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Abstract

This paper explores nonparametric estimation, inference, and specification test-

ing in a nonlinear cointegrating regression model where the structural equation er-

rors are serially dependent and where the regressor is endogenous and may be driven

by long memory innovations. Generalizing earlier results of Wang and Phillips

(2009a,b), the conventional non-parametric local level kernel estimator is shown to

be consistent and asymptotically (mixed) normal in these cases, thereby opening

up inference by conventional nonparametric methods to a wide class of potentially

nonlinear cointegrated relations. New results on the consistency of parametric esti-

mates in nonlinear cointegrating regressions are provided, extending earlier research

on parametric nonlinear regression and providing primitive conditions for paramet-

ric model testing. A model specification test is studied and confirmed to provide a

valid mechanism for testing parametric specifications that is robust to endogeneity.

But under long memory innovations the test is not pivotal, its convergence rate

is parameter dependent, and its limit theory involves the local time of fractional

Brownian motion. Simulation results show good performance for the nonparamet-

ric kernel estimates in cases of strong endogeneity and long memory, whereas the

specification test is shown to be sensitive to the presence of long memory innova-

tions, as predicted by asymptotic theory.
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1 Introduction

Most empirical econometric research with time series data still uses linear in variables

models, particularly those involving vector autoregressions, error correction systems, or

reduced rank regressions. These specifications are convenient for practical work and pack-

age software has many standard routines for dealing with such systems, encouraging ex-

tensive usage of the methods. While common in applications, there has been growing

recognition of the limitations of linear systems and the need for nonlinearities in spec-

ification that accommodate such effects as thresholds, breaks, or nonlinear behavioral

responses. Such extensions can be formulated in parametric and nonparametric ways.

While parametric formulations have now been treated in some generality following Park

and Phillips (2001), allowing for unknown nonlinearity and nonstationarity in potentially

cointegrated systems has presented deeper technical challenges in the development of as-

ymptotic theories of estimation, inference, and specification. Progress has therefore been

slow in comparison with the rapid earlier development of inference in linear nonstationary

systems. However, some recent critical advances have been made that are now opening

up this field to the practitioner.

In an earlier paper Wang and Phillips (WP)(2009a) discovered that standard tools of

kernel regression could be employed to estimate and conduct valid asymptotic inference

in certain nonparametric cointegrating regression models. In particular, the standard

normal limit theory for nonparametric regression estimates in stationary systems applies

also to self-normalized kernel regression estimates even when the explanatory variable is

integrated. In view of the complexities of nonstationary regression limit theory in linear

models, this simple finding was unexpected. The results in WP (2009a) applied to a

bivariate cointegrating regression without contemporaneous endogeneity. Somewhat sur-

prisingly, the same result was found to apply in similar models with contemporaneous

endogeneity (WP, 2009b), highlighting a major difference with the stationary case where

kernel regression is inconsistent and ill posed inverse problems arise in the use of nonpara-

metric instrumental variable approaches that are designed to address the endogeneity in

stationary systems. In the predictive regression context, Kasparis et al (2013) have re-

cently shown that the standard normal limit theory continues to apply when the regressor

has a local to unity or nonstationary long memory generating mechanism.

The present paper shows that these advantages of the nonparametric approach in

the nonstationary case extend to an even wider class of models than that considered in
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WP (2009a,b). In particular, the regressor may be driven by long memory as well as

short memory innovations and the structural equation errors may have rather general

weak dependence characteristics and correlation with the regressor. These results give

the nonparametric regression limit theory for nonstationary cointegrated models much

the same level of generality as that of linear cointegrated regression, at least for bivariate

systems.

A typical non-linear cointegrating regression model has the following form

 = () +   = 1 2   (1.1)

where  is a zero mean equilibrium error,  is a non-stationary regressor and (·) is
an unknown real function on R. In the presence of more explicit prior information, the

regression function (·) may be specified in parametric form as

() = ( 0) (1.2)

where (· ) represents a parametric family of functions with unknown true parametric
value 0 ∈ Θ a compact set in R for some finite  The past decade has witnessed

progress in the development of an asymptotic theory of estimation and inference for both

the non-parametric model (1.1) and the parametric model (1.2). Technical difficulties in

the limit theory for nonlinear covariance functionals of nonstationary and stationary time

series has confined much of the asymptotic theory to the case of strict exogeneity where the

regressor  is uncorrelated with the regression errors  at all leads and lags. Exogeneity

is a natural starting point for a pure cointegrated system and provides some useful insight

into the properties of various estimates of nonlinear long run linkages between the system

variables. But the assumption is restrictive, especially in a cointegrated framework where

the driver variables may be expected to be temporally and contemporaneously correlated.

Exogeneity therefore delimits potential applications as well as removing a central technical

difficulty in the development of the asymptotics.

Further progress in the field is inhibited by these limitations. One contribution of the

present paper is to address these technical difficulties. A second contribution is to expand

the framework to include long memory process drivers in the regressors, thereby allowing

for a wider class of regressors and temporal dependence properties within the system. A

third contribution is to provide asymptotic properties of a specification test for evaluating

parametric regression hypotheses of the form (1.2) under endogeneity and long memory.

A further contribution is to develop new consistency results for parametric nonlinear
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cointegrating regression. These developments widen the range of practical application for

kernel regression methods and specification tests with nonstationary data.

The paper is organized as follow. Section 2 considers non-parametric estimation in

a nonlinear cointegrating regression model such as (1.1). Unlike previous work in the

nonlinear case, the current paper allows the regressor  to be driven by long memory

innovations and permits serial dependence in the error  and the innovations driving  for

all leads and legs. A limit theory is developed for local level and local linear nonparametric

estimates and their self normalized versions. A model specification test is developed in

Section 3 for testing parametric hypotheses such as (1.2). The limit distribution of the

statistic depends on the local time of the Brownian motion or fractional Brownian motion

limit process associated with the (standardized) nonstationary regressor. This test is

convenient to apply in practice under endogeneity and short memory innovations and has

power against local alternatives to the null. Under long memory driver innovations for

the regressor, the test statistic has a non-pivotal limit theory and parameter dependence

in its convergence rate, which complicate inference. Section 4 explores the limit theory of

parametric estimates in nonlinear cointegrating regressions, extending some of the earlier

results in Park and Phillips (2001) and providing support for a high level convergence

condition used in the asymptotic theory of the specification test. Proofs of the main

results in the paper are given in Section 6, which also presents several useful propositions.

Proofs of these propositions are given in Section 7.

Throughout the paper, we denote constants by 1 2  which may differ at each

appearance. We use the notation |||| = max || for vector  = () and |||| =
max || for matrix  = [()]. Other notation is standard.

2 Nonparametric Estimation

The local level kernel estimate of () in model (1.1) is given by

̂() =

P

=1 ( − )P

=1( − )


where () =
1

(), () is a nonnegative real function, and the bandwidth pa-

rameter  ≡  → 0 as  → ∞. The limit behavior of ̂() has been investigated in
past work in some special situations, notably where the error process  is a martingale

difference sequence and there is no contemporaneous correlation between  and . See,

Karlsen, et al. (2007), Cai et al.(2009), WP (2009a, 2011) and Wang (2013), for instance.
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The treatment in WP (2009b) notably allowed for endogeneity in (1.1) so that the equa-

tion error  might be cross-correlated with  over some finite time horizon for which

|− | ≤ 0 for some finite 0.

This section has a similar goal to WP (2009b) in terms of accommodating endogeneity,

but provides more general results with advantages for empirical applications. First, our

model allows for the regressor  to be driven by long memory innovations. Second, unlike

WP (2009b) where only finite memory cross-correlation was considered, our assumptions

permit dependence between the error process  and the innovations driving  for all leads

and lags. These relaxations of the conditions in WP (2009b) are particularly important

in nonlinear cointegrated systems because finite time horizon dependence between the

regressor and the equation error will often be restrictive in practice and it is seldom

realistic in analyzing co-movement to insist that system variables or regressors be exactly

(1) time series.

Throughout the section we let  ≡ ( )0  ∈ Z, be a sequence of iid random vectors
with E0 = 0 E (0

0
0) = Σ and E||0|| ∞ for some   2Assume E20 = 1 and let the

characteristic function () of 0 satisfy the integrability condition
R∞
−∞(1+ ||) |()| 

∞ which assures smoothness in the correspondeing density. We make use of the following

assumptions in the asymptotic development.

Assumption 2.1  =
P

=1 , where {  ≥ 1} is a linear process defined by  =P∞
=0  − with coefficients ,  ≥ 0, satisfying 0 6= 0 and one of the following

conditions:

C1.  ∼ − () where 12    1 and () is a function slowly varying at ∞.
C2.

P∞
=0 || ∞ and  ≡P∞

=0  6= 0.

Assumption 2.2  =
P∞

=0  −, where the coefficient vector  = (1 2) satis-

fies
P∞

=0 
14(|1|+ |2|) ∞ and

P∞
=0  6= 0.

Assumption 2.3 () is a nonnegative bounded continuous function satisfying
R
() =

1 and
R |̂()| ∞, where ̂() = R ().

Assumption 2.4 For given , there exists a real positive function 1( ) and  ∈ (0 1]
such that, when  sufficiently small, |( + ) − ()| ≤  1( ) for all  ∈  andR∞
−∞() [1( ) + 21 ( )]  ∞.

