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Abstract

Given a simple Lie algebra g and an element µ ∈ g∗, the corresponding shift

of argument subalgebra of S(g) is Poisson commutative. In the case where µ is

regular, this subalgebra is known to admit a quantization, that is, it can be lifted

to a commutative subalgebra of U(g). We show that if g is of type A, then this

property extends to arbitrary µ, thus proving a conjecture of Feigin, Frenkel and

Toledano Laredo. The proof relies on an explicit construction of generators of the

center of the affine vertex algebra at the critical level.
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1 Introduction

Shift of argument subalgebras. Let g be a simple Lie algebra over C with basis

elements Y1, . . . , Yl and the corresponding structure constants ckij. The symmetric algebra

S(g) can be equipped with the Lie–Poisson bracket defined on the elements of the Lie

algebra by

{Yi, Yj} =
l∑

k=1

ckij Yk. (1.1)

Let P = P (Y1, . . . , Yl) be an element of S(g) of a certain degree d. Fix any element

µ ∈ g∗ and let z be a variable. Make the substitution Yi 7→ Yi + z µ(Yi) and expand as a

polynomial in z,

P
(
Y1 + z µ(Y1), . . . , Yl + z µ(Yl)

)
= P (0) + P (1)z + · · ·+ P (d)zd

to define elements P (i) ∈ S(g) associated with P and µ. Denote by Aµ the subalgebra

of S(g) generated by all elements P (i) associated with all g-invariants P ∈ S(g)g. The

subalgebraAµ of S(g) is known as theMishchenko–Fomenko subalgebra or shift of argument

subalgebra. Its key property observed in [12] states that Aµ is Poisson commutative; that

is, {R,S} = 0 for any elements R, S ∈ Aµ.

We will identify g∗ with g via a symmetric invariant bilinear form (see (1.2) below)

and let n denote the rank of g. An element µ ∈ g∗ ∼= g is called regular, if the centralizer

gµ of µ in g has minimal possible dimension; this minimal dimension coincides with n.

The subalgebra S(g)g admits a family P1, . . . , Pn of algebraically independent generators of

respective degrees d1, . . . , dn. If the element µ ∈ g∗ is regular, then Aµ has the properties:

i) the subalgebra Aµ of S(g) is maximal Poisson commutative;

ii) the elements P
(i)
k with k = 1, . . . , n and i = 0, 1, . . . , dk − 1, are algebraically inde-

pendent generators of Aµ.

Property i) is a theorem of Panyushev and Yakimova [16]; the case of regular semisimple

µ is due to Tarasov [20]. Property ii) is due to Bolsinov [1]; the regular semisimple case

goes back to the original paper [12]. Another proof of ii) was given in [8].

Vinberg’s problem. The universal enveloping algebra U(g) is equipped with a canonical

filtration and the associated graded algebra grU(g) is isomorphic to S(g). Given that the

subalgebraAµ of S(g) is Poisson commutative, one could look for a commutative subalgebra

Aµ of U(g) which “quantizes” Aµ in the sense that grAµ = Aµ. This quantization problem

was raised by Vinberg in [21], where, in particular, some commuting families of elements of

U(g) were produced. A positive solution of Vinberg’s problem was given by Rybnikov [17]
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(for regular semisimple µ) and Feigin, Frenkel and Toledano Laredo [8] (for any regular

µ) with the use of the center of the associated affine vertex algebra at the critical level

(also known as the Feigin–Frenkel center). To briefly outline the solution, equip g with a

standard symmetric invariant bilinear form ⟨ , ⟩ defined as the normalized Killing form

⟨X,Y ⟩ = 1

2h∨
tr
(
ad X ad Y

)
, (1.2)

where h∨ is the dual Coxeter number for g. The corresponding affine Kac–Moody algebra

ĝ is the central extension

ĝ = g [t, t−1]⊕ CK, (1.3)

where g[t, t−1] is the Lie algebra of Laurent polynomials in t with coefficients in g. For any

r ∈ Z and X ∈ g we set X[r] = X tr. The commutation relations of the Lie algebra ĝ have

the form [
X[r], Y [s]

]
= [X, Y ][r + s] + r δr,−s⟨X, Y ⟩K, X, Y ∈ g,

and the element K is central in ĝ. For any κ ∈ C denote by Uκ(ĝ) the quotient of U(ĝ) by

the ideal generated by K − κ. The value κ = −h∨ corresponds to the critical level . Let I

denote the left ideal of U−h∨(ĝ) generated by g[t] and let Norm I be its normalizer,

Norm I = {v ∈ U−h∨(ĝ) | Iv ⊆ I}.

The normalizer is a subalgebra of U−h∨(ĝ), and I is a two-sided ideal of Norm I. The

Feigin–Frenkel center z(ĝ) is the associative algebra defined as the quotient

z(ĝ) = Norm I/I. (1.4)

By the Poincaré–Birkhoff–Witt theorem, the quotient of the algebra U−h∨(ĝ) by the left

ideal I is isomorphic to the universal enveloping algebra U
(
t−1g[t−1]

)
, as a vector space.

