Explicit generators in rectangular affine \mathcal{W}-algebras of type A

Tomoyuki Arakawa and Alexander Molev

Abstract

We produce in an explicit form free generators of the affine \mathcal{W}-algebra of type A associated with a nilpotent matrix whose Jordan blocks are of the same size. This includes the principal nilpotent case and we thus recover the quantum Miura transformation of Fateev and Lukyanov.

1 Main results

Let \mathfrak{g} be a reductive Lie algebra over \mathbb{C} equipped with a symmetric invariant bilinear form κ and let f be a nilpotent element of \mathfrak{g}. The corresponding affine \mathcal{W}-algebra $\mathcal{W}^{\kappa}(\mathfrak{g}, f)$ is defined by the generalized quantized Drinfeld-Sokolov reduction; see [5], [7] and [8].

In this note we take $\mathfrak{g}=\mathfrak{g l}_{N}$. The Jordan type of a nilpotent element $f \in \mathfrak{g l}_{N}$ is a partition of N. We will work with the elements f corresponding to partitions of the form $\left(l^{n}\right)$ so that the associated Young diagram is the $n \times l$ rectangle with $n l=N$. Our main result is an explicit construction of free generators of the \mathcal{W}-algebra $\mathcal{W}^{\kappa}(\mathfrak{g}, f)$. Moreover, we calculate the images of these generators with respect to the Miura transformation. In particular, if f is the principal nilpotent (i.e., $n=1$) we thus reproduce the description of the \mathcal{W}-algebra due to Fateev and Lukyanov [4]. The results can be regarded as 'affine analogues' of the construction of the corresponding finite \mathcal{W}-algebras originated in [2], [10] and extended to arbitrary nilpotent elements f in [3].

To describe the results in more detail, identify \mathfrak{g} with the tensor product of $\mathfrak{g l}_{l}$ and $\mathfrak{g l}_{n}$ via the isomorphism $\mathfrak{g l}_{l} \otimes \mathfrak{g l}_{n} \rightarrow \mathfrak{g}$ defined by

$$
\begin{equation*}
e_{i j} \otimes e_{r s} \mapsto e_{(i-1) n+r,(j-1) n+s}, \tag{1.1}
\end{equation*}
$$

where the $e_{i j}$ denote the standard basis elements of the corresponding general linear Lie algebras. Set

$$
f_{l}=\sum_{i=1}^{l-1} e_{i+1 i} \in \mathfrak{g l}_{l}
$$

and

$$
f=f_{l} \otimes I_{n}=\sum_{i=1}^{l-1} \sum_{j=1}^{n} e_{i n+j,(i-1) n+j} \in \mathfrak{g}
$$

where $I_{n} \in \mathfrak{g l}_{n}$ is the identity matrix. The matrix f is a nilpotent element of \mathfrak{g} of Jordan type (l^{n}). Let

$$
\mathfrak{g l}_{l}=\bigoplus_{p \in \mathbb{Z}}\left(\mathfrak{g l}_{l}\right)_{p}
$$

be the standard principal grading of $\mathfrak{g l}_{l}$, obtained by defining the degree of $e_{i j}$ to be equal to $j-i$. Set

$$
\mathfrak{g l}_{l, \leqslant 0}=\bigoplus_{p \leqslant 0}\left(\mathfrak{g l}_{l}\right)_{p} \quad \text { and } \quad \mathfrak{g l}_{l,<0}=\bigoplus_{p<0}\left(\mathfrak{g l}_{l}\right)_{p}
$$

The isomorphism (1.1) then induces the \mathbb{Z}-grading on \mathfrak{g},

$$
\mathfrak{g}=\bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_{p}, \quad \mathfrak{g}_{p}=\left(\mathfrak{g l}_{l}\right)_{p} \otimes \mathfrak{g l}_{n}
$$

which is a good grading for f in the sense of $[7]$. We also set

$$
\begin{equation*}
\mathfrak{b}=\bigoplus_{p \leqslant 0} \mathfrak{g}_{p}=\mathfrak{g l}_{l, \leqslant 0} \otimes \mathfrak{g l}_{n} \quad \text { and } \quad \mathfrak{m}=\bigoplus_{p<0} \mathfrak{g}_{p}=\mathfrak{g l}_{l,<0} \otimes \mathfrak{g l}_{n} \tag{1.2}
\end{equation*}
$$

For any $k \in \mathbb{C}$, we let κ be any symmetric invariant bilinear form on \mathfrak{g} such that

$$
\begin{equation*}
\kappa(x, y)=k \operatorname{tr}(x y) \quad \text { for } \quad x, y \in \mathfrak{s l}_{N} \subset \mathfrak{g l}_{N} \tag{1.3}
\end{equation*}
$$

For elements $x, y \in \mathfrak{b}$ set

$$
\kappa_{\mathrm{b}}(x, y)=\kappa(x, y)+\frac{1}{2} \operatorname{tr}_{\mathfrak{g}}(\operatorname{ad} x \operatorname{ad} y)-\frac{1}{2} \operatorname{tr}_{\mathfrak{g}_{0}} p_{0}(\operatorname{ad} x \operatorname{ad} y),
$$

where p_{0} denotes the restriction of the operator to \mathfrak{g}_{0}. Then κ_{b} defines a symmetric invariant bilinear form on \mathfrak{b}.

