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Abstract

We produce in an explicit form free generators of the affine W-algebra of type

A associated with a nilpotent matrix whose Jordan blocks are of the same size.

This includes the principal nilpotent case and we thus recover the quantum Miura

transformation of Fateev and Lukyanov.

1 Main results

Let g be a reductive Lie algebra over C equipped with a symmetric invariant bilinear form

κ and let f be a nilpotent element of g. The corresponding affine W-algebra W κ(g, f) is

defined by the generalized quantized Drinfeld–Sokolov reduction; see [5], [7] and [8].

In this note we take g = glN . The Jordan type of a nilpotent element f ∈ glN is a

partition of N . We will work with the elements f corresponding to partitions of the form

(ln) so that the associated Young diagram is the n × l rectangle with nl = N . Our main

result is an explicit construction of free generators of the W-algebra W κ(g, f). Moreover,

we calculate the images of these generators with respect to the Miura transformation. In

particular, if f is the principal nilpotent (i.e., n = 1) we thus reproduce the description

of the W-algebra due to Fateev and Lukyanov [4]. The results can be regarded as ‘affine

analogues’ of the construction of the corresponding finite W-algebras originated in [2], [10]

and extended to arbitrary nilpotent elements f in [3].

To describe the results in more detail, identify g with the tensor product of gl l and gln
via the isomorphism gl l ⊗ gln → g defined by

ei j ⊗ er s 7→ e(i−1)n+r, (j−1)n+s, (1.1)

where the ei j denote the standard basis elements of the corresponding general linear Lie

algebras. Set

fl =

l−1∑

i=1

ei+1 i ∈ gl l
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and

f = fl ⊗ In =

l−1∑

i=1

n∑

j=1

ein+j, (i−1)n+j ∈ g,

where In ∈ gln is the identity matrix. The matrix f is a nilpotent element of g of Jordan

type (ln). Let

gl l =
⊕

p∈Z

(gl l)p

be the standard principal grading of gl l, obtained by defining the degree of ei j to be equal

to j − i. Set

gl l,60 =
⊕

p60

(gl l)p and gl l,<0 =
⊕

p<0

(gl l)p.

The isomorphism (1.1) then induces the Z-grading on g,

g =
⊕

p∈Z

gp, gp = (gl l)p ⊗ gln,

which is a good grading for f in the sense of [7]. We also set

b =
⊕

p60

gp = gl l,60 ⊗ gln and m =
⊕

p<0

gp = gl l,<0 ⊗ gln. (1.2)

For any k ∈ C, we let κ be any symmetric invariant bilinear form on g such that

κ(x, y) = k tr(xy) for x, y ∈ slN ⊂ glN . (1.3)

For elements x, y ∈ b set

κb(x, y) = κ(x, y) +
1

2
trg(adx ad y)−

1

2
trg0 p0(ad x ad y),

where p0 denotes the restriction of the operator to g0. Then κb defines a symmetric

invariant bilinear form on b.

Example 1.1. Let

κ(x, y) =
k

2N
trg(ad x ad y) = k

(
tr(xy)−

1

N
tr(x) tr(y)

)
, x, y ∈ g.

Then for i > i ′ and j > j ′ we have

κb(ei i ′ ⊗ epq, ej j ′ ⊗ er s)

= δi i ′δj j ′

(
(k + nl)

(
δi j δpsδq r −

1

nl
δpq δr s

)
− nδi j

(
δpsδq r −

1

n
δpq δr s

))

with N = nl, as before.
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Let b̂ = b[t, t−1]⊕C1 be the Kac–Moody affinization of b with respect to the cocycle

κb, and let V κb(b) be the universal affine vertex algebra associated with b and κb [6]:

V κb(b) = U(b̂)⊗U(b[t]⊕C1) C,

where C is regarded as the one-dimensional representation of b[t]⊕C1 on which b[t] acts

trivially and 1 acts as 1. Note that by the Poincaré–Birkhoff–Witt theorem, V κb(b) is

isomorphic to U(b[t−1]t−1) as a vector space.

Due to [8, 9], the W-algebra W κ(g, f) can be realized as a vertex subalgebra of V κb(b).

Our aim is to give explicit description of the generators of W κ(g, f) inside V κb(b). We

will use the identification

gl l,60[t
−1]t−1 ⊗ gln

∼= b[t−1]t−1,

defined by

ej i[−m]⊗ epq 7→ e(j−1)n+p, (i−1)n+q[−m], m > 1,

for 1 6 i 6 j 6 l and 1 6 p, q 6 n, where we write x[r] = x tr for any r ∈ Z.

