

(−1)kF ′t1F
′
t2 . . . F

′
tk
.

On the other hand, since fOi =
∑

s∈Std(i) Fs and att = 1,∏
t∈Std(i)

(fOi − F ′t ) =
∏

t∈Std(i)

∑
s∈Std(i)

s6=t

(1− ast)Fs = 0,

because FsFt = 0 whenever s 6= t by (3.16). Combining the last two equations,

fOi =
∑

t1,...,tk∈Std(i)
distinct with k>0

(−1)k+1F ′t1F
′
t2 . . . F

′
tk
.

In particular, fOi ∈ L (O) as we wanted to show. �

4.5. Corollary. Suppose that O is an idempotent subring of K . Then { fOi | i ∈ In }
is a complete set of pairwise orthogonal idempotents in HΛ

n(O).

Proof. By Theorem 3.14, {Ft | t ∈ Std(PΛ
n ) } is a complete set of pairwise orthogo-

nal idempotents in HΛ
n(K ). Hence, the result follows from Lemma 4.4. �

If φ ∈ O[X1, . . . , Xn] is a polynomial in indeterminates X1, . . . , Xn over O then
set φ(L) = φ(L1, . . . , Ln) ∈ L (O). If s is a tableau let φ(s) = φ([c1(s)], . . . , [cn(s)])
be the scalar in O obtained by evaluating the polynomial φ on the contents of s;
that is, setting X1 = [c1(s)], . . . , Xn = [cn(s)]. Then, φ(L)fst = φ(s)fst, for all
(s, t) ∈ Std2(PΛ

n ).
Ultimately, the next result will allow us to ‘renormalise’ intertwiners of the residue

idempotents fOi , for i ∈ In, so that they depend only on e rather than on ξ.

4.6. Proposition. Suppose that i ∈ In and φ ∈ O[X1, . . . , Xn] is a polynomial such
that φ(t) is invertible in O, for all t ∈ Std(i). Then

fφi =
∑

t∈Std(i)

1

φ(t)
Ft ∈ L (O).

In particular, fφi ∈ HΛ
n(O).
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Proof. By assumption, φ(s) is invertible in O for all s ∈ Std(i). In particular, fφi is

a well-defined element of L (K ). It remains to show that fφi ∈ L (O).
As in Lemma 4.4, for each t ∈ Std(i) define

F ′t =
∏
c∈E

ck(t) 6≡c (mod e)

Lk − [c]

[ck(t)]− [c]
∈ L (O),

and write F ′t =
∑

s∈Std(i) astFs for some ast ∈ O. Recall from the proof of Lemma 4.4

that att = 1.

Motivated by the definition of F ′t , set Fφt = φ(L)
φ(t) F

′
t . Then Fφt ∈ L (O) and

Fφt =
∑

s∈Std(i)

ast
φ(L)

φ(t)
Fs = Ft +

∑
s∈Std(i)

s6=t

astφ(s)

φ(t)
Fs

by (3.15). Consequently, Fφt f
O
i = Fφt = fOi F

φ
t . The idempotents {Fs | s ∈ Std(i) }

are pairwise orthogonal, so

fφi F
φ
t =

( ∑
s∈Std(i)

1

φ(s)
Fs

)( ∑
s∈Std(i)

astφ(s)

φ(t)
Fs

)
=

∑
s∈Std(i)

ast
φ(t)

Fs =
1

φ(t)
F ′t .

Therefore, fφi F
φ
t ∈ L (O), for all t ∈ Std(i). By (3.15), fφi f

O
i = fφi = fOi f

φ
i , so this

implies that fφi (fOi − F
φ
t ) ≡ fφi (mod L (O)) . Hence, working modulo L (O),

fφi ≡ f
φ
i

∏
t∈Std(i)

(
fOi − F

φ
t ) = fφi

∏
t∈Std(i)

∑
s∈Std(i)

s6=t

astφ(s)

φ(t)
Fs = 0,

where the last equality follows using the orthogonality of the idempotents Fs once

again. Therefore, fφi ∈ L (O), completing the proof. �

Let φ be a polynomial in O[X1, . . . , Xn] satisfying the assumptions of Propo-

sition 4.6. Then φ(L)fφi = fOi = fφi φ(L) by (3.15). Abusing notation, in this
situation we write

1

φ(L)
fOi = fφi =

∑
s∈Std(i)

1

φ(s)
Fs = fOi

1

φ(L)
∈ L (O).

Note that, either by direction calculation or because L is commutative, we are
justified in writing fOi

1
φ(L) = 1

φ(L)f
O
i .

We need the following three special cases of Proposition 4.6. For 1 ≤ r < n
define Mr = 1−Lr + tLr+1 and M ′r = 1 + tLr −Lr+1, for 1 ≤ r < n. Applying the
definitions, if (s, t) ∈ Std(PΛ

n ) then

(4.7) Mrfst = tcr(s)[1− ρr(s)]fst and M ′rfst = tcr+1(s)[1 + ρr(s)]fst.

Our main use of Proposition 4.6 is the following application which corresponds to
taking φ(L) be to Lr − Lr+1, Mr and M ′r, respectively.

4.8. Corollary. Suppose that O is an e-idempotent subring, 1 ≤ r < n and i ∈ In.

a) If ir 6= ir+1 then
1

Lr − Lr+1
fOi =

∑
t∈Std(i)

t−cr+1(t)

[ρr(t)]
Ft ∈ L (O).

b) If ir 6= ir+1 + 1 then
1

Mr
fOi =

∑
t∈Std(i)

t−cr(t)

[1− ρr(t)]
Ft ∈ L (O).

c) If ir 6= ir+1 − 1 then
1

M ′r
fOi =

∑
t∈Std(i)

t−cr+1(t)

[1 + ρr(t)]
Ft ∈ L (O).
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4.2. Intertwiners. By Theorem 2.14, if K is a field then the KLR generators
of HΛ

n(K) satisfy ψre(i) = e(sr · i)ψr. This section defines analogous elements
in HΛ

n(O) which intertwine the residue idempotents fOi , for i ∈ In.

4.9. Lemma. Suppose that ir = ir+1, for some i ∈ In and 1 ≤ r < n. Then
Trf

O
i = fOi Tr.

Proof. This follows directly from the Seminormal Basis Theorem 3.14. In more
detail, note that if t ∈ Std(i) then r and r + 1 cannot appear in the same row or in
the same column of t. Therefore,

Trf
O
i − fOi Tr =

∑
t∈Std(i)

1

γt

(
Trftt − fttTr

)
=

∑
t,v∈Std(i)
v=t(r,r+1)

(αr(t)
γt
− αr(v)

γv

)
fvt,

by (3.15). By Corollary 3.17, if v = t(r, r + 1) then αr(t)γv = αr(v)γt. Hence,
Trf

O
i = fOi Tr as claimed. �

4.10. Remark. In the special case of the symmetric groups, Ryom-Hansen [31, §3]
has proved an analogue of Lemma 4.9.

Using (3.15), it is easy to verify that Trf
O
i 6= fOj Tr if j = sr · i 6= i, for 1 ≤ r < n

and i ∈ In. The following elements will allow us to correct for this.

4.11. Lemma. Suppose that (s, t) ∈ Std(PΛ
n ) and 1 ≤ r < n. Let u = s(r, r + 1).

Then (TrLr − LrTr)fst = αr(s)t
cr+1(s)[ρr(s)]fut.

Proof. Using (3.15) we obtain

(TrLr − LrTr)fst = αr(s)
(
[cr(s)]− [cr+1(s)]

)
fut = αr(s)t

cr+1(s)[ρr(s)]fut,

where, as usual, we set fut = 0 if u is not standard. �

Applying the ∗-involution, fst(TrLr − LrTr) = −αr(t)tcr+1(t)[ρr(t)]fsv, where
v = t(r, r + 1).

4.12. Lemma. Suppose that ir 6= ir+1, for some i ∈ In and 1 ≤ r < n. Set j = sr · i.
Then (TrLr − LrTr

)
fOi = fOj (TrLr − LrTr

)
.

Proof. By definition, fOi =
∑

s∈Std(i)
1
γs
fss so, by Lemma 4.11,

(TrLr − LrTr)fOi =
∑

s∈Std(i)

1

γs
(TrLr − LrTr)fss

=
∑

s∈Std(i)

u=s(r,r+1)∈Std(PΛ
n )

αr(s)t
cr+1(s)[ρr(s)]

γs
fus.

Note that if s ∈ Std(i) and u = s(r, r + 1) is standard then s ∈ Std(j). Similarly,

fOj (TrLr − LrTr) =
∑

u∈Std(j)
s=u(r,r+1)∈Std(i)

−αr(u)tcr+1(u)[ρr(u)]

γu
fus.

By (3.15), the tableaux in Std(i) and Std(j) which have r and r + 1 in the same
row or in the same column do not contribute to the right hand sides of either of
the last two equations. Moreover, the map s 7→ u = s(r, r + 1) defines a bijection
from the set of tableaux in Std(i) such that r and r+ 1 appear in different rows and
columns to the set of tableaux in Std(j) which have r and r+ 1 in different rows and
columns. In particular, (TrLr − LrTr)fOi = 0 if and only if fOj (TrLr − LrTr) = 0.
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To complete the proof suppose that s ∈ Std(i) and that u = s(r, r + 1) ∈ Std(j).
Now, αr(u)γs = αr(s)γu, by Corollary 3.17, and ρr(u) = −ρr(s), by definition. So

−αr(u)tcr+1(u)[ρr(u)]

γu
=
−αr(s)tcr(s)[−ρr(s)]

γs
=
αr(s)t

cr+1(s)[ρr(s)]

γs
.

Hence, comparing the equations above, (TrLr − LrTr
)
fOi = fOj (TrLr − LrTr

)
as

required. �

Recall the definitions of Mr and M ′r from (4.7), for 1 ≤ r < n. We finish this
section by giving the commutation relations for the elements Mr, M

′
r, (1 + Tr) and

(TrLr − LrTr). These will be important later.

4.13. Lemma. Suppose that 1 ≤ r < n. Then

(TrLr − LrTr)Mr = M ′r(TrLr − LrTr) and (Tr − t)Mr = M ′r(1 + Tr).

Proof. Both formulas can be proved by applying the relations in Definition 2.2.
Alternatively, suppose that (s, t) ∈ Std2(PΛ

n ) and set v = t(r, r + 1). Then, by (4.7)
and Lemma 4.11,

fst(TrLr − LrTr)Mr = −αr(t)t2cr(v)[ρr(t)][1 + ρr(t)]fsv

= fstM
′
r(TrLr − LrTr),

where the last equality follows because cr(v) = cr+1(t) and cr+1(v) = cr(t). As
the regular representation is a faithful, this implies the first formula. The second
formula can be proved similarly. �

4.3. The integral KLR generators. In Lemma 4.9 and Lemma 4.12, we have
found elements in HΛ

n(O) which intertwine the residue idempotents fOi . These
intertwiners are not quite the elements that we need, however, because they still
depend on t, rather than just on e. To remove this dependence on t we will use
Proposition 4.6 to renormalise these elements.

