ON BOHR SETS OF INTEGER-VALUED TRACELESS MATRICES

ALEXANDER FISH

Abstract

In this paper we show that any Bohr-zero non-periodic set B of traceless integer valued matrices, denoted by Λ, intersects non-trivially the conjugacy class of any matrix from Λ. As a corollary, we obtain that the family of characteristic polynomials of B contains all characteristic polynomials of matrices from Λ. The main ingredient used in this paper is an equidistribution result of Burgain-Furman-Lindenstrauss-Mozes [6].

1. Introduction

Let us denote by $\Lambda=\operatorname{Mat}_{d}^{0}(\mathbb{Z}), d \geq 2$, the set of integer valued $d \times d$ matrices with zero trace, and by $\mathbb{T}^{n}, n \geq 1$, the n-dimensional torus $\mathbb{R}^{n} / \mathbb{Z}^{n}$. Let G be a countable abelian group. A set $B \subset G$ is called a non-periodic Bohr set if there exist a homomorphism $\tau: G \rightarrow \mathbb{T}^{n}$, for some $n \geq 1$, with $\overline{\tau(G)}=\mathbb{T}^{n}$, and an open set $U \subset \mathbb{T}^{n}$ satisfying $B=\tau^{-1}(U)$. If the open set U contains the zero element of \mathbb{T}^{n}, then the set B is called a Bohr-zero set. We will also denote by $S L_{d}(\mathbb{Z})$ the group of $d \times d$ integer-valued matrices of determinant one.

The main result of this paper is the following.
Main Theorem. Let $d \geq 2$, and $B \subset M a t_{d}^{0}(\mathbb{Z})$ be a Bohr-zero non-periodic set. Then for any matrix $C \in M a t_{d}^{0}(\mathbb{Z})$ there exists a matrix $A \in B$ and a matrix $g \in S L_{d}(\mathbb{Z})$ such that $C=g^{-1} A g$.

The same result has been also proved independently by Björklund and Bulinski [4]. They use the recent works of Benoist-Quint [2] and [3], instead of the work of Bourgain-Furman-Lindenstrauss-Mozes as the main ingredient in the proof.
Corollary 1.1. Let $d \geq 2$, and $B \subset M a t_{d}^{0}(\mathbb{Z})$ be a Bohr-zero non-periodic set. The set of characteristic polynomials of the matrices in B coincides with the set of all characteristic polynomials of the matrices in $M a t_{d}^{0}(\mathbb{Z})$.

The following number-theoretic statement conjectured by B. Green and T. Sanders is an immediate implication of Corollary 1.1.

Corollary 1.2. Let $B \subset \mathbb{Z}$ be a Bohr-zero non-periodic set. Then the set of the discriminants over B defined by

$$
D:=\left\{x y-z^{2} \mid x, y, z \in B\right\}
$$

satisfies that $D=\mathbb{Z}$.
At this point we will define Furstenberg's system corresponding to a set B of positive density in a countable abelian group G. Recall, we say that B has positive density if upper Banach density of B is positive:

$$
d^{*}(B)=\sup _{\lambda \in \mathcal{F}} \lambda\left(1_{B}\right)>0
$$

where \mathcal{F} is the set of all Λ-invariant means on $\ell^{\infty}(G)$, i.e., non-negative normalised G-invariant linear functionals on $\ell^{\infty}(G)$. Since G is abelian, this implies that $\mathcal{F} \neq \emptyset$.

[^0]Furstenberg in his seminal paper [8] constructed an (ergodic) G-measure-preserving system ${ }^{1}(X, \eta, \sigma)$ and a clopen set $\tilde{B} \subset X$ such that

- $d^{*}(B \cap(B+h)) \geq \eta(\tilde{B} \cap \sigma(h) \tilde{B})$, for any $h \in G$.
- $\eta(\tilde{B})=d^{*}(B)$.

We will denote Furstenberg's system corresponding to B by $X_{B}=(X, \eta, \sigma, \tilde{B})$. Next, we will define the notion of the spectral measure corresponding to a set B of a countable abelian group G of positive density and its Furstenberg's system $X_{B}=(X, \eta, \sigma, \tilde{B})$. Denote by $1_{\tilde{B}}$ the indicator function of the set \tilde{B}. Then by Bochner's spectral theorem [7] there exists a non-negative finite Borel measure ν on \widehat{G} (the dual of G) which satisfies:

$$
\left\langle 1_{\tilde{B}}, \sigma(h) 1_{\tilde{B}}\right\rangle=\int_{\widetilde{G}} \chi(h) d \nu(\chi), \text { for } h \in G .
$$

The measure ν will be called the spectral measure of the set B and its Furstenberg's system X_{B}, and we will denote by $\widehat{\nu}(h)$ the right hand side of the last equation. We are at the position to state the main technical claim of the paper.