Assumption 2.1 allows for short (under C2) and long (under C1) memory innovations

 driving the regressor . In the long memory case, the parameter  = 1 −  with
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 ∈ ¡0 1
2

¢
measures the hyperbolic decay rate in the coefficients  of the linear process

defining  In the special case where (1− )

 =   is the fractional differencing

parameter. Set 2 = E2,  =
1

(1−)(3−2)
R∞
0

−( + 1)− and denote by () a

fractional Brownian motion with Hurst parameter 0    1. It is well-known that the

asymptotic form of  as →∞ is given by

2 ∼
½

 
3−2 2() under C1

2  under C2,
(2.1)

and on [0 1] the following weak convergence applies (e.g., Wang, Lin and Gulati, 2003)

bc ⇒ () :=

½
32−() under C1

 () under C2.
 (2.2)

where bc is the floor function and  = 12 is Brownian motion. Furthermore, the

limit process () has continuous local time process ( ) with dual (time and space)

parameters ( ) in [0∞) × R. The local time process ( ) of a stochastic process

() is defined by (e.g., Geman and Horowitz, 1980, Theorem 22.1)

( ) = lim
→0

1

2

Z 

0


©|()− | ≤ 

ª
 (2.3)

These notations are used throughout the rest of the paper without further explanation.

Assumption 2.2 allows the equation error  to be cross correlated with the regressor 

for all  ≤ , thereby inducing endogeneity and giving the structural model more natural

temporal dependence properties than those used in WP (2009b). By a simple calculation

E20 =
∞X
=0

Σ
0
 where

P
=

µ
1 00

00 20

¶


We may have ( ) 6= 0 under Assumptions 2.1 and 2.2, which differs from much

previous work where  is often assumed to be adapted to F−1 and (F) forms a

martingale difference sequence. In that case, ( ) = E[E(|F−1)] = 0.

Assumptions 2.3 and 2.4 are the same as in WP (2009b), are quite weak, and are

easily verified for various kernels () and regression functions (). Typical examples

of () and () include the normal kernel, kernels with compact support for  and

functions () = || or () = 1(1 + ||) for some   0.

The following is the main result on local level kernel estimation of the unknown re-

gression function in (1.1).
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THEOREM 2.1. Under Assumptions 2.1—2.4, for any  satisfying  → ∞ and

1+2 → 0, we have¡


¢12
(̂()− ())→  

−12
 (1 0) (2.4)

for any fixed , where  2 = E20
R∞
−∞2() and  is a standard normal variate inde-

pendent of (1 0). We also have the following self-normalized limit form³


X
=1

( − )
´12

(̂()− ())→   (2.5)

Under (C1) when () is constant, (2.1) is 2 ∼ 1+2 for some constant  and the

condition  →∞ on the effective sample size required for consistency then reduces to


1
2
−→∞ or

√
→∞ when  = 0 as in WP (2009b). So the effective sample size falls

as  increases. It follows that larger  ∈ ¡0 1
2

¢
requires a larger bandwidth  to ensure

that the effective sample size diverges. An intuitive explanation is that a fractionally

integrated  (1 + ) series is smoother than an  (1) series which correspondingly reduces

the local signal inherent in the nonparametric regression signal
P

=1(
−

) A larger

bandwidth compensates for this reduction in the signal. Importantly, the self-normalized

limit (2.5) is pivotal upon estimation of  2 and well-suited to inference and confidence

interval construction.

As in WP (2011) (see also Wang (2013)), an explicit bias term may be incorporated

into the limit theory (2.4) and (2.5) if we impose stronger smoothness conditions on  and

. Furthermore, the Nadaraya-Watson estimator ̂ () has the same limit distribution

(to the second order including bias) as the local linear nonparametric estimator (e.g., Fan

and Gijbels, 1996), defined by

̂() =

X
=1


± X

=1

  = ( − ){2 − ( − )1}

where  =
P

1 ( − )( − ) Explicitly, we have the following theorem.

THEOREM 2.2. Suppose Assumptions 2.1—2.2 hold. Further assume that, for some

 ≥ 2,

(i) () satisfies
R
() = 1,Z
() 6= 0

Z
() = 0  = 1 2  − 1;
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(ii) () has compact support and is twice continuously differentiable on R;

(iii) for given fixed , () has a continuous  + 1 derivative in a small neighborhood

of .

Then, for any  satisfying  →∞ and 1+2(+1) → 0, we have

¡


¢12 ∙
̂()−  ()−  ()()

!

Z ∞

−∞
()

¸
→   

−12
 (1 0) (2.6)

and³


X
=1

( − )
´12 ∙

̂()−  ()−  ()()

!

Z ∞

−∞
()

¸
→   (2.7)

where the notation follows Theorem 2.1. Furthermore, both results (2.6) and (2.7) (with

 = 2) hold if we replace ̂() by ̂().

This finding provides further evidence that, under pointwise estimation, the bias reduc-

ing advantage of the local linear nonparametric estimator is lost when  is nonstationary,

a phenomenon first discussed in WP (2011). In contrast to pointwise estimation, the lo-

cal linear non-parametric estimator does have superior performance characteristics to the

Nadaraya-Watson estimator in terms of uniform asymptotics over wide domains (Chan

and Wang, 2013a; Duffy, 2013).

3 Model Specification Testing

The preceeding theory deals with nonparametric estimation of a nonlinear cointegrating

regression under general conditions of an endogenous regressor. Nonparametric function

estimation is often the first step in analyzing data when there is no prior information on

functional form. As is apparent from Theorems 1 and 2, nonparametric estimation has

the merit of simplicity in terms of both practical implementation and asymptotics. In

comparison to parametric counterparts (e.g., Park and Phillips, 2001; Chang, et al, 2001;

Chan and Wang, 2013b), nonparametric estimators typically deliver slow convergence

rates. Parametric estimation can therefore be attractive in practical work, whilst allowing

for some potential functional misspecification. The latter possibility makes it desirable

to perform a test of parametric specification. This section considers a parametric model

specification test that is suited to nonlinear cointegrating regression with an endogeneous

regressor.
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In view of the maintained model (1.1) interest typically focuses on testing a specific

parametric null hypothesis such as

0 : () = ( 0) 0 ∈ Ω0

for  ∈ R, where ( ) is a given real function indexed by a vector  of unknown

parameters which lie in the parameter space Ω0. To test 0, Gao, et al. (2009) and WP

(2012) considered kernel-smoothed U statistics of the form

 =

X
=1 6=

̂̂
£
( − )

¤
 (3.1)

where ̂ =  − ( ̂), () is a non-negative real kernel function,  is a bandwidth

satisfying  ≡  → 0 as the sample size  → ∞ and ̂ is a parametric estimator of

 under the null 0 that is consistent whenever  ∈ Ω0. The behavior of the kernel

weights (( − )) depends on the self intersection properties of . The U statistic

asymptotics for  involve some new limit theory, developed by WP (2012), that depend

on the self intersection local time of a Gaussian process (i.e., the local time for which the

process intersects itself). The involvement of the kernel weights (( − )) in the U

statistic make the asymptotics for  complex and difficult to extend to the case of an

endogenous regressor.

The present paper uses instead of (3.1) a normalized version of the following statistic

 =

Z ∞

−∞

n X
=1

[( − )]
£
 − ( ̂)

¤o2
()

where () is a positive integrable function. The statistic  is a modification of the test

statistic discussed by Härdle and Mammen (1993) for the random sample case. The test

was used in Gao et al. (2012) for a nonlinear cointegrating model with a martingale error

structure and no endogeneity. We proceed to show that the statistic  is asymptotically

valid in a nonlinear cointegration model with endogeneity, as was indicated in their simu-

lation results. Moreover, with changes in the convergence rate and the limit distribution,

we demonstrate that the statistic remains valid under long memory input shocks to the

regressor. But in that case the limit theory and convergence rate of the test both de-

pend on the memory parameter of regressor, which complicates practical implementation.

The alternative of proceeding under the assumption of short memory innovations when

there are long memory input shocks to the regressor leads to a conservative test with zero

asymptotic size and substantial reductions in power.
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To proceed, we make the following additional assumptions on () and ( ) to

develop asymptotics for .

Assumption 3.1. () has compact support and |() −()| ≤ | − | whenever
|− | is sufficiently small.

Assumption 3.2. (i) There exist 1() and 2() such that, for each  0 ∈ Ω0,

|( )− ( 0)| ≤  || − 0|| 1()

and for some 0   ≤ 1,

|1(+ )− 1()| ≤  || 2()

whenever  is sufficiently small. (ii)
R∞
−∞[1 + 21() + 22()]()  ∞.

Assumption 3.3. Under 0, ||̂ − 0|| = [()
12].

Assumption 3.2 covers a wide class of functionals ( ) and weight functions (), in-

cluding ( ) = (+)2 (1+)  log || || ( is fixed) and 0+1||++||
when () = −

22 or () has compact support. At this level of generality for  ( ) 

the condition on () is close to being necessary. Assumption 3.1 is slightly stronger than

is necessary, and can be weakened to include the normal kernel function if more restric-

tions are imposed on the weight function (). Under the current model with endogeneity,

the stated consistency rate condition on ̂ required in Assumption 3.3 is not presently

available in the literature. For completeness therefore, we investigate convergence results

of this kind and provide primitive conditions to validate the assumption in Section 4 of

the paper. In particular, since → 0, Theorems 4.2 and 4.3 below show that Assumption

3.3 is achievable under stronger smoothness conditions on ( ).

We have the following main result.

THEOREM 3.1. Suppose Assumptions 2.1—2.2 and 3.1—3.3 hold. Then, under 0, we

have

 :=



 →  0 (1 0) (3.2)

for any h satisfying 2 log  → 0 and 1−0 →∞, where

 0 = E20

Z ∞

−∞
2()

Z ∞

−∞
() (3.3)

and 0 can be as small as required.
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Remark 3.1. As in the estimation theory, the condition on the bandwidth  that

1−0 → ∞ is close to being necessary. Similar to the discussions in WP (2012),

the further condition 2 log12  → 0 is used mainly to offset the impact of the de-

pendence between  and . See the proof of Proposition 7.3. It seems difficult to relax

this condition under the current model.