By Lemma 4.4, if h ∈ HΛ
n(O) then h =

∑
i∈In hf

O
i , so that h is completely

determined by its projections onto the spaces HΛ
n(O)fOi . We use this observation

to define analogues of the KLR generators in HΛ
n(O).

Recall from (4.7) that Mr = 1− Lr + tLr+1. By Corollary 4.8, if ir 6= ir+1 + 1
then Mr acts invertibly on fOi HΛ

n(O) so 1
Mr
fOi is a well-defined element of HΛ

n(O).
As in the introduction, define an embedding I ↪→ Z; i 7→ ı̂ by defining ı̂ to be the

smallest non-negative integer such that i = ı̂+ eZ, for i ∈ I.

4.14. Definition. Suppose that 1 ≤ r < n. Define elements ψOr =
∑

i∈In ψ
O
r f
O
i

in HΛ
n(O) by

ψOr f
O
i =


(Tr + 1) t

ı̂r

Mr
fOi , if ir = ir+1,

(TrLr − LrTr)t−ı̂rfOi , if ir = ir+1 + 1,

(TrLr − LrTr) 1
Mr
fOi , otherwise.

If 1 ≤ r ≤ n then define yOr =
∑

i∈In t
−ı̂r (Lr − [̂ır])f

O
i .

The order of the terms in the definition of ψOr matters because Mr does not
commute with Tr + 1 or with TrLr − LrTr (see Lemma 4.13), although Mr does
commute with fOi . Notice that ψOr is independent of the choice of seminormal
coefficient system because the residue idempotents fOi are independent of this choice.

One subtlety of Definition 4.14, which we will pay for later, is that it makes use
of the embedding I ↪→ Z in order to give meaning to expressions like t±ı̂r .
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4.15. Remark. Unravelling the definitions, the element ψOr ⊗O 1K is a scalar multiple
of the choice of KLR generators for HΛ

n(K ) made by Stroppel and Webster [33, (27)].
Similarly, yOr ⊗O 1K is a multiple of the KLR generator yr defined by Brundan and
Kleshchev [6, (4.21)].

4.16. Proposition. The algebra HΛ
n(O) is generated by the elements

{ fOi | i ∈ In } ∪ {ψOr | 1 ≤ r < n } ∪ { yOr | 1 ≤ r ≤ n } .

Proof. Let H be the O-subalgebra of HΛ
n(O) generated by the elements in the

statement of the proposition. We need to show that H = HΛ
n(O). Directly from

the definitions, if 1 ≤ r ≤ n then Lr =
∑

i(t
ı̂ryOr + [ir])f

O
i ∈ H. Therefore,

the Gelfand-Zetlin algebra L (O) is contained in H. Consequently, Mr ∈ H, for
1 ≤ r < n. By Definition 2.2, LrTr − TrLr = Tr(Lr+1 − Lr)− 1 + (1− t)Lr+1. By
Corollary 4.8(a), if ir 6= ir+1 then 1

Lr−Lr+1
fOi ∈ L (O) ⊆ H. Therefore, since Mr

and fOi commute, we can write

Trf
O
i =


(
t−ı̂rψOr Mr − 1

)
fOi , if ir = ir+1,(

− tı̂rψOr + 1 + (t− 1)Lr+1

)
1

Lr+1−Lr
fOi , if ir = ir+1 + 1(

− ψOr Mr + 1 + (t− 1)Lr+1

)
1

Lr+1−Lr
fOi , otherwise.

by Definition 4.14. Hence, Tr =
∑

i Trf
O
i ∈ H. As T1, . . . , Tn−1, L1, . . . , Ln gener-

ate HΛ
n(O) this implies that H = HΛ

n(O), completing the proof. �

We now use the seminormal form to show that the elements in the statement of
Proposition 4.16 satisfy most of the relations of Definition 2.10.

4.17. Lemma. Suppose that 1 ≤ r < n and i ∈ In. Then ψOr f
O
i = fOj ψ

O
r , where

j = sr · i.

Proof. By Lemma 4.4 and Proposition 4.6, respectively, Mr and fOi both belong
to L (O), which is a commutative algebra. Therefore, 1

Mr
fOi and fOi commute. If

ir = ir+1 then

ψOr f
O
i = (Tr + 1)

tı̂r

Mr
fOi = (Tr + 1)fOi

tı̂r

Mr
fOi = fOi (Tr + 1)

tı̂r

Mr
fOi = fOi ψ

O
r ,

where the third equality comes from Lemma 4.9. The remaining cases follow similarly
using Lemma 4.12. �

As we will work with right modules we need the right-handed analogue of
Definition 4.14. Note that if ir 6= ir+1 + 1 then fOi

1
Mr

= 1
Mr
fOi ∈ HΛ

n(O) by

Proposition 4.6. Similarly, if ir 6= ir+1− 1 then fOi
1
M ′r

= 1
M ′r
fOi ∈ HΛ

n(O). It follows

that all of the expressions in the next lemma make sense.

4.18. Lemma. Suppose 1 ≤ r < n and i ∈ In. Then

fOi ψ
O
r =


fOi

tı̂r+1

M ′r
(Tr − t), if ii = ir+1,

fOi (TrLr − LrTr)t−ı̂r+1 , if ir = ir+1 − 1,

fOi
1
M ′r

(TrLr − LrTr), otherwise.

Proof. By Lemma 4.17, fOi ψ
O
r = fOi ψ

O
r f
O
j where j = sr · i. Therefore,

fOi ψ
O
r =


fOi (1 + Tr)

tı̂r+1

Mr
fOj , if ii = ir+1,

fOi (TrLr − LrTr)t−ı̂r+1fOj , if ir = ir+1 − 1,

fOi (TrLr − LrTr) 1
Mr
fOj , otherwise.

To complete the proof apply Lemma 4.13. �



28 JUN HU AND ANDREW MATHAS

4.19. Lemma. Suppose that i, j ∈ In and 1 ≤ r, s ≤ n. Then∑
i∈In

fOi = 1, fOi f
O
j = δijf

O
i , yOr f

O
i = fOi y

O
r and yOr y

O
s = yOs y

O
r .

Moreover, if s 6= r, r + 1 then ψOr y
O
s = yOs ψ

O
r , for 1 ≤ r < n and 1 ≤ s ≤ n.

Proof. The elements fOi , for i ∈ In, form a complete set of pairwise orthogonal
idempotents by Lemma 4.4, which gives the first two relations. Since yr, f

O
i ∈ L (O)

and L (O) is a commutative algebra, all of the elements fOi , yOr and yOs commute.
Now suppose that s 6= r, r + 1. Then yOs commutes with 1

Mr
fOi and with Tr.

Hence, ψOr f
O
i y
O
s = yOs ψ

O
r f
O
i , for any i ∈ In. Therefore, ψOr y

O
s = yOs ψ

O
r . �

4.20. Lemma. Suppose that i ∈ In. Then∏
1≤l≤`

κl≡i1 (mod e)

(yO1 − [κl − ı̂1])fOi = 0.

Proof. By Definition 2.2,
∏`
l=1(L1− [κl]) = 0 so that

∏`
l=1(L1− [κl])f

O
i = 0, for all

i ∈ I. If κl 6≡ i1 (mod e) then [̂ı1] 6= [κl] so that (L1− [κl]) acts invertibly on fOi HΛ
n

by Proposition 4.6. Consequently, by Definition 4.14,

0 =
∏

1≤l≤`
κl≡i1 (mod e)

(tı̂1yO1 + [̂ı1]− [κl])f
O
i = tı̂1〈Λ,αi1 〉

∏
1≤l≤`

κl≡i1 (mod e)

(yO1 − [κl − ı̂1])fOi .

As t is invertible in O, the lemma follows. �

Suppose that s is a standard tableau, i = res(s) ∈ In and 1 ≤ r < n. Define

(4.21) βr(s) =


tı̂r−cr(s)αr(s)

[1− ρr(s)]
, if ir = ir+1,

tcr+1(s)−ı̂rαr(s)[ρr(s)], if ir = ir+1 + 1,

t−ρr(s)αr(s)[ρr(s)]

[1− ρr(s)]
, otherwise,

and

(4.22) β̂r(s) =


tı̂r+1−cr+1(s)αr(s)

[1 + ρr(s)]
, if ir = ir+1,

−tcr+1(s)−ı̂r+1αr(s)[ρr(s)], if ir = ir+1 − 1,

−αr(s)[ρr(s)]
[1 + ρr(s)]

, otherwise.

These scalars describe the action of ψOr and yOr upon the seminormal basis.

4.23. Lemma. Suppose that 1 ≤ r < n and that (s, t) ∈ Std2(PΛ
n ). Set i = res(s),

j = res(t), u = s(r, r + 1) and v = t(r, r + 1). Then

ψOr fst = βr(s)fut − δirir+1

tı̂r+1−cr+1(s)

[ρr(s)]
fst,

and

fstψ
O
r = β̂r(t)fsv − δjrjr+1

t̂r+1−cr+1(t)

[ρr(t)]
fst.

Similarly, yOr fst = [cr(s)− ı̂r]fst, and fsty
O
r = [cr(t)− ̂r]fst, for 1 ≤ r ≤ n.
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Proof. Applying Definition 4.14 and (3.15),

yOr fst = t−ı̂r ([cr(s)]− [̂ır])fst = [cr(s)− ı̂r]fst.

The proof that fsty
O
r = [cr(t)− ̂r]fst is similar. We now consider ψOr .

By (3.16), if k ∈ In then fOk fst = δikfst. We use this observation below without

mention. By Lemma 4.11, (TrLr − LrTr)fst = αr(s)t
cr+1(s)[ρr(s)]fut. Hence,

ψOr fst = βr(s)fut when ir 6= ir+1 by Definition 4.14 and (4.7). Now suppose that
ir = ir+1. Then, using (4.7) and (3.15),

ψOr fst = (1 + Tr)
tı̂r

Mr
fst =

tı̂r−cr(s)

[1− ρr(s)]

(
αr(s)fut +

(
1− 1

[ρr(s)]

)
fst

)
= βr(s)fut −

tı̂r+1−cr+1(s)

[ρr(s)]
fst,

as required. The formula for fstψ
O
r is proved similarly using Lemma 4.18 in place

of Definition 4.14. �

Note that, in general, ψOr fst 6= (ftsψ
O
r )∗.

The next relation can also be proved using Lemma 4.13 and Lemma 4.18.

4.24. Corollary. Suppose that |r − t| > 1, for 1 ≤ r, t < n. Then ψOr ψ
O
t = ψOt ψ

O
r .

Proof. It follows easily from Lemma 4.23 that ψrψtfst = ψtψrfst, for all (s, t) ∈
Std2(PΛ

n ). Hence, by Lemma 4.4, ψOr ψ
O
t f
O
i = ψOt ψ

O
r f
O
i , for all i ∈ In. �

4.25. Lemma. Suppose that 1 ≤ r < n and i ∈ In. Then

ψOr y
O
r+1f

O
i = (yOr ψ

O
r + δirir+1)fOi and yOr+1ψ

O
r f
O
i = (ψOr y

O
r + δirir+1)fOi .

