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Abstract

In this article, we establish the phenomenon of existence and nonexistence of positive weak
solutions of parabolic quasi-linear equations perturbed by a singular Hardy potential on
the whole Euclidean space depending on the controllability of the given singular potential.
To control the singular potential we use a weighted Hardy inequality with an optimal
constant, which was recently discovered in [21]. Our results in this paper extend the ones
in [18] concerning a linear Kolmogorov operator significantly in several ways: firstly, by
establishing existence of positive global solutions of singular parabolic equations involving
nonlinear operators of p-Laplace type with a nonlinear convection term for 1 < p < ∞,
and secondly, by establishing nonexistence locally in time of positive weak solutions of
such equations without using any growth conditions.
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1. Introduction and main results

The aim of this article is to establish the phenomenon of existence and nonexistence
of positive weak solutions of p-Kolmogorov equations perturbed by a Hardy-type potential

∂u

∂t
−Kpu = V |u|p−2 u on Rd×]0, T [, (1.1)

depending whether λ ≤
( |d−p|

p

)p
or λ >

( |d−p|
p

)p
for 1 < p < ∞, d ≥ 2, and the potential

V ∈ L∞loc(Rd \ {0}) satisfies

0 ≤ V (x) ≤ λ
|x|p for a.e. x ∈ Rd. (1.2)

Here, we call a real-valued measurable function u on Rd× (0, T ) positive if u(x, t) ≥ 0 for
a.e. x ∈ Rd and a.e. t ∈ (0, T ) and the operator

Kpu := div
(
|∇u|p−2∇u

)
+ ρ−1 |∇u|p−2∇u∇ρ (1.3)
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is the p-Kolmogorov operator for the particular density function

ρ(x) := N e−
1
p

(xtAx)p/2 (1.4)

for every x ∈ Rd, where A is a real symmetric positive definite (d × d)-matrix and N
some normalisation constant such the integral

∫
Rd ρ(x) dx = 1. The operator Kp was

first introduced in [17] and we note that the case A = 0 corresponds to the density
function ρ ≡ 1. In this case, one does not normalise and the phenomenon of existence and
nonexistence of positive solutions of equation (1.1) on bounded and unbounded domains
has been well-studied in the past (see, for instance, [15, 2, 19]). Thus, it is the task of
this article, to investigate the case A is a real symmetric positive definite (d× d)-matrix.
Furthermore, we denote by dµ the finite Borel-measure on Rd given by

dµ = ρ dx,

for 1 ≤ q ≤ ∞ and any open subset D of Rd, let Lq(D,µ) and W 1,q(D,µ) denote the
standard Lebesgue and first Sobolev space with respect to the measure dµ and W 1,q

0 (D,µ)
the closure of C∞c (D) in W 1,q(D,µ). Under these assumptions, the second and third
author of this article established in [21] the following Hardy inequality with a reminder
term.

Lemma 1.1 ([21]). Let d ≥ 2, 1 < p < ∞ and A be a real symmetric positive definite
(d× d)-matrix. Then

( |d−p|
p

)p ∫
Rd

|u|p
|x|p dµ ≤

∫
Rd
|∇u|p dµ+

( |d−p|
p

)p−1
sign(d− p)

∫
Rd
|u|p (xtAx)p/2

|x|p
dµ (1.5)

for all u ∈ W 1,p(Rd, µ) with optimal constant
( |d−p|

p

)p
.

In contrast to the case A ≡ 0 (cf., for instance, [15] or [26] and the references there
in), our weighted Hardy inequality (1.5) admits the reminder term

( |d−p|
p

)p−1
sign(d− p)

∫
Rd
|u|p (xtAx)p/2

|x|p
dµ. (1.6)

This term has, in fact, a great impact on the existence of weak solutions of equation (1.1)
in the degenerate case 2 < p < d, while for establishing nonexistence of positive solutions
this term does not cause any problems. It is somehow surprising that in the case p > d,
the reminder term (1.6) becomes negative and so provides further estimates in Lp(Rd, µ).
We note that one does not find much in the literature about Hardy type inequalities in
the case p > d ≥ 2.

In this article, we make use of the following notion of weak solutions, which seems to
be natural for parabolic equations of p-Laplace type with singular potentials (cf. [10, 7, 9]
or [18] for p = 2 and [19] by J. Goldstein and Kombe.