By analogy with [3, Sec. 12], consider the tensor algebra T(gl l,60[t
−1]t−1) of the vector

space gl l,60[t
−1]t−1 and let Mn denote the matrix algebra with the basis formed by the

matrix units ei j , 1 6 i, j 6 n. Define the algebra homomorphism

T : T(gl l,60[t
−1]t−1) →Mn ⊗ U(b[t−1]t−1), x 7→ T (x) =

n∑

i,j=1

ei j ⊗ Ti j(x)

by setting

Ti j(x) = x⊗ ej i ∈ gl l,60[t
−1]t−1 ⊗ gln = b[t−1]t−1

for x ∈ g l,60[t
−1]t−1. By definition, for any x, y ∈ T(gl l,60[t

−1]t−1) we have

Ti j(xy) =

n∑

r=1

Tir(x)Tr j(y) =

n∑

r=1

(x⊗ er i)(y ⊗ ej r).

Let us equip the tensor product space T(g l,60[t
−1]t−1)⊗C[τ ] with an associative algebra

structure in such a way that the natural embeddings

T(g l,60[t
−1]t−1) →֒ T(g l,60[t

−1]t−1)⊗ C[τ ] and C[τ ] →֒ T(g l,60[t
−1]t−1)⊗ C[τ ]

are algebra homomorphisms and the generator τ satisfies the relations

[
τ, x[−m]

]
= mx[−m − 1] for x ∈ g l,60 and m ∈ Z.
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Furthermore, the tensor product space U(b[t−1]t−1) ⊗ C[τ ] will also be considered as an

associative algebra in a similar way. We will extend T to the algebra homomorphism

T : T(g l,60[t
−1]t−1)⊗ C[τ ] →Mn ⊗U(b[t−1]t−1)⊗ C[τ ]

by setting Ti j(uS) = Ti j(u)S for u ∈ T(g l,60[t
−1]t−1) and any polynomial S ∈ C[τ ].

Set α = k + n(l − 1) and consider the matrix

B =




ατ + e11[−1] −1 0 . . . 0

e21[−1] ατ + e22[−1] −1 . . . 0

...
...

. . .
...

el−11[−1] el−22[−1] . . . ατ + el−1 l−1[−1] −1

el1[−1] el2[−1] . . . . . . ατ + el l[−1]




with entries in T(gl l,60[t
−1]t−1) ⊗ C[τ ]. Its column-determinant cdetB is defined as the

usual alternating sum of the products of the entries taken in the order determined by the

column numbers of the entries.1 So cdetB is an element of T(gl l,60[t
−1]t−1)⊗C[τ ] and we

can write

Ti j(cdetB) =

l∑

r=0

W
(r)
i j (ατ) l−r

for certain coefficients W
(r)
i j which are elements of U(b[t−1]t−1), and we can also regard

them as elements of V κb(b). The following is our main result.

Theorem 1.2. All coefficients W
(r)
i j belong to the W-algebra W κ(g, f). Moreover, the W-

algebra W κ(g, f) ⊂ V κb(b) is freely generated by the elements W
(r)
i j with 1 6 i, j 6 n and

r = 1, 2, . . . , l.

Set l = (gl l)0 ⊗ gln ⊂ glN . Then the projection b → l induces the vertex algebra

homomorphism V κb(b) → V κb(l), which restricts to the map

ν : W κ(g, f) → V κb(l),

called the (quantum) Miura transformation. This is an injective vertex algebra homo-

morphism. The following formula for the images of the elements W
(r)
i j under the Miura

transformation is an immediate consequence of Theorem 1.2.

Theorem 1.3. We have

l∑

r=0

ν(W
(r)
i j )(ατ)l−r = Ti j

((
ατ + e11[−1]

)
. . .

(
ατ + el l[−1]

))
.

1It is easy to verify that cdetB coincides with the row-determinant of B defined in a similar way.
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Note that the principal W-algebra of type A corresponds to the case n = 1. The

elements W (r) are defined via the expansion of cdetB,

cdetB =
l∑

r=0

W (r)(ατ) l−r.

By applying the Miura transformation we recover the formula of Fateev and Lukyanov [4].

Corollary 1.4. The principal W-algebra W κ(g, f) is freely generated by the elements

W (1), . . . ,W (l). Moreover, we have

l∑

r=0

ν(W (r))(ατ)l−r =
(
ατ + e11[−1]

)
. . .