Example 1.1. Let

$$
\kappa(x, y)=\frac{k}{2 N} \operatorname{tr}_{\mathfrak{g}}(\operatorname{ad} x \operatorname{ad} y)=k\left(\operatorname{tr}(x y)-\frac{1}{N} \operatorname{tr}(x) \operatorname{tr}(y)\right), \quad x, y \in \mathfrak{g} .
$$

Then for $i \geqslant i^{\prime}$ and $j \geqslant j^{\prime}$ we have

$$
\begin{aligned}
\kappa_{\mathrm{b}}\left(e_{i i^{\prime}} \otimes e_{p q}, e_{j j^{\prime}}\right. & \left.\otimes e_{r s}\right) \\
& =\delta_{i i^{\prime}} \delta_{j j^{\prime}}\left((k+n l)\left(\delta_{i j} \delta_{p s} \delta_{q r}-\frac{1}{n l} \delta_{p q} \delta_{r s}\right)-n \delta_{i j}\left(\delta_{p s} \delta_{q r}-\frac{1}{n} \delta_{p q} \delta_{r s}\right)\right)
\end{aligned}
$$

with $N=n l$, as before.

Let $\widehat{\mathfrak{b}}=\mathfrak{b}\left[t, t^{-1}\right] \oplus \mathbb{C} \mathbf{1}$ be the Kac-Moody affinization of \mathfrak{b} with respect to the cocycle κ_{b}, and let $V^{\kappa_{\mathrm{b}}}(\mathfrak{b})$ be the universal affine vertex algebra associated with \mathfrak{b} and κ_{b} [6]:

$$
V^{\kappa_{\mathrm{b}}}(\mathfrak{b})=\mathrm{U}(\widehat{\mathfrak{b}}) \otimes_{\mathrm{U}(\mathfrak{b}[t] \oplus \mathbb{C} \mathbf{1})} \mathbb{C}
$$

where \mathbb{C} is regarded as the one-dimensional representation of $\mathfrak{b}[t] \oplus \mathbb{C} 1$ on which $\mathfrak{b}[t]$ acts trivially and $\mathbf{1}$ acts as 1 . Note that by the Poincaré-Birkhoff-Witt theorem, $V^{\kappa_{b}}(\mathfrak{b})$ is isomorphic to $\mathrm{U}\left(\mathfrak{b}\left[t^{-1}\right] t^{-1}\right)$ as a vector space.

Due to $[8,9]$, the \mathcal{W}-algebra $\mathcal{W}^{\kappa}(\mathfrak{g}, f)$ can be realized as a vertex subalgebra of $V^{\kappa_{\mathrm{b}}}(\mathfrak{b})$. Our aim is to give explicit description of the generators of $\mathcal{W}^{\kappa}(\mathfrak{g}, f)$ inside $V^{\kappa_{\mathrm{b}}}(\mathfrak{b})$. We will use the identification

$$
\mathfrak{g l}_{l, \leqslant 0}\left[t^{-1}\right] t^{-1} \otimes \mathfrak{g l}_{n} \cong \mathfrak{b}\left[t^{-1}\right] t^{-1}
$$

defined by

$$
e_{j i}[-m] \otimes e_{p q} \mapsto e_{(j-1) n+p,(i-1) n+q}[-m], \quad m \geqslant 1,
$$

for $1 \leqslant i \leqslant j \leqslant l$ and $1 \leqslant p, q \leqslant n$, where we write $x[r]=x t^{r}$ for any $r \in \mathbb{Z}$.
By analogy with [3, Sec. 12], consider the tensor algebra $\mathrm{T}\left(\mathfrak{g l}_{l, \leqslant 0}\left[t^{-1}\right] t^{-1}\right)$ of the vector space $\mathfrak{g l}_{l, \leqslant 0}\left[t^{-1}\right] t^{-1}$ and let M_{n} denote the matrix algebra with the basis formed by the matrix units $e_{i j}, 1 \leqslant i, j \leqslant n$. Define the algebra homomorphism

$$
\mathcal{T}: \mathrm{T}\left(\mathfrak{g l}_{l, \leqslant 0}\left[t^{-1}\right] t^{-1}\right) \rightarrow M_{n} \otimes \mathrm{U}\left(\mathfrak{b}\left[t^{-1}\right] t^{-1}\right), \quad x \mapsto \mathcal{T}(x)=\sum_{i, j=1}^{n} e_{i j} \otimes \mathcal{T}_{i j}(x)
$$

by setting

$$
\mathcal{T}_{i j}(x)=x \otimes e_{j i} \in \mathfrak{g l}_{l, \leqslant 0}\left[t^{-1}\right] t^{-1} \otimes \mathfrak{g l}_{n}=\mathfrak{b}\left[t^{-1}\right] t^{-1}
$$

for $x \in \mathfrak{g}_{l, \leqslant 0}\left[t^{-1}\right] t^{-1}$. By definition, for any $x, y \in \mathrm{~T}\left(\mathfrak{g l}_{l, \leqslant 0}\left[t^{-1}\right] t^{-1}\right)$ we have

$$
\mathcal{T}_{i j}(x y)=\sum_{r=1}^{n} \mathcal{T}_{i r}(x) \mathcal{T}_{r j}(y)=\sum_{r=1}^{n}\left(x \otimes e_{r i}\right)\left(y \otimes e_{j r}\right)
$$