Proof. Both formulas can be proved similarly, so we consider only the first one.
We prove the stronger result that ψOr y

O
r+1fst = (yOr ψ

O
r + δirir+1)fst, whenever

(s, t) ∈ Std2(PΛ
n ) and res(s) = i. By (4.3) this implies the lemma.

Suppose first that ir = ir+1. Then, using Lemma 4.23,

ψOr y
O
r+1fst = [cr+1(s)− ı̂r+1]

(
βr(s)fut −

tı̂r+1−cr+1(s)

[ρr(s)]
fst

)
.

On the other hand, by Lemma 4.23 and (4.21),

(yOr ψ
O
r + 1)fst = [cr(u)− ı̂r+1]βr(s)fut +

(
1− tı̂r−cr+1(s)[cr(s)− ı̂r]

[ρr(s)]

)
fst

= [cr(u)− ı̂r+1]βr(s)fut +
[̂ır+1 − cr+1(s)]

[ρr(s)]
fst.

Therefore, ψOr y
O
r+1fst = (yOr ψ

O
r + 1)fst since cr(u) = cr+1(s) and ir = ir+1.

If ir 6= ir+1 then the calculation is easier because

ψOr y
O
r+1fst = [cr+1(s)− ı̂r+1]βr(s)fut = yOr ψ

O
r fst,

where, for the last equality, we again use the fact that cr(u) = cr+1(s). �

The following simple combinatorial identity largely determines both the quadratic
and the (deformed) braid relations for the ψOr , for 1 ≤ r < n. This result can
be viewed as a graded analogue of the defining property (3.10) of a seminormal
coefficient system.
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4.26. Lemma. Suppose that 1 ≤ r < n and s, u ∈ Std(λ) with u = s(r, r + 1) and
res(s) = i ∈ In, for λ ∈ PΛ

n . Then

βr(s)βr(u) =



tcr(s)+cr+1(s)−ı̂r−ı̂r+1 [1− ρr(s)][1 + ρr(s)], if ir � ir+1,

tcr+1(s)−ı̂r+1 [1 + ρr(s)], if ir → ir+1,

tcr(s)−ı̂r [1− ρr(s)], if ir ← ir+1,

− t
2ı̂r−2cr+1(s)

[ρr(s)]2 , if ir = ir+1,

1, otherwise.

Proof. The lemma follows directly from the definition of βr(s) using (3.10). �

It is time to pay the price for the failure of the embedding I ↪→ Z to extend to
an embedding of quivers. Together with the cyclotomic relation, this is place where
the KLR grading fails to lift to the algebra HΛ

n(O). Recall from Definition 4.14 that
yOr f

O
i = t−ı̂r (Lr − [̂ır])f

O
i , where 1 ≤ r ≤ n and i ∈ In. For d ∈ Z define

(4.27) y〈d〉r fOi = td−ı̂r (Lr − [̂ır − d])fOi = (tdyOr + [d])fOi .

In particular, y
〈0〉
r = yOr and y

〈d〉
r ⊗O 1K = yOr ⊗O 1K whenever e divides d ∈ Z,

As a final piece of notation, set ρr(i) = ı̂r − ı̂r+1 ∈ Z, for i ∈ In and 1 ≤ r < n.

4.28. Proposition. Suppose that 1 ≤ r < n and i ∈ In. Then

(ψOr )2fOi =



(y
〈1+ρr(i)〉
r − yOr+1)(y

〈1−ρr(i)〉
r+1 − yOr )fOi , if ir � ir+1,

(y
〈1+ρr(i)〉
r − yOr+1)fOi , if ir → ir+1,

(y
〈1−ρr(i)〉
r+1 − yOr )fOi , if ir ← ir+1,

0, if ir = ir+1,

fOi , otherwise.

Proof. Once again, by (4.3) it is enough to prove the corresponding formulas for
(ψOr )2fst, where (s, t) ∈ Std2(PΛ

n ) and i = res(i).
Suppose that ir = ir+1. Let u = s(r, r + 1) and j = res(u). By Lemma 4.23,

(ψOr )2fst =
( t2ı̂r−2cr+1(s)

[ρr(s)]2
+ βr(s)βr(u)

)
fst −

(βr(s)tı̂r−cr(s)

[ρr(u)]
+
βr(s)t

̂r−cr(u)

[ρr(s)]

)
fut.

Note that ρr(s) = −ρr(u) and ir = jr, so that t̂r−cr(u)[ρr(u)] = −tı̂r−cr(s)[ρr(s)].
Hence, using Lemma 4.26, (ψOr )2fst = 0 when ir = ir+1 as claimed.

Now suppose that ir 6= ir+1. Then, by Lemma 4.23 and Lemma 4.26,

(ψOr )2fst = βr(s)βr(u)fst

=


tcr(s)+cr+1(s)−ı̂r−ı̂r+1 [1− ρr(s)][1 + ρr(s)]fst, if ir � ir+1,

tcr+1(s)−ı̂r+1 [1 + ρr(s)]fst, if ir → ir+1,

tcr(s)−ı̂r [1− ρr(s)]fst, if ir ← ir+1,

fst, otherwise.

As in Lemma 4.23, if d ∈ Z then y
〈d〉
r fst = [cr(s)− ı̂r + d]fst. So, if ir → ir+1 then

(y〈1+ρr(i)〉
r − yOr+1)fst =

(
[cr(s) + 1− ı̂r+1]− [cr+1(s)− ı̂r+1]

)
fst

= tcr+1(s)−ı̂r+1 [1 + ρr(s)]fst = (ψOr )2fst.

The cases when ir → ir+1 and ir � ir+1 are similar. �

Set BOr = ψOr ψ
O
r+1ψ

O
r − ψOr+1ψ

O
r ψ
O
r+1, for 1 ≤ r < n− 1.
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4.29. Proposition. Suppose that 1 ≤ r < n and s, t ∈ Std
(
λ), with s ∈ Std(i) for

i ∈ In. Then

BOr fst =


(y
〈1+ρr(i)〉
r + y

〈1+ρr(i)〉
r+2 − y〈1+ρr(i)〉

r+1 − y〈1−ρr(i)〉
r+1 )fst, if ir+2 = ir � ir+1,

−t1+ρr(i)fst, if ir+2 = ir → ir+1,

fst, if ir+2 = ir ← ir+1,

0, otherwise.

Proof. We mimic the proof of the braid relations from Lemma 3.13.
Define (not necessarily standard) tableaux u1 = s(r, r + 1), u2 = s(r + 1, r + 2),

u12 = u1(r + 1, r + 2), u21 = u2(r, r + 1) and u121 = u12(r, r + 1) = u212. To
ease notation set i = ir, j = ir+1 and k = ir+2. The relationship between these
tableaux, and their residues { ress(u) | r ≤ s ≤ r + 2 } = {i, j, k}, is illustrated in
the following diagram.

s ∼ (i, j, k)

u1 ∼ (j, i, k) u2 ∼ (i, k, j)

u12 ∼ (j, k, i) u21 ∼ (k, i, j)

u121 = u212 ∼ (k, j, i)

sr sr+1

sr+1 sr

sr sr+1

Note that if any tableau u ∈ {u1, u2, u12.u21, u121} is not standard then, by definition,
fut = 0 so this term can be ignored in all of the calculations below.

We need to compute BOr fst. To start with, observe that by Lemma 4.23, the
coefficient of fu121t in BOr fst is equal to

βr(s)βr+1(u1)βr(u12)− βr+1(s)βr(u2)βr+1(u21).

By definition, the scalars [ρr(s)] and [1− ρr(s)] are determined by the positions of r
and r + 1 in s, so it is easy to see that

(4.30)
ρr(s) = ρr+1(u21), ρr(u1) = ρr+1(u121), ρr(u2) = ρr+1(u1),

ρr(u12) = ρr+1(s), ρr(u21) = ρr+1(u12), ρr(u121) = ρr+1(u2).

Observe that αr(s)αr+1(u1)αr(u12) = αr+1(s)αr(u2)αr+1(u21) by (3.9). Keeping
track of the exponent of t, (4.21) and (4.30) now imply that βr(s)βr+1(u1)βr(u12) =
βr+1(s)βr(u2)βr+1(u21). Note that (3.9) is crucial here. Therefore, the coefficient
of fu121t in BOr fst is zero for any choice of i, j and k. As the coefficient of fu121t

in BOr fst is always zero we will omit fu121t from most of the calculations which
follow.

There are five cases to consider.

Case 1. i, j and k are pairwise distinct.
By Lemma 4.23 and the last paragraph,

BOr fst =
(
βr(s)βr+1(u1)βr(u12)− βr+1(s)βr(u2)βr+1(u21)

)
fu121t = 0,

as required by the statement of the proposition.

Case 2. i = j 6= k.
In this case, using Lemma 4.23,

BOr fst =
(
− tı̂−cr+1(s)

[ρr(s)]
βr+1(s)βr(u2) + βr+1(s)βr(u2)

tı̂−cr+2(u21)

[ρr+1(u21)]

)
fu21t.
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Now c = cr+1(u21) and cr+1(s) = cr+2(u21), as in (4.30). Hence, BOr fst = 0 when
i = j 6= k.

Case 3. i 6= j = k.
This is almost identical to Case 2, so we leave the details to the reader.

Case 4. i = k 6= j.
Typographically, it is convenient to set c = cr(s), c

′ = cr+1(s) and c′′ = cr+2(s).
According to the statement of the proposition, this is the only case where BOr fst 6= 0.
Using Lemma 4.23, we see that

BOr fst =
(
− βr(s)

tı̂−cr+2(u1)

[ρr+1(u1)]
βr(u1) + βr+1(s)

tı̂−cr+1(u2)

[ρr(u2)]
βr+1(u2)

)
fst.

=
tı̂−c

′′

[c− c′′]
(
− βr(s)βr(u1) + βr+1(s)βr+1(u2)

)
fst.

Expanding the last equation using Lemma 4.26 shows that

BOr fst =



− t
c[1− ρr(s)][1 + ρr(s)]− tc

′′
[1− ρr+1(s)][1 + ρr+1(s)]

tc′′−c′+̂[c− c′′]
fst, if i� j,

− [1 + ρr(s)]− [1− ρr+1(s)]

tc′′−ı̂−c′+̂[c− c′′]
fst, if i→ j,

− t
c[1− ρr(s)]− tc

′′
[1 + ρr+1(s)]

tc′′ [c− c′′]
fst, if i← j,

0, otherwise.

(Note that, by assumption, the case i = j does not arise.) If i � j then a
straightforward calculation shows that in this case

BOr fst = −
(

[c′ − ̂+ 2] + [c′ − ̂]− [c+ 1− ̂]− [c′′ + 1− ̂]
)
fst

= −
(
y
〈1+ρr(i)〉
r+1 + y

〈1−ρr(i)〉
r+1 − y〈1+ρr(i)〉

r − y〈1+ρr(i)〉
r+2

)
fst,

where the last equality uses Lemma 4.25 and the observation that, because e = 2, we
have {1±ρr(i)} = {0, 2} and {ı̂, ̂} = {0, 1}. A similar, but easier, calculation shows
that if i→ j then BOr fst = −t1+ı̂−̂fst = −t1+ρr(i)fst and if i← j then BOr fst = fst.
If i 6= j and i /— j then we have already seen that BOr fst = 0, so this completes the
proof of Case 4.