Theorem 1.1. Let $d \geq 2$, and let $B \subset M a t_{d}^{0}(\mathbb{Z})$ be a set of positive density such that the spectral measure ${ }^{2}$ of B has no atoms at non-trivial characters having finite torsion. Then for every $C \in M a t_{d}^{0}(\mathbb{Z})$ there exist $A \in B-B$ and $g \in S L_{d}(\mathbb{Z})$ with $C=g^{-1} A g$.

Theorem 1.1 is the strengthening of the following result that has been proved in [5] by use of the equidistribution result of Benoist-Quint [1].

Theorem 1.2. Let $d \geq 2$, and let $B \in \operatorname{Mat}_{d}^{0}(\mathbb{Z})$ be a set of positive density. Then there exists $k \geq 1$ such that for any matrix $C \in k M a t_{d}^{0}(\mathbb{Z})$ there exists $A \in B-B$ and $g \in S L_{d}(\mathbb{Z})$ with $C=g^{-1} A g$.

We would like to finish the introduction by stating the piecewise version of Main Theorem. We recall that a set $B \subset \Lambda$ called piecewise Bohr set if there is a Bohr set $B_{0} \subset \Lambda$ and a (thick) set $T \subset \Lambda$ of upper Banach density one, i.e., $d^{*}(T)=1$ such that $B=B_{0} \cap T$. Moreover, if the set B_{0} is non-periodic Bohr-zero, then the set B will be called piecewise Bohr-zero non-periodic. Theorem 1.1 implies the following result.

Theorem 1.3. Let $d \geq 2$, and let $B \subset \operatorname{Mat}_{d}^{0}(\mathbb{Z})$ be a piecewise Bohr non-periodic set. Then for every $C \in \operatorname{Mat}_{d}^{0}(\mathbb{Z})$ there exist $A \in B-B$ and $g \in S L_{d}(\mathbb{Z})$ with $C=g^{-1} A g$.

Let us show that Theorem 1.3 implies Main Theorem.
Proof of Main Theorem. Let $B \subset \Lambda$ be a Bohr-zero non-periodic set. Notice that there exists $B_{0} \subset \Lambda$ a Bohr-zero non-periodic set with the property that

$$
B_{0}-B_{0} \subset B
$$

Now, we apply Theorem 1.3 for the set B_{0}, and as a conclusion obtain the statement of the theorem.

Organisation of the paper. In Section 2 we establish the consequences of the equidistribution result of Bourgain-Furman-Lindenstrauss-Mozes [6] related to the adjoint action of

[^1]$S L_{d}(\mathbb{Z})$ on $\operatorname{Mat}_{d}^{0}(\mathbb{R}) / M a t_{d}^{0}(\mathbb{Z})$. In Section 3 we prove Theorems 1.1, and 1.3. In Section 4 we prove main technical propositions stated in Sections 2 and 3.
Acknowledgement. The author is grateful to Ben Green and Tom Sanders for fruitful discussions on the topic of the paper. He is also grateful to Benoist Quint for explaining certain ingredients of [3], and to Shahar Mozes for insightful discussions related to the paper [6].

2. Consequences of the work of Bourgain-Furman-Lindenstrauss-Mozes

We start by recalling the property of strong irreducibility of an action of a discrete group. Let Γ be a countable group, and V be a finite dimensional real space. We say that an action $\rho: \Gamma \rightarrow \operatorname{End}(V)$ is strongly irreducible if for every finite index subgroup H of Γ, the restriction of the action of ρ to H is irreducible. We also will be using the notion of a proximal element. An operator $T \in \operatorname{End}(V)$ will be called proximal, if there is only one eigenvalue of the largest absolute value, and corresponding to it eigenspace is one-dimensional.

Assume that a countable group Γ acts on a compact Borel measure space (X, ν). Let μ be a probability measure on Γ. Then the convolution measure $\mu * \nu$ on X is defined by:

$$
\int_{X} f d(\mu * \nu)=\int_{X}\left(\sum_{g \in \Gamma} f(g x) \mu(g)\right) d \nu(x), \text { for any } f \in C(X) .
$$

We will denote the Dirac probability measure at a point $x \in X$ by δ_{x}. For every $k \geq 2$, we define the probability measure $\mu^{* k}$ on Γ by

$$
\mu^{* k}(g)=\sum_{g_{1} \ldots \ldots \cdot g_{k}=g} \mu\left(g_{1}\right) \mu\left(g_{2}\right) \ldots \mu\left(g_{k}\right) .
$$

The main ingredient in the proofs of all our main results is the following seminal equidistribution statement due to Bourgain-Furman-Lindenstrauss-Mozes [6].
Theorem 2.1 (Corollary B in [6]). Let $\Gamma<S L_{n}(\mathbb{Z})$ be a subgroup which acts totally irreducibly on \mathbb{R}^{n}, and having a proximal element. Let μ be a finite generating probability measure on Γ. Let $x \in \mathbb{T}^{n}$ be a non-rational point. Then the measures $\mu^{* k} * \delta_{x}$ converge in weak*-topology as $k \rightarrow \infty$ to Haar measure on \mathbb{T}^{n}.