Let us equip the tensor product space $\mathrm{T}\left(\mathfrak{g}_{l, \leqslant 0}\left[t^{-1}\right] t^{-1}\right) \otimes \mathbb{C}[\tau]$ with an associative algebra structure in such a way that the natural embeddings

$$
\mathrm{T}\left(\mathfrak{g}_{l, \leqslant 0}\left[t^{-1}\right] t^{-1}\right) \hookrightarrow \mathrm{T}\left(\mathfrak{g}_{l, \leqslant 0}\left[t^{-1}\right] t^{-1}\right) \otimes \mathbb{C}[\tau] \quad \text { and } \quad \mathbb{C}[\tau] \hookrightarrow \mathrm{T}\left(\mathfrak{g}_{l, \leqslant 0}\left[t^{-1}\right] t^{-1}\right) \otimes \mathbb{C}[\tau]
$$

are algebra homomorphisms and the generator τ satisfies the relations

$$
[\tau, x[-m]]=m x[-m-1] \quad \text { for } \quad x \in \mathfrak{g}_{l, \leqslant 0} \quad \text { and } \quad m \in \mathbb{Z}
$$

Furthermore, the tensor product space $\mathrm{U}\left(\mathfrak{b}\left[t^{-1}\right] t^{-1}\right) \otimes \mathbb{C}[\tau]$ will also be considered as an associative algebra in a similar way. We will extend \mathcal{T} to the algebra homomorphism

$$
\mathcal{T}: \mathrm{T}\left(\mathfrak{g}_{l, \leqslant 0}\left[t^{-1}\right] t^{-1}\right) \otimes \mathbb{C}[\tau] \rightarrow M_{n} \otimes \mathrm{U}\left(\mathfrak{b}\left[t^{-1}\right] t^{-1}\right) \otimes \mathbb{C}[\tau]
$$

by setting $\mathcal{T}_{i j}(u S)=\mathcal{T}_{i j}(u) S$ for $u \in \mathrm{~T}\left(\mathfrak{g}_{l, \leqslant 0}\left[t^{-1}\right] t^{-1}\right)$ and any polynomial $S \in \mathbb{C}[\tau]$.
Set $\alpha=k+n(l-1)$ and consider the matrix

$$
B=\left[\begin{array}{ccccc}
\alpha \tau+e_{11}[-1] & -1 & 0 & \ldots & 0 \\
e_{21}[-1] & \alpha \tau+e_{22}[-1] & -1 & \ldots & 0 \\
\vdots & \vdots & \ddots & & \vdots \\
e_{l-11}[-1] & e_{l-22}[-1] & \ldots & \alpha \tau+e_{l-1 l-1}[-1] & -1 \\
e_{l 1}[-1] & e_{l 2}[-1] & \ldots & \ldots & \alpha \tau+e_{l l}[-1]
\end{array}\right]
$$

with entries in $\mathrm{T}\left(\mathfrak{g l}_{l, \leqslant 0}\left[t^{-1}\right] t^{-1}\right) \otimes \mathbb{C}[\tau]$. Its column-determinant $\operatorname{cdet} B$ is defined as the usual alternating sum of the products of the entries taken in the order determined by the column numbers of the entries. ${ }^{1}$ So cdet B is an element of $\mathrm{T}\left(\mathfrak{g l}_{l, \leqslant 0}\left[t^{-1}\right] t^{-1}\right) \otimes \mathbb{C}[\tau]$ and we can write

$$
\mathcal{T}_{i j}(\operatorname{cdet} B)=\sum_{r=0}^{l} W_{i j}^{(r)}(\alpha \tau)^{l-r}
$$

for certain coefficients $W_{i j}^{(r)}$ which are elements of $\mathrm{U}\left(\mathfrak{b}\left[t^{-1}\right] t^{-1}\right)$, and we can also regard them as elements of $V^{\kappa_{\mathrm{b}}}(\mathfrak{b})$. The following is our main result.

Theorem 1.2. All coefficients $W_{i j}^{(r)}$ belong to the \mathcal{W}-algebra $\mathcal{W}^{\kappa}(\mathfrak{g}, f)$. Moreover, the \mathcal{W} algebra $\mathcal{W}^{\kappa}(\mathfrak{g}, f) \subset V^{\kappa_{b}}(\mathfrak{b})$ is freely generated by the elements $W_{i j}^{(r)}$ with $1 \leqslant i, j \leqslant n$ and $r=1,2, \ldots, l$.

Set $\mathfrak{l}=\left(\mathfrak{g l}_{l}\right)_{0} \otimes \mathfrak{g l}_{n} \subset \mathfrak{g l}_{N}$. Then the projection $\mathfrak{b} \rightarrow \mathfrak{l}$ induces the vertex algebra homomorphism $V^{\kappa_{\mathrm{b}}}(\mathfrak{b}) \rightarrow V^{\kappa_{\mathrm{b}}}(\mathfrak{l})$, which restricts to the map

$$
\nu: \mathcal{W}^{\kappa}(\mathfrak{g}, f) \rightarrow V^{\kappa_{\mathrm{b}}}(\mathfrak{l})
$$

called the (quantum) Miura transformation. This is an injective vertex algebra homomorphism. The following formula for the images of the elements $W_{i j}^{(r)}$ under the Miura transformation is an immediate consequence of Theorem 1.2.

