Supplement to "Nonlinear regressions with nonstationary time series"

Nigel Chan and Qiying Wang
The University of Sydney

March 20, 2014

This supplement gives the proofs of Lemmas 8.3, 8.6-8.7 (see Section 9), the proofs of Theorems 2.5, 4.1-4.3 (see Section 10), a unit root testing for empirical data (Section 11) and additional simulation results (see Section 12) in the official publication. Results (formulae) cited are along the lines of the official publication.

9 Proofs of Lemmas 8.3, 8.6 and 8.7

Proof of Lemma 8.3. The proofs of (35) and (36) see Theorem 2.1 of Chen (1999). To prove (37), we first impose an additional assumption that $g_{2}(x)=g_{1}^{2}(x)$. Denote

$$
\begin{equation*}
\Delta_{n}^{2}=a(n)^{-1} \sum_{t=1}^{n} g_{1}^{2}\left(x_{t}\right), \quad Z_{n t}=a(n)^{-1 / 2} g_{1}\left(x_{t}\right) \Delta_{n}^{-1}, \quad \text { and } \quad W_{n}=\sum_{t=1}^{n} Z_{n t} u_{k} \tag{57}
\end{equation*}
$$

Recalling that $E\left(u_{t} \mid \mathcal{F}_{n t}\right)=0$, it is readily seen that given $\left\{x_{1}, \ldots, x_{n}\right\},\left\{Z_{n t} u_{t}, \mathcal{F}_{n t}\right\}_{t=1}^{n}$ forms a martingale difference sequence. The result (37) will follow if we prove,

$$
\begin{equation*}
\sup _{x}\left|P\left(W_{n} \leq x \mid x_{1}, \ldots, x_{n}\right)-\Phi(x)\right| \rightarrow_{P} 0 \tag{58}
\end{equation*}
$$

Indeed, by noting that Δ_{n}^{2} is measurable with respect to $\sigma\left(x_{1}, \ldots x_{n}\right)$, we have, for any $\alpha, \gamma \in R$,

$$
\begin{aligned}
& \left|E\left[e^{i \alpha W_{n}+i \beta \Delta_{n}^{2}}\right]-e^{-\frac{1}{2} \alpha^{2}} E\left[e^{i \beta \tau_{5} \Pi_{\gamma}}\right]\right| \\
& \leq E\left|E\left(e^{i \alpha W_{n}} \mid x_{1}, \ldots, x_{n}\right)-e^{-\frac{1}{2} \alpha^{2}}\right|+e^{-\frac{1}{2} \alpha^{2}}\left|E e^{i \gamma \Delta_{n}^{2}}-E e^{i \gamma \tau_{5} \Pi_{\beta}}\right| \rightarrow 0,
\end{aligned}
$$

by dominated convergence theorem, due to (58) and $\Delta_{n}^{2} \rightarrow_{D} \tau_{5} \Pi_{\beta}$ (see, e.g., Theorem 2.3 of Chen (1999)). This implies that

$$
\left\{W_{n}, \Delta_{n}^{2}\right\} \rightarrow_{D}\left\{N, \tau_{5} \Pi_{\beta}\right\}
$$

where N is a standard normal random variable independent of Π_{β}. Hence, by continuous mapping theorem, we have

$$
\left\{a(n)^{-1 / 2} \sum_{t=1}^{n} g_{1}\left(x_{t}\right) u_{t}, a(n)^{-1} \sum_{t=1}^{n} g_{1}^{2}\left(x_{t}\right)\right\}=\left\{\Delta_{n} W_{n}, \Delta_{n}^{2}\right\} \rightarrow_{D}\left\{\tau_{5}^{1 / 2} N \Pi_{\beta}^{1 / 2}, \tau_{5} \Pi_{\beta}\right\}
$$

which implies the required (37).
We now prove (58). By Theorem 3.9 ((3.75) there) in Hall and Heyde (1980) with $\delta=q / 2-1$ that

$$
\sup _{x}\left|P\left(W_{n} \leq x \mid x_{1}, \ldots, x_{n}\right)-\Phi(x)\right| \leq A(\delta) \mathcal{L}_{n}^{1 /(1+q)} \quad \text { a.s., }
$$

where $A(\delta)$ is a constant depending only on δ and $q>2$, and $\left(\right.$ set $\left.\mathcal{F}_{n}^{*}=\sigma\left(x_{1}, \ldots, x_{n}\right)\right)$

$$
\mathcal{L}_{n}=\Delta_{n}^{-q} \sum_{k=1}^{n}\left|Z_{n k}\right|^{q} E\left(\left|u_{k}\right|^{q} \mid \mathcal{F}_{n}^{*}\right)+E\left[\left|\Delta_{n}^{-2} \sum_{k=1}^{n} Z_{n k}^{2}\left[E\left(u_{k}^{2} \mid \mathcal{F}_{n k}\right)-1\right]\right|^{q / 2} \mid \mathcal{F}_{n}^{*}\right]
$$