Hence, we have a vector space embedding

z(ĝ) ↪→ U
(
t−1g[t−1]

)
.

Since U
(
t−1g[t−1]

)
is a subalgebra of U−h∨(ĝ), the embedding is an algebra homomorphism

so that the Feigin–Frenkel center z(ĝ) can be regarded as a subalgebra of U
(
t−1g[t−1]

)
. In

fact, this subalgebra is commutative which is not immediate from the definition, but can

be seen by identifying z(ĝ) with the center of the affine vertex algebra at the critical level.

Furthermore, by a theorem of Feigin and Frenkel [7] (see [10] for a detailed exposition),

there exist elements S1, . . . , Sn ∈ z(ĝ) such that

z(ĝ) = C [T rSl | l = 1, . . . , n, r > 0], (1.5)
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where T is the derivation of the algebra U
(
t−1g[t−1]

)
which is determined by the property

that its commutator with the operator of left multiplication by X[r] is found by[
T,X[r]

]
= −rX[r − 1], X ∈ g, r < 0.

We will call such family S1, . . . , Sn a complete set of Segal–Sugawara vectors for g. Another

derivation D of the algebra U
(
t−1g[t−1]

)
is determined by the property[

D,X[r]
]
= −rX[r], X ∈ g, r < 0;

and D defines a grading on U
(
t−1g[t−1]

)
.

Given any element µ ∈ g∗ and a nonzero z ∈ C , the mapping

ϱµ,z : U
(
t−1g[t−1]

)
→ U(g), X[r] 7→ Xzr + δr,−1 µ(X), X ∈ g, (1.6)

defines an algebra homomorphism. The image of z(ĝ) under ϱµ,z is a commutative subal-

gebra of U(g). It does not depend on z and is denoted by Aµ. If S ∈ U
(
t−1g[t−1]

)
is an

element of degree d with respect to the grading defined by D, then regarding ϱµ,z(S) as a

polynomial in z−1, define the elements S(i) ∈ U(g) by the expansion

ϱµ,z(S) = S(0)z−d + · · ·+ S(d−1)z−1 + S(d). (1.7)

If µ ∈ g∗ is regular then the following holds:

i) the subalgebra Aµ of U(g) is maximal commutative;

ii) if S1, . . . , Sn ∈ z(ĝ) are elements of the respective degrees d1, . . . , dn satisfying (1.5),

then the elements S
(i)
k with k = 1, . . . , n and i = 0, 1, . . . , dk − 1 are algebraically

independent generators of Aµ;

iii) grAµ = Aµ.

This is derived with the use of the respective properties of the algebra Aµ; see [8] for

proofs. The subalgebra Aµ was further studied in [9] where its spectra in finite-dimensional

irreducible representations of g were described.

Note that both algebras Aµ and Aµ are defined for arbitrary elements µ ∈ g∗. Given

that the property iii) holds for all regular µ, it was conjectured in [8, Conjecture 1], that

this property is valid for all µ. As a consequence of our main result, we obtain a proof of

this conjecture for type A; see the Main Theorem below. In particular, this gives another

proof of iii) for regular µ. More precisely, we will work with the reductive Lie algebra

g = gln and consider the respective subalgebras Aµ ⊂ S(gln) and Aµ ⊂ U(gln). The proof

will be based on the use of explicit formulas for generators of Aµ.
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Generators of Aµ. For the Lie algebras g of type A, a few families of explicit generators

S1, . . . , Sn of z(ĝ), and hence generators of the subalgebra Aµ, were produced by Chervov

and Talalaev [6] by extending Talalaev’s work [18]; see also [4] and [14] where more direct

proofs were given. In types B, C and D such explicit generators were constructed in

[13]. Note also earlier work of Nazarov and Olshanski [15], where maximal commutative

subalgebras of U(g) were produced with the use of Yangians; they quantize the Poisson

algebras Aµ in all classical types for the case of regular semisimple µ. In a different form,

a quantization of Aµ in type A was provided by Tarasov [19] via a symmetrization map.

We will work with a particular family of generators of z(ĝln) which we recall below in

Sec. 2. They allow us to define the associated family of generators ϕ
(k)
m with m = 1, . . . , n

and k = 0, . . . ,m − 1 of the subalgebra Aµ ⊂ U(gln); see (4.2) below. There generators

are algebraically independent if µ is regular.