(
ατ + el l[−1]

)
.

Example 1.5. Take n = l = 2 so that N = 4. We have

cdetB = (ατ)2 +
(
e11[−1] + e22[−1]

)
(ατ) + e11[−1]e22[−1] + e21[−1] + αe22[−2].

Hence

W
(1)
11 = e11[−1] + e33[−1], W

(1)
22 = e22[−1] + e44[−1],

W
(1)
21 = e12[−1] + e34[−1], W

(1)
12 = e21[−1] + e43[−1],

W
(2)
11 = e11[−1]e33[−1] + e21[−1]e34[−1] + e31[−1] + α e33[−2],

W
(1)
22 = e12[−1]e43[−1] + e22[−1]e44[−1] + e42[−1] + α e44[−2],

W
(1)
21 = e12[−1]e33[−1] + e22[−1]e34[−1] + e32[−1] + α e34[−2],

W
(1)
12 = e11[−1]e43[−1] + e21[−1]e44[−1] + e41[−1] + α e43[−2].

For the images under the Miura transformation we have

ν(W
(1)
11 ) = e11[−1] + e33[−1], ν(W

(1)
22 ) = e22[−1] + e44[−1],

ν(W
(1)
21 ) = e12[−1] + e34[−1], ν(W

(1)
12 ) = e21[−1] + e43[−1],

ν(W
(2)
11 ) = e11[−1]e33[−1] + e21[−1]e34[−1] + α e33[−2],

ν(W
(1)
22 ) = e12[−1]e43[−1] + e22[−1]e44[−1] + α e44[−2],

ν(W
(1)
21 ) = e12[−1]e33[−1] + e22[−1]e34[−1] + α e34[−2],

ν(W
(1)
12 ) = e11[−1]e43[−1] + e21[−1]e44[−1] + α e43[−2].

Let the form κb be as in Example 1.1. The values κb(x, y) are then given in the following

table, where the columns and rows correspond to the x and y variables, respectively:
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e11 e22 e33 e44 e12 e21 e34 e43

e11
3k+8
4

−k
4

−k+4
4

−k+4
4

0 0 0 0

e22 −k
4

3k+8
4

−k+4
4

−k+4
4

0 0 0 0

e33 −k+4
4

−k+4
4

3k+8
4

−k
4

0 0 0 0

e44 −k+4
4

−k+4
4

−k
4

3k+8
4

0 0 0 0

e12 0 0 0 0 0 k + 2 0 0

e21 0 0 0 0 k + 2 0 0 0

e34 0 0 0 0 0 0 0 k + 2

e34 0 0 0 0 0 0 k + 2 0

These values can be used to calculate the operator product expansion formulas for the

generators of W κ(g, f). In particular, set

L =
1

2(k + 4)

(
−2(W

(2)
11 +W

(2)
22 ) +W

(1)
12 W

(1)
21 +

3

4
(W

(1)
11 W

(1)
11 +W

(1)
22 W

(1)
22 )

−
1

2
W

(1)
11 W

(1)
22 − (k + 2)(W

(1)
11 +W

(1)
22 )′ − (W

(1)
11 −W

(1)
22 )′

)
,

where the primes indicate the action of ad τ taking ei j [−1] to ei j [−2]. Then L is the

conformal vector of W κ(g, f):

L(z)L(w) ∼ −
12k2 + 41k + 32

2(k + 4)2(z − w)4
+

2

(z − w)2
L(w) +

1

z − w
∂L(w).

2 Proof of Theorem 1.2

Recall the notation (1.2) and let â = â0⊕ â1 be the Lie superalgebra such that â0 = b̂ and

â1 = m[t, t−1], where m[t, t−1] is regarded as the supercommutative Lie superalgebra, while

[x, y] = adx(y) for x ∈ â0 and y ∈ â1.

We will write ψj i[−m]⊗ epq for the element

ej i[−m]⊗ epq ∈ gl l,<0[t
−1]t−1 ⊗ gln = m[t−1]t−1

with m > 1, when it is considered as an element of â1.

Let V κb(a) be the representation of â induced from the one-dimensional representation

of (b[t]⊕C1)⊕m[t]t on which b[t] ⊂ â0 and m[t]t ⊂ â1 act trivially and 1 acts as 1. Then

V κb(a) is naturally a vertex algebra which contains V κb(b) as its vertex subalgebra. We

will regard V κb(a) as a (non-associative) algebra with repsect to the (−1)-product

V κb(a)⊗ V κb(a) → V κb(a), a⊗ b 7→ a(−1)b,
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where the Fourier coefficients a(n) are defined in the usual way from the state-field corre-

spondence map,

Y (a, z) =
∑

n∈Z

a(n)z
−n−1 for a ∈ V κb(a).