Theorem 1.3. We have

$$
\sum_{r=0}^{l} \nu\left(W_{i j}^{(r)}\right)(\alpha \tau)^{l-r}=\mathcal{T}_{i j}\left(\left(\alpha \tau+e_{11}[-1]\right) \ldots\left(\alpha \tau+e_{l l}[-1]\right)\right)
$$

[^0]Note that the principal \mathcal{W}-algebra of type A corresponds to the case $n=1$. The elements $W^{(r)}$ are defined via the expansion of $\operatorname{cdet} B$,

$$
\operatorname{cdet} B=\sum_{r=0}^{l} W^{(r)}(\alpha \tau)^{l-r}
$$

By applying the Miura transformation we recover the formula of Fateev and Lukyanov [4].
Corollary 1.4. The principal \mathcal{W}-algebra $\mathcal{W}^{\kappa}(\mathfrak{g}, f)$ is freely generated by the elements $W^{(1)}, \ldots, W^{(l)}$. Moreover, we have

$$
\sum_{r=0}^{l} \nu\left(W^{(r)}\right)(\alpha \tau)^{l-r}=\left(\alpha \tau+e_{11}[-1]\right) \ldots\left(\alpha \tau+e_{l l}[-1]\right)
$$

Example 1.5. Take $n=l=2$ so that $N=4$. We have

$$
\operatorname{cdet} B=(\alpha \tau)^{2}+\left(e_{11}[-1]+e_{22}[-1]\right)(\alpha \tau)+e_{11}[-1] e_{22}[-1]+e_{21}[-1]+\alpha e_{22}[-2] .
$$

Hence

$$
\begin{array}{ll}
W_{11}^{(1)}=e_{11}[-1]+e_{33}[-1], & W_{22}^{(1)}=e_{22}[-1]+e_{44}[-1], \\
W_{21}^{(1)}=e_{12}[-1]+e_{34}[-1], & W_{12}^{(1)}=e_{21}[-1]+e_{43}[-1], \\
W_{11}^{(2)}=e_{11}[-1] e_{33}[-1]+e_{21}[-1] e_{34}[-1]+e_{31}[-1]+\alpha e_{33}[-2], \\
W_{22}^{(1)}=e_{12}[-1] e_{43}[-1]+e_{22}[-1] e_{44}[-1]+e_{42}[-1]+\alpha e_{44}[-2], \\
W_{21}^{(1)}=e_{12}[-1] e_{33}[-1]+e_{22}[-1] e_{34}[-1]+e_{32}[-1]+\alpha e_{34}[-2], \\
W_{12}^{(1)}=e_{11}[-1] e_{43}[-1]+e_{21}[-1] e_{44}[-1]+e_{41}[-1]+\alpha e_{43}[-2] .
\end{array}
$$

For the images under the Miura transformation we have

$$
\begin{aligned}
& \nu\left(W_{11}^{(1)}\right)=e_{11}[-1]+e_{33}[-1], \quad \nu\left(W_{22}^{(1)}\right)=e_{22}[-1]+e_{44}[-1], \\
& \nu\left(W_{21}^{(1)}\right)=e_{12}[-1]+e_{34}[-1], \quad \nu\left(W_{12}^{(1)}\right)=e_{21}[-1]+e_{43}[-1], \\
& \nu\left(W_{11}^{(2)}\right)=e_{11}[-1] e_{33}[-1]+e_{21}[-1] e_{34}[-1]+\alpha e_{33}[-2], \\
& \nu\left(W_{22}^{(1)}\right)=e_{12}[-1] e_{43}[-1]+e_{22}[-1] e_{44}[-1]+\alpha e_{44}[-2], \\
& \nu\left(W_{21}^{(1)}\right)=e_{12}[-1] e_{33}[-1]+e_{22}[-1] e_{34}[-1]+\alpha e_{34}[-2], \\
& \nu\left(W_{12}^{(1)}\right)=e_{11}[-1] e_{43}[-1]+e_{21}[-1] e_{44}[-1]+\alpha e_{43}[-2] .
\end{aligned}
$$

Let the form κ_{b} be as in Example 1.1. The values $\kappa_{\mathrm{b}}(x, y)$ are then given in the following table, where the columns and rows correspond to the x and y variables, respectively:

	e_{11}	e_{22}	e_{33}	e_{44}	e_{12}	e_{21}	e_{34}	e_{43}
e_{11}	$\frac{3 k+8}{4}$	$-\frac{k}{4}$	$-\frac{k+4}{4}$	$-\frac{k+4}{4}$	0	0	0	0
e_{22}	$-\frac{k}{4}$	$\frac{3 k+8}{4}$	$-\frac{k+4}{4}$	$-\frac{k+4}{4}$	0	0	0	0
e_{33}	$-\frac{k+4}{4}$	$-\frac{k+4}{4}$	$\frac{3 k+8}{4}$	$-\frac{k}{4}$	0	0	0	0
e_{44}	$-\frac{k+4}{4}$	$-\frac{k+4}{4}$	$-\frac{k}{4}$	$\frac{3 k+8}{4}$	0	0	0	0
e_{12}	0	0	0	0	0	$k+2$	0	0
e_{21}	0	0	0	0	$k+2$	0	0	0
e_{34}	0	0	0	0	0	0	0	$k+2$
e_{34}	0	0	0	0	0	0	$k+2$	0