Our main result provides a way to choose an algebraically independent family of gen-

erators ϕ
(k)
m of Aµ for an arbitrary element µ. To describe this subset, we will identify gl∗n

with gln via a symmetric bilinear form and regard µ as an n×n matrix. Suppose that the

distinct eigenvalues of µ are λ1, . . . , λr and the Jordan canonical form of µ is the direct sum

of the respective Jordan blocks J
α
(i)
j
(λi) of sizes α

(i)
1 > α

(i)
2 > · · · > α

(i)
si > 1. We let α(i)

denote the corresponding Young diagram whose j-th row is α
(i)
j and let |α(i)| be the number

of boxes of α(i). Given these data, introduce another Young diagram γ = (γ1, γ2, . . . ) by

setting

γl =
r∑

i=1

∑
j>l+1

α
(i)
j , (1.8)

so that γl is the total number of boxes which are strictly below the l-th rows in all diagrams

α(i). Furthermore, associate the elements of the family ϕ
(k)
m with boxes of the diagram

Γ = (n, n− 1, . . . , 1) so that the (i, j) box of Γ corresponds to ϕ
(n−i−j+1)
n−j+1 , as illustrated:

Γ =

ϕ
(n−1)
n ϕ

(n−2)
n−1 . . . ϕ

(1)
2 ϕ

(0)
1

ϕ
(n−2)
n ϕ

(n−3)
n−1 . . . ϕ

(0)
2

. . . . . . . . .

ϕ
(1)
n ϕ

(0)
n−1

ϕ
(0)
n

(1.9)

Note that the diagram γ is contained in Γ. We can now state our main theorem, where µ

is an arbitrary element of gln and Γ/γ is the associated skew diagram.

Main Theorem. The elements ϕ
(k)
m corresponding to the boxes of the skew diagram Γ/γ

are algebraically independent generators of the subalgebra Aµ. Moreover, the subalgebra Aµ

is a quantization of Aµ so that grAµ = Aµ.
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By considering some other complete sets of Segal–Sugawara vectors, we also show that

the first part of the Main Theorem remains valid if the elements ϕ
(k)
m are replaced with

those of other families; see Corollaries 4.5 and 4.6 below.

Example 1.1. Take n = 6 and let µ be a nilpotent matrix with the Jordan blocks of sizes

(2, 2, 1, 1). Then γ = (4, 2, 1) and the skew diagram Γ/γ is

so that the algebraically independent generators of Aµ are those corresponding to the boxes

of Γ, excluding ϕ
(2)
3 , ϕ

(3)
4 , ϕ

(3)
5 , ϕ

(4)
5 , ϕ

(3)
6 , ϕ

(4)
6 and ϕ

(5)
6 .

Note also two extreme cases. If µ is regular, then all Jordan blocks correspond to

distinct eigenvalues so that each α(i) is a singe row diagram. Therefore, γ = ∅, so that all

generators ϕ
(k)
m associated with the boxes of Γ are algebraically independent. On the other

hand, for scalar matrices µ we have γ = (n− 1, n− 2, . . . , 1). In this case, Aµ is generated

by ϕ
(0)
1 , . . . , ϕ

(0)
n and it coincides with the center of U(gln).

Our proofs rely on Bolsinov’s completeness criterion [1, Theorem 3.2] which applies to

the shift of argument subalgebras associated with an arbitrary Lie algebra g. The required

condition for reductive Lie algebras is the equality

ind g = ind gµ (1.10)

of the indices of g and the centralizer gµ of µ in g, where the index of an arbitrary Lie algebra

g is the minimal dimension of the stabilizers gx, x ∈ g∗, for the coadjoint representation.

In the case g = gln and arbitrary µ ∈ g this equality was claimed to be verified by Bolsinov

[2, Sec. 3] (and was suggested to be extendable to arbitrary semisimple Lie algebras) and

by Elashvili (private communication), but details were not published. The first published

proof is due to Yakimova [22], which extends to all classical Lie algebras. The equality

(1.10) is widely referred to as the Elashvili conjecture, but should rather be called the

Bolsinov–Elashvili conjecture1; see e.g. [3] for its proof covering all simple Lie algebras and

more references.

We are grateful to Alexey Bolsinov, Alexander Elashvili, Leonid Rybnikov and Alexan-

der Veselov for useful discussions. The first author was supported in part by the CNPq

grant (301320/2013-6) and by the Fapesp grant (2010/50347-9). This work was completed

during the second author’s visit to the University of São Paulo. He would like to thank

the Department of Mathematics for the warm hospitality.

1A. Elashvili kindly informed us that the conjectural equality had emerged from A. Bolsinov’s questions

to him and so it should also be attributed to the author of [1].
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2 Generators of z(ĝln)

For i, j ∈ {1, . . . , n} we will denote by Eij the standard basis elements of gln. We extend

the form (1.2) to the invariant symmetric bilinear form on gln which is given by

⟨X, Y ⟩ = tr(XY )− 1

n
trX trY, X, Y ∈ gln,

where X and Y are regarded as n×n matrices. Note that the kernel of the form is spanned

by the element E11 + · · ·+ Enn, and its restriction to the subalgebra sln is given by

⟨X, Y ⟩ = tr(XY ), X, Y ∈ sln.