In this note, the acting group will be $\Gamma=S L_{d}(\mathbb{Z})$. The group Γ acts by the conjugation on the real vector space $V=M a t_{d}^{0}(\mathbb{R})$ of real valued $d \times d$ matrices with zero trace. So, an element $g \in S L_{d}(\mathbb{Z})$ acts on $v \in V$ by $A d(g) v=g^{-1} v g$, and such action called the adjoint action of $S L_{d}(\mathbb{Z})$. Notice that V is isomorphic to $\mathbb{R}^{d^{2}-1}$. The next claim will allow us to apply Theorem 2.1 in our setting.
Proposition 2.1. The adjoint action of $S L_{d}(\mathbb{Z})$ on $M a t_{d}^{0}(\mathbb{R})$ is strongly irreducible, and $S L_{d}(\mathbb{Z})$ contains an element which acts proximally.

Let us denote by $A_{d}=V / \Lambda$. Notice that A_{d} is isomorphic to $\mathbb{T}^{d^{2}-1}$, and it is the dual group of Λ. The adjoint action of $S L_{d}(\mathbb{Z})$ leaves Λ invariant. Therefore, $S L_{d}(\mathbb{Z})$ also acts on A_{d}. Proposition 2.1 implies by Corollary B from [6] the following statement.

Proposition 2.2. Let μ be a probability measure on $S L_{d}(\mathbb{Z})$ with finite generating support. Let $x \in A_{d}$ be a non-rational point. Then the measures $\mu^{* k} * \delta_{x}$ converge as $k \rightarrow \infty$ in the weak* topology to the normalised Haar measure on A_{d}.

We will be using Proposition 2.2 to prove the following claim.
Proposition 2.3. Let μ be a probability measure on $S L_{d}(\mathbb{Z})$ with finite generating support. Let ν be a probability measure on A_{d} with no atoms at rational points. Then the measures $\mu^{* k} * \nu$ converge as $k \rightarrow \infty$ in the weak k^{*} topology to the normalised Haar measure on A_{d}.

3. Proofs of Theorems 1.1, and 1.3

Proof of Theorem 1.1. Recall that we denote by $\Lambda=M a t_{d}^{0}(\mathbb{Z})$, and by $\Gamma=S L_{d}(\mathbb{Z})$. Let $B \subset \Lambda$ be a set of positive density with Furstenberg's system $X_{B}=(X, \eta, \sigma, \tilde{B})$ and such that the spectral measure of B has no atoms at non-trivial characters. We make the identification of the dual space of Λ with the torus A_{d} by corresponding for every $x \in A_{d}$ the character χ_{x} on Λ given by:

$$
\chi_{x}(h)=\exp (2 \pi i x \cdot h), \text { for } h \in \Lambda .
$$

Notice that the trivial character on Λ corresponds to the zero element $o_{A_{d}}$ of A_{d}, and characters having finite torsion correspond to the rational points of A_{d}. Denote by ν the spectral measure of B, i.e., for every $h \in \Lambda$ we have

$$
\begin{equation*}
\left\langle 1_{\tilde{B}}, \sigma(h) 1_{\tilde{B}}\right\rangle=\int_{A_{d}} \exp (2 \pi i x \cdot h) d \nu(x) . \tag{1}
\end{equation*}
$$

By the assumptions of the theorem, ν has no atoms at the rational points. Then Γ acts on Λ by the conjugation. We will show that for every $h \in \Lambda$ there exists $g \in \Gamma$ such that

$$
\widehat{\nu}\left(g^{-1} h g\right)=\left\langle 1_{\tilde{B}}, \sigma\left(g^{-1} h g\right) 1_{\tilde{B}}\right\rangle>0 .
$$

This will imply the claim of the theorem by the first property of Furstenberg's system X_{B}. Assume, that on the contrary, that there exists $h \in \Lambda$ such that for all $g \in \Gamma$ we have

$$
\begin{equation*}
\widehat{\nu}\left(g^{-1} h g\right)=0 . \tag{2}
\end{equation*}
$$

It follows from the first property of the spectral measure listed below that the equation 2 holds for a non-zero $h \in \Lambda$. By the assumptions on B, we know that

- $\nu\left(\left\{o_{A_{d}}\right\}\right)=\eta(\tilde{B})^{2}>0$.
- For every rational non-zero point $x \in A_{d}$ we have $\nu(\{x\})=0$.