These values can be used to calculate the operator product expansion formulas for the generators of $\mathcal{W}^{\kappa}(\mathfrak{g}, f)$. In particular, set

$$
\begin{aligned}
L= & \frac{1}{2(k+4)}\left(-2\left(W_{11}^{(2)}+W_{22}^{(2)}\right)+W_{12}^{(1)} W_{21}^{(1)}+\frac{3}{4}\left(W_{11}^{(1)} W_{11}^{(1)}+W_{22}^{(1)} W_{22}^{(1)}\right)\right. \\
& \left.-\frac{1}{2} W_{11}^{(1)} W_{22}^{(1)}-(k+2)\left(W_{11}^{(1)}+W_{22}^{(1)}\right)^{\prime}-\left(W_{11}^{(1)}-W_{22}^{(1)}\right)^{\prime}\right),
\end{aligned}
$$

where the primes indicate the action of ad τ taking $e_{i j}[-1]$ to $e_{i j}[-2]$. Then L is the conformal vector of $\mathcal{W}^{\kappa}(\mathfrak{g}, f)$:

$$
L(z) L(w) \sim-\frac{12 k^{2}+41 k+32}{2(k+4)^{2}(z-w)^{4}}+\frac{2}{(z-w)^{2}} L(w)+\frac{1}{z-w} \partial L(w) .
$$

2 Proof of Theorem 1.2

Recall the notation (1.2) and let $\widehat{\mathfrak{a}}=\widehat{\mathfrak{a}}_{0} \oplus \widehat{\mathfrak{a}}_{1}$ be the Lie superalgebra such that $\widehat{\mathfrak{a}}_{0}=\widehat{\mathfrak{b}}$ and $\widehat{\mathfrak{a}}_{1}=\mathfrak{m}\left[t, t^{-1}\right]$, where $\mathfrak{m}\left[t, t^{-1}\right]$ is regarded as the supercommutative Lie superalgebra, while

$$
[x, y]=\operatorname{ad} x(y) \quad \text { for } \quad x \in \widehat{\mathfrak{a}}_{0} \quad \text { and } \quad y \in \widehat{\mathfrak{a}}_{1} .
$$

We will write $\psi_{j i}[-m] \otimes e_{p q}$ for the element

$$
e_{j i}[-m] \otimes e_{p q} \in \mathfrak{g l}_{l,<0}\left[t^{-1}\right] t^{-1} \otimes \mathfrak{g l}_{n}=\mathfrak{m}\left[t^{-1}\right] t^{-1}
$$

with $m \geqslant 1$, when it is considered as an element of $\widehat{\mathfrak{a}}_{1}$.
Let $V^{\kappa_{\mathfrak{b}}}(\mathfrak{a})$ be the representation of $\widehat{\mathfrak{a}}$ induced from the one-dimensional representation of $(\mathfrak{b}[t] \oplus \mathbb{C} \mathbf{1}) \oplus \mathfrak{m}[t] t$ on which $\mathfrak{b}[t] \subset \widehat{\mathfrak{a}}_{0}$ and $\mathfrak{m}[t] t \subset \widehat{\mathfrak{a}}_{1}$ act trivially and $\mathbf{1}$ acts as 1 . Then $V^{\kappa_{\mathrm{b}}}(\mathfrak{a})$ is naturally a vertex algebra which contains $V^{\kappa_{\mathrm{b}}}(\mathfrak{b})$ as its vertex subalgebra. We will regard $V^{\kappa_{\mathrm{b}}}(\mathfrak{a})$ as a (non-associative) algebra with repsect to the (-1)-product

$$
V^{\kappa_{\mathrm{b}}}(\mathfrak{a}) \otimes V^{\kappa_{\mathrm{b}}}(\mathfrak{a}) \rightarrow V^{\kappa_{\mathrm{b}}}(\mathfrak{a}), \quad a \otimes b \mapsto a_{(-1)} b,
$$

where the Fourier coefficients $a_{(n)}$ are defined in the usual way from the state-field correspondence map,

$$
Y(a, z)=\sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1} \quad \text { for } \quad a \in V^{\kappa_{\mathrm{b}}}(\mathfrak{a})
$$

By [9] the \mathcal{W}-algebra is given by

$$
\mathcal{W}^{\kappa}(\mathfrak{g}, f)=\left\{v \in V^{\kappa_{\mathrm{b}}}(\mathfrak{b}) \mid Q v=0\right\}
$$

where $Q: V^{\kappa_{\mathrm{b}}}(\mathfrak{a}) \rightarrow V^{\kappa_{\mathrm{b}}}(\mathfrak{a})$ is the derivation of the non-associative algebra $V^{\kappa_{\mathrm{b}}}(\mathfrak{a})$ defined by the following properties. First, Q commutes with the translation operator D of the vertex algebra $V^{\kappa_{\mathrm{b}}}(\mathfrak{a})$, that is, $[Q, D]=0$. Moreover, we have the commutation relations