By [9] the W-algebra is given by

W κ(g, f) = {v ∈ V κb(b) | Qv = 0},

where Q : V κb(a) → V κb(a) is the derivation of the non-associative algebra V κb(a) defined

by the following properties. First, Q commutes with the translation operator D of the

vertex algebra V κb(a), that is, [Q,D] = 0. Moreover, we have the commutation relations

[Q, ej i ⊗ epq] =

j−1∑

a=i

n∑

r=1

(eai ⊗ er q)(ψj a ⊗ epr)−

j∑

a=i+1

n∑

r=1

(ψai ⊗ er q)(ej a ⊗ epr)

+ αψ′

j i ⊗ epq + ei j+1 ⊗ epq − ei−1 j ⊗ epq

and

[Q,ψj i ⊗ epq] =
1

2

∑

i<r<j, 16s6n

(ψj r ⊗ eq s)(ψr i ⊗ eps)−
1

2

∑

i<r<j,16s6n

(ψr i ⊗ esp)(ψj r ⊗ eq s),

where we used the abbreviations

ei j ⊗ epq = (ei j ⊗ epq)[−1] 1, ψi j ⊗ epq = (ψi j ⊗ epq)[−1] 1,

ψ′

i j ⊗ epq = D(ψi j ⊗ epq)[−1] 1 = (ψi j ⊗ epq)[−2] 1,

and set ψ′

i i = 0. Also, we used the fact that

trm p+
(
ad (ej i ⊗ epq) ad (ei j ⊗ epq)

)
= n(l + i− j − 1)

for 1 6 i < j 6 l and 1 6 p, q 6 n, where p+ denotes the restriction of the operator to m.

Our goal now is to reduce the calculations to the principal nilpotent case. To this end,

when n = 1, we will write ā and b̄ respectively, instead of a and b, and replace k with

k + (n − 1)(l − 1) in (1.3). Consequently, V κ
b̄(ā) will denote the vertex algebra V κb(a)

with n = 1 (and k replaced by k + (n − 1)(l − 1)). We let Q denote the operator Q for

V κ
b̄(ā). We have

[Q, ej i] =

j−1∑

a=i

eai ψj a −

j∑

a=i+1

ψai ej a + αψ′

j i + ψj+1 i − ψj i−1,

[Q,ψj i] =
1

2

∑

i<r<j

(ψj r ψr i − ψr i ψj r),
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where we used the notation ej i = ej i[−1], ψi j = ψi j [−1], ψ′

i j = ψi j [−2], and we set ψ′

i i = 0.

We will regard V κb(a)⊗C[τ ] as a non-associative algebra with the natural subalgebras

V κb(a) and C[τ ] together with the relation [τ, u] = Du for u ∈ V κb(a). Similarly, the

tensor product V κ
b̄(ā)⊗C[τ ] will be regarded as a non-associative algebra with the relation

[τ, u] = Du for u ∈ V κ
b̄(ā), where D denotes the translation operator of the vertex algebra

V κ
b̄(ā). Define the non-associative algebra homomorphism

T̃ : V κ
b̄(ā)⊗ C[τ ] → Mn ⊗ V κb(a)⊗ C[τ ], x 7→ T̃ (x) =

n∑

p,q=1

epq ⊗ T̃pq(x)

by

T̃pq

(
ej i[−m]

)
= ej i[−m]⊗ eq p, T̃pq

(
ψj i[−m]

)
= ψj i[−m]⊗ eq p and T̃pq(τ) = τ.

We extend the definition of the column-determinant to matrices A = [aij ] with entries

in a non-associative algebra by using right-normalized products,

c̃detA =
∑

σ∈Sl

sgn σ · aσ(1)1(aσ(2)2(aσ(3)3(. . . (aσ(l−1) l−1 aσ(l) l)))). (2.4)

Note the relation

T̃ (c̃detB) = T (cdetB),

where c̃detB is regarded as an element of V κ
b̄(ā) ⊗ C[τ ]. The first part of Theorem 1.2

will now be implied by the following two propositions.

Proposition 2.1. For any a ∈ V κ
b̄(ā)⊗ C[τ ] and 1 6 p, q 6 n we have the relations

[Q, T̃pq(a)] = T̃pq

(
[Q, a]

)
.