Recall from Assumption 3.2 (iv) and the fact that $\Delta_{n}^{2}=\sum_{k=1}^{n} Z_{n k}^{2}$, we have,

$$
E\left[\left|\Delta_{n}^{-2} \sum_{k=1}^{n} Z_{n k}^{2}\left[E\left(u_{k}^{2} \mid \mathcal{F}_{n k}\right)-1\right]\right|^{q / 2} \mid \mathcal{F}_{n}^{*}\right] \rightarrow_{P} 0
$$

by dominated convergence theorem. Hence, routine calculations show that

$$
\mathcal{L}_{n} \leq C \Delta_{n}^{-(q-2)} a(n)^{-(q-2) / 2}+o_{P}(1)=o_{P}(1)
$$

because $\Delta_{n}^{-2}=O_{P}(1)$ by (35) and $q>2$. This proves (58), which implies that (37) holds true with $g_{2}(x)=g_{1}^{2}(x)$. Finally, note that, for any $a, b \in R$,

$$
a(n)^{-1} \sum_{t=1}^{n}\left\{a g_{1}^{2}\left(x_{t}\right)+b g_{2}\left(x_{t}\right)\right\} \rightarrow_{D} \int_{-\infty}^{\infty}\left[a g_{1}^{2}(s)+b g_{2}(s)\right] \pi(d s) \Pi_{\beta},
$$

due to Theorem 2.3 of Chen (1999), which implies that

$$
\left\{a(n)^{-1} \sum_{t=1}^{n} g_{1}^{2}\left(x_{t}\right), a(n)^{-1} \sum_{t=1}^{n} g_{2}\left(x_{t}\right)\right\} \rightarrow_{D}\left\{\int_{-\infty}^{\infty} g_{1}^{2}(s) \pi(d s) \Pi_{\beta}, \int_{-\infty}^{\infty} g_{2}(s) \pi(d s) \Pi_{\beta},\right\}
$$

Hence, by continuous mapping theorem,

$$
\frac{\sum_{t=1}^{n} g_{1}^{2}\left(x_{t}\right)}{\sum_{t=1}^{n} g_{2}\left(x_{t}\right)} \rightarrow_{P} \int_{-\infty}^{\infty} g_{1}^{2}(s) \pi(d s) / \int_{-\infty}^{\infty} g_{2}(s) \pi(d s)
$$

This shows that (37) is still true with general $g_{2}(x)$.

Proof of Lemma 8.6. We only prove (42). Others are similar and the details are omitted. First note that, by Assumption 3.2 (i) and (iii),

$$
\begin{aligned}
\sup _{\theta \in \Theta}\left|f_{i}\left(x_{t}, \theta\right)\right| & \leq \sup _{\theta \in \Theta}\left|\dot{f}_{i}\left(x_{t}, \theta\right)-\dot{f}_{i}\left(x_{t}, \theta_{0}\right)\right|+\left|\dot{f}_{i}\left(x_{t}, \theta_{0}\right)\right| \\
& \leq \sup _{\theta \in \Theta} h\left(\left\|\theta-\theta_{0}\right\|\right) T\left(x_{t}\right)+\left|\dot{f}_{i}\left(x_{t}, \theta_{0}\right)\right| \leq C .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \left|\dot{f}_{i}\left(x_{t}, \theta\right) \dot{f}_{j}\left(x_{t}, \theta\right)-\dot{f}_{i}\left(x_{t}, \theta_{0}\right) \dot{f}_{j}\left(x_{t}, \theta_{0}\right)\right| \\
\leq & \left|\dot{f}_{i}\left(x_{t}, \theta\right)\right|\left|\dot{f}_{j}\left(x_{t}, \theta\right)-\dot{f}_{j}\left(x_{t}, \theta_{0}\right)\right|+\left|\dot{f}_{j}\left(x_{t}, \theta_{0}\right)\right|\left|\dot{f}_{i}\left(x_{t}, \theta\right)-\dot{f}_{i}\left(x_{t}, \theta_{0}\right)\right| \\
\leq & C\left|\dot{f}_{j}\left(x_{t}, \theta\right)-\dot{f}_{j}\left(x_{t}, \theta_{0}\right)\right|+C_{1}\left|\dot{f}_{i}\left(x_{t}, \theta\right)-\dot{f}_{i}\left(x_{t}, \theta_{0}\right)\right| .
\end{aligned}
$$

Therefore, by recalling (33), the result (42) follows from an application of Lemma 8.1 with $\kappa_{n}^{2}=n / d_{n}$.

