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Abstract. In this paper we show that any Bohr-zero non-periodic set B of traceless
integer valued matrices, denoted by Λ, intersects non-trivially the conjugacy class
of any matrix from Λ. As a corollary, we obtain that the family of characteristic
polynomials of B contains all characteristic polynomials of matrices from Λ. The
main ingredient used in this paper is an equidistribution result of Burgain-Furman-
Lindenstrauss-Mozes [6].

1. Introduction

Let us denote by Λ = Mat0d(Z), d ≥ 2, the set of integer valued d×d matrices with zero
trace, and by Tn, n ≥ 1, the n-dimensional torus Rn/Zn. Let G be a countable abelian
group. A set B ⊂ G is called a non-periodic Bohr set if there exist a homomorphism

τ : G → Tn, for some n ≥ 1, with τ(G) = Tn, and an open set U ⊂ Tn satisfying
B = τ−1(U). If the open set U contains the zero element of Tn, then the set B is called a
Bohr-zero set. We will also denote by SLd(Z) the group of d× d integer-valued matrices
of determinant one.

The main result of this paper is the following.

Main Theorem. Let d ≥ 2, and B ⊂ Mat0d(Z) be a Bohr-zero non-periodic set. Then
for any matrix C ∈ Mat0d(Z) there exists a matrix A ∈ B and a matrix g ∈ SLd(Z) such
that C = g−1Ag.

The same result has been also proved independently by Björklund and Bulinski [4].
They use the recent works of Benoist-Quint [2] and [3], instead of the work of Bourgain-
Furman-Lindenstrauss-Mozes as the main ingredient in the proof.

Corollary 1.1. Let d ≥ 2, and B ⊂Mat0d(Z) be a Bohr-zero non-periodic set. The set of
characteristic polynomials of the matrices in B coincides with the set of all characteristic
polynomials of the matrices in Mat0d(Z).

The following number-theoretic statement conjectured by B. Green and T. Sanders is
an immediate implication of Corollary 1.1.

Corollary 1.2. Let B ⊂ Z be a Bohr-zero non-periodic set. Then the set of the discrim-
inants over B defined by

D := {xy − z2 |x, y, z ∈ B}
satisfies that D = Z.

At this point we will define Furstenberg’s system corresponding to a set B of positive
density in a countable abelian group G. Recall, we say that B has positive density if upper
Banach density of B is positive:

d∗(B) = sup
λ∈F

λ(1B) > 0,

where F is the set of all Λ-invariant means on `∞(G), i.e., non-negative normalised
G-invariant linear functionals on `∞(G). Since G is abelian, this implies that F 6= ∅.
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Furstenberg in his seminal paper [8] constructed an (ergodic) G-measure-preserving sys-

tem1 (X, η, σ) and a clopen set B̃ ⊂ X such that

• d∗(B ∩ (B + h)) ≥ η
(
B̃ ∩ σ(h)B̃

)
, for any h ∈ G.

• η(B̃) = d∗(B).

We will denote Furstenberg’s system corresponding to B by XB = (X, η, σ, B̃). Next, we
will define the notion of the spectral measure corresponding to a set B of a countable
abelian group G of positive density and its Furstenberg’s system XB = (X, η, σ, B̃). De-

note by 1B̃ the indicator function of the set B̃. Then by Bochner’s spectral theorem [7]

there exists a non-negative finite Borel measure ν on Ĝ (the dual of G) which satisfies:

〈1B̃ , σ(h)1B̃〉 =

∫
Ĝ

χ(h)dν(χ), for h ∈ G.

The measure ν will be called the spectral measure of the set B and its Furstenberg’s system
XB , and we will denote by ν̂(h) the right hand side of the last equation. We are at the
position to state the main technical claim of the paper.

Theorem 1.1. Let d ≥ 2, and let B ⊂Mat0d(Z) be a set of positive density such that the
spectral measure2 of B has no atoms at non-trivial characters having finite torsion. Then
for every C ∈Mat0d(Z) there exist A ∈ B −B and g ∈ SLd(Z) with C = g−1Ag.

Theorem 1.1 is the strengthening of the following result that has been proved in [5] by
use of the equidistribution result of Benoist-Quint [1].

Theorem 1.2. Let d ≥ 2, and let B ∈ Mat0d(Z) be a set of positive density. Then
there exists k ≥ 1 such that for any matrix C ∈ kMat0d(Z) there exists A ∈ B − B and
g ∈ SLd(Z) with C = g−1Ag.