Remark 3.2. The error variance E20 in (3.3) can be estimated by

̂2 =

P

=1[ − ( ̂)]
2( − )P

=1( − )
 (3.4)

based on a localized version of the usual residual sum of squares. Routine calculations

confirm that ̂2 → E20 provided Assumptions 2.1—2.2, 3.1, 3.2(i) and 3.3 hold.

Importantly, the scaling in the statistic (3.2) relies on expansion rate parameter 2 ∼
 

3−2 2(), which in turn relies on the unkown value of  Even in the simple case where

() is constant and  ∼ 
1
2
+ for some constant  the required scaling depends on the

(typically unknown) value of the long memory parameter  = 1−  If  were estimated

nonparametrically by ̂ using narrow band methods (e.g., by the exact local Whittle

procedure in Shimotsu and Phillips, 2005) with convergence rate
√
 where log√


+


→ 0,

then a standard derivation shows that in this case
√

³
̂ − 

´
 ( log ) =  (1)  It

follows that

̂ : =
̂


 =




 +

√

³
̂ − 

´
 log

µ





¶
log √


=  +

µ
log √


¶
→  0 (1 0)

giving the same limit distribution as (3.2). However, the limit distribution still depends

on  via the local time (1 0) of the (unknown) fractional Brownian motion process 

and is therefore non pivotal. The local time (1 0) may itself be estimated by kernel

methods in view of the asymptotic approximation





X
=1



µ
 − 



¶
∼ (1 0) (3.5)

which holds for all fixed  However, this estimate also depends on the unknown value of

 Moreover, the self normalized statistic

P

=1
¡
−


¢ →  0
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is unsuited for inference, requires centering and a further limit theory for the recentred

statistic, which again depends on the unknown value of  The statistic  is therefore

not generally well-suited for practical implementation in specification testing.

In the special case where  = 0 we have  = 
√
 and 0 is proportional to

1√

, the statistic studied in Gao et al (2012) under exogeneity. In this case the limit

distribution is

0 =
√


 →  0  (1 0) (3.6)

and the limit theory holds under endogeneity. But when  ∈ ¡0 1
2

¢
the statistic 1√




leads to a conservative test  In particular, for 2 ∼  
1+2 2() we have

1√


 ∼



 × 1


12
  ()

→ 0 (3.7)

so that the size of a test based on 1√

 tends to zero as →∞ whenever  ∈ ¡0 1

2

¢


To investigate asymptotic power we consider the following local alternative models

1 : () = ( 0) + () (3.8)

where 0 ∈ Ω0,  is a sequence of constants measuring local deviations from the null and

() is a real function. Local alternatives of the form (3.8) are commonly used in the

theory of non-parametric inference involving stationary data. See, for instance, Horowitz

and Spokoiny (2001). We impose the following smoothness conditions on () to aid the

asymptotic development here.

Assumption 3.4. (i) There exist 1() and  ∈ (0 1] such that, for any  sufficiently

small,

|(+ )−()| ≤  || 1()

(ii)
R∞
−∞[1 +2() +2

1()]()  ∞.

THEOREM 3.2. Suppose Assumptions 2.1—2.2 and 3.1—3.4 hold. Then, under 1, we

have

lim
→∞


¡ 


 ≥ 0
¢
= 1

for any 0  0, any → 0 satisfying 1−0 →∞ where 0 can be as small as required,

and any  satisfying 
2
 →∞.

As in Assumption 3.2, the conditions on () imposed by Assumption 3.4 seem weak

and are satisfied by a large class of real functions. The theorem shows that the  test
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has nontrivial power against local alternatives of the form (3.8) whenever  → 0 at a

rate that is slower than [()]
12, as  →∞. This is different from the stationary

situation where a test generally has nontrivial power only if  → 0 at a rate slower

than −12. Moreover, unlike the test used in WP (2012), the rate condition here is only

related to the bandwidth , not to the magnitude of (). The explanation is that the

weight function () in the test offsets any impact of the magnitude of () under the

alternative.

Theorem 3.2 shows that specification tests based on  are valid and have non-trivial

local power for alternatives of the form (3.8) under endogeneity and in the short memory

case ( = 0). In that case the test statistic has the simple computable form 1√


 as

in Gao et al (2012), and the limit theory is given by (3.6) where  can be estimated by

standard HAC methods and  0 is estimated using (3.4). Alternative HAR sieve methods

(Phillips, 2005; Sun, 2011; Chen et al., 2014) or fixed-b kernel methods (Kiefer and

Vogelsang, 2005; Sun, 2014) may be used after some changes to the limit theory to addess

the random limit theory involved in the estimation of  but these metehods are not

explored here.

The situation is more complex in the long memory case where  does not produce a

pivotal test and there are practical difficulties in implementing the test based on 


. If

the statistic 1√


 is used when  ∈ ¡0 1
2

¢
the test has zero size asymptotically and its

power function under alternatives of the form (3.8) depend on  and . In particular,

we note that
1√


 =



 ×

√



∼




 × 1


12
  ()



so that limit behavior under the alternative depends on the divergence rate of 

 in

relation to . The divergence rate of the statistic


 therefore needs to exceed 

 ()

for a test based on 1√


 to be consistent. Using arguments similar to those in the proof

of Theorem 3.2 we find that test consistency is attained provided 53


73


2 →∞ For small

values of  non-trivial power is then possible under local alternatives. For example, if

 ∼ 
1
2
+ and  = 1

8
 then the test is consistent provided 

5
122 →∞ Larger values of

 typically require more distant alternatives to ensure consistency. For example, if  = 1
4


then the test is consistent if −
1
122 →∞ which requires  →∞
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4 Parametric Consistency

This section considers extremum estimation of the unknown parameters  in model (1.2)

by nonlinear least squares (NLS). We provide primitive conditions for the verification of

consistent parametric estimation of  as given in Assumption 3.3.

Let() =
P

=1(−( ))2. The NLS estimator ̂ of  is defined as the minimizer
of () over  ∈ Θ, viz.,

̂ = argmin∈Θ()

Let ̇ and ̈ be the first and second derivatives of () so that ̇ = 

and ̈ = 2
0. Similar definitions are used for ̇ and ̈. We assume these

quantities exist whenever they are introduced. To develop asymptotics for ̂ the following

framework is a generalization of Theorem 3.1 in Chan and Wang (2013b) and draws on

Wooldridge (1994) and Andrews and Sun (2004).

THEOREM 4.1. There exist a sequence of constants {  ≥ 1} and a sequence of
 × nonrandom nonsingular matrices  satisfying  → ∞ and  k −1

 k→ 0, as

→∞, such that the following conditions hold:
(i) sup:k(−0)k≤ k (−1

 )
0 P

=1

£
̇( )̇( )

0−̇( 0)̇( 0)0
¤
−1

 k=  (
−2
 ),

(ii) sup:k(−0)k≤ k (−1
 )

0 P

=1 ̈( )
£
( )− ( 0)

¤
−1

 k=  (
−2
 ),

(iii) sup:k(−0)k≤ k (−1
 )

0 P

=1 ̈( )
−1
 k=  (

−2
 ),

(iv)  := (
−1
 )

0 P

=1 ̇( 0)̇( 0)
0−1

 →  , where   0, a.s., and

 := (
−1
 )

0
X
=1

̇( 0)  =  () (4.1)

where 1 ≤  ≤ 1−0 for some 0  0. Then, there exists a sequence of estimators

{̂  ≥ 1} satisfying ̇(̂) = 0 with probability that goes to one and

(̂ − 0) =  −1  +  (1) (4.2)

If we replace (iv) by the following condition (iv)0, then (̂ − 0) → −1  and in

(i)—(iii) we may take  = 1.

(iv)0 for any 0 = (1  ) ∈ R  = 1 2 3,

(01 2 03) → (01 2 
0
3 )

where   0, a.s. and  ( ∞) = 1.

14



Remark 4.1. Theorem 4.1 was established in Chan and Wang (2013b) with  = 1.

The current result weakens the restriction on , which in turn allows us to establish

consistency of the estimator ̂ in model (1.1) - (1.2) under a more general framework

with an endogenous regressor.

We next investigate an application of Theorem 4.1 when the regressor  and equation

error  are defined as in Assumptions 2.1 and 2.2. To do so we require certain smoothness

conditions on ( ). We start with the case where ( ) is a bounded and integrable

function.

Assumption 4.1. Let ( ) be any of , ̇ or ̈, 1 ≤   ≤ .

(i) ( 0) is a bounded and integrable real function;

(ii) There exists a bounded and integrable function  :  →  such that |( ) −
( 0)| ≤  || − 0||() for each  0 ∈ Θ;

(iii) Σ =
R∞
−∞ ̇( 0)̇( 0)

0  0 for each 0 ∈ Θ, where ̇() =
¡
̇1()  ̇()

¢0
.

THEOREM 4.2. Under Assumptions 2.1—2.2 and 4.1, we have

||̂ − 0|| =
¡


¢12 ( (1) under C1

 (log
12 ) under C2

(4.3)

The conditions in Theorem 4.2 hold for a wide range of integrable regression functions,

including ( 1 2) = 1||2( ∈ [ ]), where  and  are finite constants, the Gaussian
function ( 1 2) = 1

−22, and the Laplacian function ( 1 2) = 1
−2||. The

term log12  under C2 in (4.3) can be eliminated if stronger restrictions are imposed on

the relationship between the error process  and regressor . Park and Phillips (2001)

and Chan and Wang (2013b) provide results in this case. However it is difficult to remove

this term under the present model where there is general endogeneity. Consequently, we

have not been able to establish a general limit distribution theory for ̂ without further

conditions. But Theorem 4.2 is sufficient for the purpose of the present paper and we leave

this remaining challenge in nonlinear nonstationary asymptotics under general conditions

for future work.