Proof of Lemma 8.7. Recall $\max _{1 \leq t \leq n}\left|x_{t}\right| / d_{n}=O_{P}(1)$. Without loss of generality, we assume $\max _{1 \leq t \leq n}\left|x_{t}\right| / d_{n} \leq K_{0}$ for some $K_{0}>0$. It follows from Assumption 3.4 and $d_{n} \rightarrow \infty$ that, for any $1 \leq i \leq m$ and $\theta \in \Theta$,

$$
\begin{aligned}
\left|\dot{f}_{i}\left(x_{t}, \theta\right)\right| & \leq \dot{v}_{i}\left(d_{n}\right)\left(\left|\dot{h}_{i}\left(x_{t} / d_{n}\right)\right|+o(1) T_{1 \dot{f}_{i}}\left(x_{t} / d_{n}\right)\right), \\
\left|\dot{f}_{i}\left(x_{t}, \theta\right)-\dot{f}_{i}\left(x_{t}, \theta_{0}\right)\right| & \leq A_{\dot{f}_{i}}\left(\left\|\theta-\theta_{0}\right\|\right) \dot{v}_{i}\left(d_{n}\right) T_{1 \dot{f}_{i}}\left(x_{t} / d_{n}\right)
\end{aligned}
$$

This implies that

$$
\begin{align*}
& \sup _{\theta \in \mathcal{N}_{\delta}\left(\theta_{0}\right)} \sum_{t=1}^{n}\left|\dot{f}_{i}\left(x_{t}, \theta\right) \dot{f}_{j}\left(x_{t}, \theta\right)-\dot{f}_{i}\left(x_{t}, \theta_{0}\right) \dot{f}_{j}\left(x_{t}, \theta_{0}\right)\right| \\
\leq & 2\left(A_{\dot{f}_{i}}(\delta)+A_{\dot{f}_{j}}(\delta)\right) \dot{v}_{i}\left(d_{n}\right) \dot{v}_{j}\left(d_{n}\right) \sum_{t=1}^{n}\left(\left|\dot{h}_{i}\left(x_{t} / d_{n}\right)\right|+T_{1 \dot{f}_{i}}\left(x_{t} / d_{n}\right)\right) . \tag{59}
\end{align*}
$$

(45) now follows from $A_{\dot{f}_{i}}(\delta) \rightarrow 0$ as $\delta \rightarrow 0$ and

$$
\frac{1}{n} \sum_{t=1}^{n}\left[\left|\dot{h}_{i}\left(x_{t} / d_{n}\right)\right|+T_{1 \dot{f}_{i}}\left(x_{t} / d_{n}\right)\right] \rightarrow_{D} \int_{0}^{1}\left[\left|\dot{h}_{i}(G(t))\right|+T_{1 \dot{f}_{i}}(G(t))\right] d t=O_{P}(1)
$$

due to Assumptions 3.3 (iii) and 3.4 (iii).
The proof of (46) is similar and hence the details are omitted. As for (47), by noting

$$
\left|\sum_{t=1}^{n} \ddot{f}_{i j}\left(x_{t}, \theta\right) u_{t}\right| \leq\left|\sum_{t=1}^{n} \ddot{f}_{i j}\left(x_{t}, \theta_{0}\right) u_{t}\right|+\sum_{t=1}^{n}\left|\ddot{f}_{i j}\left(x_{t}, \theta\right)-\ddot{f}_{i j}\left(x_{t}, \theta_{0}\right)\right|\left|u_{t}\right|,
$$

the result can be proved by using the similar arguments as in (31) and (32) of Lemma 8.1.

10 Proofs of Theorems 2.5, 4.1-4.3

Proof of Theorem 2.5. Let $\Theta_{0}=\left\{\left\|\theta-\theta_{0}\right\| \geq \delta\right\}$ where $\delta>0$ is a constant. By virtue of Lemma 8.9, it suffices to prove that, for any $\eta, M_{0}>0$, there exist a $n_{0}>0$ such that, for all $n>n_{0}$,

$$
\begin{equation*}
P\left(n^{-1} \inf _{\theta \in \Theta_{0}} D_{n}\left(\theta, \theta_{0}\right)>M_{0}\right)>1-\eta . \tag{60}
\end{equation*}
$$