We would like to finish the introduction by stating the piecewise version of Main The-
orem. We recall that a set B ⊂ Λ called piecewise Bohr set if there is a Bohr set B0 ⊂ Λ
and a (thick) set T ⊂ Λ of upper Banach density one, i.e., d∗(T ) = 1 such that B = B0∩T .
Moreover, if the set B0 is non-periodic Bohr-zero, then the set B will be called piecewise
Bohr-zero non-periodic. Theorem 1.1 implies the following result.

Theorem 1.3. Let d ≥ 2, and let B ⊂ Mat0d(Z) be a piecewise Bohr non-periodic set.
Then for every C ∈Mat0d(Z) there exist A ∈ B −B and g ∈ SLd(Z) with C = g−1Ag.

Let us show that Theorem 1.3 implies Main Theorem.

Proof of Main Theorem. Let B ⊂ Λ be a Bohr-zero non-periodic set. Notice that
there exists B0 ⊂ Λ a Bohr-zero non-periodic set with the property that

B0 −B0 ⊂ B.

Now, we apply Theorem 1.3 for the set B0, and as a conclusion obtain the statement of
the theorem. �

Organisation of the paper. In Section 2 we establish the consequences of the equidistribu-
tion result of Bourgain-Furman-Lindenstrauss-Mozes [6] related to the adjoint action of

1A triple (X, η, σ) is a G-measure-preserving system, if X is a compact metric space on which acts
G by a measurable action denoted by σ, η is a Borel probability measure on X, and the action of G
preserves η. A G-measure-preserving system is ergodic if any G-invariant measurable set has measure
either zero or one.

2We assume the existence of some Furstenberg’s system XB corresponding to the set B, such that
the associated spectral measure satisfies the requirement of the theorem.
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SLd(Z) on Mat0d(R)/Mat0d(Z). In Section 3 we prove Theorems 1.1, and 1.3. In Section
4 we prove main technical propositions stated in Sections 2 and 3.

Acknowledgement. The author is grateful to Ben Green and Tom Sanders for fruitful
discussions on the topic of the paper. He is also grateful to Benoist Quint for explaining
certain ingredients of [3], and to Shahar Mozes for insightful discussions related to the
paper [6].

2. Consequences of the work of Bourgain-Furman–Lindenstrauss-Mozes

We start by recalling the property of strong irreducibility of an action of a discrete
group. Let Γ be a countable group, and V be a finite dimensional real space. We say
that an action ρ : Γ → End(V ) is strongly irreducible if for every finite index subgroup
H of Γ, the restriction of the action of ρ to H is irreducible. We also will be using the
notion of a proximal element. An operator T ∈ End(V ) will be called proximal, if there
is only one eigenvalue of the largest absolute value, and corresponding to it eigenspace is
one-dimensional.

Assume that a countable group Γ acts on a compact Borel measure space (X, ν). Let
µ be a probability measure on Γ. Then the convolution measure µ ∗ ν on X is defined by:∫

X

fd (µ ∗ ν) =

∫
X

(∑
g∈Γ

f(gx)µ(g)

)
dν(x), for any f ∈ C(X).

We will denote the Dirac probability measure at a point x ∈ X by δx. For every k ≥ 2,
we define the probability measure µ∗k on Γ by

µ∗k(g) =
∑

g1·...·gk=g

µ(g1)µ(g2) . . . µ(gk).

The main ingredient in the proofs of all our main results is the following seminal
equidistribution statement due to Bourgain-Furman-Lindenstrauss-Mozes [6].

Theorem 2.1 (Corollary B in [6]). Let Γ < SLn(Z) be a subgroup which acts totally
irreducibly on Rn, and having a proximal element. Let µ be a finite generating probability
measure on Γ. Let x ∈ Tn be a non-rational point. Then the measures µ∗k ∗ δx converge
in weak∗-topology as k →∞ to Haar measure on Tn.

In this note, the acting group will be Γ = SLd(Z). The group Γ acts by the conjugation
on the real vector space V = Mat0d(R) of real valued d×d matrices with zero trace. So, an
element g ∈ SLd(Z) acts on v ∈ V by Ad(g)v = g−1vg, and such action called the adjoint

action of SLd(Z). Notice that V is isomorphic to Rd
2−1. The next claim will allow us to

apply Theorem 2.1 in our setting.