Proof. This follows immediately from the definitions of the operators Q and Q.

Proposition 2.2. We have the relation

[Q, c̃detB] = 0.

Proof. We use induction on l. For any 0 6 s 6 l consider the submatrix B(s) of B

corresponding to its last s rows and columns, which is given by



ατ + e l−s+1 l−s+1[−1] −1 0 . . . 0

e l−s+2 l−s+1[−1] ατ + e l−s+2 l−s+2[−1] −1 . . . 0

...
...

. . .
...

e l−1 l−s+1[−1] e l−1 l−s+2[−1] . . . ατ + el−1 l−1[−1] −1

e l l−s+1[−1] e l l−s+2[−1] . . . . . . ατ + el l[−1]




.

Using the definition (2.4), set D(s) = c̃detB(s).
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Lemma 2.3. We have the column expansion formula

D(s) =
s∑

i=1

B
(s)
i 1 D

(s−i),

where B
(s)
i j denotes the (i, j) entry of B(s).

Suppose that s < l. By the induction hypothesis, the commutator [Q,D(s)] equals

s∑

i=1

c̃det




0 −1 0 . . . 0

0 α τ + el−s+2 l−s+2[−1] −1 . . . 0

...
...

...
...

...

−ψl−i+1 l−s[−1] . . . . . . . . . . . .

...
...

...
...

...

0 el−1 l−s+2[−1] . . . α τ + el−1 l−1[−1] −1

0 el l−s+2[−1] . . . . . . α τ + el l[−1]




so that

[Q,D(s)] = −
s∑

i=1

ψl−i+1 l−s[−1]D(i−1). (2.5)

Hence, by Lemma 2.3, we have

[Q,D(l)] =

l∑

i=1

[Q,B
(l)
i 1 ]D

(l−i) +

l∑

i=1

B
(l)
i 1 [Q,D

(l−i)].

Now we use the definition of Q and relation (2.5) to write this expression as

l∑

i=1

( i−1∑

a=1

ea1ψia −

i∑

a=2

ψa1eia + αψ′

i1 + ψi+1 1

)
D(l−i) −

l∑

i=1

B
(l)
i 1

l−i∑

a=1

(ψl−a+1 iD
(a−1)),

where, as before, we write ei j = ei j [−1], ψi j = ψi j [−1] and ψ′

i j = ψi j [−2] for brevity.

Thus,

[Q,D(l)] =

l∑

i=1

i−1∑

a=1

ea1(ψiaD
(l−i))−

l∑

i=1

i∑

a=2

ψa1(eiaD
(l−i)) +

l∑

i=1

(αψ′

i 1 + ψi+11)D
(l−i)

−

l∑

i=1

B
(l)
i 1

l−i∑

a=1

(ψl−a+1 iD
(a−1))
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which equals

− α

l∑

a=2

ψa1τD
(l−a) −

l∑

a=2

l∑

i=a

ψa,1(eiaD
(l−i)) +

l∑

i=1

ψi+11D
(l−i)

= −

l∑

a=1

ψa1

( l∑

a=i

(δiaα τ + eia)D
(l−i) −D(l−a+1)

)

=

l∑

a=1

(
D(l−a+1) −

l−a+1∑

i=1

B
(l−a+1)
ia D(l−a+1−i)

)
= 0,

where the last equality holds by Lemma 2.3. Here we used the relations

(
ej i[−m]ψpq[−n]

)
u = ej i[−m]

(
ψpq[−n] u

)
,

(
ψpq[−n] ej i[−m]

)
u = ψpq[−n]

(
ej i[−m] u

)
,

which hold under the assumption

u ∈ span of {ei ′j ′ [−m′ ], ψp′q′[−n
′ ] | j ′ > j and q′ > p}.

This completes the proof of the proposition.

To see the second part of Theorem 1.2, consider the grading of V κb(b) induced by the

grading of b. One has

W
(r)
ij = Tij

( l−r+1∑

s=1

er+s−1 s[−1]
)
+ (terms of higher degree).

Now the elements
∑l−r+1

s=1 er+s−1 s with r = 1, . . . , l form a basis of glfll and the elements

l−r+1∑

s=1

er+s−1 s ⊗ ej i, r = 1, . . . , l and i, j = 1, . . . , n,

form a basis of gf . Hence the claim follows from [8, Theorem 4.1] (cf. [1, Theorem 5.5.1])

thus completing the argument.
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