Case 5. i = j = k.
We continue to use the notation for c, c′, c′′ from Case 4. By Lemma 4.23 (compare
with the proof of Lemma 3.13), BOr fst is equal to

−
(

t3ı̂−2c′−c′′

[ρr(s)]2[ρr+1(s)] −
t3ı̂−c′−2c′′

[ρr+1(s)]2[ρr(s)] + tı̂−c′′βr(s)βr(u1)
[ρr+1(u1)] − tı̂−c′′βr+1(s)βr+1(u2)

[ρr(u2)]

)
fst

+t2ı̂βr(s)
(

t−c′′−c

[ρr+1(u1)][ρr(u1)] + t−c′−c′′

[ρr(s)][ρr+1(s)] −
t−2c′′

[ρr+1(s)][ρr+1(u1)]

)
fu1t

+t2ı̂βr+1(s)
(

t−c′−c′′

[ρr(s)][ρr(u2)] −
t−c′′−c′

[ρr(u2)][ρr+1(u2)] −
t−c′′−c′

[ρr+1(s)][ρr(s)]

)
fu2t

−tı̂−c′′βr(s)βr+1(u1)
(

1
ρr(u12) −

1
[ρr+1(s)]

)
fu12t

−tı̂−c′βr+1(s)βr(u2)
(

1
[ρr(s)] −

1
[ρr+1(u21)]

)
fu21t.

Using (4.30) it is easy to see that the coefficients of fu12t andfu21t are both zero. On
the other hand, if t 6= 1 then the coefficient of t2ı̂βr(s)fu1t in BOr fst is

t− 1

(tc′ − tc)(tc − tc′′)
+

t− 1

(tc − tc′)(tc′ − tc′′)
− t− 1

(tc′ − tc′′)(tc − tc′′)
,

which is easily seen to be zero. The case when t = 1 now follows by specialisation.
Similarly, the coefficient of fu2t in BOr fst is also zero. Finally, using Lemma 4.26 and
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(4.30), the coefficient of fst in BOr fst is zero as the four terms above, which give the
coefficient of fst in the displayed equation, cancel out in pairs. Hence, BOr fst = 0
when i = j = k, as required.

This completes the proof. �

We need one more relation, which is a deformation of Corollary 2.16.

4.31. Lemma. Suppose that 2 ≤ r ≤ n and i ∈ In. Then∏
t∈Std(i)

(yOr − [cr(t)− ı̂r])fOi = 0.

Proof. This is an immediate consequence of (4.3) and Lemma 4.23. �

4.4. A deformation of the quiver Hecke algebra. Using the results of the last
two sections we now describe HΛ

n(O) by generators and relations using the ‘O-KLR
generators’ of HΛ

n(O).
Suppose that (O, t) is an idempotent subring of K . So far we have not used the

assumption that [de] ∈ J(O), for d ∈ Z. This comes into play in the next theorem.
Note that the relations for yO2 , . . . y

O
n in the next theorem are not quite the same

as those in Theorem A from the introduction.

4.32. Theorem. Suppose that (O, t) is an e-idempotent subring of K . Then the
algebra HΛ

n(O) is generated as an O-algebra by the elements

{ fOi | i ∈ In } ∪ {ψOr | 1 ≤ r < n } ∪ { yOr | 1 ≤ r ≤ n }
subject only to the following relations:∏

1≤l≤`
κl≡i1 (mod e)

(yO1 − [κl − ı̂1])fOi = 0 =
∏

t∈Std(i)

(yOr − [cr(t)− ı̂r])fOi , for 2 ≤ r < n,

fOi f
O
j = δijf

O
i ,

∑
i∈Inf

O
i = 1, yOr f

O
i = fOi y

O
r ,

ψOr f
O
i = fOsr·iψ

O
r , yOr y

O
s = yOs y

O
r ,

ψOr y
O
r+1f

O
i = (yOr ψ

O
r + δirir+1)fOi , yOr+1ψ

O
r f
O
i = (ψOr y

O
r + δirir+1

)fOi ,

ψOr y
O
s = yOs ψ

O
r , if s 6= r, r + 1,

ψOr ψ
O
s = ψOs ψ

O
r , if |r − s| > 1,

(ψOr )2fOi =



(y
〈1+ρr(i)〉
r − yOr+1)(y

〈1−ρr(i)〉
r+1 − yOr )fOi , if ir � ir+1,

(y
〈1+ρr(i)〉
r − yOr+1)fOi , if ir → ir+1,

(y
〈1−ρr(i)〉
r+1 − yOr )fOi , if ir ← ir+1,

0, if ir = ir+1,

fOi , otherwise,

BOr fOi =


(y
〈1+ρr(i)〉
r + y

〈1+ρr(i)〉
r+2 − y〈1+ρr(i)〉

r+1 − y〈1−ρr(i)〉
r+1 )fOi , if ir+2 = ir � ir+1,

−t1+ρr(i)fOi , if ir+2 = ir → ir+1,

fOi , if ir+2 = ir ← ir+1,

0, otherwise,

where we set y
〈d〉
r = tdyOr + [d], for d ∈ Z.

Proof. Let Rn(O) be the abstract algebra defined by the generators and relations in
the statement of the theorem. By the results in the last two sections, the elements
given in Definition 4.14 satisfy all of the relations of the corresponding generators of
Rn(O). Hence, by Proposition 4.16, there is a surjective O-algebra homomorphism
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θ:Rn(O) � HΛ
n(O), which maps the generators of Rn(O) to the corresponding

elements of HΛ
n(O).

If w ∈ Sn then set ψOw = ψOr1 . . . ψ
O
rk

, where w = sr1 . . . srk is a reduced expression

for w. In general, ψOw will depend upon the choice of reduced expression, however,
using the relations in Rn(O) it follows that every element in Rn(O) can be written as
a linear combination of elements of the form f(y)ψwe(i), where f(y) ∈ O[yO1 , . . . , y

O
n ],

w ∈ Sn and i ∈ In. Hence, because of the first two relations in the statement of
the theorem, Rn(O) is finitely generated as an O-module.

Now suppose that m is a maximal ideal of O and let K = O/m ∼= Om/mOm

and ζ = t + m. Then 1 + ζ + · · · + ζe−1 = 0 in K, since [e] ∈ J(O) ⊆ m. Note
also that 1 + ζ + · · · + ζk−1 6= 0 if k /∈ eZ since O is an e-idempotent subring.

Consequently, y
〈de〉
r ⊗ 1K = yOr ⊗ 1K , for all d ∈ Z. It is easy to see that all of

the shifts 1± ρr(i) appearing in the statement of theorem are equal to either 0 or
to e. Therefore, in view of Corollary 2.16, upon base change to K the relations
of Rn(Om)⊗Om

K coincide with the relations of the quiver Hecke algebra RΛ
n(K),

see Definition 2.10 and Theorem 2.14. Consequently, Rn(Om)⊗Om
K ∼= RΛ

n(K), so
that dimRn(Om)⊗Om

K = dimHΛ
n(K) by Theorem 2.14.

By the last paragraph, if K = O/m, for any maximal ideal m of O, then
dimRn(Om) ⊗Om

K = dimHΛ
n(K) = `nn!. Moreover, by the second paragraph

of the proof, Rn(Om) is a finitely generated Om-algebra. Therefore, Nakayama’s
lemma applies and it implies that Rn(Om) is a free Om-module of rank `nn!. Hence,

the map θm : Rn(Om)
∼−→ HΛ

n(Om) is an isomorphism of Om-algebras. It follows
that θ is an isomorphism of O-algebras, as required. �

4.33. Remarks. (a) All of the relations in Theorem 4.32 are deformations of the
relations in Definition 2.10 except for the relations

∏
t∈Std(i)

(yOr − [cr(t)− ı̂r])fOi = 0,

for 2 ≤ r ≤ n. These relations are needed to ensure that Rn(O), as defined in
the proof of Theorem 4.32, is finitely generated as an O-algebra. This is crucial
to the proof of Theorem 4.32 because without this we cannot apply Nakayama’s
Lemma (and hence Theorem 2.14). It should be possible to prove Theorem 4.32
directly, without appealing to Nakayama’s Lemma and Theorem 2.14, by adapting
the arguments of [6, Theorem 3.3].

(b) In proving Theorem 2.14, Brundan and Kleshchev [6] construct a family of

isomorphisms RΛ
n
∼−→ HΛ

n(K ) that depend on a choice of polynomials Qr(i) which
can be varied subject to certain constraints. In our setting this amounts to choosing
certain invertible ‘scalars’ qr(i), which are rational functions in Lr and Lr+1, and
defining

ψOr f
O
i =

{
(Tr + 1) t

ı̂r

Mr
fOi , if ir = ir+1,

(TrLr − LrTr)qr(i)fOi , otherwise,

such that the corresponding β-coefficients still satisfy the constraints of Lemma 4.26.
To make this explicit, if ir 6= ir+1 and s ∈ Std(i) then Lemma 4.23 becomes

ψOr fst = αr(s)[ρr(s)]qr(s)fut − δirir+1

tı̂r+1−cr+1(s)

[ρr(s)]
,
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where qr(s) ∈ K is the scalar such that qr(i)fst = qr(s)fst and where u = s(r, r+ 1).
Therefore, in order for Lemma 4.26 to hold we require that

qr(s)qr(u) =


t−ı̂r−ı̂r+1 , if ir � ir+1,
t−ı̂r+1

[1−ρr(s)] , if ir → ir+1,

t−ı̂r

[1−ρr(s)] , if ir ← ir+1,

1
[1−ρr(s)][ρr(u)] , if ir /— ir+1,

and that these scalars satisfy a “braid relation” as in (3.9). If the qr(i) satisfy these
two identities then it is easy to see that argument used to prove Theorem 4.32
applies, virtually without change, using these more general elements. The key
point is that Lemma 4.26 still holds. The corresponding identities in Brundan and
Kleshchev’s work are [6, (3.28), (3.29), (4.34) and (4.35)].

We end this section by using Theorem 4.32 to give an upper bound for the
nilpotency index of the KLR generators y1, . . . , yn. As in the introduction, if
1 ≤ r ≤ n and i ∈ In set

Er(i) = { cr(t)− ı̂r | t ∈ Std(i) }
and define Er(i) = #Er(i). For example, E1(i) ⊆ {κ1 − ı̂1, . . . , κ` − ı̂1} and E1(i) =
(Λ, αi1). In general, Er(i) ⊆ { ke | k ∈ Z } since cr(t) ≡ ir (mod e) if t ∈ Std(i).

4.34. Proposition. Suppose that 1 ≤ r ≤ n and i ∈ In. Then∏
c∈Er(i)

(yOr − [c])fOi = 0.