Indeed, the second property is given to us by the assumptions. To prove the first one, notice that for any Følner sequence ${ }^{3}\left(F_{n}\right)$ in Λ :

$$
\begin{gather*}
\frac{1}{\left|F_{n}\right|} \sum_{h \in F_{n}}\left\langle 1_{\tilde{B}}, \sigma(h) 1_{\tilde{B}}\right\rangle= \tag{3}\\
\int_{A_{d}} \frac{1}{\left|F_{n}\right|} \sum_{h \in F_{n}} \exp (2 \pi i x \cdot h) d \nu(x) \rightarrow \nu\left(\left\{o_{A_{d}}\right\}\right), \text { as } N \rightarrow \infty .
\end{gather*}
$$

In the last transition, we have used Lebesgue's dominated convergence theorem and the easy claim that for any non-trivial character χ on Λ, and a Følner sequence $\left(F_{n}\right)$ in Λ we have:

$$
\frac{1}{\left|F_{n}\right|} \sum_{h \in F_{n}} \chi(h) \rightarrow 0, \text { as } n \rightarrow \infty
$$

By ergodicity of Furstenberg's system and von-Neumann's ergodic theorem it follows that the left hand side of (3) satisfies

$$
\frac{1}{\left|F_{n}\right|} \sum_{h \in F_{n}}\left\langle 1_{\tilde{B}}, \sigma(h) 1_{\tilde{B}}\right\rangle \rightarrow \eta(\tilde{B})^{2}, \text { as } n \rightarrow \infty .
$$

This finishes the proof of the second property of the spectral measure ν.

[^2]Let μ be a probability measure on $S L_{d}(\mathbb{Z})$ having a finite generating support. By Proposition 2.3 the measures $\mu^{* k} * \nu$ converge as $k \rightarrow \infty$ in weak ${ }^{*}$ topology to

$$
\eta(\tilde{B})(1-\eta(\tilde{B})) m_{A_{d}}+\eta(\tilde{B})^{2} \delta_{o_{A_{d}}}
$$

where $m_{A_{d}}$ stands for the normalised Haar measure on A_{d}. Notice that Γ also acts on A_{d} by $g \cdot x=g^{t} x\left(g^{t}\right)^{-1}$, for $g \in \Gamma$. The action of Γ on A_{d} and the adjoint action of Γ on Λ are related by the following:

$$
(g \cdot x) \cdot h=x \cdot \operatorname{Ad}(g) h, \text { for every } g \in \Gamma, h \in \operatorname{Lambda}, x \in A_{d}
$$

Since

$$
\begin{gathered}
\widehat{\mu^{* k} * \nu}(h)=\int_{A_{d}} \exp (2 \pi i x \cdot h) d\left(\mu^{* k} * \nu\right)(x)= \\
\int_{A_{d}}\left(\sum_{g \in \Gamma} \exp (2 \pi i(g \cdot x) \cdot h) \mu^{* k}(g)\right) d \nu(x)= \\
\sum_{g \in \Gamma}\left(\int_{A_{d}} \exp \left(2 \pi i x \cdot\left(g^{-1} h g\right)\right) d \nu(x)\right) \mu^{* k}(g)=\sum_{g \in \Gamma} \widehat{\nu}\left(g^{-1} h g\right) \mu^{* k}(g)
\end{gathered}
$$

Recall, we assumed that there exists a non-zero $h \in \Lambda$ such that $\widehat{\nu}\left(g^{-1} h g\right)=0$, for all $g \in \Gamma$. Therefore, we have $\widehat{\mu^{* k} * \nu}(h)=0$, for all $k \geq 1$. On other hand, since $\widehat{m_{A_{d}}}(h)=0$, and $\widehat{\delta_{o_{A_{d}}}}(h)=1$, we have:

$$
\widehat{\mu^{* k} * \nu}(h) \rightarrow \eta(\tilde{B})^{2}>0, \text { as } k \rightarrow \infty .
$$

Thus, we have a contradiction. This finishes the proof of the theorem.
Proof of Theorem 1.3. Theorem 1.3 follows immediately from Theorem 1.1 by use of the following statement which will be proved in the next section.

Proposition 3.1. Let $B \subset M a t_{d}^{0}(\mathbb{Z})$ be a non-periodic piecewise Bohr set corresponding to a Jordan measurable ${ }^{4}$ open set in a finite-dimensional torus. There exists a spectral measure associated with B that does not have atoms at non-zero rational points of A_{d}.