Proposition 2.1. The adjoint action of SLd(Z) on Mat0d(R) is strongly irreducible, and
SLd(Z) contains an element which acts proximally.

Let us denote by Ad = V/Λ. Notice that Ad is isomorphic to Td
2−1, and it is the dual

group of Λ. The adjoint action of SLd(Z) leaves Λ invariant. Therefore, SLd(Z) also acts
on Ad. Proposition 2.1 implies by Corollary B from [6] the following statement.

Proposition 2.2. Let µ be a probability measure on SLd(Z) with finite generating support.
Let x ∈ Ad be a non-rational point. Then the measures µ∗k ∗ δx converge as k →∞ in the
weak∗ topology to the normalised Haar measure on Ad.

We will be using Proposition 2.2 to prove the following claim.

Proposition 2.3. Let µ be a probability measure on SLd(Z) with finite generating support.
Let ν be a probability measure on Ad with no atoms at rational points. Then the measures
µ∗k ∗ ν converge as k →∞ in the weak∗ topology to the normalised Haar measure on Ad.
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3. Proofs of Theorems 1.1, and 1.3

Proof of Theorem 1.1. Recall that we denote by Λ = Mat0d(Z), and by Γ = SLd(Z).

Let B ⊂ Λ be a set of positive density with Furstenberg’s system XB = (X, η, σ, B̃) and
such that the spectral measure of B has no atoms at non-trivial characters. We make the
identification of the dual space of Λ with the torus Ad by corresponding for every x ∈ Ad
the character χx on Λ given by:

χx(h) = exp (2πix · h), for h ∈ Λ.

Notice that the trivial character on Λ corresponds to the zero element oAd of Ad, and
characters having finite torsion correspond to the rational points of Ad. Denote by ν the
spectral measure of B, i.e., for every h ∈ Λ we have

(1) 〈1B̃ , σ(h)1B̃〉 =

∫
Ad

exp (2πix · h)dν(x).

By the assumptions of the theorem, ν has no atoms at the rational points. Then Γ acts
on Λ by the conjugation. We will show that for every h ∈ Λ there exists g ∈ Γ such that

ν̂(g−1hg) = 〈1B̃ , σ(g−1hg)1B̃〉 > 0.

This will imply the claim of the theorem by the first property of Furstenberg’s system
XB . Assume, that on the contrary, that there exists h ∈ Λ such that for all g ∈ Γ we have

(2) ν̂(g−1hg) = 0.

It follows from the first property of the spectral measure listed below that the equation 2
holds for a non-zero h ∈ Λ. By the assumptions on B, we know that

• ν({oAd}) = η(B̃)2 > 0.

• For every rational non-zero point x ∈ Ad we have ν({x}) = 0.

Indeed, the second property is given to us by the assumptions. To prove the first one,
notice that for any Følner sequence3 (Fn) in Λ:

(3)
1

|Fn|
∑
h∈Fn

〈1B̃ , σ(h)1B̃〉 =

∫
Ad

1

|Fn|
∑
h∈Fn

exp (2πix · h)dν(x)→ ν({oAd}), as N →∞.

In the last transition, we have used Lebesgue’s dominated convergence theorem and the
easy claim that for any non-trivial character χ on Λ, and a Følner sequence (Fn) in Λ we
have:

1

|Fn|
∑
h∈Fn

χ(h)→ 0, as n→∞.

By ergodicity of Furstenberg’s system and von-Neumann’s ergodic theorem it follows that
the left hand side of (3) satisfies

1

|Fn|
∑
h∈Fn

〈1B̃ , σ(h)1B̃〉 → η(B̃)2, as n→∞.

This finishes the proof of the second property of the spectral measure ν.

3A sequence of finite sets (Fn) in Λ is called Følner if it is asymptotically Λ-invariant, i.e. for every

h ∈ Λ we have
|Fn∩(Fn+h)|

|Fn|
→ 1, as n → ∞. For any countable abelian group the family of Følner

sequences is non-empty.
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Let µ be a probability measure on SLd(Z) having a finite generating support. By
Proposition 2.3 the measures µ∗k ∗ ν converge as k →∞ in weak∗ topology to

η(B̃)
(

1− η(B̃)
)
mAd + η(B̃)2δoAd

,

where mAd stands for the normalised Haar measure on Ad. Notice that Γ also acts on Ad
by g · x = gtx(gt)−1, for g ∈ Γ. The action of Γ on Ad and the adjoint action of Γ on Λ
are related by the following:

(g · x) · h = x ·Ad(g)h, for every g ∈ Γ, h ∈ Lambda, x ∈ Ad.