Assumption 4.2. Let ( ) be any of , ̇ or ̈, 1 ≤   ≤ . There exists a positive

real function () which is bounded away from zero as  → ∞ and a constant  ≥ 0
such that, for each  0 ∈ Θ,

15



(i) |( ) − ( 0)| ≤  || − 0|| 1() for some 0   ≤ 1, where 1() ≤
 () (1 + ||);

(ii) ( 0) ≤  () (1 + ||) and, for ( 0) = ̇( 0) ̈( 0) 1 ≤   ≤ ,

|( 0)− ( 0)| ≤ ()
£|− |+1() +2()

¤


whenever  and  are in a compact set, where 1() and 2() are bounded and

integrable functions;

(iii) ̇( 0) = ̇()( 0) + (  0) for 1 ≤  ≤ , where (  0) =


£
̇()( 0)

¤
as || → ∞, and ( 0) is a locally bounded function (i.e.,

bounded on any compact set) satisfying
P

 =
R
||≤ ( 0)( 0)

0  0 for all

  0, where () =
¡
1()  ()

¢0
;

(iv) sup1≤≤ | () ̈()̇() ̇()
|  ∞, where () = (), ̇() = ̇() and ̈() =

̈().

THEOREM 4.3. Under Assumptions 2.1—2.2, 4.2 and
P∞

=0 
12(|1| + |2|)  ∞,

we have

||(̂ − 0)|| =  (1)

where  = diag(
√
̇1() 

√
̇()).

Assumption 4.2 allows for asymptotically homogeneous functions. Typical examples

include ( ) = (+)2 (1+)  log || || ( is fixed) and 0+1||++||.
The class of functions satisfying Assumption 4.2 is similar to but wider than the0-regular

functions on Θ imposed in Theorem 4.2 of Park and Phillips (2001). For instance, since

0( ) = 2( + ) and 00( ) = 2, Assumption 4.2 applies to the function ( ) =

(+)2 [with () =  ̇() =  ̈() = 1 and ( 0) = 2]; but Theorem 4.2 of Park

and Phillips (2001) does not directly apply for this function (e.g., see Example 4.1 (c) of

that paper). While allowing for this extra generality here in establishing consistency of

̂, it is nonetheless difficult to establish an asymptotic distribution theory for ̂ under

the current model, as remarked above.

5 Simulations

We report the results of a small Monte Carlo (MC) experiment to explore finite sam-

ple performance of estimation and inference under endogeneity and long memory. The

16



simulations are complementary to those in PW (2009b) for kernel regression in struc-

tural nonstationary models and focus on the impact of a long memory component in the

regressor innovations. The generating mechanism follows (1.1) and has the explicit form

 =  () +  ∆ =  (1− )

 = 

 = −1 + 

where ( ) are  

µ
0

∙
1 
 1

¸¶
. The following regression function from PW

was used in the simulation:

 () =

∞X
=1

(−1)+1 sin ()
2



where the function is truncated at  = 4 for numerical computation.

Kernel estimates of  () together with the bias, standard deviation (Std), and root

mean squared error (Rms) for these estimates were computed over the interval [0 1] on

the equispaced grid { = 001;  = 0 1  100} based on 50,000 replications. Simulations
were performed for  =  () ∈ {0 05 10}   = 02  = 025 long memory parame-
ter  ∈ {0 01 02 03 04}  and for sample size  = 500. These specifications allow for en-
dogeneity, serial dependence in  and long memory in the innovation process  of the re-

gressor. An Epanechnikov kernel was used with bandwidths  = −13 −14 −15 −16

These rates for  satisfy the condition 
1−
2 1+2 → 0 when  = 1 and  ∈ ¡0 1

2

¢
 and

the condition 
1
2
− → ∞ for subsets  ∈ [0 1

6
)  ∈ [0 1

4
)  ∈ [0 3

10
) and  ∈ [0 1

3
)

respectively.

 = 0  = 1

Fig. 1: MC estimates of E
³
̂ ()

´
for  = 04  = 500 and various bandwidths.
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Figs. 1 (a) and (b) graph the mean simulated kernel estimates (broken lines) of  (solid

line) under exogeneity ( = 0) and strong endogeneity ( = 1) for various bandwidth

choices. Endogeneity evidently has a negligible effect on the performance of ̂ irrespective

of bandwidth choice. As expected, smaller bandwidths lead to less bias in estimation

but also higher variance, as is apparent from the summary statistics in Table 1 which

reports the bias, standard deviation and root mean squared error of the estimates for

various bandwidths and values of  Figs. 2 (a) and (b) graph the mean simulated kernel

estimates for various values of  and for  ∈ {0 1}  confirming that the performance of
̂ is robust to the presence of long memory drivers in the regressor innovations as well as

to the degree of endogeneity in the regressor.

In the scale of Figs. 1 - 2, the difference in performance of the kernel estimates in

terms of average location (and bias) is virtually indistinguishable in these two cases. The

summary statistics on bias in Table 1 indicate that bias is slightly smaller on average

under strong endogeneity than it is for exogenous regressors. But while endogeneity and

long memory innovations in the regressor seem to have a negligible effect on bias in the

kernel estimates, long memory innovations do affect variance. Table 1 shows that the

standard deviation of the estimates increases by 25-30% as  increases from 0 to 04

 = 0  = 1

Fig. 2: MC estimates of E
³
̂ ()

´
for  = 1  = 500 and various 
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(a) Densities of  (b) Densities of  and  (1 0)

Fig. 3: Densities of  =


 and the kernel estimate (3.5) of  (1 0) for various

values of ,  = 05 and  = 500

Table 1

 = 0  = 1

  Bias Std Rms Bias Std Rms

04 −13 0.013 0.166 0.173 0.007 0.156 0.161

−14 0.030 0.136 0.151 0.025 0.125 0.140

−15 0.053 0.130 0.163 0.048 0.119 0.153

−16 0.076 0.130 0.184 0.072 0.119 0.175

02 −13 0.012 0.151 0.155 0.008 0.144 0.149

−14 0.032 0.125 0.141 0.028 0.117 0.132

−15 0.058 0.119 0.156 0.054 0.111 0.147

−16 0.083 0.119 0.179 0.080 0.111 0.171

0 −13 0.013 0.127 0.132 0.007 0.125 0.128

−14 0.035 0.107 0.125 0.029 0.105 0.121

−15 0.061 0.104 0.145 0.056 0.102 0.139

−16 0.089 0.105 0.172 0.084 0.102 0.165

Figs.3 (a) and (b) graph simulation estimates of the densities of the standardized test

statistic  =


 and the kernel estimate (3.5) of  (1 0). Fig. 3(a) shows that, as the

long memory parameter  increases, the density of  is heavily concentrated close to the

origin. By contrast, when  = 0 the density appears almost flat in the scale of the Fig.3(a).

When  = 0 the limit distribution is proportional to that of the local time of standard

Brownian motion,  (1 0)  whose distribution function is {2Φ ()− 1}1 { ≥ 0}  as
given in Gao et al (2012). Fig. 3(b) shows the densities of  against those of the kernel

estimate (3.5) of the local time  (1 0) of fractional Brownian motion for  = 03 04
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The concentration in the distributions of  and  (1 0) close to the origin in relation

to that of  (1 0) is evident in these graphs. A consequence of the concentration of the

distribution of  in the long memory case is that tests based on
̂√

 will be highly

conservative in the presence of long memory, corroborating the result shown earlier in

(3.7) that the size of a test based on 1√

 tends to zero as →∞ whenever  ∈ ¡0 1

2

¢


6 Conclusion

The results in the present paper provide a sequel to those in Wang and Phillips (2009b),

bringing the limit theory for nonparametric nonstationary regression close to that of the

linear cointegrated system in terms of functionality under general short memory innova-

tions and a single endogeneous regressor. The nonparametric estimation and inference

results are robust to long memory driver innovations in the regressors, which further

widens the scope of potential applications. The specification test results of Gao et al

(2012) are also shown to hold under short memory innovations and an endogenous regres-

sor, confirming a conjecture based on simulations reported in their paper.

The presence of long memory driver innovations in the regressor does raise obstacles

in specification testing for functional form. The specification test of Gao et al (2012) is

no longer pivotal in this case and leads to tests with asymptotic size zero in the presence

of long memory. Practical implementation of an appropriately re-scaled test statistic is

inhibited by parameter dependence in the rate of convergence of the test and in the limit

theory which depends on the local time of fractional Brownian motion with an unknown

parameter. These findings in the long memory case suggest that further research on

specification testing is warranted to develop procedures that are robust under these wider

conditions.

7 Proofs of the Main Results

We start with several propositions. These provide certain key results which are used in

the proofs of the main theorems and which are of interest in their own right. Their proofs

are given in Section 8.

PROPOSITION 7.1. Suppose Assumptions 2.1—2.2 hold and () is a bounded function

satisfying
R∞
−∞ |()| ∞.
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(i) For any  →∞ and → 0 we have





X
=1

( ) →

Z ∞

−∞
()(1 0) (7.1)

where  =  and (1 0) is defined as in (2.3). Furthermore,





X
=1

|()| (1 + ||) =  (1) (7.2)

¡


¢12 X
=1

() =

(
 (1) under C1

 (log
12 ) under C2

(7.3)

(ii) If an addition Assumption 2.3, for any  → 0 ( log  → 0 under C2) satisfying

 →∞ and any fixed , we haven¡ 


¢12 X
=1


£
( − )

¤






X
=1


£
( − )

¤o
→

©
  

12

 (1 0)

Z ∞

−∞
()(1 0)

ª
 (7.4)

where  2 = E20
R∞
−∞2() and  is a standard normal variate independent of

(1 0).