To prove (60), first note that $\sum_{t=1}^{n} u_{t}^{2} / n \leq M_{0}$ in probability, for some $M_{0}>0$, due to Assumption 2.2 (i). This, together with Cauchy-Schwarz Inequality, yields that

$$
\begin{align*}
& n^{-1} D_{n}\left(\theta, \theta_{0}\right) \\
& \quad=\frac{1}{n} \sum_{t=1}^{n}\left(f\left(x_{t}, \theta\right)-f\left(x_{t}, \theta_{0}\right)\right)^{2}-\frac{2}{n} \sum_{t=1}^{n}\left(f\left(x_{t}, \theta\right)-f\left(x_{t}, \theta_{0}\right)\right) u_{t} \\
& \quad \geq \frac{1}{n} \sum_{t=1}^{n}\left(f\left(x_{t}, \theta\right)-f\left(x_{t}, \theta_{0}\right)\right)^{2}-\frac{2}{n}\left(\sum_{t=1}^{n}\left(f\left(x_{t}, \theta\right)-f\left(x_{t}, \theta_{0}\right)\right)^{2}\right)^{1 / 2}\left(\sum_{t=1}^{n} u_{t}^{2}\right)^{1 / 2} \\
& \quad \geq M_{n}\left(\theta, \theta_{0}\right)\left[1-\frac{2 \sqrt{M_{0}+o_{P}(1)}}{M_{n}\left(\theta, \theta_{0}\right)^{1 / 2}}\right] \tag{61}
\end{align*}
$$

where $M_{n}\left(\theta, \theta_{0}\right)=\frac{1}{n} \sum_{t=1}^{n}\left(f\left(x_{t}, \theta\right)-f\left(x_{t}, \theta_{0}\right)\right)^{2}$. Hence, for any equivalent process x_{k}^{*} of x_{k} (i.e., $x_{k}^{*}={ }_{D} x_{k}, 1 \leq k \leq n, n \geq 1$, where $={ }_{D}$ denotes equivalence in distribution), we have

$$
\begin{equation*}
P\left(n^{-1} \inf _{\theta \in \Theta_{0}} D_{n}\left(\theta, \theta_{0}\right)>M_{0}\right) \geq P\left(\inf _{\theta \in \Theta_{0}} M_{n}^{*}\left(\theta, \theta_{0}\right)\left[1-\frac{2 \sqrt{M_{0}+o_{P}(1)}}{M_{n}^{*}\left(\theta, \theta_{0}\right)^{1 / 2}}\right]>M_{0}\right) \tag{62}
\end{equation*}
$$

where $M_{n}^{*}\left(\theta, \theta_{0}\right)=\frac{1}{n} \sum_{t=1}^{n}\left(f\left(x_{t}^{*}, \theta\right)-f\left(x_{t}^{*}, \theta_{0}\right)\right)^{2}$.
Recalling $x_{[n t]} / d_{n} \rightarrow_{D} G(t)$ on $D[0,1]$ and $G(t)$ is a continuous Gaussian process, by the so-called Skorohod-Dudley-Wichura representation theorem (e.g., Shorack and Wellner, 1986, p. 49, Remark 2), we can choose an equivalent process x_{k}^{*} of x_{k} so that

$$
\begin{equation*}
\sup _{0 \leq t \leq 1}\left|x_{[n t]}^{*} / d_{n}-G(t)\right|=o_{P}(1) \tag{63}
\end{equation*}
$$

For this equivalent process x_{t}^{*}, it follows from the structure of $f(x, \theta)$ that

$$
\begin{align*}
m\left(d_{n}, \theta\right)^{2} & :=\frac{1}{n v\left(d_{n}, \theta\right)^{2}} \sum_{t=1}^{n} f\left(x_{t}^{*}, \theta\right)^{2} \\
& =\frac{1}{n} \sum_{t=1}^{n} h\left(x_{t}^{*} / d_{n}, \theta\right)^{2}+o_{P}(1) \\
& =\int_{0}^{1} h\left(x_{[n s]}^{*} / d_{n}, \theta\right)^{2} d s+o_{P}(1) \\
& \rightarrow_{P} \int_{0}^{1} h(G(s), \theta)^{2} d s=: m(\theta)^{2} \tag{64}
\end{align*}
$$

uniformly in $\theta \in \Theta$. Due to (64), the same argument as in the proof of Theorem 4.3 in PP yields that

$$
\inf _{\theta \in \Theta_{0}} M_{n}^{*}\left(\theta, \theta_{0}\right) \rightarrow \infty, \quad \text { in probability }
$$