Since

µ̂∗k ∗ ν(h) =

∫
Ad

exp (2πix · h)d
(
µ∗k ∗ ν

)
(x) =

∫
Ad

(∑
g∈Γ

exp (2πi(g · x) · h)µ∗k(g)

)
dν(x) =

∑
g∈Γ

(∫
Ad

exp (2πix ·
(
g−1hg

)
)dν(x)

)
µ∗k(g) =

∑
g∈Γ

ν̂(g−1hg)µ∗k(g).

Recall, we assumed that there exists a non-zero h ∈ Λ such that ν̂(g−1hg) = 0, for all

g ∈ Γ. Therefore, we have µ̂∗k ∗ ν(h) = 0, for all k ≥ 1. On other hand, since m̂Ad(h) = 0,

and δ̂oAd
(h) = 1, we have:

µ̂∗k ∗ ν(h)→ η(B̃)2 > 0, as k →∞.

Thus, we have a contradiction. This finishes the proof of the theorem. �

Proof of Theorem 1.3. Theorem 1.3 follows immediately from Theorem 1.1 by use of
the following statement which will be proved in the next section.

Proposition 3.1. Let B ⊂ Mat0d(Z) be a non-periodic piecewise Bohr set corresponding
to a Jordan measurable4 open set in a finite-dimensional torus. There exists a spectral
measure associated with B that does not have atoms at non-zero rational points of Ad.

Indeed, let B ⊂ Λ be a piecewise non-periodic Bohr set given by B = τ−1(U)∩T , where
τ : Λ → Tn is a homomorphism with a dense image, U ⊂ Tn is an open set, and T ⊂ Λ
is a set with d∗(T ) = 1. Then U contains an open ball Uo, and mTn(∂Uo) = 0, where
mTn denotes the Haar normalised measure on Tn. Denote by B′ = τ−1(Uo) ∩ T ⊂ B.
Then the statement of Theorem 1.3 for the non-periodic piecewise Bohr set B′ follows
from Proposition 3.1. The latter implies the statement of the Theorem for the set B.

�

4. Proofs of Propositions 2.1, 2.3, and 3.1

4.1. Proof of Proposition 2.1. It is proved in [5] [Corollary 5.4] that the adjoint action
of SLd(Z) on Mat0d(R) is strongly irreducible. Therefore, it is remained to prove that
there is at least one element of SLd(Z) which acts on Mat0d(R) proximaly. The next claim
finishes the proof of Proposition 2.1.

4A set A in a topological space X equipped with a measure mX is Jordan measurable if mX(∂A) = 0,

where ∂A = A \
◦
A.
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Proposition 4.1. The matrix

B2 =

[
1 −1
0 1

]
acts (by conjugation) on Mat02(R) proximally. For d ≥ 3, the matrix

Bd =

 1 −1 02×(d−2)

−1 2

0(d−2)×(d−2) Id(d−2)×(d−2)


acts proximally on Mat0d(R).

Proof. It is straithforward to check that the operator B2 : Mat02(R) → Mat02(R) can be
written in the matrix form as5  1 0 1

−1 1 −2
1 0 0

 .
The characteristic polynomial of this operator is χB2(λ) = (1− λ)(λ2 − λ− 1). Since all
eigenvalues are distinct by their absolute value, it follows that the operator acts proximally.

In the case d ≥ 3, notice that the action of Bd on Mat0d(R) is decomposed into 4
orthogonal spaces. The actions on the 2×2 upper left corner, 2×(d−2) upper right corner,
(d−2)×2 bottom left corner, and the identity action on the bottom right (d−2)× (d−2)
corner. Correspondingly, the dimensions of the spaces are 4, 2 · (d − 2), (d − 2) · 2, and
(d− 2)2 − 1.

The 4-dimensional left upper corner part can be written in the matrix form as
2 −2 1 −1
−2 4 −1 2

1 −1 1 −1
−1 2 −1 2

 .
Its characteristic polynomial is (λ− 1)2(λ2 − 7λ+ 1). Therefore there is a unique highest

eigenvalue by the absolute value equal to 7+3
√

5
2

, and it has multiplicity one.

The operator Bd acts on the upper right corner in the following way
x1 y1

x2 y2

. . . . . .
xd−2 yd−2


t

→


2x1 + y1 x1 + y1

2x2 + y2 x2 + y2

. . . . . .
2xd−2 + yd−2 xd−2 + yd−2


t

.