Proof. By Lemma 4.4 and Lemma 4.23,∏
c∈Er(i)

(yOr − [c])fOi =
∑

t∈Std(i)

∏
c∈Er(i)

(yOr − [c])
1

γt
ftt

=
∑

t∈Std(i)

1

γt

∏
c∈Er(i)

([cr(t)− ı̂r]− [c])ftt = 0,

where the last equality follows because cr(t)− ı̂r ∈ Er(i), for all t ∈ Std(i). �

Even though Proposition 4.34 is very easy to prove within our framework, it has
several very interesting consequences. The first is that because HΛ

n(O) ∼= Rn(O),
where we use the notation from the proof of Theorem 4.32, we can improve upon
the presentation of HΛ

n(O) given by Theorem 4.32 and so prove Theorem A from
the introduction.

4.35. Corollary. Suppose that (O, t) is an e-idempotent subring of K . Then, as an
O-algebra, HΛ

n(O) is generated by the elements { fOi | i ∈ In }∪{ψOr | 1 ≤ r < n }∪
{ yOr | 1 ≤ r ≤ n } subject only to the relations in Theorem A.

Secondly, we obtain the corresponding result for the cyclotomic quiver Hecke
algebra RΛ

n . Note that, in general, Er(i) ≤ Nr(i) = # Std(i), so the next result
improves upon Corollary 2.16.

4.36. Corollary. Suppose that i ∈ In and 1 ≤ r ≤ n. Then y
Er(i)
r e(i) = 0 in RΛ

n .

When e = 0 Brundan and Kleshchev [6, Conjecture 2.3] conjectured that y`r = 0,
for 1 ≤ r ≤ n. Hoffnung and Lauda proved this conjecture as the main result in
their paper [13]. Using Corollary 4.36 we obtain a quick proof of this result and, at
the same time, a generalization of it to include the case when e ≥ n.

4.37. Corollary. Suppose that e = 0 or e ≥ n. Then y`r = 0, for 1 ≤ r ≤ n.
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Proof. If e = 0 then we may assume that e� 0 by Corollary 2.15. Consequently, it
is enough to consider the case when e ≥ n. By definition, if 1 ≤ l ≤ ` then a node
α = (a, b, l) ∈ λ, for λ ∈ PΛ

n , has residue ir if and only if ir = b− a+ κl (mod e) .
Since e ≥ n, and |a− b| < n, it follows that the content b− a+ κl of α is uniquely
determined by ir and l. That is, all of the nodes of residue ir in a given component
of any multipartition λ ∈ PΛ

n have the same content. Hence, Er(i) ≤ `. As
y`r =

∑
i y
`
re(i) the result is now a consequence of Corollary 4.36. �

5. Integral bases for HΛ
n(O)

Now that we have proved Theorem A, we begin to use the machinery of seminormal
forms to study the cyclotomic quiver Hecke algebras RΛ

n . In this chapter we
reconstruct the ‘natural’ homogeneous bases for the cyclotomic Hecke algebras
HΛ
n(K) and their Specht modules over a field.

5.1. The ψ-basis. Theorem 4.32 links the KLR grading on HΛ
n
∼= RΛ

n with the
semisimple representation theory of HΛ

n(K ). We next want to try and understand
the graded Specht modules of HΛ

n [8, 15,22] in terms of the seminormal form. We
start by lifting the homogeneous basis {ψst} of HΛ

n to HΛ
n(O). This turns out

to be easier than the approach taken in [15]. Throughout this section, O is an
e-idempotent subring of K .

By Theorem 4.32, there is a unique anti-isomorphism ? of HΛ
n(O) such that

(ψOr )? = ψOr , (yOs )? = yOs and (fOi )? = fOi ,

for 1 ≤ r < n, 1 ≤ s ≤ n and i ∈ In. Lemma 4.23 shows that, in general, the
automorphisms ∗ and ? do not coincide.

Recall from Definition 3.7 that a ?-seminormal basis of HΛ
n(K ) is a basis {fst} of

two-sided eigenvalues for L such that fst = f?ts, for all (s, t) ∈ Std2(PΛ
n ). We define

a ?-seminormal coefficient system to be a set of scalars {βr(t)} which satisfy the
identity in Lemma 4.26 and the “braid relations” of (3.9) (with α replaced by β).

The main difference between a ∗-seminormal basis and a ?-seminormal basis is
that Trfst = (ftsTr)

∗ for a ∗-seminormal basis whereas ψOr fst = (ftsψ
O
r )? for a

?-seminormal basis.

5.1. Lemma. Suppose that {fst} is a ?-seminormal basis of HΛ
n(K ). Then there

exists a unique ?-seminormal coefficient system {βr(t)} such that if 1 ≤ r < n and
(s, t) ∈ Std(PΛ

n ) then

fstψ
O
r = βr(v)fsv − δirir+1

tı̂r+1−cr+1(t)

[ρr(t)]
fst,

where v = t(r, r + 1) and t ∈ Std(i), for i ∈ In. Conversely, as in Theorem 3.14, a
?-seminormal coefficient system, together with a choice of scalars { γtλ | λ ∈ PΛ

n },
determines a unique ?-seminormal basis.

Proof. By (4.21), a set of scalars {βr(t)} is a ?-seminormal coefficient system if and
only if {αr(t)} is a ∗-seminormal coefficient system, where

αr(t) =



βr(t)t
cr(t)−ı̂r [1− ρr(t)], if ir = ir+1,

βr(t)t
ı̂r−cr+1(t)

[ρr(t)]
, if ir = ir+1 + 1,

βr(t)[1− ρr(t)]
[ρr(t)]

, otherwise.

Therefore, as seminormal coefficient systems are determined by the action of the
corresponding generators of HΛ

n on its right regular representation, the result follows
from Theorem 3.14 and Lemma 4.23. �
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Henceforth, we will work with ?-seminormal bases.
Exactly as in Theorem 3.14, if {fst} is a ?-seminormal basis then there exists

scalars γt ∈ K such that fstfuv = δutγtfsv, for (s, t), (u, v) ∈ Std2(PΛ
n ). Repeating

the argument of Corollary 3.17, these scalars satisfy the following recurrence relation.

5.2. Corollary. Suppose that t ∈ Std(PΛ
n ) and that v = t(r, r+1) is standard, where

1 ≤ r < n. Then βr(v)γt = βr(t)γv.

Motivated by [15], we now define a new basis of HΛ
n(O) which is cellular with

respect to the involution ?. Fix λ ∈ PΛ
n and let iλ = (iλ1 , . . . , i

λ
n), so that iλr =

restλ(r) for 1 ≤ r ≤ n. Following [15, Definition 4.7], define

Aλ(r) =
{
α
∣∣∣ α is an addable iλr -node of the multipartition

Shape(tλ↓r) which is below (tλ)−1(r)

}
,

for 1 ≤ r ≤ n.
Up until now we have worked with an arbitrary seminormal basis of HΛ

n(K ). In
order to define a ‘nice’ basis of HΛ

n(O) which is compatible with Theorem 4.32 we
now fix the choice of γ-coefficients by requiring that

(5.3) γtλ =

n∏
r=1

∏
α∈Aλ(r)

[cα − cr(t
λ)],

for all λ ∈ PΛ
n . Together with a choice of seminormal coefficient system, this

determines γt for all t ∈ Std(PΛ
n ) by Corollary 5.2. By definition, γtλ is typically

a non-invertible element of O. Nonetheless, if i ∈ In then fOi =
∑

s∈Std(i)
1
γs
fss

belongs to HΛ
n(O) by Lemma 4.4.

We also fix a choice of seminormal coefficient system by requiring that βr(s) = 1
whenever s B t = s(r, r+ 1), for s ∈ Std(PΛ

n ) and 1 ≤ r < n. More precisely, if i ∈ I
and s ∈ Std(i) then we define
(5.4)

βr(s) =



1, if s B t or ir /— ir+1,

− t
2ı̂r−2cr+1(s)

[ρr(s)]2 , if t B s and ir = ir+1,

tcr(s)+cr+1(s)−ı̂r−ı̂r+1 [1− ρr(s)][1 + ρr(s)], if t B s and ir � ir+1,

tcr(s)−ı̂r [1− ρr(s)], if t B s and ir ← ir+1,

tcr+1(s)−ı̂r+1 [1 + ρr(s)], if t B s and ir → ir+1.

where s ∈ Std(PΛ
n ) and t = s(r, r + 1) is standard, for 1 ≤ r < n. The reader is

invited to check that this defines a ?-seminormal coefficient system. As the definition
of ψOr is independent of the choice of seminormal coefficient system this choice is
not strictly necessary for what follows but it simplifies many of the formulas.

By Lemma 5.1, this choice of ?-seminormal coefficient system and γ-coefficients
determines a unique ?-seminormal basis {fst} of HΛ

n(K ). We will use this basis to
define new homogeneous basis of HΛ

n . The first step is to define

yλOf
O
iλ =

n∏
r=1

∏
α∈Aλ(r)

t−cr(tλ)([cα]− Lr)fOiλ

=

n∏
r=1

∏
α∈Aλ(r)

tı̂
λ
r−cr(tλ)([cα − ı̂λr ]− yOr )fOiλ ,

where the second equation follows by rewriting Lkf
O
i in terms of ykf

O
i as in the

proof of Proposition 4.16. In particular, these equations show that yλOf
O
iλ ⊗O 1K is a

monomial in y1, . . . , yn and, further, that it is (up to a sign) equal to the element yλ

defined in [15, Definition 4.15].
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The next result is a essentially a translation of [15, Lemma 4.13] into the current
setting for the special case of the tableau tλ.

5.5. Lemma. Suppose that λ ∈ PΛ
n . Then there exist scalars as ∈ K such that

yλOf
O
iλ = ftλtλ +

∑
sItλ

asfss.

In particular, yλOf
O
iλ is a non-zero element of HΛ

n(O).

Proof. By Lemma 4.4, fOiλ =
∑

s
1
γs
fss, so that yλOf

O
iλ =

∑
s∈Std(iλ) asfss, for some

as ∈ K , by (3.15). It remains to show that atλ = 1 and that as 6= 0 only if s I tλ.
Using (3.15), and recalling the definition of γtλ from (5.3),

1

γtλ
yλOftλtλ =

1

γtλ

n∏
r=1

∏
α∈Aλ(r)

t−cr(tλ)([cα]− [cr(t
λ)]) · ftλtλ = ftλtλ .

To complete the proof we claim that there exist scalars as(k) ∈ K , 1 ≤ k ≤ n, such
that

k∏
r=1

∏
α∈Aλ(r)

t−cr(tλ)([cα]− Lr)fOiλ =
∑

s∈Std(iλ)

s↓k I tλ↓k

as(k)fss

where atλ(k) = 1. We prove this by induction on k. If k = 1 then the result is
immediate from (3.15). Suppose that k > 1. By induction, it is enough to show that

([cα]− Lk)fss = ([cα]− [ck(s)])fss = 0

whenever s↓(k−1) I tλ↓(k−1) and s↓k 6I tλ↓k, for s ∈ Std(iλ). Fix such a tableau s.

Since s↓(k−1) I tλ↓(k−1) we must have (s↓k)(l) = ∅ whenever l > comptλ(k), so the

node α = s−1(k) must be below (tλ)−1(k). Therefore, α ∈ Aλ(k), and ck(s) = cα
for this α, and forcing as(k) = 0 as claimed. This completes the proof. �

For each w ∈ Sn we now fix a reduced expression w = sr1 . . . srk for w, with
1 ≤ rj < n for 1 ≤ j ≤ k, and define ψOw = ψOr1 . . . ψ

O
rk

. By Theorem 4.32 the

elements ψOr do not satisfy the braid relations so, in general, ψOw will depend upon
this (fixed) choice of reduced expression.