(iii) If in addition |() − ()| ≤ | − | whenever | − | is sufficiently small, then
for any → 0 satisfying 1−0 →∞, where 0 can be as small as required,

sup
||≤log

¯̄ X
=1


£
( − )

¤− X
=1


¡


¢¯̄
=  ( log

−1 ) (7.5)

PROPOSITION 7.2. Suppose Assumptions 2.1—2.2 hold.

(i) For any locally bounded function () (i.e., bounded on any compact set), we have

1



X
=1

()→

Z 1

0

[()] (7.6)

1



X
=1

|()|(1 + ||) =  (1) (7.7)

(ii) Let () be a positive real function which is bounded away from zero as  → ∞
and assume

P∞
=0 

12(|1| + |2|)  ∞. For any real function () satisfying

|()| ≤  ()(1 + ||) for some   0 and

|()− ()| ≤  ()
£|− |+1() +2()

¤
 (7.8)
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whenever  and  are in a compact set, where 1() and 2() are bounded and

integrable functions, we have

1

()
√


X
=1

() =  (1) (7.9)

PROPOSITION 7.3. Suppose Assumptions 2.1—2.2 and 3.1 hold.

(i) If
R∞
−∞ |()| ∞ and |()| is bounded by a constant, for any  satisfying → 0

and  →∞, we have




Z ∞

−∞

n X
=1

[( − )]

o2
() =  (1) (7.10)

If in addition 2 log → 0, then





Z ∞

−∞

n X
=1

[( − )]

o2
()→  0 (1 0) (7.11)

where  0 = E20
R∞
−∞2()

R∞
−∞ ().

(ii) If() and () satisfy Assumption 3.4, for any h satisfying → 0 and 1−0 →
∞, where 0 can be as small as required, we have¡ 



¢2 Z ∞

−∞

n X
=1

[( − )]()
o2
()→  1 

2
(1 0) (7.12)

where  1 =
¡ R∞
−∞()

¢2 R∞
−∞2()().

7.1. Proof of Theorems 2.1 and 2.2. In view of the joint weak convergence given in

(7.4), the proofs of Theorems 2.1 and 2.2 follow in precisely the same way as WP (2009b,

Theorem 3.1). See also Wang (2013). The details are therefore omitted. 2

7.2. Proof of Theorem 3.1. Under the null 0, we have  = ( 0) + . Simple

calculation gives the decomposition

 =

Z ∞

−∞

n X
=1

[( − )]
£
( ̂)− ( 0) + 

¤o2
()

= 1 + 2 + 3 (7.13)

where 1 =
R∞
−∞

nP

=1[( − )]

o2
()

2 =

Z ∞

−∞

n X
=1

[( − )]
£
( ̂)− ( 0)

¤o2
()
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and |3|2 ≤ 41 2 by Hölder’s inequality. To prove (3.2), by using (7.11) of Proposition
7.3, it suffices to show that 2 =  (). Indeed, as 1() satisfies Assumption 3.4

with  = , it follows from Assumptions 3.2—3.3 and the result (7.12) in Proposition 7.3

that

2 ≤  ||̂ − 0||2
Z ∞

−∞

n X
=1

[( − )]1()
o2
()

=  () (7.14)

as required. The proof of Theorem 3.1 is now complete. 2

7.3. Proof of Theorem 3.2. Under the alternative 1, the test statistic  can be

written as

 =

Z ∞

−∞

n X
=1

[( − )]
£
∗ + ()

¤o2
()

= 1 + 2 + 3 + 24 + 2 5

where ∗ =  + ( ̂)− ( 0),   = 1 2 3, are defined as in proof of Theorem

3.1,

5 =

Z ∞

−∞

n X
=1

[( − )]()
o2
()

and |4| ≤ [(1 + 2 + 3)]
12 (5)

12 by Hölder’s inequality. Let  = 2. We

have  →∞. Note that 1+2+3 =  (), due to (7.10), (7.14) and |3|2 ≤
41 2. This, together with

¡



¢2
5 → 1 

2
(1 0) and  (0  2(1 0)  ∞) = 1,

yields

∆ :=



|1 + 2 + 3 + 24|

=  (1) + (
12
 )

and for any 0  0, as →∞


³ 


 ≥ 0

´
≥ 

³ 


 ≥ 34

´
= 

h¡ 


¢2
5 ≥ −14 − −1 ∆

i
≥ 

h¡ 


¢2
5 ≥ −14 2

i
→ 1

which proves Theorem 3.2. 2

7.4. Proof of Theorem 4.1. The proof follows the same argument as that of Lemma 1

in Andrews and Sun (2004). For convenience we outline the argument here. LetΘ0 = { ∈
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Θ : k (− 0) k≤  k − 0 k≤ } for some   0 so that { ∈ Θ :k − 0 k≤ } ⊂ Θ

and () is twice differentiable on  ∈ { ∈ Θ :k  − 0 k≤ }. Note that

̇(0) = −
X
=1

̇( 0)( − ( 0)) = −
X
=1

̇( 0)

̈() =

X
=1

̇( )̇( )
0 −

X
=1

̈( ) −
X
=1

̈( )
£
( )− ( 0)

¤


and recall the definitions of  and . It follows by Taylor expansion that

()−(0) = ̇(0)
0( − 0) +

1

2
( − 0)

0̈(0)( − 0) +( 0)

=
1

2

¡
( − 0) +  −1 

¢0

¡
( − 0) +  −1 

¢
+
1

2
 0

−1
  +1( 0) (7.15)

for all  ∈ Θ0, where

|( 0)| ≤ sup
1∈Θ0

|( − 0)
0£̈(1)− ̈(0)

¤
( − 0)| and

1( 0) = ( 0) +
1

2
( − 0)

0¡ X
=1

̈( 0)
¢
( − 0)

In view of conditions (i)—(iii), simple calculations show that, for all  ∈ Θ0,

|1( 0)| ≤ k ( − 0) k2
n
sup
1∈Θ0

k (−1
 )

0 £̈(1)− ̈(0)
¤
−1

 k

+ sup
1∈Θ0

k (−1
 )

0
X
=1

̈( 1)
−1
 k

o
=  (

−2
 ) k ( − 0) k2  (7.16)

Let e = 0 −−1
  −1  It follows from (iv) and  →∞ that

 (e ∈ Θ0) ≤  (|| −1 || ≥ ) +  (||−1
  −1 || ≥ )→ 0

This, together with (7.15) and (7.16), yields

(e)−(0) =
1

2
 0

−1
  +1(e 0)

where 1(e 0) =  (1). For any   0 and  ≥ 1, let

Θ() = { ∈ Θ : ||( − 0) +  −1 || ≤ }
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Recall || −1 || =  () =  () and ||−1
 || = (1). It follows that  [Θ() ⊂

Θ0]→ 1, as →∞ and sup∈Θ()
|1( 0)| =  (1). Consequently, for any  ∈ Θ(),

where Θ() denotes the boundary of Θ(), we have

()−(e) = 1

2
 0 +  (1)

where  is a vector with |||| =   0. Since  →   0, a.s., we have  (1
2
 0 

0) → 1 as  → ∞. Hence, for each   0, the event that the minimum of ()

over Θ() is in the interior of Θ() has probability that goes to one as  → ∞. In
particular, for each   0, there exists a point ̂() ∈ Θ() (not necessary unique)

so that  (̇[̂()] = 0) → 1, as  → ∞. In consequence, there exists a sequence of
̂ = ̂(1) ∈ Θ(1) where  → ∞ so that  (̇(̂) = 0) → 1, as  → ∞, and
(4.2) holds.

Finally, if we have (iv)0, then (4.2) holds with  = 1. The asymptotic distribution

follows immediately from (4.2) and (iv)0. 2

7.5. Proof of Theorem 4.2. It suffices to verify the conditions (i)—(iv) of Theorem

4.1, with  = log ,  =
p
 I where I is the identity matrix,

 = Σ(1 0) and  =

(
1 under C1

log12  under C2

Let Ω = { : || − 0|| ≤  log }. (i)—(iii) of Theorem 4.1 will follow if we prove: for

any 1 ≤   ≤ ,




sup
∈Ω

X
=1

¯̄
̇( ) ̇( )− ̇( 0) ̇( 0)

¯̄
=  (log

−2 ) (7.17)




sup
∈Ω

X
=1

¯̄
̈( ) [( )− ( 0)]

¯̄
=  (log

−2 ) (7.18)




sup
∈Ω

¯̄ X
=1

̈( )
¯̄
=  (log

−2 ) (7.19)

We only prove (7.17) by using part (i) of Proposition 7.1. The other derivations are similar

and the details are omitted. First note that |̇( )| 1 ≤  ≤  are uniformly bounded

on Θ from Assumption 4.1 (i) and (ii). It follows from Assumption 4.1 (ii) that¯̄
̇( ) ̇( )− ̇( 0) ̇( 0)

¯̄
≤ 

¯̄
̇( )− ̇( 0)

¯̄
+ 1

¯̄
̇( )− ̇( 0)

¯̄
≤ || − 0||

¡
̇() + ̇()

¢
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and (7.17) follows immediately from (7.2) of Proposition 7.1.

The required condition (iv) of Theorem 4.1 follows from (7.3) of Proposition 7.1 and the

following fact: using (7.1) of Proposition 7.1 with  =  and () = 01̇( 0) ̇( 0)
02,

we have, for any  = (1  ) ∈ R  = 1 2





X
=1

01̇( 0) ̇( 0)
02 → 01 2

The proof of Theorem 4.2 is now complete. 2

7.6. Proof of Theorem 4.3. Similar to the proof of Theorem 4.2, we verify condi-

tions (i)—(iv) of Theorem 4.1 with  = log and  = 1.