The affine Kac–Moody algebra ĝln = gln[t, t
−1]⊕ CK has the commutation relations[

Eij[r], Ekl[s ]
]
= δkj Ei l[r + s ]− δi lEkj[r + s ] + rδr,−sK

(
δkj δi l −

δij δkl
n

)
, (2.1)

and the element K is central. The critical level −n coincides with the negative of the dual

Coxeter number for sln. We will work with the extended Lie algebra ĝln ⊕ Cτ where the

additional element τ satisfies the commutation relations[
τ,X[r]

]
= −r X[r − 1],

[
τ,K

]
= 0. (2.2)

For any r ∈ Z combine the elements Eij[r] into the matrix E[r] so that

E[r] =
n∑

i,j=1

eij ⊗ Eij[r] ∈ EndCn ⊗ U, (2.3)

where the eij are the standard matrix units and U stands for the universal enveloping

algebra of ĝln ⊕ Cτ . For each a ∈ {1, . . . ,m} introduce the element E[r]a of the algebra

EndCn ⊗ . . .⊗ EndCn︸ ︷︷ ︸
m

⊗ U (2.4)

by

E[r]a =
n∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a) ⊗ Eij[r]. (2.5)

We let H(m) and A(m) denote the respective images of the symmetrizer h(m) and anti-

symmetrizer a(m) in the group algebra for the symmetric group Sm under its natural

action on (Cn)⊗m. The elements h(m) and a(m) are the idempotents in the group algebra

C [Sm] defined by

h(m) =
1

m!

∑
s∈Sm

s and a(m) =
1

m!

∑
s∈Sm

sgn s · s.
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We will identify H(m) and A(m) with the respective elements H(m) ⊗ 1 and A(m) ⊗ 1 of the

algebra (2.4). Define the elements ϕma, ψma, θma ∈ U
(
t−1gln[t

−1]
)
by the expansions

tr1,...,mA
(m)

(
τ + E[−1]1

)
. . .

(
τ + E[−1]m

)
= ϕm0 τ

m + ϕm1 τ
m−1 + · · ·+ ϕmm, (2.6)

tr1,...,mH
(m)

(
τ + E[−1]1

)
. . .

(
τ + E[−1]m

)
= ψm0 τ

m + ψm1 τ
m−1 + · · ·+ ψmm, (2.7)

where the traces are taken with respect to all m copies of EndCn in (2.4), and

tr
(
τ + E[−1]

)m
= θm0 τ

m + θm1 τ
m−1 + · · ·+ θmm. (2.8)

Expressions like τ + E[−1] are understood as matrices, where τ is regarded as the scalar

matrix τ 1. Furthermore, introduce the column-determinant of the matrix τ + E[−1] by

cdet
(
τ + E[−1]

)
=

∑
σ∈Sn

sgn σ ·
(
τ + E[−1]

)
σ(1)1

. . .
(
τ + E[−1]

)
σ(n)n

(2.9)

and expand it as a polynomial in τ ,

cdet
(
τ + E[−1]

)
= τn + ϕ1 τ

n−1 + · · ·+ ϕn, ϕm ∈ U
(
t−1gln[t

−1]
)
. (2.10)

We have the expansion of the noncommutative characteristic polynomial,

cdet
(
u+ τ + E[−1]

)
=

n∑
m=0

un−m tr1,...,mA
(m)

(
τ + E[−1]1

)
. . .

(
τ + E[−1]m

)
, (2.11)

where u is a variable. This implies the relations

ϕma =

(
n− a

m− a

)
ϕa, 0 6 a 6 m 6 n. (2.12)

In particular, ϕmm = ϕm for m = 1, . . . , n.

Theorem 2.1. All elements ϕm, ψma and θma belong to the Feigin–Frenkel center z(ĝln).

Moreover, each of the families

ϕ1, . . . , ϕn, ψ11, . . . , ψnn and θ11, . . . , θnn

is a complete set of Segal–Sugawara vectors for gln.

This theorem goes back to [6], where the elements ϕm were first discovered (in a slightly

different form). A direct proof of the theorem was given in [4]. The elements ψma are related

to ϕma through the quantum MacMahon Master Theorem of [11], while a relationship

between the ϕma and θma is provided by a Newton-type identity given in [5, Theorem 15].

Note that super-versions of these relations between the families of Segal–Sugawara vectors

for the Lie superalgebra glm|n were given in the paper [14], which also provides simpler

arguments in the purely even case.
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3 Generators of Aµ

In accordance with the results which we recalled in the Introduction, the application of

the homomorphism (1.6) to elements of z(ĝln) provided by Theorem 2.1 yields the corre-

sponding families of elements of the subalgebra Aµ ⊂ U(gln) through the expansion (1.7).

To give explicit formulas, we will use the tensor product algebra (2.4), where U will now

denote the algebra of differential operators whose elements are finite sums of the form∑
k,l>0

ukl z
−k∂ l

z , ukl ∈ U(gln).