$$
\begin{aligned}
{\left[Q, e_{j i} \otimes e_{p q}\right] } & =\sum_{a=i}^{j-1} \sum_{r=1}^{n}\left(e_{a i} \otimes e_{r q}\right)\left(\psi_{j a} \otimes e_{p r}\right)-\sum_{a=i+1}^{j} \sum_{r=1}^{n}\left(\psi_{a i} \otimes e_{r q}\right)\left(e_{j a} \otimes e_{p r}\right) \\
& +\alpha \psi_{j i}^{\prime} \otimes e_{p q}+e_{i j+1} \otimes e_{p q}-e_{i-1 j} \otimes e_{p q}
\end{aligned}
$$

and

$$
\left[Q, \psi_{j i} \otimes e_{p q}\right]=\frac{1}{2} \sum_{i<r<j, 1 \leqslant s \leqslant n}\left(\psi_{j r} \otimes e_{q s}\right)\left(\psi_{r i} \otimes e_{p s}\right)-\frac{1}{2} \sum_{i<r<j, 1 \leqslant s \leqslant n}\left(\psi_{r i} \otimes e_{s p}\right)\left(\psi_{j r} \otimes e_{q s}\right),
$$

where we used the abbreviations

$$
\begin{aligned}
& e_{i j} \otimes e_{p q}=\left(e_{i j} \otimes e_{p q}\right)[-1] \mathbf{1}, \quad \psi_{i j} \otimes e_{p q}=\left(\psi_{i j} \otimes e_{p q}\right)[-1] \mathbf{1}, \\
& \psi_{i j}^{\prime} \otimes e_{p q}=D\left(\psi_{i j} \otimes e_{p q}\right)[-1] \mathbf{1}=\left(\psi_{i j} \otimes e_{p q}\right)[-2] \mathbf{1}
\end{aligned}
$$

and set $\psi_{i i}^{\prime}=0$. Also, we used the fact that

$$
\operatorname{tr}_{\mathfrak{m}} p_{+}\left(\operatorname{ad}\left(e_{j i} \otimes e_{p q}\right) \operatorname{ad}\left(e_{i j} \otimes e_{p q}\right)\right)=n(l+i-j-1)
$$

for $1 \leqslant i<j \leqslant l$ and $1 \leqslant p, q \leqslant n$, where p_{+}denotes the restriction of the operator to \mathfrak{m}.
Our goal now is to reduce the calculations to the principal nilpotent case. To this end, when $n=1$, we will write $\overline{\mathfrak{a}}$ and $\overline{\mathfrak{b}}$ respectively, instead of \mathfrak{a} and \mathfrak{b}, and replace k with $k+(n-1)(l-1)$ in (1.3). Consequently, $V^{\kappa_{\overline{\mathfrak{b}}}(\overline{\mathfrak{a}}) \text { will denote the vertex algebra } V^{\kappa_{\mathrm{b}}}(\mathfrak{a}), ~(n) ~}$ with $n=1$ (and k replaced by $k+(n-1)(l-1))$. We let \bar{Q} denote the operator Q for $V^{\kappa_{\overline{5}}}(\overline{\mathfrak{a}})$. We have

$$
\begin{aligned}
& {\left[\bar{Q}, e_{j i}\right]=\sum_{a=i}^{j-1} e_{a i} \psi_{j a}-\sum_{a=i+1}^{j} \psi_{a i} e_{j a}+\alpha \psi_{j i}^{\prime}+\psi_{j+1 i}-\psi_{j i-1}} \\
& {\left[\bar{Q}, \psi_{j i}\right]=\frac{1}{2} \sum_{i<r<j}\left(\psi_{j r} \psi_{r i}-\psi_{r i} \psi_{j r}\right)}
\end{aligned}
$$

where we used the notation $e_{j i}=e_{j i}[-1], \psi_{i j}=\psi_{i j}[-1], \psi_{i j}^{\prime}=\psi_{i j}[-2]$, and we set $\psi_{i i}^{\prime}=0$.
We will regard $V^{\kappa_{\mathrm{b}}}(\mathfrak{a}) \otimes \mathbb{C}[\tau]$ as a non-associative algebra with the natural subalgebras $V^{\kappa_{\mathrm{b}}}(\mathfrak{a})$ and $\mathbb{C}[\tau]$ together with the relation $[\tau, u]=D u$ for $u \in V^{\kappa_{\mathrm{b}}}(\mathfrak{a})$. Similarly, the
 $[\tau, u]=\bar{D} u$ for $u \in V^{\kappa_{\bar{b}}}(\overline{\mathfrak{a}})$, where \bar{D} denotes the translation operator of the vertex algebra $V^{\kappa_{\overline{\mathfrak{b}}}(\overline{\mathfrak{a}}) \text {. Define the non-associative algebra homomorphism }}$

$$
\widetilde{\mathcal{T}}: V^{\kappa_{\overline{\mathrm{b}}}}(\overline{\mathfrak{a}}) \otimes \mathbb{C}[\tau] \rightarrow M_{n} \otimes V^{\kappa_{\mathrm{b}}}(\mathfrak{a}) \otimes \mathbb{C}[\tau], \quad x \mapsto \widetilde{\mathcal{T}}(x)=\sum_{p, q=1}^{n} e_{p q} \otimes \widetilde{\mathcal{T}}_{p q}(x)
$$

by

$$
\widetilde{\mathcal{T}}_{p q}\left(e_{j i}[-m]\right)=e_{j i}[-m] \otimes e_{q p}, \quad \widetilde{\mathcal{T}}_{p q}\left(\psi_{j i}[-m]\right)=\psi_{j i}[-m] \otimes e_{q p} \quad \text { and } \quad \widetilde{\mathcal{T}}_{p q}(\tau)=\tau
$$