Indeed, let $B \subset \Lambda$ be a piecewise non-periodic Bohr set given by $B=\tau^{-1}(U) \cap T$, where $\tau: \Lambda \rightarrow \mathbb{T}^{n}$ is a homomorphism with a dense image, $U \subset \mathbb{T}^{n}$ is an open set, and $T \subset \Lambda$ is a set with $d^{*}(T)=1$. Then U contains an open ball U_{o}, and $m_{\mathbb{T}^{n}}\left(\partial U_{o}\right)=0$, where $m_{\mathbb{T}^{n}}$ denotes the Haar normalised measure on \mathbb{T}^{n}. Denote by $B^{\prime}=\tau^{-1}\left(U_{o}\right) \cap T \subset B$. Then the statement of Theorem 1.3 for the non-periodic piecewise Bohr set B^{\prime} follows from Proposition 3.1. The latter implies the statement of the Theorem for the set B.
4. Proofs of Propositions 2.1, 2.3, and 3.1
4.1. Proof of Proposition 2.1. It is proved in [5] [Corollary 5.4] that the adjoint action of $S L_{d}(\mathbb{Z})$ on $M a t_{d}^{0}(\mathbb{R})$ is strongly irreducible. Therefore, it is remained to prove that there is at least one element of $S L_{d}(\mathbb{Z})$ which acts on $M a t_{d}^{0}(\mathbb{R})$ proximaly. The next claim finishes the proof of Proposition 2.1.

[^3]Proposition 4.1. The matrix

$$
B_{2}=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]
$$

acts (by conjugation) on $\operatorname{Mat}_{2}^{0}(\mathbb{R})$ proximally. For $d \geq 3$, the matrix

$$
B_{d}=\left[\begin{array}{cc|c}
1 & -1 & \mathbf{0}_{2 \times(d-2)} \\
-1 & 2 & \\
\hline \mathbf{0}_{(d-2) \times(d-2)} & & I d_{(d-2) \times(d-2)}
\end{array}\right]
$$

acts proximally on $\operatorname{Mat}_{d}^{0}(\mathbb{R})$.
Proof. It is straithforward to check that the operator $B_{2}: M a t_{2}^{0}(\mathbb{R}) \rightarrow M a t_{2}^{0}(\mathbb{R})$ can be written in the matrix form as ${ }^{5}$

$$
\left[\begin{array}{rrr}
1 & 0 & 1 \\
-1 & 1 & -2 \\
1 & 0 & 0
\end{array}\right]
$$

The characteristic polynomial of this operator is $\chi_{B_{2}}(\lambda)=(1-\lambda)\left(\lambda^{2}-\lambda-1\right)$. Since all eigenvalues are distinct by their absolute value, it follows that the operator acts proximally.

In the case $d \geq 3$, notice that the action of B_{d} on $M a t_{d}^{0}(\mathbb{R})$ is decomposed into 4 orthogonal spaces. The actions on the 2×2 upper left corner, $2 \times(d-2)$ upper right corner, $(d-2) \times 2$ bottom left corner, and the identity action on the bottom right $(d-2) \times(d-2)$ corner. Correspondingly, the dimensions of the spaces are $4,2 \cdot(d-2),(d-2) \cdot 2$, and $(d-2)^{2}-1$.

The 4-dimensional left upper corner part can be written in the matrix form as

$$
\left[\begin{array}{rrrr}
2 & -2 & 1 & -1 \\
-2 & 4 & -1 & 2 \\
1 & -1 & 1 & -1 \\
-1 & 2 & -1 & 2
\end{array}\right] .
$$

Its characteristic polynomial is $(\lambda-1)^{2}\left(\lambda^{2}-7 \lambda+1\right)$. Therefore there is a unique highest eigenvalue by the absolute value equal to $\frac{7+3 \sqrt{5}}{2}$, and it has multiplicity one.

The operator B_{d} acts on the upper right corner in the following way

$$
\left[\begin{array}{cc}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
\cdots & \cdots \\
x_{d-2} & y_{d-2}
\end{array}\right]^{t} \rightarrow\left[\begin{array}{cc}
2 x_{1}+y_{1} & x_{1}+y_{1} \\
2 x_{2}+y_{2} & x_{2}+y_{2} \\
\cdots & \cdots \\
2 x_{d-2}+y_{d-2} & x_{d-2}+y_{d-2}
\end{array}\right]^{t}
$$

It is clear that it has two eigenvalues with multiplicity $d-2$. These eigenvalues correspond to the eigenvalues of the matrix

$$
C=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

These eigenvalues are the roots of the characteristic polynomial of the matrix C which are $\frac{3 \pm \sqrt{5}}{2}$.

[^4]The operator B_{d} acts on the bottom left corner in the following way:

$$
\left[\begin{array}{cc}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
\cdots & \cdots \\
x_{d-2} & y_{d-2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
x_{1}-y_{1} & -x_{1}+2 y_{1} \\
x_{2}-y_{2} & -x_{2}+2 y_{2} \\
\cdots & \cdots \\
x_{d-2}-y_{d-2} & -x_{d-2}+2 y_{d-2}
\end{array}\right]
$$

Therefore it has two eigenvalues of the matrix C^{-1} each one having multiplicity $d-2$. It is immediate to check that C^{-1} has the same characteristic polynomial as C, therefore the eigenvalues of the operator B_{d} acting on the bottom left corner are $\frac{3 \pm \sqrt{5}}{2}$, each one having multiplicity $d-2$.