Note that ∂z emerges here as the image of the element −τ under the extension of the

homomorphism (1.6). As in (2.3), we set

E =
n∑

i,j=1

eij ⊗ Eij ∈ EndCn ⊗ U(gln),

and extend the notation (2.5) to the matrices E, µ and M = −∂z + µ+ Ez−1. Assuming

that µ ∈ gln is arbitrary, introduce the polynomials ϕma(z), ψma(z) and θma(z) in z−1

(depending on µ) with coefficients in U(gln) by the expansions

tr1,...,mA
(m)M1 . . .Mm = ϕm0(z) ∂

m
z + ϕm1(z) ∂

m−1
z + · · ·+ ϕmm(z),

tr1,...,mH
(m)M1 . . .Mm = ψm0(z) ∂

m
z + ψm1(z) ∂

m−1
z + · · ·+ ψmm(z),

and

trMm = θm0(z) ∂
m
z + θm1(z) ∂

m−1
z + · · ·+ θmm(z).

Furthermore, following (2.10) define the polynomials ϕa(z) by expanding the column-

determinant

cdetM = ϕ0(z) ∂
n
z + ϕ1(z) ∂

n−1
z + · · ·+ ϕn(z). (3.1)

By (2.12) we have

ϕma(z) =

(
n− a

m− a

)
ϕa(z), 0 6 a 6 m 6 n,

and so ϕmm(z) = ϕm(z) for all m. Introduce the coefficients of polynomials by

ϕm(z) = ϕ (0)
m z−m + · · ·+ ϕ (m−1)

m z−1 + ϕ (m)
m ,

ψmm(z) = ψ (0)
mmz

−m + · · ·+ ψ (m−1)
mm z−1 + ψ (m)

mm,

and

θmm(z) = θ (0)mmz
−m + · · ·+ θ (m−1)

mm z−1 + θ (m)
mm.

By Theorem 2.1 and the general results of [8] and [17] we get the following.
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Theorem 3.1. Given any µ ∈ gln, all coefficients of the polynomials ϕm(z), ψma(z) and

θma(z) belong to the commutative subalgebra Aµ of U(gln). Moreover, the elements of each

of the families

ϕ (k)
m , ψ (k)

mm and θ (k)mm

with m = 1, . . . , n and k = 0, 1, . . . ,m−1, are generators of the algebra Aµ. If µ is regular,

then each of these families is algebraically independent.

Example 3.2. Using the family θ
(k)
mm we get the following algebraically independent gener-

ators of the algebra Aµ for regular µ:

for gl2 : trE, trµE, trE2

for gl3 : trE, trµE, trµ2E, trE2, trµE2, trE3

for gl4 : trE, trµE, trµ2E, trµ3E, trE2, trµE2,

2 trµ2E2 + tr (µE)2, trE3, trµE3, trE4.

4 Proof of the Main Theorem

Note that M = −∂z + µ+ Ez−1 is a Manin matrix and therefore the polynomials ϕma(z)

and ψma(z) admit expressions in terms of noncommutative minors and permanents. In

more detail, given two subsets B = {b1, . . . , bk} and C = {c1, . . . , ck} of {1, . . . , n} we will

consider the corresponding column-minor

MB
C =

∑
σ∈Sk

sgnσ ·Mbσ(1)c1 . . .Mbσ(k)ck .

By [5, Proposition 18] (see also [14, Proposition 2.1]) we have

A(m)M1 . . .Mm = A(m)M1 . . .MmA
(m),

which implies

tr1,...,mA
(m)M1 . . .Mm =

∑
I, |I|=m

M I
I , (4.1)

summed over the subsets I = {i1, . . . , im} with i1 < · · · < im. By Theorem 3.1, the algebra

Aµ is generated by the coefficients ϕ
(k)
m of the constant term of the differential operator,

ϕ (0)
m z−m + · · ·+ ϕ (m−1)

m z−1 + ϕ (m)
m =

∑
I, |I|=m

M I
I 1,

assuming that ∂z 1 = 0. This implies the formula

ϕ(k)
m = zm−k

∑
I, |I|=m

∑
B,C⊂I

|B|=|C|=k

sgn σ · µB
C

[
−∂z + Ez−1

]I\B
I\C 1, (4.2)
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where σ denotes the permutation of the set I given by

σ =

(
B, I \B
C, I \ C

)
=

(
b1, . . . , bk, i1, . . . , b̂1, . . . , b̂k, . . . , im
c1, . . . , ck, i1, . . . , ĉ1, . . . , ĉk, . . . , im

)
,

and we assume that b1 < · · · < bk and c1 < · · · < ck for the respective elements of the

subsets B and C in I.