First for (iv). Let  =
R 1
0
[() 0][() 0]

0. It is readily seen that   0

a.s. due to
P

 =
R
||≤ ( 0)( 0)

0  0 for all   0. Furthermore, for any

 = (1  )
0, it follows from Assumption 4.2 (iii) and (7.6) of Proposition 7.2 with

() =
P

=1 ( 0)( 0) that

(−1
 )0

X
=1

̇( 0)̇( 0)
0−1

 

=
1



X
=1

X
=1



()()
̇( 0)̇( 0)

=
1



X
=1

X
=1

( 0)( 0)
£
1 +  (1)

¤
→ 0 

Hence (−1
 )

0 P

=1 ̇( 0)̇( 0)
0−1

 →  . On the other hand, (7.9) of Proposi-

tion 7.2 implies (4.1) with  = 1. These facts yield the required condition (iv) of Theorem

4.1.

To verify (i)—(iii), we first show that, for all 1 ≤   ≤ ,

1

̇()̇()
sup
∈Ω

X
=1

¯̄
̇( ) ̇( )− ̇( 0) ̇( 0)

¯̄
=  (1) (7.20)

1

()̈()
sup
∈Ω

X
=1

¯̄
̈( ) [( )− ( 0)]

¯̄
=  (1) (7.21)

1

̈()
sup
∈Ω

¯̄ X
=1

̈( )
¯̄
=  (1) (7.22)

where Ω = { : ||( − 0)|| ≤ log }. In fact, it follows from Assumption 4.2(i)-(ii)
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that, for any 1 ≤  ≤  and  ∈ Θ,¯̄
̇( )

¯̄
≤  ̇()

¡
1 + || − 0||

¢
(1 + ||)¯̄

̇( )− ̇( 0)
¯̄
≤  || − 0||̇()(1 + ||)

This, together with || − 0|| = (1) whenever  ∈ Ω, implies that

sup
∈Ω

X
=1

¯̄
̇( ) ̇( )− ̇( 0) ̇( 0)

¯̄
≤ 

£
̇()̇()

¤ X
=1

¡
1 + ||2

¢
 (7.23)

Now, by noting that 1+ ||2 is a locally bounded function, the result (7.20) follows from
(7.7) of Proposition 7.2.

The proof of (7.21) is similar. As for (7.22), by noting

¯̄ X
=1

̈( )
¯̄
≤

¯̄ X
=1

̈( 0)
¯̄
+

X
=1

|̈( )− ̈( 0)| ||

≤
¯̄ X
=1

̈( 0)
¯̄
+  || − 0|| ̈()

X
=1

(1 + ||)||

the result follows from (7.7) and (7.9) of Proposition 7.2.

Recalling sup1≤≤ | () ̈()̇() ̇()
| ∞, it follows from (7.21) that

1

̇()̇()
sup
∈Ω

X
=1

¯̄
̈( )[( )− ( 0)]

¯̄
≤ 

̈()()
sup
∈Ω

X
=1

¯̄
̈( )[( )− ( 0)]

¯̄
=  (1)

for any 1 ≤   ≤ . This fact implies that

sup
:k(−0)k≤

k (−1
 )

0
X
=1

̈( )
£
( )− ( 0)

¤
−1

 k=  (1)

which yields the condition (ii) of Theorem 4.1. By using (7.20) and (7.22), similar argu-

ments provide conditions (i) and (iii) of Theorem 4.1. The proof of Theorem 4.3 is now

complete. 2

27



8 Proofs of Propositions

8.1 Preliminaries

We may write, for any   ,

 =

X
=1

X
=−∞

−

=  +

X
=+1

X
=−∞

− +
X

=+1

X
=+1

−

=: ∗ + 0 (8.1)

where ∗ depends only on ( −1 ) and

0 =
−X
=1

X
=1

+− =
X

=+1



−X
=0



Define
P

= = 0 if   , and put  =
P

=0 . By the definition of  and , elementary

calculations show that

 ³
½

1−() under C1

1 under C2.
(8.2)

E(0)
2 =

X
=+1

2− ³ 2− ³ (− ) 2− (8.3)

for   .1 We further let e = 0−Λ and e = −Λ, where Λ is a functional

of some   ≤  such that Λ is independent of e and e, satisfying EΛ = 0. In

view of (8.2 )—(8.3) and
R∞
−∞(1+ ||)|E0 | ∞, the following fact holds for −  ≥ 1

and Λ satisfying sup−≥1 EΛ
2
E

02
  1

F: e− and e have density functions () and () respectively, and

the functions () and () are uniformly bounded over  by a constant ,

and

sup


|(+ )− ()| ≤ min{|| 1} (8.4)

sup


|(+ )− ()| ≤ min{|| 1} (8.5)

See Section 3.1 of WP (2009a) or Section 8.1 of WP (2012) with some routine modifica-

tions. In particualr, the fact F holds true for all −  ≥ 1 if Λ = 0 and 0 = 0 6= 0.
1Here and below the notation  ³  denotes 0  lim inf→∞   lim sup→∞  ∞.
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Recall that 0 = ( ) is a sequence of iid random variables with E0 = 0 and

E||0||2  ∞. To introduce the following lemmas, let F = ( −1), Λ() be a real

function of its components, () be a bounded real function satisfying
R |()|  ∞

and Assumptions 2.1—2.2 hold. We use 1  to denote constants which differ at each

occurence.

LEMMA 8.1. Let Λ = Λ(1   0
), where 1 2  0

is a subset of {  − 1 }.
There exists an 0  0 such that

(i) for any   0 and  ≥ 0, we have

E
©|Λ| |()|ª ≤  E|Λ|



Z ∞

−∞
|()| (8.6)

(ii) for any   0 and −  ≥ 0, we have

E
©|Λ| |()| ¯̄F

ª ≤ E|Λ|
−

Z ∞

−∞
|()| (8.7)

provided + 1 ≤  ≤   = 1 0. If in addition EΛ = 0, then¯̄̄
E
©
Λ ()

¯̄
F

ª ¯̄̄ ≤  

2−

Z ∞

−∞
|()|  (8.8)

where  = 0 (EΛ2)12
P−min{10}

=0 ||. Furthermore, if Λ is a constant, the result

(8.7) remains to be true for any   0 and −  ≥ 1.

Proof. We only prove (8.8). The other derivations are similar and the details are

omitted. Let Λ0
=
P0

=1 − and e = 0 − Λ0
. Recall (8.2) and (8.3). There

exists an 0  0 such that, whenever −  ≥ 0, EΛ20
≤ E022. It follows from fact F,

the independence of  and (8.1) that

E
©
Λ ()

¯̄
F

ª
= E

©
Λ 
£
(∗ + Λ0

+ e)¤ ¯̄F

ª
= E

n
Λ

Z ∞

−∞

£
(∗ + Λ0

+ −)
¤
()

¯̄
F

o
=



−

Z ∞

−∞
() ∗() (8.9)

where

∗() = E
n
Λ 

¡−∗ − Λ0
+ 

−

¢ ¯̄F

o


Note that E
n
Λ 

¡−∗+
−

¢ ¯̄F

o
= 0. By (8.4), we have

|∗()| ≤ E
£|Λ| min{|Λ0

|− 1}
¤


Taking this estimate into (8.9), simple calculations yield (8.8). 2
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LEMMA 8.2. Suppose that EΛ(1) = 0 and () is a bounded function satisfyingR∞
−∞ |()| ∞.
(i) For any integer  ≥ 1, there exists a constant 0 such that

sup


E
¯̄ X
=1


£
( − )

¤¯̄ ≤ 
0 (+ 1)! ()

 (8.10)

(ii) For any   0,  →∞ and  ≥ 0, we have

sup


E
¯̄ X
=1

Λ(−) 
£
( − )

¤ ¯̄2
≤  EΛ2(1) ()

(
1 + 12 under C1

1 + 12 +  log  under C2
(8.11)

Consequently, for the  defined in Assumption 2.2, we have

E
¯̄ X
=1

 ()
¯̄2 ≤  E||1||2 

(
1 under C1

log  under C2
(8.12)

Furthermore, if 0
=
P∞

=0
 

0
−, where  = (1 2) and  = (Λ1()Λ2())

with E1 = 0, then for all → 0 ( log → 0 under C2) and  →∞,

sup


E
¯̄ X
=1

0
[( − )]

¯̄2
≤  E||1||2 ()

£ ∞X
=0

14(|1|+ |2|)
¤2
 (8.13)

Proof. For the proof of (8.10), see Lemma 5.1 of Chan and Wang (2013), which comes

from an application of (8.7). We next prove (8.11). Let
P

= = 0 for    and write

∆ ≡
¯̄ X
=1

Λ(−) 
£
( − )

¤ ¯̄2
≤ 2

¯̄ X
=0

Λ(−) 
£
( − )

¤ ¯̄2
+ 

¡ 0X
=1

|Λ(−)|
¢2

= 2
³ X
=0

X
=1

|−|0

+2

−1X
=0

X
=+0

´
Λ(−)Λ(−) 

£
( − )

¤

£
( − )

¤

+
¡ 0X
=1

|Λ(−)|
¢2

= ∆1 +∆2 +∆3  (8.14)
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where 0 is chosen as in Lemma 8.1. Using |()| ≤  and Lemma 8.1 with () =

( − ), we have that, for  ≥ 0 and | − |  0,¯̄
EΛ(−)Λ(−) 

£
( − )

¤

£
( − )

¤¯̄
≤  E

¯̄
Λ(−)Λ(−) 

£
( − )

¤¯̄
≤  EΛ2(1)

and for  ≥ 0 and  −  ≥ 0,¯̄
EΛ(−)Λ(−) 

£
( − )

¤

£
( − )

¤¯̄
≤

(
E
¯̄
Λ(−)Λ(−) 

£
( − )

¤
E
©

£
( − )

¤¯̄F

ª¯̄
if  −  ≤ ,

E
¯̄
Λ(−) 

£
( − )

¤
E
©
Λ(−) 

£
( − )