As the conclusion of the previous considerations we find the the eigenvalues of the operator B_{d} are $\frac{7+3 \sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}, 1, \frac{7-3 \sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}$ with corresponding multiplicities equal to $1,2(d-2),\left[(d-2)^{2}-1\right]+2,1,2(d-2)$. This implies that B_{d} acts proximally on $M a t_{d}^{0}(\mathbb{R})$.
4.2. Proof of Proposition 2.3. Let ν be a probability measure on A_{d} with no atoms at rational points, and let μ be a probability measure on $\Gamma=S L_{d}(\mathbb{Z})$ with a finite generating support. By Proposition 2.2 for every $x \in \operatorname{supp}(\nu)$ the measures $\mu^{* k} * \delta_{x}$ converge in weak*topology as $k \rightarrow \infty$ to the Haar measure on A_{d}. Let f be a continuous function on A_{d}. Then for every $x \in \operatorname{supp}(\nu)$ we have that $f_{k}(x):=\int f d\left(\mu^{* k} * \delta_{x}\right) \rightarrow \int f$. We have to show that

$$
\int_{A_{d}} f d\left(\mu^{* k} * \nu\right) \rightarrow \int f
$$

By Egorov's theorem, for every $\varepsilon>0$, there exists $X^{\prime} \subset A_{d}$ with $\nu\left(X^{\prime}\right) \geq 1-\varepsilon$ and $K(\varepsilon)$ with the property that for every $x \in X^{\prime}$ and every $k \geq K(\varepsilon)$ we have

$$
\left|f_{k}(x)-\int f\right|<\varepsilon
$$

Notice that

$$
\begin{gathered}
\int f d \mu^{* k} * \nu=\sum_{g \in \Gamma} \int f(g x) \mu^{* k}(g) d \nu(x)=\int\left(\sum_{g \in \Gamma} f(g x) \mu^{* k}(g)\right) d \nu(x) \\
=\int\left(\int f d\left(\mu^{* k} * \delta_{x}\right)\right) d \nu(x)
\end{gathered}
$$

Let $\delta>0$. Denote by $M=\|f\|_{\infty}$, and take $\varepsilon>0$ so small that $\varepsilon M<2 \delta$, and $\varepsilon<\delta$. Then we have

$$
\left|\int f d\left(\mu^{* k} * \nu\right)-\int f\right|<(1-\varepsilon) \varepsilon+\varepsilon M<3 \delta
$$

for $k \geq K(\varepsilon)$. Since δ can be chosen arbitrary small, we have shown that

$$
\int f d\left(\mu^{* k} * \nu\right) \rightarrow \int f
$$

This finishes the proof because the function f was an arbitrary continuous function on A_{d}.
4.3. Proof of Proposition 3.1. Recall that $\Lambda=M a t_{d}^{0}(\mathbb{Z})$. We are given a piecewise Bohr non-periodic set $B \subset \Lambda$ corresponding to a Jordan measurable open set in a finite dimensional torus. This means that $B=B_{o} \cap T$, where $T \subset \Lambda$ with $d^{*}(T)=1$, and $B_{o} \subset \Lambda$ given via a homomorphism $\tau: \Lambda \rightarrow \mathbb{T}^{n}$, for some $n \geq 1$ with the dense image, and an open Jordan measurable set $U_{o} \subset \mathbb{T}^{n}$ such that

$$
B_{o}=\tau^{-1}\left(U_{o}\right)
$$

We will construct an ergodic Furstenberg's Λ system $X_{B}=(X, \eta, \sigma, \tilde{B})$ corresponding to the set B, and will show that the spectral measure of the function $1_{\tilde{B}}$ has no atoms at the rational non-zero points of $A_{d}:=\widehat{\Lambda}$.

Let $X=\mathbb{T}^{n}, \eta$ be the Haar normalised measure on $X, \sigma_{h}(x):=x+\tau(h)$ for $x \in X, h \in$ Λ, and $\tilde{B}=U_{o}$. We will denote by $X_{B}:=(X, \eta, \sigma, \tilde{B})$. It remains to show that

- For every $h \in \Lambda$ we have $d^{*}(B \cap(B+h)) \geq \eta\left(\tilde{B} \cap \sigma_{h}(\tilde{B})\right)$.
- $\eta(\tilde{B})=d^{*}(B)$.
- The spectral measure of $1_{\tilde{B}}$ has no atoms at non-zero rational points of A_{d}.