For each l = 1, . . . , n introduce the polynomial in a variable t with coefficients in Aµ

by

Φl(t, µ) = ϕ
(0)
l (µ)tn−l + ϕ

(1)
l+1(µ)t

n−l−1 + · · ·+ ϕ(n−l)
n (µ), (4.3)

where the elements ϕ
(k)
m = ϕ

(k)
m (µ) are defined in (4.2) and we indicated dependence of µ.

The coefficients of Φl(t, µ) are the elements of the l-th row of the diagram Γ; see (1.9).

Lemma 4.1. For any a ∈ C we have the relation

Φl(t, µ+ a1) = Φl(t+ a, µ).

Proof. We have

tr1,...,mA
(m)(a+M1) . . . (a+Mm) =

m∑
p=0

ap
∑

i1<···<im−p

tr1,...,mA
(m)Mi1 . . .Mim−p .

Furthermore, A(m) = sgn p · A(m)P for any p ∈ Sm, where P denotes the image of p in

the algebra (2.4) under the action of Sm. Hence, applying conjugations by appropriate

elements P and using the cyclic property of trace, we can write the expression as

m∑
p=0

(
m

p

)
ap tr1,...,mA

(m)M1 . . .Mm−p.

The partial trace of the anti-symmetrizer over the m-th copy of EndCn is found by

trmA
(m) =

n−m+ 1

m
A(m−1) (4.4)

which implies

trm−p+1,...,mA
(m) =

(n−m+ p)! (m− p)!

(n−m)!m!
A(m−p).

Hence,

tr1,...,mA
(m)(a+M1) . . . (a+Mm) =

m∑
p=0

(
n−m+ p

p

)
ap tr1,...,m−pA

(m−p)M1 . . .Mm−p.
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Now equate the constant terms of the differential operators on both sides and take the

coefficients of z−m+k to get the relation

ϕ(k)
m (µ+ a1) =

k∑
p=0

(
n−m+ p

p

)
ap ϕ

(k−p)
m−p (µ).

Therefore, for the polynomial Φl(t, µ+ a1) we find

Φl(t, µ+ a1) =
n−l∑
k=0

ϕ
(k)
l+k(µ+ a1)tn−l−k =

n−l∑
k=0

k∑
p=0

(
n− l − k + p

p

)
ap ϕ

(k−p)
l+k−p(µ)t

n−l−k

=
n−l∑
p=0

ap
n−l−p∑
r=0

(
n− l − r

p

)
ϕ
(r)
l+r(µ)t

n−l−p−r,

which coincides with
n−l∑
p=0

ap

p!

( d
dt

)p

Φl(t, µ) = Φl(t+ a, µ),

as claimed.

Lemma 4.2. Suppose that µ has the form of a block-diagonal matrix

µ =

[
Jα(0) O

O µ̃

]
, (4.5)

where Jα(0) is the nilpotent Jordan matrix associated with a diagram α = (α1, α2, . . . ) and

µ̃ is an arbitrary square matrix of size q such that |α|+ q = n. Then for any l > 1 we have

ϕ
(k)
l+k = 0 for all n− l − δl + 1 6 k 6 n− l,

where δl = αl+1 + αl+2 + . . . is the number of boxes of α below its row l.

Proof. The generator ϕ
(k)
l+k is found by (4.2) for m = l + k. The internal sum is a linear

combination of k×k minors of the matrix µ satisfying the condition that the union B∪C of

the row and column indices of each minor is a set of size not exceeding k+ l. On the other

hand, with the given condition on k, the minor µB
C can be nonzero only if the union of row

and column indices is of the size at least k+ l+1. Indeed, this follows from the observation

that if p is a positive integer, then any nonzero p × p minor of a nilpotent Jordan block

has the property that the minimal possible size of the union of its row and column indices

is p+1. However, the condition k > n− l− δl +1 means that k > α1+ · · ·+αl − l+1+ q.

Therefore, a nonzero k × k minor must involve at least l + 1 Jordan blocks.

12



In the following we use the notation of the Main Theorem. In addition, for each diagram

α(i) we denote by δ
(i)
l the corresponding parameter δl, as defined in Lemma 4.2, so that for

the number γl defined in (1.8) we have

γl =
r∑

i=1

δ
(i)
l .

Corollary 4.3. The polynomial Φl(t, µ) admits the factorization

Φl(t, µ) = (t+ λ1)
δ
(1)
l . . . (t+ λr)

δ
(r)
l Φ̃l(t, µ)

for a certain polynomial Φ̃l(t, µ) in t.

Proof. The algebra Aµ is known to depend only on the adjoint orbit of µ; see [8]. More

precisely, as we can see from formulas (4.1), the elements ϕ
(k)
m are unchanged under the

simultaneous replacements µ 7→ gµg−1 and E 7→ gEg−1 for g ∈ GLn. This implies that

Agµg−1 can be identified with the algebra Aµ associated with the image of U(gln) under

the automorphism sending E to gEg−1.