¤¯̄F

ª¯̄
if  −   ,

≤  EΛ2(1)
2 −1

(
−1− if  −  ≤ P

=0 || −2− if  −   

It follows from these facts that

sup


E|∆1| ≤ EΛ2(1)
X

=1

X
=1

|−|0

1 ≤ 1 EΛ2(1)

sup


E|∆2| ≤ EΛ2(1)
2

−1X
=0

−1
³ ∧(+)X

=+0

−1− +
X

=0

||
X

=+

−2−
´

≤  EΛ2(1) (
2)

(
 +

P

=0 || under C1

 +
P

=0 || log under C2

≤  EΛ2(1) (
2)

(
12 under C1

12 + log under C2

On the other hand, it is readily seen that sup E|∆3| ≤  EΛ2(1) Taking these estimates

into (8.14) and noting  →∞, we obtain the required (8.11).
The result (8.13) follows from

E
¯̄ X
=1

0
[( − )]

¯̄2
= E

¯̄ ∞X
=0

X
=1

 
0
− 

£
( − )

¤ ¯̄2
≤

∞X
=0

14(|1|+ |2|)
∞X

=0

−14(|1|+ |2|)−1E
¯̄ X
=1

 
0
− 

£
( − )

¤ ¯̄2
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≤ 2

∞X
=0

14(|1|+ |2|)
∞X

=0

−14(|1|+ |2|)

³
E
¯̄ X
=1

Λ1(−)
£
( − )

¤ ¯̄2
+ E

¯̄ X
=1

Λ2(−)
£
( − )

¤ ¯̄2´
≤  E||1||2 ()

£ ∞X
=0

14(|1|+ |2|)
¤2


where we employ Hölder’s inequality,  → 0 ( log  → 0 under C2) and (8.11) with

Λ() = Λ1() and Λ2() respectively. The proof of (8.12) is similar, and hence the details

are omitted. The proof of Lemma 8.2 is now complete. 2

LEMMA 8.3. Suppose that EΛ(1) = 0 and |Λ()| ≤ . Let  =
R∞
−∞2[( −

)] () and  =
R∞
−∞[(−)][(−)] () where () has compact

support. Then, for any h satisfying 2 log  → 0 and  → ∞, 0 ≤  1 ≤ 0,

where 0 is a fixed constant, we have

X
=1

Λ(−)Λ(−1) = 

£
()

12
¤
 (8.15)X

1≤≤
Λ(−)Λ(−1) =  () (8.16)

Consequently, if we let e = b−Eb, where b = (|||| ≤ ), and e1 =P0

=0 e−,
then

X
=1

(e21 − Ee21)  = 

£
()

12
¤
 (8.17)X

1≤≤
e1 e1  =  () (8.18)

Proof. We only prove (8.16). The proof of (8.15) is similar but simpler. The proofs of

(8.17) and (8.18) follow easily from (8.15) and (8.16), respectively. We omit the details.

For notational convenience, write  = Λ(−). By symmetry and |Λ()| ≤ , it

follows that

E
¯̄ X
1≤≤

 1 
¯̄2 ≤ 11() + 2 2() + 3 3() (8.19)

for some constants 1 2 3  0, where

1() =
X

1≤≤
E
¡
2
¢
 2() =

X
1≤ 6= 6=≤

E
©
 

ª


3() =
X

1≤≤

¯̄
E
©
 1  1  

ª¯̄
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As () has compact support (say () = 0 if || ≥), it is readily seen that, for any

 ∈ R,
(− )(− ) = 0

whenever | − | ≥. This implies that

E( ) = E
nZ ∞

−∞

Z ∞

−∞
[( − )][( − )]

¯̄
[( − )][( − )] ()()

o
≤

Z ∞

−∞

Z
|−|≤

E
n
[( − )]

[( − )][( − )]
o
()()

Now (8.10) of Lemma 8.2 yields

2() ≤
Z ∞

−∞

Z
|−|≤

E
X

1≤ 6= 6=≤

n
[( − )]

[( − )][( − )]
o
()()

≤ sup


E
³ X

=1

[( − )]
´3 Z ∞

−∞

Z
|−|≤

()()

≤  ()
34 (8.20)

Similarly, we have

1() ≤ sup


E
³ X

=1

[( − )]
´2 Z ∞

−∞

Z
|−|≤

()()

≤  ()
23 (8.21)

We next consider 3. Note that 1 ≤ 0 and, due to Lemma 8.1,¯̄
E
¡
1[( − )] | F

¢¯̄ ≤ ½ − if −  ≤ 0 + 1

2− if −   0 + 1

We have that

sup


X
=+1

¯̄
E
¡
1 [( − )] | F

¢¯̄
≤  

+0X
=+1

− +  

X
=+0

−2− ≤  log 
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This result, together with (8.10), implies that

3 =
X

1≤≤

¯̄
E
©
 1  1  

ª¯̄
≤

Z ∞

−∞

Z ∞

−∞

X
1≤≤

¯̄
E
n
 1  1 [( − )][( − )]

[( − )][( − )]
o¯̄

()() 

≤ 

Z ∞

−∞

Z ∞

−∞

X
1≤

E
n
[( − )][( − )][( − )]

X
=+1

¯̄
E
¡
1 [( − )] | F

¢¯̄o
()() 

≤  log  sup


E
³ X

=1

[( − )]
´3 Z ∞

−∞

Z ∞

−∞
()()

≤  ()
34 log  (8.22)

Taking the estimates (8.20)-(8.22) into (8.19), we obtain

E
¯̄ X
1≤≤

 1 
¯̄2 ≤ 

£
()

34 log+ ()
23
¤
= [()

2]

whenever 2 log → 0. This proves (8.16), and also completes the proof of Lemma

8.3. 2

In the following Lemmas 8.4 and 8.5, let () be real function such that
R∞
−∞ |()| 

∞ and
R |̂()| ∞, where ̂() = R (). Under this condition, we have

() =
1

2

Z ∞

−∞
̂() (8.23)

Recall the definitions (8.1)-(8.3). Except when mentioned explicitly, we still make use of

the notation given there.

LEMMA 8.4. Let (0) =
P0

=0 − with 0 being a fixed constant. There exist

  0 and 0  0 such that for all  −  ≥ 0  ≥  and  ∈ R,

Λ( ) :=
¯̄
E
©
[( + 0)](0) exp

¡


X
=+1


√

¢ | F

ª¯̄
≤ (2− + −(−)); (8.24)

for all  −  ≥ 1  ≥ + 1 and  ∈ R,

Λ( ) ≤  12
©
E
£
2(0) | F

¤ª12
 (8.25)
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In consequence, for any  ∈ R, we have

sup
0≤≤

¯̄ X
=+1

E( )
¯̄
= 

£
()

12
¤
 (8.26)

sup
0≤≤

¯̄ X
+1≤≤

E( )
¯̄
= 

¡


¢
 (8.27)

where

( ) = [( + 0)](0) exp
©


X
=1


√

ª


( ) = [( + 0)] [( + 0)](0)(0) exp
©


X
=1


√

ª


Proof. We first prove (8.24). Let

(1) =

−0X
=+1


¡
 − + 

√

¢
 (2) =

X
=−0+1


¡
 − + 

√

¢


It follows from (8.23) and the independence of  that

Λ( ) ≤ 1

2

Z ¯̄
E

(1)
¯̄ ¯̄
E
©


(2) (0)
ª¯̄|̂()| 

We may take  sufficiently large so that 
√
 is as small as required. Without loss of

generality we assume  = 0 in the following proof for convenience. Recall (8.2) and (8.3).

There exists an 0  0 such that  −0 ≥ ( + )2 and

1 |−| ≤ |−| ≤ 2 |−|  ≤  ≤ ( + )2

for some 0  1  2 and all −  ≥ 0. On the other hand, there exist constants 1  0

and 2  0 such that ¯̄
E 1 

¯̄
≤
½

−1 if || ≥ 1,
−2

2

if || ≤ 1
since E1 = 0, E21 = 1 and 1 has a density. By virtue of these facts, simple calculations

show that, for any 1 ≤  ≤ 2, there exists   0 such that

Λ( ) ≤ 1

2

¡ Z
||≥ |−|

+

Z
||≤ |−|

¢¯̄
E

(1)
¯̄ ¯̄
E
©


(2) (0)
ª¯̄|̂()| 

≤  −(−)
Z
|̂()| + 

Z
||≤ |−|

−
2(−)2(||−1)

≤ (2− + −(−))
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where we have used the following fact: due to E(0) = 0, we have¯̄
E
©


(2) (0)
ª¯̄

=
¯̄
E
©
(

(2) − 1)(0)
ª¯̄

≤  |−1|
0X
=0

||E(|1 (0)|) ≤ 1 |−1|

This proves (8.24).

The proof of (8.25) is simple. Indeed, by noting that (8.7) remains to be true for any

−  ≥ 1 if Λ ≡ 1, we have

Λ( ) ≤
¡
E
©|[( + 0)]|2 | F

ª¢12 ©
E
£
2(0) | F

¤ª12
≤ 12

©
E
£
2(0) | F

¤ª12


as required.