Definition 1.2. Let V ∈ L∞loc(Rd \ {0}, µ) be positive. If p 6= 2, then for given u0 ∈
L2
loc(Rd, µ) we call u a weak solution of equation (1.1) with initial value u(0) = u0 provided

u ∈ C([0, T );L2
loc(Rd \ {0}, µ)) ∩ Lp(0, T ;W 1,p

loc (Rd \ {0}, µ)),

for all open sets K with compact closure in Rd \ {0}, (abbreviated by K b Rd \ {0})

u(t)→ u0 in L2(K, µ) as t→ 0+, (1.7)
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for all 0 ≤ t1 < t2 < T , and all ϕ ∈ W 1,2(t1, t2;L2(K, µ)) ∩ Lp(t1, t2;W 1,p
0 (K, µ)),

(u, ϕ)L2
µ(K)

∣∣∣t2
t1

+

∫ t2

t1

∫
K

{
− u dϕ

dt
+ |∇u|p−2∇u∇ϕ

}
dµ dt

=

∫ t2

t1

∫
K
V (x) |u|p−2 uϕ dµ dt.

(1.8)

If p = 2, then for given u0 ∈ L2
loc(Rd, µ), we call u a weak solution of equation (1.1)

provided u ∈ C([0, T );L2
loc(Rd \ {0}, µ)) satisfies for every K b Rd \ {0}, initial condi-

tion (1.7), for every open ball B(0, r) centred at x = 0 with radius r > 0 and every
0 ≤ t1 < t2 < T , one has that V u ∈ L1(t1, t2, L

1(B(0, r), µ)) and

(u, ϕ)L2(Rd,µ)

∣∣∣t2
t1

+

∫ t2

t1

∫
Rd
u
{
− dϕ

dt
−K2ϕ

}
dµ dt =

∫ t2

t1

∫
Rd

Φ(x)uϕ dµ dt

for all ϕ ∈ W 1,2(t1, t2;L2(Rd, µ)) ∩ L2(t1, t1;W 2,2(Rd, µ)) with ϕ(·, t) having compact
support.

Our two main results of this article read as follows. We begin with the existence result.

Theorem 1.3. Let d ≥ 2 and A be a real symmetric positive definite (d × d)-matrix.
Then the following statements hold true.

1. Let either 2d
d+2

< p ≤ 2 and p 6= d if d ≥ 2 or d < p < ∞. If λ ≤
( |d−p|

p

)p
,

then for every T > 0, and every positive u0 ∈ L2(Rd, µ), there is a weak solution
u ∈ C([0, T ];L2(Rd, µ)) of equation (1.1) with initial value u(0) = u0.

2. If 1 < p < 2d
d+2

, then for every λ > 0 and every positive u0 ∈ L2(Rd, µ), there is a

strong solution of equation (1.1) in L2(Rd, µ).

Note, the notion of strong solutions of equation (1.1) is given in Definition 2.1 in the
second section. We want to point out that by using a Galerkin method, one can, in
particular, establish the existence of sign-changing solution of equation (1.1) with a right-

hand side f ∈ L2(0, T ;L2(Rd, µ)) or f ∈ Lp′(0, T ;W−1,p′(Rd, µ)) for λ ≤
( |d−p|

p

)p
, where

W−1,p′(Rd, µ) denotes the dual space of W 1,p(Rd, µ). In addition, taking initial values

u0 ∈ W 1,p(Rd, µ) or λ <
( |d−p|

p

)p
provides more regularity on the weak solutions of (1.1)

(similarly, as in [15] or [2]). However, in order to lose not the focus on the phenomenon

of existence and nonexistence provided by the optimality of the Hardy constant
( |d−p|

p

)p
,

we state here only our results on the existence and nonexistence of positive very weak
solutions of equation (1.1).

Our nonexistence results reads as follows.

Theorem 1.4. Let d ≥ 2, A be a real symmetric positive definite (d × d)-matrix and
V = λ

|x|p . Then the following statements hold true.

(i) For d = 2 let 1 < p < 2, and for d ≥ 3 let 2d
d+2
≤ p ≤ 2. If λ >

(
d−p
p

)p
and if u0 is

a positive nontrivial element of L2
loc(Rd, µ), then for any T > 0, equation (1.1) has

no positive weak solution.