For any i ∈ {1, . . . , r} the Jordan canonical form of µ−λi1 is a matrix of the form (4.5),

where α = α(i). By Lemma 4.2, the polynomial Φl(t, µ − λi1) is divisible by tδ
(i)
l . Hence,

by Lemma 4.1, the polynomial Φl(t, µ) = Φl(t+ λi, µ− λi1) is divisible by (t+ λi)
δ
(i)
l .

We can now complete the proof of the Main Theorem. First, Corollary 4.3 implies

that for any l = 1, . . . , n the generators ϕ
(k)
l+k with n − l − γl + 1 6 k 6 n − l are linear

combinations of those generators with k = 0, 1, . . . , n− l−γl. Therefore, the elements ϕ
(k)
l+k

corresponding to the boxes of the skew diagram Γ/γ generate the algebra Aµ. It remains

to verify that these generators are algebraically independent.

Consider the elements ϕ
(k)

m ∈ S(gln) which are defined by

ϕ
(k)

m =
∑

I, |I|=m

∑
B,C⊂I

|B|=|C|=k

sgnσ · µB
C E

I\B
I\C , (4.6)

with the notation as in (4.2), where the entries of the matrix E are now regarded as

elements of the symmetric algebra S(gln). Equivalently, the elements ϕ
(k)

m are found by

tr1,...,mA
(m)

(
µ1 + E1z

−1
)
. . .

(
µm + Emz

−1
)
= ϕ

(0)

m z−m + · · ·+ ϕ
(m−1)

m z−1 + ϕ
(m)

m . (4.7)

They are generators of the subalgebra Aµ. The arguments of this section (including Lem-

mas 4.1, 4.2 and Corollary 4.3) applied to these generators instead of the ϕ
(k)
m show that

the elements ϕ
(k)

m corresponding to the boxes of the skew diagram Γ/γ generate the algebra

Aµ. Furthermore, we have the following.
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Lemma 4.4. The generators ϕ
(k)

m of the subalgebra Aµ corresponding to the boxes of the

skew diagram Γ/γ are algebraically independent.

Proof. Regarding the elements ϕ
(k)

m as polynomials in the variables Eij, we will see that

their differentials d ϕ
(k)

m are linearly independent at a certain point. Since these elements

generate Aµ, the linear span of the differentials d ϕ
(k)

m at any point coincides with the linear

span of all differentials

dAµ = span of {dϕ | ϕ ∈ Aµ}.

On the other hand, Bolsinov’s criterion [1, Theorem 3.2] implies that the relation

dim dAµ = rank gln +
1

2

(
dim gln − dim glµn

)
holds at a certain regular point if and only if the equality (1.10) holds for g = gln; see

also [3, Theorem 2.7] for a concise exposition of this result. This equality does hold [22],

and so, to show that the differentials d ϕ
(k)

m of the generators are linearly independent at

a certain point, we only need to verify that the number of boxes of the skew diagram Γ/γ

coincides with

rank gln +
1

2

(
dim gln − dim glµn

)
= n+

1

2

(
n2 − dim glµn

)
.

Since |Γ| = n(n+ 1)/2, the desired formula is equivalent to the relation

dim glµn = 2 |γ|+ n. (4.8)

For the dimension of the centralizer we have

dim glµn =
r∑

i=1

dim glµ
(i)

ni
,

where µ(i) denotes the direct sum of all Jordan blocks of µ with the eigenvalue λi, and ni

is the size of µ(i). Hence, by the definition of γ, the verification of (4.8) reduces to the case

where µ has only one eigenvalue. Let α1 > · · · > αs be the respective sizes of the Jordan

blocks of such matrix µ. Then dim glµn = α1 + 3α2 + · · ·+ (2s− 1)αs, while

|γ| = α2 + 2α3 + · · ·+ (s− 1)αs and n = α1 + · · ·+ αs,

thus implying (4.8).

Now consider the generators ϕ
(k)
m of the algebra Aµ associated with the boxes of the

diagram Γ/γ. By Lemma 4.4, the corresponding elements ϕ
(k)

m are nonzero, so that the

image of ϕ
(k)
m in the (m−k)-th component of grU(gln)

∼= S(gln) coincides with ϕ
(k)

m . More-

over, the generators ϕ
(k)
m corresponding to the boxes of the diagram Γ/γ are algebraically
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independent. This completes the proof of the first part of the Main Theorem, and the

second part also follows.

Finally, we will extend the first part of the Main Theorem by providing some other

families of algebraically independent generators of the algebra Aµ. To this end, introduce

the families ψ
(k)

m and θ
(k)

m of generators of the algebra Aµ by the respective expansions

tr1,...,mH
(m)

(
µ1 + E1z

−1
)
. . .