The first two properties will follow from the statement that for every $h \in \Lambda$:

$$
d^{*}(B \cap(B+h))=\eta\left(\tilde{B} \cap \sigma_{h}(\tilde{B})\right) .
$$

First, notice that for every $h \in \Lambda$ the set $U_{o} \cap \sigma_{h}\left(U_{o}\right)$ is Jordan measurable. By unique ergodicity of X_{B}, for every Følner sequence $\left(F_{k}\right)$ in Λ and any $h \in \Lambda$ we have

$$
\frac{1}{\left|F_{k}\right|} \sum_{h \in F_{k}} \frac{\left|B_{o} \cap\left(B_{o}+h\right) \cap F_{k}\right|}{\left|F_{k}\right|} \rightarrow \int_{X} 1_{U_{o} \cap \sigma_{h}\left(U_{o}\right)}(x) d \eta(x)=\eta\left(\tilde{B} \cap \sigma_{h}(\tilde{B})\right), \text { as } k \rightarrow \infty
$$

The latter will imply that for every $h \in \Lambda$

$$
\eta\left(\tilde{B} \cap \sigma_{h}(\tilde{B})\right) \geq d^{*}(B \cap(B+h)) .
$$

On the other hand, for any Følner sequence $\left(F_{k}\right)$ which lies inside the thick set T we will have for every $h \in \Lambda$ by a similar argument as before

$$
\frac{1}{\left|F_{k}\right|} \sum_{h \in F_{k}} \frac{\left|B \cap(B+h) \cap F_{k}\right|}{\left|F_{k}\right|} \rightarrow \int_{X} 1_{U_{o} \cap \sigma_{h}\left(U_{o}\right)}(x) d \eta(x)=\eta\left(\tilde{B} \cap \sigma_{h}(\tilde{B})\right) \text {, as } k \rightarrow \infty .
$$

This establishes that for every $h \in \Lambda$:

$$
d^{*}(B \cap(B+h))=\eta\left(\tilde{B} \cap \sigma_{h}(\tilde{B})\right) .
$$

It remains to prove that the spectral measure corresponding to $1_{\tilde{B}}$ and the system X_{B} has no atoms at non-zero rational points of A_{d}. We will be abusing the notation and will also use T to denote the Koopman operator on $L^{2}(X)$ corresponding to σ. Let us list two important properties of the system X_{B} :
(1) X_{B} is totally ergodic, i.e., every subgroup $H<\Lambda$ of a finite index acts ergodically on X_{B}.
(2) For $f \geq 0, f \in L^{2}(X)$, the spectral measure μ_{f} of f defined by

$$
\widehat{\mu_{f}}(h):=\int_{A_{d}} \exp (2 \pi h \cdot x) d \mu_{f}(x)=\left\langle f, T_{h} f\right\rangle
$$

is non-negative.
The first property follows from Lemma 4.2, while the second property is standard fact, see [7]. To prove Lemma 4.2 we will need the following result.

Lemma 4.1. Let $H<\Lambda$ be a subgroup of a finite index. Then for every point $x \in X$, the H-orbit of x, i.e., $\left\{\sigma_{h}(x) \mid h \in H\right\}$, is dense in X.

Proof. Lemma follows from two facts that utilise the connectivity of X, and Baire Category theorem:

- For every subgroup $H<\Lambda$ the closed subgroup $\overline{\tau(H)}<X$ nowhere dense.
- Finite union of nowhere dense sets cannot cover X.

Lemma 4.2. Let $H<\Lambda$ be a subgroup of a finite index. The restriction of the Λ-action of X to H is uniquely ergodic.
Proof. It follows from Lemma 4.1 that any H-invariant Borel probability measure on X is also X-invariant. The uniqueness of the Haar normalised measure on X implies the statement of the lemma.

Let $f \in L^{2}(X)$, then by the ergodicity of X_{B} (property (1)) it follows that for any Følner sequence $\left(F_{k}\right)_{k \geq 1}$ of finite sets in Λ we have

$$
\frac{1}{\left|F_{k}\right|} \sum_{h \in F_{k}}\left\langle f, T_{h} f\right\rangle \rightarrow|\langle f, 1\rangle|^{2}, \text { as } k \rightarrow \infty
$$

On the other hand, it is a standard identity:

$$
\frac{1}{\left|F_{k}\right|} \sum_{h \in F_{k}} \exp (2 \pi i h \cdot x) \rightarrow\left[\begin{array}{ll}
1, & x=o_{A_{d}} \\
0, & x \neq o_{A_{d}} .
\end{array}\right.
$$

It follows from Lebesgue's dominated convergence theorem that

$$
\begin{equation*}
|\langle f, 1\rangle|^{2}=\mu_{f}\left(o_{A_{d}}\right) \tag{4}
\end{equation*}
$$