(ii) Let d ≥ 2, p > 2, and p 6= d. If λ >
( |d−p|

p

)p
, and if u0 ∈ L2

loc(Rd, µ) is positive and
for some r > 0,

ess inf
x∈B(0,r)

u0(x) ≥ δ > 0, (1.9)

then for any T > 0, equation (1.1) has no positive weak solution.
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The intimate relation between Hardy’s inequality and the nonexistence results of pos-
itive solutions of parabolic equations with a singular potential was discovered by in [5] by
Baras and the first author of this article. More precisely, they established the following
result:

Theorem: (Baras-Goldstein,[5]) Let Ω = (0, R) for some 1 ≤ R ≤ +∞ if d = 1 and
if d ≥ 2, let Ω be a domain in Rd with B(0, 1) ⊆ Ω and a smooth boundary ∂Ω. If

λ ≤
(
d−2

2

)2
, then for every positive u0 ∈ L1(Ω) \ {0} and every T > 0, problem

∂u
∂t
−∆u = λ

|x|2u in Ω× (0, T ), u = 0 on ∂Ω× (0, T ), u(·, 0) = u0 in Ω (1.10)

has a positive weak solution. If λ >
(
d−2

2

)2
and if u0 ∈ L1(Ω) \ {0} is positive, then for

any T > 0 problem (1.10) has no positive weak solution.
A few years later, Cabré and Martel discovered in [9] a second and more intuitive

proof of the Baras-Goldstein result [5]. They proved in [9] that indeed the existence
and nonexistence of positive solutions of problem (1.10) is largely determined by the
generalized eigenvalue of −∆− λ |x|−2 given by

σ(λ |x|−2 ,Ω) = inf
06≡ϕ∈C∞c (Ω)

∫
Ω
|∇ϕ|2 dµ−

∫
Ω

λ
|x|2 |ϕ|

2 dµ∫
Ω
|ϕ|2 dµ

.

In [19], the first author and Kombe showed that the method introduced in [9] can be
very useful to establish nonexistence (locally in time) of positive solutions of singular
nonlinear diffusion equations associated with either the p-Laplace operator or other fast-
diffusion operators. The existence and the qualitative behaviour of positive solutions of
singular parabolic problems associated with the p-Laplace operator has been intensively
studied, for instance, in the articles [2] and [15]. In particular, by using a separation of
variables method, Garcia Azorero and Peral Alonso established in [15] in the degenerate
case 2 < p < d nonexistence (locally in time) of positive solutions of a parabolic p-
Laplace equations perturbed by the potential V = λ |x|−p on a bounded domain with
zero Dirichlet boundary conditions. In [13, 14], Galaktionov employed the zero counting
method (Sturm’s first theorem, cf. [30]) to show that the assumption that the weak
solutions of these equations need to be positive can be omitted, but with the restriction
that the initial datum u0 is assumed to be continuous and u0(0) > 0.

Recently, the first and the third author discovered in [18, Theorem 3.4] together with G.
R. Goldstein, the weighted Hardy inequality (1.5) for p = 2 and by employing the Cabré-
Martel approach [9], they established existence and nonexistence of positive global weak

solutions of equation (1.1) for the potential V = λ |x|−2 depending whether λ ≤
(
d−2

2

)2

or λ >
(
d−2

2

)2
. Moreover, in order to establish nonexistence (globally in time) of positive

weak solution of (1.1), the additional assumption that the solutions satisfy the exponential
growth condition

‖u(t)‖L2(Rd,µ) ≤M ‖u0‖L2(Rd,µ) e
ω t (1.11)

for all t ≥ 0 is needed in [18].
The results of this article complement the known literature in the following way. We

establish existence of positive solutions of equation (1.1) for 1 < p < 2d
d+2

, 2d
d+2

< p ≤ 2,
p 6= d, p > d ≥ 2 and nonexistence results for all 1 < p ≤ 2 with p 6= d and p > d ≥ 2.
Until now, only the case p = 2 has been considered in [18, Theorem 1.3 & Theorem 2.1].
In this work, we improve the results in [18] by proving nonexistence of positive locally in
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time weak solutions of equation (1.1) for p = 2. In contrast to [18], our proofs in this
article provide a way to establish nonexistence of positive solutions of (1.1) without using
the exponential growth condition (1.11). In addition, by comparing the results in [15],
we provide a different proof to establish nonexistence locally in time of positive weak
solutions of (1.4) in the degenerate case 2 < p <∞ and p 6= d.