We extend the definition of the column-determinant to matrices $A=\left[a_{i j}\right]$ with entries in a non-associative algebra by using right-normalized products,

$$
\begin{equation*}
\widetilde{\operatorname{cdet}} A=\sum_{\sigma \in \mathfrak{S}_{l}} \operatorname{sgn} \sigma \cdot a_{\sigma(1) 1}\left(a_{\sigma(2) 2}\left(a_{\sigma(3) 3}\left(\ldots\left(a_{\sigma(l-1) l-1} a_{\sigma(l) l}\right)\right)\right)\right) . \tag{2.4}
\end{equation*}
$$

Note the relation

$$
\widetilde{\mathcal{T}}(\widetilde{\operatorname{cdet}} B)=\mathcal{T}(\operatorname{cdet} B),
$$

where $\widetilde{\text { cdet }} B$ is regarded as an element of $V^{\kappa_{\bar{b}}}(\overline{\mathfrak{a}}) \otimes \mathbb{C}[\tau]$. The first part of Theorem 1.2 will now be implied by the following two propositions.

Proposition 2.1. For any $a \in V^{\kappa_{\overline{5}}}(\overline{\mathfrak{a}}) \otimes \mathbb{C}[\tau]$ and $1 \leqslant p, q \leqslant n$ we have the relations

$$
\left[Q, \widetilde{\mathcal{T}}_{p q}(a)\right]=\widetilde{\mathcal{T}}_{p q}([\bar{Q}, a])
$$

Proof. This follows immediately from the definitions of the operators Q and \bar{Q}.
Proposition 2.2. We have the relation

$$
[\bar{Q}, \widetilde{\operatorname{cdet}} B]=0 .
$$

Proof. We use induction on l. For any $0 \leqslant s \leqslant l$ consider the submatrix $B^{(s)}$ of B corresponding to its last s rows and columns, which is given by

$$
\left[\begin{array}{ccccc}
\alpha \tau+e_{l-s+1 l-s+1}[-1] & -1 & 0 & \cdots & 0 \\
e_{l-s+2 l-s+1}[-1] & \alpha \tau+e_{l-s+2 l-s+2}[-1] & -1 & \ldots & 0 \\
\vdots & \vdots & \ddots & & \vdots \\
e_{l-1 l-s+1}[-1] & e_{l-1 l-s+2}[-1] & \ldots & \alpha \tau+e_{l-1 l-1}[-1] & -1 \\
e_{l l-s+1}[-1] & e_{l l-s+2}[-1] & \cdots & \cdots & \alpha \tau+e_{l l}[-1]
\end{array}\right]
$$

Using the definition (2.4), set $D^{(s)}=\widetilde{\operatorname{cdet}} B^{(s)}$.

Lemma 2.3. We have the column expansion formula

$$
D^{(s)}=\sum_{i=1}^{s} B_{i 1}^{(s)} D^{(s-i)},
$$

where $B_{i j}^{(s)}$ denotes the (i, j) entry of $B^{(s)}$.
Suppose that $s<l$. By the induction hypothesis, the commutator $\left[\bar{Q}, D^{(s)}\right]$ equals
$\sum_{i=1}^{s} \widetilde{\operatorname{cdet}}\left[\begin{array}{ccccc}0 & -1 & 0 & \ldots & 0 \\ 0 & \alpha \tau+e_{l-s+2 l-s+2}[-1] & -1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -\psi_{l-i+1 l-s}[-1] & \ldots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & e_{l-1 l-s+2}[-1] & \ldots & \alpha \tau+e_{l-1 l-1}[-1] & -1 \\ 0 & e_{l l-s+2}[-1] & \ldots & \ldots & \alpha \tau+e_{l l}[-1]\end{array}\right]$
so that

$$
\begin{equation*}
\left[\bar{Q}, D^{(s)}\right]=-\sum_{i=1}^{s} \psi_{l-i+1 l-s}[-1] D^{(i-1)} \tag{2.5}
\end{equation*}
$$

Hence, by Lemma 2.3, we have

$$
\left[\bar{Q}, D^{(l)}\right]=\sum_{i=1}^{l}\left[\bar{Q}, B_{i 1}^{(l)}\right] D^{(l-i)}+\sum_{i=1}^{l} B_{i 1}^{(l)}\left[\bar{Q}, D^{(l-i)}\right] .
$$

Now we use the definition of \bar{Q} and relation (2.5) to write this expression as

$$
\sum_{i=1}^{l}\left(\sum_{a=1}^{i-1} e_{a 1} \psi_{i a}-\sum_{a=2}^{i} \psi_{a 1} e_{i a}+\alpha \psi_{i 1}^{\prime}+\psi_{i+11}\right) D^{(l-i)}-\sum_{i=1}^{l} B_{i 1}^{(l)} \sum_{a=1}^{l-i}\left(\psi_{l-a+1 i} D^{(a-1)}\right)
$$

where, as before, we write $e_{i j}=e_{i j}[-1], \psi_{i j}=\psi_{i j}[-1]$ and $\psi_{i j}^{\prime}=\psi_{i j}[-2]$ for brevity. Thus,