which, together with (62), implies (60).
Proof of Theorem 4.1. We first establish the consistency result. The proof goes along the same line as in Theorem 2.1. It suffices to show that for any fixed $\pi_{0} \in \Theta \cap \mathcal{N}^{c}$,

$$
\begin{equation*}
\sup _{\theta \in \mathcal{N}_{\delta}\left(\pi_{0}\right)} \frac{d_{n}}{n} \sum_{t=1}^{n}\left|\left[f\left(x_{t}, \theta\right)-f\left(x_{t}, \pi_{0}\right)\right] u_{t}\right| \rightarrow_{P} 0 \tag{65}
\end{equation*}
$$

as $\delta \rightarrow 0$ uniformly for all large n, and

$$
\begin{equation*}
\sum_{t=1}^{n}\left(f\left(x_{t}, \pi_{0}\right)-f\left(x_{t}, \theta_{0}\right)\right) u_{t}=o_{P}\left(n / d_{n}\right) \tag{66}
\end{equation*}
$$

By (38) in Lemma 8.4 with $g_{1}(x)=|T(x)|$, (65) follows from

$$
\begin{aligned}
\sup _{\theta \in \mathcal{N}_{\delta}\left(\pi_{0}\right)} \frac{d_{n}}{n} \sum_{t=1}^{n}\left|\left[f\left(x_{t}, \theta\right)-f\left(x_{t}, \pi_{0}\right)\right] u_{t}\right| & \leq \sup _{\theta \in \mathcal{N}_{\delta}\left(\pi_{0}\right)} h\left(\left\|\theta-\pi_{0}\right\|\right) \frac{d_{n}}{n} \sum_{t=1}^{n}\left|T\left(x_{t}\right) \| u_{t}\right| \\
& \leq C \sup _{\theta \in \mathcal{N}_{\delta}\left(\pi_{0}\right)} h\left(\left\|\theta-\pi_{0}\right\|\right) O_{P}(1) \rightarrow_{P} 0,
\end{aligned}
$$

as $\delta \rightarrow 0$. Similarly, by (39) in Lemma 8.4 with $g_{1}(x)=f\left(x, \pi_{0}\right)-f\left(x, \theta_{0}\right)$, we have that

$$
\sum_{t=1}^{n}\left(f\left(x_{t}, \pi_{0}\right)-f\left(x_{t}, \theta_{0}\right)\right) u_{t}=O_{P}\left[\left(n / d_{n}\right)^{1 / 2}\right]
$$

which implies the required (66).
We next prove the convergence in distribution. As in Theorem 3.2, it suffices to verify the conditions (i)-(iii) and (iv)' of Theorem 3.1, but with

$$
D_{n}=\sqrt{n / d_{n}} \mathbf{I}, \quad Z=\Lambda^{1 / 2} \mathbf{N} L_{G}^{1 / 2}(1,0), \quad M=\Sigma L_{G}(1,0)
$$

under Assumptions 4.1.
The proofs for (i) and (ii) are exactly the same as those of Theorem 3.2. Using similar arguments as in the proof of (56), (iv)' follow from Lemma 8.4.

Finally, note that (65) and (66) still hold if we replace $f(x, \theta)$ by $\ddot{f}_{i j}(x, \theta)$ due to Assumption 3.2. By choosing $k_{n} \rightarrow \infty$ in the same way as in the proof of Theorem 3.2,
we have, for any $1 \leq i, j \leq m$,

$$
\begin{align*}
& \sup _{\theta:\left\|D_{n}\left(\theta-\theta_{0}\right)\right\| \leq k_{n}}\left|\frac{d_{n}}{n} \sum_{t=1}^{n} \ddot{f}_{i j}\left(x_{t}, \theta\right) u_{t}\right| \\
& \leq \sup _{\theta:\left\|D_{n}\left(\theta-\theta_{0}\right)\right\| \leq k_{n}}\left|\frac{d_{n}}{n} \sum_{t=1}^{n}\left[\ddot{f}_{i j}\left(x_{t}, \theta\right)-\ddot{f}_{i j}\left(x_{t}, \theta_{0}\right)\right] u_{t}\right|+\left|\frac{d_{n}}{n} \sum_{t=1}^{n} \ddot{f}_{i j}\left(x_{t}, \theta_{0}\right) u_{t}\right| \\
& =o_{P}(1) \tag{67}
\end{align*}
$$

which implies the required (iii).
Proof of Theorem 4.2. The proof goes along the same line as in Theorem 2.1 and Theorem 4.1. Write $v_{n}=v(\sqrt{n})$, It suffices to show that for any fixed $\pi_{0} \in \Theta \cap \mathcal{N}^{c}$,