5.6. Definition. Suppose that λ ∈ PΛ
n . Define

ψOst = (ψOd(s))
?yλOf

O
iλψ
O
d(t).

for s, t ∈ Std(λ).

We can now lift the graded cellular basis of [15, Definitions 5.1] to HΛ
n(O).

5.7. Theorem. Suppose that O is an idempotent subring. Then

{ψOst | s, t ∈ Std(µ) for µ ∈ PΛ
n }

is a cellular basis of HΛ
n(O) with respect to the involution ?.

Proof. In view of (3.15) and Lemma 4.23, Lemma 5.5 implies that

(5.8) ψOst = fst +
∑

(u,v)I(s,t)

auvfuv,

for some auv ∈ K . Therefore, {ψOst | (s, t) ∈ Std2(PΛ
n ) } is a basis of HΛ

n(K ). In
fact, these elements are a basis for HΛ

n(O) because if h ∈ HΛ
n(O) then we can

write h =
∑
ruvfuv, for some ruv ∈ K . Pick (s, t) to be minimal with respect to

dominance such that rst 6= 0. Then rst ∈ O because h ∈ HΛ
n(O). Consequently,
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h − rstψ
O
st ∈ HΛ

n(O) so, by continuing in this way, we can write h as a linear
combination of the ψ-basis.

It remains to show that the ψ-basis is cellular with respect to the involution ?.
By definition, if λ ∈ PΛ

n then yλO and fOiλ commute and they are fixed by the

automorphism ?. Therefore, (ψOst
)?

= ψOts, for all s, t ∈ Std(λ). By Lemma 5.1, the
?-seminormal basis {fst} is a cellular basis with cellular involution ?. It remains to
verify (GC2) from Definition 2.4. As in Theorem 3.14, the seminormal basis {fuv}
is cellular. Therefore, if (s, t) ∈ Std2(λ) and h ∈ HΛ

n(O) then, using (5.8) twice,

ψOsth = (ψOd(s))
?ψOtλt ≡ (ψOd(s))

?
(
ftλt +

∑
vBt

avftλa

)
h ≡ (ψOd(s))

?
∑

v∈Std(λ)

a′vftλa

≡ (ψOd(s))
?
∑

v∈Std(λ

bvψ
O
tλv ≡

∑
v∈Std(λ

bvψ
O
sv (mod HBλ

n ) ,

where av, a
′
v ∈ K and bv ∈ O with the scalars bv being independent of s. Hence,

(GC2) holds, completing the proof. �

If K = O/m for some maximal ideal m of O then HΛ
n(K) ∼= HΛ

n(O)⊗O K. Set
ψst = ψOst ⊗ 1K .

5.9. Corollary ( [15, Theorem 5.8]). Suppose that K = O/m for some maximal
ideal m of O. Then {ψst | s, t ∈ Std(µ) for µ ∈ PΛ

n } is a graded cellular basis of
HΛ
n(K) with degψst = deg s + deg t, for (s, t) ∈ Std(PΛ

n ).

By (5.8) the basis elements in {ψst} are scalar multiples of the basis elements
constructed in [15, Theorem 5.8].

5.2. Graded Specht modules and Gram determinants. By Theorem 5.7,
{ψOst} is a cellular basis of HΛ

n(O) so we can use it to define Specht modules for
HΛ
n(O) which specialise to the graded Specht modules in characteristic zero and in

positive characteristic.

5.10. Definition. Suppose that λ ∈ PΛ
n . The Specht module Sλ(O) is the right

HΛ
n(O)-module with basis {ψOt | t ∈ Std(λ) }, where ψOt = ψOtλt +HBλ

n (O).

By Theorem 5.7 and [15, Corollary 5.10], ignoring the grading, Sλ(O) ⊗O K
can be identified with the graded Specht module Sλ of HΛ

n defined by Brundan,
Kleshchev and Wang [8]. The action of HΛ

n(K ) on a graded Specht module is
completely determined by the relations for these modules which are given in [22].
In contrast, in view of (5.8) and Theorem 4.32, the action of HΛ

n(O) on the Specht
module Sλ(O) is completely determined by the (choice of) seminormal form.

We now turn to computing the determinant of the Gram matrix

Gλ =
(
〈ψOs , ψOt 〉

)
s,t∈Std(λ)

.

A priori, it is unclear how the bilinear form on Sλ(O) is related to the usual
(ungraded) bilinear from on the Specht module which is defined using the Murphy
basis which we considered in Theorem 3.22. The main problem in relating these
two bilinear forms is that the cellular algebra involutions ∗ and ?, which are used to
define these bilinear forms, are different.

Note that the cellular algebra involutions ∗ and ? on HΛ
n(O) naturally extend

to involutions on the algebra HΛ
n(K ). The key point to understanding the graded

bilinear form is the following.

5.11. Lemma. Suppose that t ∈ Std(n). Then (Ft)
? = Ft.
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Proof. By definition, Ft is a linear combination of products of Jucys-Murphy ele-
ments, so it can also be written as a polynomial, with coefficients in K , in yOr , fOi ,
for 1 ≤ r ≤ n and i ∈ In. As (yOr )? = yOr , (fOi )? = fOi , for 1 ≤ r ≤ n and i ∈ In,
the result follows. �

Recall that if t ∈ Std(λ) then ψOt = ψOtλt +HBλ
n is a basis element of the Specht

module Sλ(O). In order to compute detGλ, set ft = ψOt Ft, for t ∈ Std(λ). Recall
that Sλ(K ) = Sλ(O)⊗O K .

5.12. Lemma. Suppose that λ ∈ PΛ
n . Then { ft | t ∈ Std(λ) } is a basis of Sλ(K ).

Moreover, detGλ = det
(
〈fs, ft〉

)
=
∏

s∈Std(λ) γs.

Proof. By definition, ft = ftλt + (HΛ
n(K ))�λ. Therefore, ft ∈ Sλ(K ) and ft =

ψOt +
∑

vBt rtvψ
O
v by (5.8), for some scalars rtv ∈ K . Set rtt = 1 and U =

(
rtv
)
.

Then { ft | t ∈ Std(λ) } is a K -basis of Sλ(K ) and Gλ = (U−1)tr
(
〈fs, ft〉

)
U−1

Taking determinants shows that detGλ = deg
(
〈fs, ft

))
since U is unitriangular. To

complete the proof observe that 〈fs, ft〉ftλtλ ≡ ftλsfttλ = δstγsftλtλ (mod HBλ
n ) ,

where we are implicitly using Lemma 5.11. The result follows. �

Lemma 5.12 is subtly different from (3.19) because, in spite of our notation,
the γt’s appearing in the two formulas satisfy different recurrence relations.

5.13. Lemma. Suppose that t ∈ Std(λ), for λ ∈ PΛ
n . Then γt = utΦe(t)

dege(t), for
some unit ut ∈ O×.

Proof. We argue by induction on the dominance order on Std(λ). If t = tλ then

(5.3) ensures that γtλ = utλΦe(t)
dege(tλ), for some unit utλ ∈ O. Now suppose

that tλ B t. Then there exists a standard tableau s ∈ Std(λ) such that s B t and
t = s(r, r + 1), where 1 ≤ r < n. Arguing exactly as in Corollary 5.2 shows that

βr(s)γt = βr(t)γs. Therefore, γt = βr(t)
βr(s)γs = βr(t)γs. Hence, the lemma follows by

induction exactly as in the proof of Theorem 3.22. �

5.14. Remark. Looking at the definition of a ?-seminormal coefficient system shows

that the quantities βr(t)
βr(s) , which are used in the proof of Lemma 5.13, are independent

of the choice of ?-seminormal coefficient system. This shows that the choice of
?-seminormal coefficient system made in (5.4) really is only for convenience.

By general nonsense, the determinants of Gλ and Gλ differ by a scalar in K .
The last two results readily imply the next theorem, the real content of which is
that this scalar is a unit in O.

5.15. Theorem. Suppose that λ ∈ PΛ
n . Then detGλ = uΦe(t)

dege(λ), for some unit

u ∈ O×. Consequently, detGλ = u′ detGλ, for some unit u′ ∈ O×.

If i ∈ In and λ ∈ PΛ
n let Stdi(λ) = { t ∈ Std(λ) | res(t) = i }.

The Specht module Sλ over O decomposes as a direct sum of generalised
eigenspaces as an L (O)-module: Sλ =

⊕
i∈In S

λ
i , where Sλ

i = SλfOi . The weight

space Sλ
i has basis {ψOt | t ∈ Stdi(λ) } and the bilinear linear form 〈 , 〉 on Sλ

respects the weight space decomposition of Sλ. Set

dege,i(λ) =
∑

t∈Stdi(λ)

deg t.

and let Gλi be restriction of the Gram matrix of Sλ to Sλ
i , for i ∈ In. Then we have

the following refinement of Theorem 5.15.

5.16. Corollary. Suppose that λ ∈ PΛ
n and i ∈ In. Then deg Gλi = uiΦe(t)

dege,i(λ),
for some unit ui ∈ O×. Moreover, dege,i(λ) ≥ 0.
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6. A distinguished homogeneous basis for HΛ
n

The ψ-basis of HΛ
n(O), the homogeneous bases of HΛ

n constructed in [15], and the
homogeneous basis of the graded Specht modules given by Brundan, Kleshchev and
Wang [8], are all indexed by pairs of standard tableaux. Unfortunately, unlike in
the ungraded case, these basis elements depend upon choices of reduced expressions
for the permutations corresponding to these tableaux. In this section we construct
new bases for these modules which depend only on the corresponding tableaux.

6.1. A new basis of HΛ
n(O). To construct our new basis for HΛ

n we need to work
over a complete discrete valuation ring. We start by setting up the necessary
machinery.

Recall that the algebra HΛ
n is defined over the field K with parameter ξ and that

e > 1 is minimal such that [e]ξ = 0. Let x be an indeterminate over K and let
O = K[x](x) and t = x+ ξ. Then (O, t) is an idempotent subring by Example 4.2(b)
and K(x) is the field of fractions of O. Note that O is a local ring with maximal
ideal m = xO.

Let Ô be the m-adic completion of O. Then Ô is a complete discrete valuation

ring with field of fractions K((x)) Let K̂ = K((x)) be the m-adic completion

of K(x). Then Ô is an idempotent subring of K̂ .

Define a valuation on K̂ × by setting νx(a) = n if a = uxn, where n ∈ Z and

u ∈ Ô× is a unit in Ô. We need to work with a complete discrete valuation ring
because of the following fundamental but elementary fact which is proved, for
example, as [32, Proposition II.5].

6.1. Lemma. Suppose that a ∈ K̂ . Then a can be written uniquely as a convergent
series

a =
∑
n∈Z

anx
n, with an ∈ K,

such that if a 6= 0 then an 6= 0 only if n ≥ νx(a). Moreover, a ∈ Ô if and only
if an = 0 for all n < 0.