It is clear that it has two eigenvalues with multiplicity d−2. These eigenvalues correspond
to the eigenvalues of the matrix

C =

[
2 1
1 1

]
.

These eigenvalues are the roots of the characteristic polynomial of the matrix C which are
3±
√

5
2

.

5We use the identification between Mat02(R) and R3, by[
x y
z −x

]
→ [x, y, z]

t
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The operator Bd acts on the bottom left corner in the following way:
x1 y1

x2 y2

. . . . . .
xd−2 yd−2

→


x1 − y1 −x1 + 2y1

x2 − y2 −x2 + 2y2

. . . . . .
xd−2 − yd−2 −xd−2 + 2yd−2

 .
Therefore it has two eigenvalues of the matrix C−1 each one having multiplicity d− 2. It
is immediate to check that C−1 has the same characteristic polynomial as C, therefore

the eigenvalues of the operator Bd acting on the bottom left corner are 3±
√

5
2

, each one
having multiplicity d− 2.

As the conclusion of the previous considerations we find the the eigenvalues of the

operator Bd are 7+3
√

5
2

, 3+
√

5
2

, 1, 7−3
√

5
2

, 3−
√

5
2

with corresponding multiplicities equal to

1, 2(d−2), [(d−2)2−1]+2, 1, 2(d−2). This implies that Bd acts proximally onMat0d(R). �

4.2. Proof of Proposition 2.3. Let ν be a probability measure on Ad with no atoms at
rational points, and let µ be a probability measure on Γ = SLd(Z) with a finite generating
support. By Proposition 2.2 for every x ∈ supp(ν) the measures µ∗k∗δx converge in weak∗-
topology as k → ∞ to the Haar measure on Ad. Let f be a continuous function on Ad.
Then for every x ∈ supp(ν) we have that fk(x) :=

∫
fd
(
µ∗k ∗ δx

)
→
∫
f . We have to

show that ∫
Ad

fd
(
µ∗k ∗ ν

)
→
∫
f.

By Egorov’s theorem, for every ε > 0, there exists X ′ ⊂ Ad with ν(X ′) ≥ 1− ε and K(ε)
with the property that for every x ∈ X ′ and every k ≥ K(ε) we have∣∣∣∣fk(x)−

∫
f

∣∣∣∣ < ε.

Notice that∫
fdµ∗k ∗ ν =

∑
g∈Γ

∫
f(gx)µ∗k(g)dν(x) =

∫ (∑
g∈Γ

f(gx)µ∗k(g)

)
dν(x)

=

∫ (∫
fd
(
µ∗k ∗ δx

))
dν(x).

Let δ > 0. Denote by M = ‖f‖∞, and take ε > 0 so small that εM < 2δ, and ε < δ.
Then we have ∣∣∣∣∫ fd

(
µ∗k ∗ ν

)
−
∫
f

∣∣∣∣ < (1− ε)ε+ εM < 3δ,

for k ≥ K(ε). Since δ can be chosen arbitrary small, we have shown that∫
fd
(
µ∗k ∗ ν

)
→
∫
f.

This finishes the proof because the function f was an arbitrary continuous function on
Ad.

4.3. Proof of Proposition 3.1. Recall that Λ = Mat0d(Z). We are given a piecewise
Bohr non-periodic set B ⊂ Λ corresponding to a Jordan measurable open set in a finite
dimensional torus. This means that B = Bo ∩ T , where T ⊂ Λ with d∗(T ) = 1, and
Bo ⊂ Λ given via a homomorphism τ : Λ → Tn, for some n ≥ 1 with the dense image,
and an open Jordan measurable set Uo ⊂ Tn such that

Bo = τ−1(Uo).

We will construct an ergodic Furstenberg’s Λ system XB = (X, η, σ, B̃) corresponding to
the set B, and will show that the spectral measure of the function 1B̃ has no atoms at the

rational non-zero points of Ad := Λ̂.
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Let X = Tn, η be the Haar normalised measure on X, σh(x) := x+τ(h) for x ∈ X,h ∈
Λ, and B̃ = Uo. We will denote by XB := (X, η, σ, B̃). It remains to show that

• For every h ∈ Λ we have d∗ (B ∩ (B + h)) ≥ η(B̃ ∩ σh(B̃)).

• η(B̃) = d∗(B).

• The spectral measure of 1B̃ has no atoms at non-zero rational points of Ad.