$$
\begin{equation*}
\sup _{\theta \in \mathcal{N}_{\delta}\left(\pi_{0}\right)} \frac{1}{n v_{n}^{2}} \sum_{t=1}^{n}\left|\left[f\left(x_{t}, \theta\right)-f\left(x_{t}, \pi_{0}\right)\right] u_{t}\right| \rightarrow_{P} 0 \tag{68}
\end{equation*}
$$

as $\delta \rightarrow 0$ uniformly for all large n, and

$$
\begin{equation*}
\sum_{t=1}^{n}\left(f\left(x_{t}, \pi_{0}\right)-f\left(x_{t}, \theta_{0}\right)\right) u_{t}=o_{P}\left(n v_{n}^{2}\right) \tag{69}
\end{equation*}
$$

The result (69) follows from (41) of Lemma 8.5. To see (68), by Cauchy-Schwarz inequality then weak law of large number, we have

$$
\begin{aligned}
& \sup _{\theta \in \mathcal{N}_{\delta}\left(\pi_{0}\right)} \frac{1}{n v_{n}^{2}} \sum_{t=1}^{n}\left|\left[f\left(x_{t}, \theta\right)-f\left(x_{t}, \pi_{0}\right)\right] u_{t}\right| \\
& \leq \sup _{\theta \in \mathcal{N}_{\delta}\left(\pi_{0}\right)} \frac{1}{n v_{n}^{2}}\left(\sum_{t=1}^{n}\left[f\left(x_{t}, \theta\right)-f\left(x_{t}, \pi_{0}\right)\right]^{2}\right)^{1 / 2}\left(\sum_{t=1}^{n} u_{t}^{2}\right)^{1 / 2} \\
& \leq C \sup _{\theta \in \mathcal{N}_{\delta}\left(\pi_{0}\right)} A_{f}\left(\left\|\theta-\pi_{0}\right\|\right)\left(\frac{1}{n} \sum_{t=1}^{n} T_{1 f}^{2}\left(\frac{x_{t}}{\sqrt{n}}\right)\right)^{1 / 2} \rightarrow_{P} 0,
\end{aligned}
$$

as $\delta \rightarrow 0$, as required.
Proof of Theorem 4.3. Write $v_{n}=v(\sqrt{n}), \dot{v}_{i n}=\dot{v}_{i}(\sqrt{n}), \ddot{v}_{i j n}=\ddot{v}_{i j}(\sqrt{n})$, for $1 \leq i, j \leq m$. It suffices to verify the conditions (i)-(iii) and (iv)' of Theorem 3.1 with

$$
\begin{align*}
& D_{n}=\operatorname{diag}\left(\sqrt{n} \dot{v}_{1 n}, \ldots, \sqrt{n} \dot{v}_{m n}\right), \quad M=\int_{0}^{1} \Psi(t) \Psi(t)^{\prime} d t \\
& Z=\sigma_{\xi u} \int_{0}^{1} \dot{\Psi}(t) d t+\int_{0}^{1} \Psi(t) d U(t) \tag{70}
\end{align*}
$$

under Assumptions 4.1.
The proofs for (i) and (ii) are exactly the same as those in Theorem 3.4. Note that $\sup _{1 \leq i, j \leq m}\left|\frac{v_{n} \ddot{v}_{i j n}}{\dot{v}_{i n} \dot{v}_{j n}}\right|<\infty$. It follows that, by choosing $k_{n} \rightarrow \infty$ in the same way as in the
proof of Theorem 3.2, we have, for any $1 \leq i, j \leq m$,

$$
\begin{aligned}
& \sup _{\theta:\left\|D_{n}\left(\theta-\theta_{0}\right)\right\| \leq k_{n}}\left|\frac{1}{n \dot{v}_{i n} \dot{v}_{j n}} \sum_{t=1}^{n} \ddot{f}_{i j}\left(x_{t}, \theta\right) u_{t}\right| \\
& \leq \sup _{\theta:\left\|D_{n}\left(\theta-\theta_{0}\right)\right\| \leq k_{n}}\left|\frac{C}{n \ddot{v}_{i j n}} \sum_{t=1}^{n}\left[\ddot{f}_{i j}\left(x_{t}, \theta\right)-\ddot{f}_{i j}\left(x_{t}, \theta_{0}\right)\right] u_{t}\right|+\left|\frac{C}{n \ddot{v}_{i j n}} \sum_{t=1}^{n} \ddot{f}_{i j}\left(x_{t}, \theta_{0}\right) u_{t}\right| \\
& =o_{P}(1),
\end{aligned}
$$

where the convergence of first term follows from (68) with $\pi_{0}=\theta_{0}$ and f replaced by \ddot{f}, and that of second term follows from Lemma 8.5. This yields the required (iii).