In particular, x−1K[x−1] ∩ Ô = 0, where we embed x−1K[x−1] into K̂ in the
obvious way.

6.2. Theorem. Suppose that (s, t) ∈ Std2(PΛ
n ). There exists a unique element

BOst ∈ HΛ
n(Ô) such that

BOst = fst +
∑

(u,v)∈Std2(PΛ
n )

(u,v)I(s,t)

pstuv(x−1)fuv,

where pstuv(x) ∈ xK[x]. Moreover, {BOst | (s, t) ∈ Std2(PΛ
n ) } is a cellular basis

of HΛ
n(Ô).

Proof. The existence of an element BOst with the required properties follows di-
rectly from (5.8) and Lemma 6.1 using Gaussian elimination. (See the proof of
Proposition 6.4, below, which proves a stronger result in characteristic zero.) To
prove uniqueness of the element BOst , suppose, by way of contradiction, that there

exist two elements BOst and B′st in HΛ
n(Ô) with the required properties. Then

BOst −B′st =
∑
ruvfuv ∈ HΛ

n(Ô) and, by assumption, ruv ∈ x−1K[x−1] with ruv 6= 0
only if (u, v) I (s, t). Pick (a, b) minimal with respect to dominance such that rab 6= 0.
Then, by Theorem 5.7, if we write BOst − B′st as a linear combination of ψ-basis

elements then ψÔab appears with coefficient rab. Therefore, rab ∈ x−1K[x−1]∩Ô = 0,
a contradiction. Hence, BOst = B′st as claimed.
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By (5.8), the transition matrix between the B-basis and the ψ-basis is unitrian-

gular, so {BOst} is a basis of HΛ
n(Ô). To show that the B-basis is cellular we need

to check properties (GC1)–(GC3) from Definition 2.4. We have already verified
(GC1) Moreover, (GC3) holds because (BOst)

? = BOts by the uniqueness statement in
Proposition 6.4 since {fuv} is ?-seminormal basis. It remains to prove (GC2), which
we do in three steps.

Step 1. We claim that if h ∈ HΛ
n(Ô) and t ∈ Std(λ) then

BOtλth ≡
∑

v∈Std(λ)

bvB
O
tλv (mod HBλ

n ) ,

for some scalars bv ∈ Ô which depend only on t, v and h (and not on tλ).
To see this first note that ψOtλt = ftλt +

∑
vIt avftλv by (5.8), for some av ∈ K(x).

Therefore, it follows by induction on the dominance order that if t ∈ Std(λ) then

BOtλt = ftλt +
∑
vIt

ptvftλv (mod HBλ
n ) ,

for some ptv ∈ x−1K[x−1]. As the seminormal basis is cellular, and the transition
matrix between the seminormal basis and the B-basis is unitriangular, our claim
now follows.

Step 2. As the Specht module Sλ is cyclic there exists an element DOt ∈ HΛ
n(Ô)

such that BOtλt ≡ B
O
tλtλD

O
t (mod HBλ

n ) . We claim that

BOst ≡ (DOs )?BOtλtλD
O
t (mod HBλ

n ) ,

for all s, t ∈ Std(λ).

To prove this claim, embed HΛ
n(Ô) in HΛ

n(K̂ ). Note that ftλtλfuv = 0 if u 6= tλ,

so we may assume that DOt ≡
∑

v qtvftλv (mod HBλ
n ) , for some qtv ∈ K̂ . Then

BOtλt ≡ B
O
tλtλD

O
t =

∑
v∈Std(λ)

γtλqtvftλv (mod HBλ
n ) .

Therefore, qtv = 1
γ
tλ
ptv, where ptv ∈ δtv + x−1K[x−1] is as in Step 1. In particular,

qtt = 1
γ
tλ

and qtv 6= 0 only if v I t. Consequently,

(DOs )?BOtλtλD
O
t ≡

∑
(u,v) I(s,t)
u,v∈Std(λ)

qsuqtvfutλftλtλftλv =
∑

(u,v) I(s,t)

γ2
tλqsuqtvfuv

= fst +
∑

(u,v)I(s,t)

psuptvfuv (mod HBλ
n ) .

By construction, (DOs )?BOtλtλD
O
t ∈ HΛ

n(Ô). Consequently, our claim now follows

using the uniqueness property of BOst since psuptv ∈ x−1K[x−1] when s 6= u or t 6= v.

Step 3. We can now verify (GC2). If h ∈ HΛ
n(Ô) then, using steps 1 and 2,

BOsth ≡ (DOs )?BOtλth ≡
∑

v∈Std(λ)

bv(DOs )?BOtλv ≡
∑

v∈Std(λ)

bvB
O
sv (mod HBλ

n ) ,

where bv depends only on t, v and h and not on s. Hence, the B-basis satisfies all
of the cellular basis axioms and the theorem is proved. �

By Theorem 6.2, if (s, t) ∈ Std(PΛ
n ) then BOst ∈ HΛ

n(Ô), however, our notation
suggests that BOst ∈ HΛ

n(O), where O = K[x](x). The next result justifies our
notation and shows that we can always work over the ring O.

6.3. Corollary. Let O = K[x](x). Then {BOst | (s, t) ∈ Std2(PΛ
n ) } is a graded

cellular basis of HΛ
n(O).
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Proof. Fix (s, t) ∈ Std2(PΛ
n ). Then it is enough to prove that BOst ∈ HΛ

n(O). First
note that by construction the ?-seminormal basis is defined over the rational function

field K(x), so BOst is defined over the ring R = K(x) ∩ Ô since if (u, v) ∈ Std2(PΛ
n )

then pstuv(x−1) ∈ K[x−1] ⊂ K(x) by Theorem 6.2. Every element of K(x) can be
written in the form f(x)/g(x), for f(x), g(x) ∈ K[x] with gcd(f, g) = 1. Expanding

f/g into a power series, as in Lemma 6.1, it is not difficult to see that if f/g ∈ Ô
then g(0) 6= 0. Therefore, R ⊆ O so that BOst is defined over O as claimed. �

By similar arguments, DOt ∈ HΛ
n(O), for all t ∈ Std(PΛ

n ).
If K is a field of characteristic zero then we can determine the degree of the

polynomials pstuv 6= 0, for (u, v) I (s, t) ∈ Std2(PΛ
n ).

6.4. Proposition. Suppose that K is a field of characteristic zero. Suppose that
(u, v) I (s, t) for (s, t), (u, v) ∈ Std2(PΛ

n ). Then pstuv(x) ∈ xK[x] and

deg pstuv(x) ≤ 1
2 (deg u− deg s + deg v− deg t).

In particular, pstuv(x) 6= 0 only if deg u + deg v ≥ deg s + deg t.

Proof. We argue by induction on the dominance orders on PΛ
n and Std(PΛ

n ). Note
that deg p(x) = d if and only if νx

(
p(x−1)

)
= −d. For convenience, throughout the

proof given two tableaux s, u ∈ Std2(PΛ
n ) set deg(s, u) = deg s− deg u. Therefore,

the proposition is equivalent to the claim that νx
(
pstuv
)
≥ deg(s, u) + deg(t, v).

Suppose first that λ = (n|0| . . . |0). Then s = tλ = t and ψOtλtλ = ftλtλ so there
is nothing to prove. Hence, we may assume that that λ 6= (n|0| . . . |0) and that the
proposition holds for all more dominant shapes.

Next, consider the case when s = tλ = t. By the proof of Lemma 5.5, if
s ∈ Std(iλ) and s I tλ then yλOfss = u′sγtλfss for some unit u′s ∈ O×. Therefore,
by Lemma 5.13, there exist units us ∈ O× so that in HΛ

n(O)

ψÔtλtλ =
∑

s I tλ

u′sγtλ

γs
fss = ftλtλ +

∑
sItλ

usΦe(t)
deg(tλ,s)fss.

Since t = x + ξ, the constant term of Φe(t) is Φe(ξ) = 0, so x divides Φe(t) and

νx(Φe(t)
deg(tλ,s)) = deg(tλ, s) since the coefficient of x in Φe(t) is non-zero. (If K

is field of positive characteristic this may not be true.) Expanding each unit us
into a power series, as in Lemma 6.1, the coefficient of fss can be written as bs + cs
where bs ∈ x−1K[x−1] and cs ∈ O. In particular, if bs 6= 0 and cs 6= 0 then
νx(cs) ≥ 0 > νx(bs) and νx(cs) > νx(bs) ≥ deg(tλ, s). Pick t minimal with respect
to dominance such that ct 6= 0. Note that νx(ct) ≥ deg(tλ, t), with equality only
if bt = 0. Using induction, replace ψOtλtλ with the element Atλtλ = ψOtλtλ − ctB

O
tt .

By construction Atλtλ ∈ HΛ
n(Ô) and, by (5.8), the coefficient of ftt in Atλtλ

is bt ∈ x−1K[x−1]. If (u, v) I
(
t, t) then, fuv appears in BOtt with coefficient pttuv(x−1)

and, by induction, νx
(
pttuv(x−1)

)
≥ 1

2

(
deg(t, u) + deg(t, v)

)
. Therefore,

νx
(
ctp

tt
uv(x−1)

)
= νx(ct) + νx

(
pttuv(x−1)

)
≥ deg(tλ, t) + 1

2 (deg(t, u) + deg(t, v
)
)

= 1
2

(
deg(tλ, u) + deg(tλ, v)

)
.

It follows that if fuv appears in Atλtλ with non-zero coefficient auv then νx(auv) ≥
1
2

(
deg(tλ, u) + deg(tλ, v)

)
. If Atλtλ now has the required properties then we can

set Btλtλ = Atλtλ . Otherwise, let (s, t) be a pair of tableau which is minimal with
respect to dominance such that the coefficient of fst in Atλtλ is of the form bst + cst
with cst 6= 0, νx(cst) ≥ 0, bst ∈ x−1K[x−1] and νx(bst) ≥ 1

2

(
deg(tλ, s) + deg(tλ, t)

)
.

Replacing Atλtλ with Atλtλ − cstBOst and continuing in this way we will, in a finite
number of steps, construct an element B′tλtλ with all of the required properties.
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By the uniqueness statement in Theorem 6.2, BOtλtλ = B′tλtλ so this proves the

proposition for the polynomials pt
λtλ

uv (x−1).
Finally, suppose that (s, t) ∈ Std2(λ) with (tλ, tλ) B (s, t). Without loss of

generality, suppose that s = a(r, r + 1) where a ∈ Std(i), for i ∈ In, and a B s.
Using Lemma 4.23,

ψOr B
O
at =

∑
(u,v) I(a,t)

patuv(x−1)ψOr fuv

=
∑

(u,v) I(a,t)

patuv(x−1)
(
βr(u)fu(r,r+1),v − δirir+1

tı̂r+1−cr+1(u)

[ρr(u)]
fuv

)
.