(
µm + Emz

−1
)
= ψ

(0)

m z−m + · · ·+ ψ
(m−1)

m z−1 + ψ
(m)

m (4.9)

and

tr
(
µ+ Ez−1

)m
= θ

(0)

m z−m + · · ·+ θ
(m−1)

m z−1 + θ
(m)

m , (4.10)

where

E =
n∑

i,j=1

eij ⊗ Eij ∈ EndCn ⊗ S(gln),

and extend the notation (2.5) to matrices E and µ. The polynomials ϕm(z), ψm(z) and

θm(z) in z−1 given by the respective expressions in (4.7), (4.9) and (4.10) are related by

the classical MacMahon Master Theorem and Newton’s identities:

m∑
l=0

(−1)l ϕl(z)ψm−l(z) = 0 (4.11)

and

mϕm(z) =
m∑
l=1

(−1)l−1 θl(z)ϕm−l(z) (4.12)

for m > 1. Writing the relations (4.11) and (4.12) in terms of the coefficients of the

polynomials, we find that each of the generators ψ
(k)

m and θ
(k)

m with m = 1, . . . , n and

k = 0, 1, . . . ,m− 1 will be presented in the form

c · ϕ (k)

m + linear combination of ϕ
(k1)

m1
. . . ϕ

(ks)

ms
, s > 2,

for a nonzero constant c, where m1 + · · ·+ms = m and k1 + · · ·+ ks = k. As we pointed

out above, the elements ϕ
(k)

m corresponding to a certain row of the diagram Γ are linear

combinations of the elements of this row in the skew diagram Γ/γ. This implies that each

of the families of generators ψ
(k)

m and θ
(k)

m associated with the boxes of Γ/γ as in (1.9), is

algebraically independent. This leads to the following corollary, where, as before, µ ∈ gln
is an arbitrary matrix.

Corollary 4.5. The elements of each of the two families ψ
(k)
mm and θ

(k)
mm associated with

the boxes of the skew diagram Γ/γ as in (1.9) are algebraically independent generators of

the algebra Aµ.
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To construct two more families of generators of the algebra Aµ, define the elements

φ
(k)
m , ψ

(k)
m ∈ U(gln) by the expansions

tr1,...,mA
(m)

(
µ1 + E1z

−1
)
. . .

(
µm + Emz

−1
)
= φ (0)

m z−m + · · ·+ φ (m−1)
m z−1 + φ (m)

m ,

tr1,...,mH
(m)

(
µ1 + E1z

−1
)
. . .

(
µm + Emz

−1
)
= ψ (0)

m z−m + · · ·+ ψ (m−1)
m z−1 + ψ (m)

m .

It is easy to verify that each of the families φ
(k)
m and ψ

(k)
m with m = 1, . . . , n and k =

0, . . . ,m−1 generates the algebra Aµ. Indeed, by Theorem 3.1, the algebra Aµ is generated

by the coefficients ϕ
(k)
m of the constant term of the differential operator,

tr1,...,mA
(m)

(
−∂z + µ1 + E1z

−1
)
. . .

(
−∂z + µm + Emz

−1
)
1

= ϕ (0)
m z−m + · · ·+ ϕ (m−1)

m z−1 + ϕ (m)
m .

Hence, ϕ
(k)
m is found as the coefficient of z−m+k in the expression∑

i1<···<ik

∑
j1<···<jm−k

tr1,...,mA
(m)µi1

. . . µik

(
−∂z + Ej1

z−1
)
. . .

(
−∂z + Ejm−k

z−1
)
1,

summed over disjoint subsets of indices {i1, . . . , ik} and {j1, . . . , jm−k} of {1, . . . ,m}.
Therefore,

ϕ(k)
m = zm−k

(
m

k

)
tr1,...,mA

(m)µ1 . . . µk

(
−∂z + Ek+1z

−1
)
. . .

(
−∂z + Emz

−1
)
1.

By calculating the partial trace of the anti-symmetrizer with the use of (4.4), we get

ϕ(k)
m =

(
m

k

)
tr1,...,mA

(m)µ1 . . . µk Ek+1 . . . Em +
m−1∑
r=k+1

cr tr1,...,r A
(r)µ1 . . . µk Ek+1 . . . Er

for certain constants cr. The same argument applied to the expansion defining the elements

φ
(k)
m gives

φ(k)
m =

(
m

k

)
tr1,...,mA

(m)µ1 . . . µk Ek+1 . . . Em.

This yields a triangular system of linear relations

ϕ(k)
m = φ(k)

m +
m−1∑
r=k+1

cr φ
(k)
r .

Since ϕ
(k)
k+1 = φ

(k)
k+1, we can conclude that the elements φ

(k)
m are generators of Aµ. The

argument for the elements ψ
(k)
m is quite similar. Taking into account the properties of the

elements ϕ
(k)

m and ψ
(k)

m , we come to another corollary.

Corollary 4.6. The elements of each of the two families φ
(k)
m and ψ

(k)
m associated with the

boxes of the skew diagram Γ/γ as in (1.9) are algebraically independent generators of the

algebra Aµ.
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