Finally, (iv)' follows from Lemma 8.5 with

$$
g_{1}(x)=\alpha_{3}^{\prime} \dot{h}\left(x, \theta_{0}\right) \quad \text { and } \quad g_{2}(x)=\alpha_{1}^{\prime} \dot{h}\left(x, \theta_{0}\right) \dot{h}\left(x, \theta_{0}\right)^{\prime} \alpha_{2}
$$

11 A Unit Root Test

In this section, we perform a unit root test to check the stationarity of the time series in our example. There exist many works in macro-economics that demonstrate that GDP and CO_{2} are nonstationary. See, e.g., Wagner (2008). We implement a simple unit root test to verify the nonstationarity of the data we adopt in Section ??. Denote y_{t} be the time series we want to test for unit root. It can either be the logarithm of GDP or logarithm of CO_{2}. For each country, the series is modeled in the following way:

$$
y_{t}=\alpha y_{t-1}+\varepsilon_{t}, \quad t=1, \ldots, n
$$

where ε_{t} is a stationary error process. We are interested in testing the hypothesis: H_{0} : $\alpha=1$ versus $H_{1}: \alpha<1$. To achieve this, Dickey-Fuller test is performed on the logarithm of GDP and CO_{2} for each country, by using the adfTest() function in the fUnitRoots package of the statistical software R. The critical value for a sample size of 58 is -1.947 . Table 1 below presents the observed values of the test statistics for the logarithm of GPD and CO_{2} for all countries. All observed values are greater than the critical value. Therefore, we do not reject the hypothesis that there is a unit root in the model.

12 Additional Tables and Figures

Table 1: Dickey-Fuller Test Results

Countries	DF for $\log (\mathrm{GDP})$	DF for $\log \left(\mathrm{CO}_{2}\right)$
AUS	4.9129	2.0222
AUT	3.6022	0.7622
BEL	4.8375	-0.2559
CAN	3.8486	0.9752
DEN	5.0166	0.2707
FIN	3.1312	-0.0394
FRA	3.0434	-0.1289
HOL	4.1681	0.8059
IRE	3.2837	1.188
ITA	2.5805	-1.1359
JAP	1.671	-0.3775
NOR	4.3584	1.3698
SWI	3.1305	-0.5665
USA	4.6961	0.2954

Table 2: Means and standard errors of $\hat{\theta}_{n}$ and $\hat{\sigma}_{n}^{2}$ with $f(x, \theta)=\exp \{-\theta|x|\}$.

Table 3: Means and standard errors of $\hat{\theta}_{n}=\left(\hat{\alpha}_{n}, \hat{\beta}_{1 n}, \hat{\beta}_{2 n}\right)$ and $\hat{\sigma}_{n}^{2}$ with $f\left(x, \alpha, \beta_{1}, \beta_{2}\right)=$ $\alpha+\beta_{1} x+\beta_{2} x^{2}$.