By induction, νx(patuv) ≥ 1
2 (deg(a, u) + deg(t, v)). Therefore, using Lemma 5.13 (as

in the proof of Theorem 3.22), it follows that if cuv 6= 0 is the coefficient of fuv in
the last equation then νx(cuv) ≥ 1

2

(
deg(s, u) + deg(t, v)

)
. Hence, the proposition

follows by repeating the argument of the last paragraph. �

6.2. A distinguished homogeneous basis of HΛ
n(K). This section uses Theo-

rem 6.2 to construct a new graded cellular basis of HΛ
n(K). The existence of such a

basis is not automatically guaranteed by Theorem 6.2 because the elements BOst⊗1K ,
for (s, t) ∈ Std2(PΛ

n ), are not necessarily homogeneous.

The isomorphisms K ∼= O/xO ∼= Ô/xÔ extend to K-algebra isomorphisms

HΛ
n(K) ∼= HΛ

n(O)⊗O K ∼= HΛ
n(Ô)⊗Ô 1K .

We identify these three K-algebras.

6.5. Lemma. Suppose that (s, t) ∈ Std2(PΛ
n ). Then

BOst ⊗ 1K = ψst +
∑

(u,v)I(s,t)

auvψuv,

for some aub ∈ K. In particular, the homogeneous component of BOst ⊗ 1K of degree
deg s + deg t is non-zero.

Proof. This is immediate from Theorem 6.2 (and Corollary 5.9). �

Recall from Step 2 in the proof of Theorem 6.2 that for each v ∈ Std(λ) there
exists an element DOv ∈ HΛ

n(O) such that BOst ≡ (DOs )?BtλtλD
O
t (mod HBλ

n ) .

6.6. Definition. Suppose that λ ∈ PΛ
n .

a) If v ∈ Std(λ) let Dv be the homogeneous component of DOv ⊗ 1K of degree
deg v− deg tλ.

b) Define Btλtλ to be the homogeneous component of BOtλtλ ⊗ 1K of degree

2 deg tλ. More generally, if s, t ∈ Std(λ) define Bst = D?
sBtλtλDt.

By Theorem 6.2, (BOtλtλ)? = BOtλtλ which implies that B?tλtλ = Btλtλ . Conse-
quently, if s, t ∈ Std(λ) then B?st = Bts. If Bst 6= 0 then, by construction, Bst

is homogeneous of degree deg s + deg t. Unfortunately, it is not clear from the
definitions that Bst is non-zero.

6.7. Proposition. Suppose that (s, t) ∈ Std(PΛ
n ). Then

Bst ≡ ψst +
∑

(u,v)I(s,t)

buvψuv (mod HBλ
n ) ,

for some buv ∈ K. In particular, Bst 6= 0.
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Proof. Fix λ ∈ PΛ
n and suppose that s, t ∈ Std(λ). If s = t = tλ then Btλtλ is

the homogeneous component of BOtλtλ ⊗ 1K of degree 2 deg tλ, so the result is just

Lemma 6.5 in this case. Now consider the case when s = tλ and t is an arbitrary
standard λ-tableau. Then, since BOtλtλ ≡ ψ

O
tλtλ (mod HBλ

n ) ,

BOtλt ⊗ 1K ≡ (ψOtλtλ ⊗ 1K)(DOt ⊗ 1K) (mod HBλ
n ) .

Looking at the homogeneous component of degree deg tλ + deg t shows that

Btλt = BtλtλDt ≡ ψtλt +
∑
vIt

atλvψtλv (mod HBλ
n ) ,

by Lemma 6.5. Set btλv = atλv with btλt = 1. Similarly,

D?
sψtλtλ ≡ D?

sBtλtλ = Bstλ ≡
∑
u I s

butλψutλ (mod HBλ
n ) ,

where butλ = atλu with bstλ = 1. By Corollary 5.9, {ψuv} is a graded cellular basis
of HΛ

n(K) so, working modulo HBλ
n ,

Bst = D?
sBtλtλDt ≡

∑
v I t

btλvD
?
sψtλv ≡

∑
v I t

∑
u I s

btλvbutλψuv

= ψst +
∑

(u,v)I(s,t)

butλbtλvψuv (mod HBλ
n ) .

Setting buv = bstλbtλv completes the proof. �

6.8. Remark. If K is a field of characteristic zero then it follows from Proposition 6.4
that BOst⊗1K is a linear combinations of homogeneous components of degree greater
than or equal to deg s+ deg t. As a consequence, Bst is the homogeneous component
of BOst ⊗ 1K of degree deg s + deg t. As far as we can see, if K is a field of positive
characteristic then it is not true in general that Bst is the homogeneous component
of BOst ⊗ 1K of degree deg s + deg t.

We can now prove Theorem B from the introduction.

6.9. Theorem. Suppose that K is a field. Then {Bst | (s, t) ∈ Std2(PΛ
n ) } is a

graded cellular basis of HΛ
n(K) with cellular algebra automorphism ?.

Proof. By Proposition 6.7 and Corollary 5.9, {Bst | (s, t ∈ Std2(PΛ
n ) } is a basis

of HΛ
n(K). By definition, if (s, t) ∈ Std2(PΛ

n ) then Bst is homogeneous of degree
deg s + deg t and B?st = Bts. Therefore, the basis {Bst} satisfies (GC1), (GC3) and
(GCd) from Definition 2.4. Finally, since Bst ≡ D?

sBtλtλDt (mod HBλ
n ) , (GC2)

follows by repeating the argument from Step 3 in the proof of Theorem 6.2. �

The graded cellular basis {Bst | (s, t) ∈ Std2(PΛ
n ) } of HΛ

n(K) is distinguished
in the sense that, unlike ψst, the element Bst depends only on (s, t) ∈ Std2(PΛ

n ) and
not on a choice of reduced expressions for the permutations d(s) and d(t).

Appendix A. Seminormal forms for the linear quiver

In this appendix we show how the results in this paper work when e = 0 so that
ξ ∈ K is either not a root of unity or ξ = 1 and K is a field of characteristic zero.
Interestingly, all of the results in this appendix apply equally well when e = 0 or
when e ≥ n. The main difference is that in order to define a modular system we
have to leave the case where the cyclotomic parameters Q1, . . . , Q` are integral, that
is, when Ql = [κl] for 1 ≤ l ≤ `. This causes quite a few notational inconveniences,
but otherwise the story is much the same as for the case when e > 0. We do not
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develop the full theory of “0-idempotent subrings” here. Rather, we show just one
way of proving the results in this paper when e = 0.

Fix a field K and 0 6= ξ ∈ K of quantum characteristic e. That is, either ξ = 1
and K is a field of characteristic zero or ξd 6= 1 for d ∈ Z. The multicharge κ ∈ Z`
is arbitrary.

Let O = Z[x, ξ](x) be the localisation of Z[x, ξ] at the principal ideal generated

by x. Let K = Q(x, ξ) be the field of fractions of O. Define HΛ
n(O) to be the

cyclotomic Hecke algebra of type A with Hecke parameter t = ξ, a unit in O, and
cyclotomic parameters

Ql = xl + [κl], for 1 ≤ l ≤ `,

where, as before, [k] = [k]t for k ∈ Z. Then HΛ
n(K ) = HΛ

n(O) ⊗O K is split
semisimple in view of Ariki’s semisimplicity condition [1]. Moreover, by definition,
HΛ
n(K) ∼= HΛ

n(O) ⊗O K, where we consider K as an O-module by setting x act
on K as multiplication by zero.

Define a new content function for HΛ
n(O) by setting

Cγ = tc−rxl + [κl + c− r],

for a node γ = (l, r, c). We will also need the previous definition of contents below.
If t ∈ Std(PΛ

n ) is a tableau and 1 ≤ k ≤ n then set Ck(t) = Cγ , where γ is the
unique node such that t(γ) = k.

As in Section 2.5, let {mst | (s, t) ∈ Std2(PΛ
n ) } be the Murphy basis of HΛ

n(O).
Then the analogue of Lemma 2.9 is that if 1 ≤ r ≤ n then

mstLr = Cr(t)mst +
∑

(u,v)B(s,t)

ruvmuv,

for some ruv ∈ O. As in Section 3.1 define a ∗-seminormal basis of HΛ
n(K ) to be a

basis {fst} of simultaneous two-sided eigenvectors for L1, . . . , Ln such that f∗st = fts.
Define a seminormal coefficient system for HΛ

n(O) to be a set of scalars
α = {αr(s)} which satisfies (3.9) and such that if s ∈ Std(PΛ

n ) and u = s(r, r+ 1) ∈
Std(PΛ

n ) then

(A1) αr(s)αr(u) =
(1− Cr(s) + tCr(u))(1 + tCr(s)− Cr(u))

Pr(s)Pr(u)
,

where Pr(s) = Cr(u)− Cr(s), and where αr(s) = 0 if u /∈ Std(PΛ
n ).

As in Theorem 3.14, each seminormal basis of HΛ
n(K ) is determined by a

seminormal coefficient system α = {αr(s)}, such that

Trfst = αr(s)fut +
1 + (t− 1)Cr+1(s)

Pr(s)
fst, where u = s(r, r + 1),

together with a set of scalars { γtλ | λ ∈ PΛ
n }. Notice that I = Z, since e = 0, so if

i ∈ In then t ∈ Std(i) if and only if cr(t) = ir and, in turn, this is equivalent to the
constant term of Cr(t) being equal to [ir], for 1 ≤ r ≤ n. Arguing as in Lemma 4.4,

fOi =
∑

t∈Std(i)

1

γt
ftt ∈ HΛ

n(O).

With these definitions in place all of the arguments in Chapter 4 go through with
only minor changes. In particular, if 1 ≤ r ≤ n and i ∈ In then Definition 4.14
should be replaced by

ψOr f
O
i =


(Tr + 1) 1

Mr
fOi , if ir = ir+1

(TrLr − LrTr)fOi , if ir = ir+1 + 1,

(TrLr − LrTr) 1
Mr
fOi , otherwise,
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and yOr f
O
i =

(
Lr − Cr(t)

)
fOi where, as before, Mr = 1− Lr + tLr+1. With these

new definitions, if s ∈ Std(i), for i ∈ Im, and 1 ≤ r ≤ n then Lemma 4.23 becomes

ψOr fst = Br(s)fst +
δirir+1

Pr(s)
fut,

where u = s(r, r + 1) and

Br(s) =


αr(s)

1−Cr(s)+tCr+1(s) , if ir = ir+1,

αr(s)Pr(s), if ir = ir+1 + 1,
αr(s)Pr(s)

1−Cr(s)+tCr+1(s) , otherwise.

Observe that if u = s(r, r+ 1) is a standard tableau then, using (A1), the definitions
imply that

Br(s)Br(u) =



1
Pr(s)Pr(u) , if ir = ir+1,

(1− Cr(s) + tCr(u))(1 + tCr(s)− Cr(u)), if ir � ir+1,

(1 + tCr(s)− Cr(u)), if ir → ir+1,

(1− Cr(s) + tCr(u)), if ir ← ir+1,

1, otherwise.

Comparing this with Lemma 4.26, it is now easy to see that analogues of Propo-
sition 4.28 and Proposition 4.29 both hold in this situation. Hence, repeating the
arguments of Section 4.4, Theorem A also holds. Similarly, the construction of the
bases in Chapter 5 and Chapter 6 now goes though largely without change.
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