Let $x_{0} \in A_{d}$ be a non-zero rational point with the least common denominator equal to q. Then the stabiliser of x_{0} in Λ is $H_{x_{0}}=q \Lambda$. Using the ergodicity of $H_{x_{0}}$ action on X_{B} (property (1)), we obtain

$$
\frac{1}{\left|F_{k}\right|} \sum_{h \in F_{k}}\left\langle f, T_{q h} f\right\rangle \rightarrow|\langle f, 1\rangle|^{2}, \text { as } k \rightarrow \infty
$$

On the other hand, we have

$$
\frac{1}{\left|F_{k}\right|} \sum_{h \in F_{k}} \exp (2 \pi i h \cdot(q x)) \rightarrow\left[\begin{array}{ll}
1, & q x=o_{A_{d}} \\
0, & q x \neq o_{A_{d}} .
\end{array}\right.
$$

Therefore, by Lebesgue's dominated convergence theorem we obtain

$$
\begin{equation*}
|\langle f, 1\rangle|^{2}=\sum_{q x=o_{A_{d}}} \mu_{f}(\{x\}) \tag{5}
\end{equation*}
$$

If we know in addition that $f \geq 0$, then by property (2), the spectral measure μ_{f} is nonnegative. Therefore, by use of equations (4) and (5) we get that for all non-zero points $x \in A_{d}$ with $q x=o_{A_{d}}$ we have

$$
\mu_{f}(\{x\})=0 .
$$

In particular, we have that $\mu_{f}\left(\left\{x_{0}\right\}\right)=0$. This finishes the proof of Proposition 2.3, if we choose $f=1_{\tilde{B}}$.

References

[1] Y. Benoist, J.F. Quint, Mesures stationnaires et ferms invariants des espaces homognes. (French) [Stationary measures and invariant subsets of homogeneous spaces] Ann. of Math. (2) 174 (2011), no. 2, 1111-1162.
[2] Y. Benoist, J.F. Quint, Stationary measures and invariant subsets of homogeneous spaces (II). J. Amer. Math. Soc. 26 (2013), no. 3, 659-734.
[3] Y. Benoist, J.F. Quint, Stationary measures and invariant subsets of homogeneous spaces (III). Ann. of Math. (2) 178 (2013), no. 3, 1017-1059.
[4] M. Björklund, K. Bulinski, Twisted patterns in large subsets of \mathbb{Z}^{N}. Preprint.
[5] M. Björklund, A. Fish, Characteristic polynomial patterns in difference sets of matrices, http://arxiv.org/pdf/1507.03380v1.pdf.
[6] J. Bourgain, A. Furman, E. Lindenstrauss, S. Mozes; Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus. J. Amer. Math. Soc. 24 (2011), no. 1, 231-280.
[7] G. B. Folland, A course in abstract harmonic analysis. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995. x+276 pp.
[8] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Analyse Math. 31 (1977), 204-256.

School of Mathematics and Statistics, University of Sydney, Australia
E-mail address: alexander.fish@sydney.edu.au

[^0]: 2010 Mathematics Subject Classification. Primary: 37A45; Secondary: 11P99, 11C99.
 Key words and phrases. Ergodic Ramsey Theory, Measure Rigidity, Analytic Number Theory.

[^1]: ${ }^{1}$ A triple (X, η, σ) is a G-measure-preserving system, if X is a compact metric space on which acts G by a measurable action denoted by σ, η is a Borel probability measure on X, and the action of G preserves η. A G-measure-preserving system is ergodic if any G-invariant measurable set has measure either zero or one.
 ${ }^{2}$ We assume the existence of some Furstenberg's system X_{B} corresponding to the set B, such that the associated spectral measure satisfies the requirement of the theorem.

[^2]: ${ }^{3} \mathrm{~A}$ sequence of finite sets $\left(F_{n}\right)$ in Λ is called F \varnothing lner if it is asymptotically Λ-invariant, i.e. for every $h \in \Lambda$ we have $\frac{\left|F_{n} \cap\left(F_{n}+h\right)\right|}{\left|F_{n}\right|} \rightarrow 1$, as $n \rightarrow \infty$. For any countable abelian group the family of Følner sequences is non-empty.

[^3]: ${ }^{4} \mathrm{~A}$ set A in a topological space X equipped with a measure m_{X} is Jordan measurable if $m_{X}(\partial A)=0$, where $\partial A=\bar{A} \backslash \stackrel{\circ}{A}$.

[^4]: ${ }^{5}$ We use the identification between $M a t_{2}^{0}(\mathbb{R})$ and \mathbb{R}^{3}, by
 $\left[\begin{array}{cc}x & y \\ z & -x\end{array}\right] \rightarrow[x, y, z]^{t}$