	n	$\rho=0$		$\rho=0.5$		$\rho=1$	
		Mean	Std. error	Mean	Std. error	Mean	Std. error
Scenario S1							
$\hat{\alpha}_{n}$	200	-19.99444	(0.52156)	-19.99776	(0.52417)	-20.00214	(0.53271)
	500	-20.00171	(0.33352)	-20.00164	(0.33260)	-20.00333	(0.33106)
$\hat{\beta}_{1 n}$	200	9.99995	(0.04303)	10.01348	(0.04427)	10.02649	(0.04441)
	500	9.99961	(0.01713)	10.00537	(0.01741)	10.01056	(0.01790)
$\hat{\beta}_{2 n}$	200	0.09999	(0.00137)	0.09999	(0.00133)	0.10000	(0.00115)
	500	0.10000	(0.00034)	0.10001	(0.00034)	0.10000	(0.00029)
$\hat{\sigma}_{n}^{2}$	200	8.87340	(0.89132)	8.83901	(0.89370)	8.79399	(0.87995)
	500	8.94769	(0.56790)	8.94198	(0.57076)	8.91645	(0.56403)
Scenario S2							
$\hat{\alpha}_{n}$	200	-19.99538	(0.54080)	-19.99210	(0.54464)	-20.00177	(0.53812)
	500	-20.00287	(0.33868)	-20.00412	(0.33885)	-20.00142	(0.34983)
$\hat{\beta}_{1 n}$	200	10.00054	(0.04456)	10.01464	(0.04606)	10.02658	(0.04718)
	500	10.00025	(0.01747)	10.00548	(0.01829)	10.01142	(0.01838)
$\hat{\beta}_{2 n}$	200	0.10001	(0.00145)	0.10000	(0.00136)	0.10000	(0.00118)
	500	0.09999	(0.00037)	0.10000	(0.00034)	0.10000	(0.00029)
$\hat{\sigma}_{n}^{2}$	200	8.85807	(0.89311)	8.83928	(0.89470)	8.79743	(0.89541)
	500	8.95826	(0.56801)	8.94974	(0.56812)	8.92162	(0.56690)
Scenario S3							
$\hat{\alpha}_{n}$	200	-19.99784	(0.62713)	-20.00389	(0.60584)	-19.99447	(0.62031)
	500	-19.99644	(0.39496)	-19.99572	(0.38897)	-20.00707	(0.40941)
$\hat{\beta}_{1 n}$	200	9.99962	(0.04949)	10.01477	(0.05129)	10.03178	(0.05180)
	500	10.00011	(0.02033)	10.00647	(0.02073)	10.01282	(0.02142)
$\hat{\beta}_{2 n}$	200	0.10002	(0.00165)	0.09998	(0.00156)	0.10000	(0.00131)
	500	0.10000	(0.00040)	0.10000	(0.00039)	0.10000	(0.00033)
$\hat{\sigma}_{n}^{2}$	200	8.96801	(0.91677)	8.93070	(0.91952)	8.86505	(0.93340)
	500	9.08728	(0.58567)	9.07935	(0.58298)	9.03815	(0.58235)

Figure 6: Density estimate of $\hat{\theta}_{n}$.

Figure 7: Density estimate of $\hat{\alpha}_{n}$.

Figure 8: Density estimate of $\hat{\beta}_{1 n}$.

Figure 9: Density estimate of $\hat{\beta}_{2 n}$.

Figure 10: Density estimate of $\hat{\theta}_{n} t$-ratios.

Figure 11: Density estimate of $\hat{\alpha}_{n} t$-ratios.

Figure 12: Density estimate of $\hat{\beta}_{1 n} t$-ratios.

Figure 13: Density estimate of $\hat{\beta}_{2 n} t$-ratios.

Figure 14: Estimates and 95% Confidence Intervals of $\hat{\alpha}_{n}$.

Table 4: Confidence Intervals (95% confidence) of $\hat{\alpha}_{n}$.

Country	$\hat{\alpha}_{n}$	Lower	Upper
AUS	-57.387	-58.005	-56.769
AUT	-25.352	-26.414	-24.290
BEL	-41.632	-43.144	-40.121
CAN	-44.442	-45.615	-43.268
DEN	-113.670	-115.375	-111.965
FIN	-91.869	-94.019	-89.720
FRA	-76.449	-78.162	-74.735
HOL	-71.892	-73.439	-70.344
IRE	-33.058	-34.265	-31.851
ITA	-71.375	-72.604	-70.146
JAP	-27.674	-29.293	-26.056
NOR	-58.519	-60.442	-56.597
USA	-45.950	-46.945	-44.954

Table 5: Confidence Intervals (95% confidence) of $\hat{\beta}_{1 n}$.

Country	$\hat{\beta}_{1 n}$	Lower	Upper
AUS	11.520	10.810	12.230
AUT	5.075	4.193	5.958
BEL	9.116	7.922	10.310
CAN	9.217	8.114	10.321
DEN	23.724	22.242	25.205
FIN	18.967	17.225	20.709
FRA	16.443	15.000	17.886
HOL	14.921	13.579	16.262
IRE	6.816	6.062	7.570
ITA	14.502	13.647	15.356
JAP	5.447	4.614	6.279
NOR	11.802	10.555	13.050
USA	9.536	8.449	10.623

Table 6: Confidence Intervals (95% confidence) of $\hat{\beta}_{2 n}$.

Country	$\hat{\beta}_{2 n}$	Lower	Upper
AUS	-0.562	-0.730	-0.394
AUT	-0.246	-0.389	-0.102
BEL	-0.485	-0.721	-0.248
CAN	-0.462	-0.732	-0.192
DEN	-1.226	-1.586	-0.865
FIN	-0.967	-1.256	-0.678
FRA	-0.875	-1.190	-0.559
HOL	-0.762	-1.093	-0.432
IRE	-0.341	-0.443	-0.238
ITA	-0.729	-0.882	-0.576
JAP	-0.258	-0.365	-0.151
NOR	-0.586	-0.822	-0.351
USA	-0.477	-0.768	-0.186