We next prove (8.27). Due to  → 0, it follows from (8.24)-(8.25) and Lemma 8.1

that, for  −  ≥ log −1,

|E( )| ≤ E
©|[( + 0)]| |(0)| |Λ( )|

ª
≤ (2− + −(−))E

©|[( + 0)]| |(0)|
ª

≤ (2− + −(−))

(
12 for 1 ≤  −  ≤ 0,

 for  −  ≥ 0 + 1,

and for  −  ≤ log −1,

|E( )| ≤ 12 E
©|[( + 0)]| |(0)|

©
E
£
2(0) | F

¤ª12ª
≤ 12

(
12 for 1 ≤  −  ≤ 0,

 for  −  ≥ 0 + 1,

where 0 is a constant given as in Lemma 8.1. These facts imply that, for any  ∈ R,

sup
0≤≤

¯̄ X
+1≤≤

E( )
¯̄

≤  +

−1X
=0+1

³ +log −1X
=+1

+

X
=+log −1+1

´
sup


|E( )|

≤ + 32
−1X

=0+1

−1 + 

−1X
=0+1

X
=+log −1+1

−1 (2− + −(−))

≤ 32 + ()

X
=log −1+1

(2 + −)

≤ ()

(
min{12} under C1,

12 +  log under C2,

= ()
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due to  → 0 and  log → 0 under C2, which yields (8.27). The proof of (8.26) is

similar and hence the details are omitted. 2

LEMMA 8.5. Let (0) =
P0

=0 − with 0 being a fixed constant. Write, for

0 ≤  ≤ 1,

1() =




[]X
=1


£
( − )

¤
 () =





[]X
=1

2(0)
£
( − )

¤


() =
¡ 


¢12 []X
=1

(0)
£
( − )

¤


(i) For any → 0 and  →∞, we have

1()⇒
Z

()(1 0) () ⇒  (1 0)

on [0 1], where  = E21(0)
R
2()

(ii) For any fixed 0 ≤  ≤ 1, (), 2(), and ()  ≥ 1 are integrable.
(iii) () is tight on [0 1].

Proof. For the proof of part (i) see Proposition 3.2 of Wang and Phillips (2011).

The proofs of parts (ii) and (iii) are similar to Propositions 7.3 and 7.4 of WP (2009b),

respectively, only requiring the replacement of Lemmas 7.1 and 7.2 there by Lemma 8.4

of the present paper. We omit the details. 2

8.2 Proofs of Propositions

Proof of Proposition 7.1. Result (7.1) follows from WP (2009a), and (7.5) follows

from a simple application of Theorem 2.3 in Chan and Wang (2013a). By virtue of (8.6)

in Lemma 8.1 and (8.12) in Lemma 8.2, we have (7.2) and (7.3), respectively. To prove

(7.4), let (0) =
P0

=0  −. The result (8.13) in Lemma 8.2 establishes that, as first

→∞ and then 0 →∞,
X

=1

[ − (0)]
£
( − )

¤
= 

£
()

12
¤


This implies that (7.4) holds if we prove the following: for any 0  0,n¡ 


¢12 X
=1

(0)
£
( − )

¤





X
=1


£
( − )

¤o
→

©
 0 

12

 (1 0)

Z ∞

−∞
()(1 0)

ª
(8.28)
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where  20 = E
2
0(0)

R
2(),  is a standard normal variate independent of (1 0).

Recalling Lemmas 8.4 and 8.5, the outline for the proof of (8.28) is exactly the same as

that of (3.8) in WP (2009b). We omit the details. 2

Proof of Proposition 7.2. The result (7.6) is well known. See, Berkes and Horváth

(2006), for instance. Note that
P

=1 
2
 =  () and

2() is a locally bounded function.

(7.7) follows from (7.6) and the Hölder inequality:

X
=1

|()| (1 + ||) ≤
¡ X
=1

|()|2
¢12 ¡ X

=1

(1 + ||)2
¢12



To prove (7.9), we write

X
=1

() =

X
=1

()
¡ X
=0

+

∞X
=+1

¢
−

=

X
=0

X
=+1

£
()− (−−1)

¤
−

+

X
=0

−X
=1

(−1)  +

X
=1

()

∞X
=1

+−

= 1 + 2 + 3 say (8.29)

Let Ω = { : max1≤≤ || ≤}. It follows from (7.8) that

E|1(Ω)| ≤  ()

X
=0

X
=+1

E
©
−1
¯̄
 − −−1| |−|

ª
+ ()

X
=0

X
=+1

E
©
(|1()|+ |2(−)|)|−|
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(|1|+ |2|)
X
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E
©¯̄
 − −−1| (|−|+ |−|)

ª
+ ()

X
=0

(|1|+ |2|)
X

=+1

−1

≤ ()



X
=0

(|1|+ |2|)

≤ ()
√


∞X
=0

12(|1|+ |2|)

where we have used (8.6) of Lemma 8.1 and the following fact from Hölder’s inequality

E
©¯̄
 − −−1| (|−|+ |−|)

ª ≤ 
¡
E
¯̄
 − −−1|2

¢12 ≤ 
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Similarly, it follows from () ≤  () (1 + ||) that

E|3(Ω)| ≤  ()

X
=1

∞X
=1

E|+−|

≤ ()

X
=1

∞X
=+1

(|1|+ |2|)

≤ ()

X
=1

−12
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≤ ()
√


∞X
=0

12(|1|+ |2|)

Hence |1|+ |3| = 

£
()

√

¤
due to  (max1≤≤ || ≥)→ 0 as  →∞.

To estimate 2, let e = (max1≤≤ || ≤) and

e2 = X
=0

−X
=1

(e−1) 

Due to the independence of  and () ≤  () (1 + ||), we have

E|e2| ≤ X
=0

(|1|+ |2|)
n
E
¯̄ −X
=1

(e−1) |+ E¯̄ −X
=1

(e−1) |o
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X
=0

(|1|+ |2|)
n −X
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E2(e−1)o12
≤ ()

X
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n −X

=1

E
£
1 + |e−1|¤o12

≤ ()
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X
=0

(|1|+ |2|)

so that e2 = 

£
()

√

¤
. This yields |2| = 

£
()

√

¤
as 2 = e2 on Ω and

 (max1≤≤ || ≥)→ 0 as  →∞.
Combining all the above estimates, we obtain that

|
X

=1

()| ≤ |1|+ |2|+ |3| = 

£
()

√

¤


as required. 2

Proof of Proposition 7.3. Result (7.10) follows by direct application of (8.13) in

Lemma 8.2. To prove (7.11), for a fixed   0, let b = (|||| ≤ ),

e = b − Eb ̆ =  − e e = ∞X
=0

e− ̆ =

∞X
=0

 ̆−

39



Note that Ĕ1 = 0. It follows from (8.13) of Lemma 8.2 that

E
Z ∞

−∞

n X
=1

[( − )]̆

o2
() ≤ E||̆1||2 

≤  E||1||2(||1||  )

As E||1||2(||1||  )→ 0 as →∞ and  = e + ̆, simple calculations show that

(7.11) will follow if we prove




 :=





Z ∞

−∞

n X
=1

[( − )]eo2()
→ Ee20 Z ∞

−∞
2()

Z ∞

−∞
()(1 0) (8.30)

for each   0.

To prove (8.30), we let e1 =P0

=0 e− and e2 = e − e1. It is readily seen that
 = 1 + 2 + 3 (8.31)

where 3 ≤ 2 121 
12
2 , 2 =

R∞
−∞

nP

=1[( − )]e2o2() and
1 =

Z ∞

−∞

n X
=1

[( − )]e1o2()
= Ee210 X

=1

Z ∞

−∞
2[( − )]()+

X
=1

(e21 − Ee21) Z ∞

−∞
2[( − )]()

+2
X

1≤≤
e1e1 Z ∞

−∞
[( − )][( − )]()

= 1 +2 +3 say

Due to (8.13) of Lemma 8.2, we have

E2 ≤  sup


E
n X

=1

[( − )]e2o2
≤  E||1||2 ()

∞X
=0

14(|1|+ |2|)

i.e., 2 =  (), as  → ∞ first and then 0 → 0. Furthermore it follows from

(8.17) and (8.18) of Lemma 8.3 that |2|+ |3| =  () for each   0. Now, by

virtue of (8.31) and Ee210 → Ee20 as 0 →∞, (8.30) will follow if we prove



1 → Ee210 Z ∞

−∞
2()

Z ∞

−∞
()(1 0) (8.32)
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Let () = −1
R∞
−∞2(−)(). It is readily seen that R () = R∞−∞2()

R∞
−∞ ()

and |()| ≤ 
R∞
−∞ |()| ∞. Then (8.32) follows from theorem 2.1 of WP (2009a)

with minor modification. This completes the proof of (7.11).

We next prove (7.12). We may writeZ ∞

−∞

n X
=1

[( − )]()
o2
() = 1 + 2 + 23 (8.33)

where 3 ≤ 
12
1 

12
2 , 2 =

R∞
−∞

nP

=1[( − )]
£
()−()

¤o2
() and

1 =

Z ∞

−∞

n X
=1

[( − )]
o2
2()()

=
n X

=1

()
o2 Z

||≤log
2()()

+

Z
||≤log

h© X
=1

[( − )]
ª2 − © X

=1

()
ª2i

2()()

+

Z
||≥log

n X
=1

[( − )]
o2
2()()

= 
(1)
1 + 

(2)
2 + 

(3)
3  say

Since () has compact support, it follows from Assumption 3.4 and (8.10) that

E2 ≤  
Z ∞

−∞
E
n X

=1

[( − )]
o2
2
1()()

≤  sup


E
n X

=1

[( − )]
o2 Z ∞

−∞
2
1()()

≤  ()
2

This yields 2 = 
£
()

2
¤
. Similarly, by virtue of part (iii) of Proposition 7.1 and

(8.10), we have

| (2)
2 | ≤ sup

||≤log

¯̄ X
=1

©
[( − )] −()

ª¯̄ ×
Z
||≤log

X
=1

©
[( − )] +()

ª
2()()

= 
£
()

2
¤


| (3)
2 | ≤ sup



E
n X

=1

[( − )]
o2 Z

||≥log
2()()

= 
£
()

2
¤
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Taking these estimates into (8.33), (7.12) will follow if¡ 


¢2

(1)
1 →  1 

2
(1 0)

But this follows from 


P

=1() →

R∞
−∞()(1 0) and the continuous

mapping theorem. The proof of Proposition 7.3 is now complete. 2
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