The first two properties will follow from the statement that for every h ∈ Λ:

d∗ (B ∩ (B + h)) = η(B̃ ∩ σh(B̃)).

First, notice that for every h ∈ Λ the set Uo ∩ σh(Uo) is Jordan measurable. By unique
ergodicity of XB , for every Følner sequence (Fk) in Λ and any h ∈ Λ we have

1

|Fk|
∑
h∈Fk

|Bo ∩ (Bo + h) ∩ Fk|
|Fk|

→
∫
X

1Uo∩σh(Uo)(x)dη(x) = η
(
B̃ ∩ σh(B̃)

)
, as k →∞.

The latter will imply that for every h ∈ Λ

η
(
B̃ ∩ σh(B̃)

)
≥ d∗(B ∩ (B + h)).

On the other hand, for any Følner sequence (Fk) which lies inside the thick set T we will
have for every h ∈ Λ by a similar argument as before

1

|Fk|
∑
h∈Fk

|B ∩ (B + h) ∩ Fk|
|Fk|

→
∫
X

1Uo∩σh(Uo)(x)dη(x) = η
(
B̃ ∩ σh(B̃)

)
, as k →∞.

This establishes that for every h ∈ Λ:

d∗ (B ∩ (B + h)) = η(B̃ ∩ σh(B̃)).

It remains to prove that the spectral measure corresponding to 1B̃ and the system XB
has no atoms at non-zero rational points of Ad. We will be abusing the notation and will
also use T to denote the Koopman operator on L2(X) corresponding to σ. Let us list two
important properties of the system XB :

(1) XB is totally ergodic, i.e., every subgroup H < Λ of a finite index acts ergodically
on XB .

(2) For f ≥ 0, f ∈ L2(X), the spectral measure µf of f defined by

µ̂f (h) :=

∫
Ad

exp (2πh · x)dµf (x) = 〈f, Thf〉

is non-negative.

The first property follows from Lemma 4.2, while the second property is standard fact,
see [7]. To prove Lemma 4.2 we will need the following result.

Lemma 4.1. Let H < Λ be a subgroup of a finite index. Then for every point x ∈ X, the
H-orbit of x, i.e., {σh(x) |h ∈ H}, is dense in X.

Proof. Lemma follows from two facts that utilise the connectivity of X, and Baire Cate-
gory theorem:

• For every subgroup H < Λ the closed subgroup τ(H) < X nowhere dense.

• Finite union of nowhere dense sets cannot cover X.

�
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Lemma 4.2. Let H < Λ be a subgroup of a finite index. The restriction of the Λ-action
of X to H is uniquely ergodic.

Proof. It follows from Lemma 4.1 that any H-invariant Borel probability measure on X
is also X-invariant. The uniqueness of the Haar normalised measure on X implies the
statement of the lemma. �

Let f ∈ L2(X), then by the ergodicity of XB (property (1)) it follows that for any
Følner sequence (Fk)k≥1 of finite sets in Λ we have

1

|Fk|
∑
h∈Fk

〈f, Thf〉 → |〈f, 1〉|2 , as k →∞.

On the other hand, it is a standard identity:

1

|Fk|
∑
h∈Fk

exp (2πih · x)→
[

1, x = oAd

0, x 6= oAd .

It follows from Lebesgue’s dominated convergence theorem that

(4) |〈f, 1〉|2 = µf (oAd).

Let x0 ∈ Ad be a non-zero rational point with the least common denominator equal to q.
Then the stabiliser of x0 in Λ is Hx0 = qΛ. Using the ergodicity of Hx0 action on XB
(property (1)), we obtain

1

|Fk|
∑
h∈Fk

〈f, Tqhf〉 → |〈f, 1〉|2 , as k →∞.

On the other hand, we have

1

|Fk|
∑
h∈Fk

exp (2πih · (qx))→
[

1, qx = oAd

0, qx 6= oAd .

Therefore, by Lebesgue’s dominated convergence theorem we obtain

(5) |〈f, 1〉|2 =
∑

qx=oAd

µf ({x}).

If we know in addition that f ≥ 0, then by property (2), the spectral measure µf is non-
negative. Therefore, by use of equations (4) and (5) we get that for all non-zero points
x ∈ Ad with qx = oAd we have

µf ({x}) = 0.

In particular, we have that µf ({x0}) = 0. This finishes the proof of Proposition 2.3, if we
choose f = 1B̃ .
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