$$
\begin{aligned}
{\left[\bar{Q}, D^{(l)}\right] } & =\sum_{i=1}^{l} \sum_{a=1}^{i-1} e_{a 1}\left(\psi_{i a} D^{(l-i)}\right)-\sum_{i=1}^{l} \sum_{a=2}^{i} \psi_{a 1}\left(e_{i a} D^{(l-i)}\right)+\sum_{i=1}^{l}\left(\alpha \psi_{i 1}^{\prime}+\psi_{i+11}\right) D^{(l-i)} \\
& -\sum_{i=1}^{l} B_{i 1}^{(l)} \sum_{a=1}^{l-i}\left(\psi_{l-a+1 i} D^{(a-1)}\right)
\end{aligned}
$$

which equals

$$
\begin{aligned}
& -\alpha \sum_{a=2}^{l} \psi_{a 1} \tau D^{(l-a)}-\sum_{a=2}^{l} \sum_{i=a}^{l} \psi_{a, 1}\left(e_{i a} D^{(l-i)}\right)+\sum_{i=1}^{l} \psi_{i+11} D^{(l-i)} \\
& =-\sum_{a=1}^{l} \psi_{a 1}\left(\sum_{a=i}^{l}\left(\delta_{i a} \alpha \tau+e_{i a}\right) D^{(l-i)}-D^{(l-a+1)}\right) \\
& =\sum_{a=1}^{l}\left(D^{(l-a+1)}-\sum_{i=1}^{l-a+1} B_{i a}^{(l-a+1)} D^{(l-a+1-i)}\right)=0,
\end{aligned}
$$

where the last equality holds by Lemma 2.3. Here we used the relations

$$
\begin{aligned}
& \left(e_{j i}[-m] \psi_{p q}[-n]\right) u=e_{j i}[-m]\left(\psi_{p q}[-n] u\right), \\
& \left(\psi_{p q}[-n] e_{j i}[-m]\right) u=\psi_{p q}[-n]\left(e_{j i}[-m] u\right),
\end{aligned}
$$

which hold under the assumption

$$
u \in \operatorname{span} \text { of }\left\{e_{i^{\prime} j^{\prime}}\left[-m^{\prime}\right], \psi_{p^{\prime} q^{\prime}}\left[-n^{\prime}\right] \mid j^{\prime}>j \quad \text { and } \quad q^{\prime}>p\right\} .
$$

This completes the proof of the proposition.
To see the second part of Theorem 1.2, consider the grading of $V^{\kappa_{b}}(\mathfrak{b})$ induced by the grading of \mathfrak{b}. One has

$$
W_{i j}^{(r)}=\mathcal{T}_{i j}\left(\sum_{s=1}^{l-r+1} e_{r+s-1 s}[-1]\right)+(\text { terms of higher degree }) .
$$

Now the elements $\sum_{s=1}^{l-r+1} e_{r+s-1 s}$ with $r=1, \ldots, l$ form a basis of $\mathfrak{g l}_{l}^{f_{l}}$ and the elements

$$
\sum_{s=1}^{l-r+1} e_{r+s-1 s} \otimes e_{j i}, \quad r=1, \ldots, l \quad \text { and } \quad i, j=1, \ldots, n,
$$

form a basis of \mathfrak{g}^{f}. Hence the claim follows from [8, Theorem 4.1] (cf. [1, Theorem 5.5.1]) thus completing the argument.

References

[1] T. Arakawa, Representation theory of superconformal algebras and the Kac-RoanWakimoto conjecture, Duke Math. J. 130 (2005), 435-478.
[2] C. Briot and E. Ragoucy, RTT presentation of finite \mathcal{W}-algebras, J. Phys. A 34 (2001), 7287-7310.
[3] J. Brundan and A. Kleshchev, Shifted Yangians and finite W-algebras, Adv. Math. 200 (2006), 136-195.
[4] V. A. Fateev and S. L. Lykyanov, The models of two-dimensional conformal quantum field theory with Z_{n} symmetry, Internat. J. Modern Phys. A 3 (1988), 507-520.
[5] B. Feigin and E. Frenkel, Quantization of the Drinfeld-Sokolov reduction, Phys. Lett. В 246 (1990), 75-81.
[6] V. Kac, Vertex algebras for beginners, University Lecture Series, 10. American Mathematical Society, Providence, RI, 1997.
[7] V. Kac, Shi-Shyr Roan and M. Wakimoto, Quantum reduction for affine superalgebras, Comm. Math. Phys. 241 (2003), 307-342.
[8] V. Kac and M. Wakimoto, Quantum reduction and representation theory of superconformal algebras, Adv. Math. 185 (2004), 400-458.
[9] V. Kac and M. Wakimoto, Corrigendum to: "Quantum reduction and representation theory of superconformal algebras" [Adv. Math. 185 (2004), 400-458], Adv. Math. 193 (2005), 453-455.
[10] E. Ragoucy and P. Sorba, Yangian realisations from finite \mathcal{W}-algebras, Comm. Math. Phys. 203 (1999), 551-572.

Research Institute for Mathematical Sciences
Kyoto University, Kyoto 606-8502, Japan
arakawa@kurims.kyoto-u.ac.jp

School of Mathematics and Statistics University of Sydney, NSW 2006, Australia alexander.molev@sydney.edu.au

[^0]: ${ }^{1}$ It is easy to verify that cdet B coincides with the row-determinant of B defined in a similar way.