In this article, we neither prove existence of positive solutions of equation (1.1) for the
critical case p = 2d

d+2
nor for 2 < p < d. The reason for this is that in the critical case

p = 2d
d+2

, there is a lack of compactness and in the case 2 < p < d, the rest term in the
weighted Hardy inequality (1.5), does not allow us to derive uniform Lq-a priori bounds
for some suitable q ≥ 1.

2. Proof of existence of positive weak solutions

This section is dedicated to the proof of Theorem 1.3. Here, we proceed in two step.
In the first step, we establish for every positive u0 ∈ L2(Rd, µ) and m ≥ 1, the existence of
positive solutions um of equation (1.1) when the potential V ∈ L∞loc(Rd \ {0}) is replaced
by the truncated potential

Vm(x) := min{V (x),m} (2.1)

and when the initial value u0 is replaced by the truncated initial value

u0,m(x) := min{u0,m}. (2.2)

Then, the corresponding solution um admits more regularity and the sequence (um) is
monotone increasing. Using this fact together with Hardy’s inequality (1.5) for λ ≤( |d−p|

p

)p
, we show in the second step that the limit function

u := lim
m→∞

um

is a positive weak solution of the singular equation (1.1) with initial value u0.

2.1. Existence of strong approximate solutions

Suppose that the potential V ∈ L∞loc(Rd\{0}) is positive. Then for every u ∈ L2(Rd, µ),
let

ϕ(u) =

 1
p

∫
Rd
|∇u|p dµ if u ∈ W 1,p(Rd, µ),

+∞ if otherwise,
(2.3)

and

ϕ
V

(u) =

 1
p

∫
Rd
V |u|p dµ if V |u|p ∈ L1(Rd, µ),

+∞ if otherwise.
(2.4)

The functionals ϕ : L2(Rd, µ) → [0,+∞] and ϕ
V

: L2(Rd, µ) → [0,+∞] are con-
vex, proper, lower semicontinuous on L2(Rd, µ) and have dense domains D(ϕ) := {u ∈
L2(Rd, µ)

∣∣ ϕ(u) < +∞
}

and D(ϕ
V

) in L2(Rd, µ). Moreover, the subgradient ∂ϕ in
L2(Rd, µ) is single-valued, has domain

D(∂ϕ) =

{
u ∈ W 1,p(Rd, µ) ∩ L2(Rd, µ)

∣∣∣∣∣ ∃1 hu ∈ L2(Rd, µ) s.t. for all v ∈ C∞c (Rd),∫
Rd
|∇u|p−2∇u∇v dµ =

∫
Rd
hu v dµ

}
,

∂ϕ(u) = hu for every u ∈ D(∂ϕ),
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and an integration by parts shows that −∂ϕ describes the realisation in L2(Rd, µ) of the
p-Kolmogorov operator Kp defined in (1.3).

Similarly, the subgradient ∂ϕ
V

in L2(Rd, µ) is single-valued and given by

D(∂ϕ
V

) =

{
u ∈ L2(Rd, µ)

∣∣∣∣∣ V |u|p ∈ L1(Rd, µ), ∃1 hu ∈ L2(Rd, µ) s.t.∫
Rd
V |u|p−2 u v dµ =

∫
Rd
hu v dµ ∀ v ∈ C∞c (Rd)

}
,

∂ϕ
V

(u) = hu for every u ∈ D(∂ϕ
V

).

Let m ≥ 1. Then, we begin by establishing the existence of positive solutions of
equation (1.1) for the truncated potential Vm given by (2.1):

dum
dt

+ ∂ϕ(um) = ∂ϕ
Vm

(um) on (0, T ) (2.5)

in L2(Rd, µ) satisfying um(0) = u0,m for the truncated initial value u0,m given by (2.2).
The approximate solutions um of equation (2.5) is, generally, more regular than the weak
solution u of (1.1). In fact, we show that solutions of equation (2.5) are strong in the
following sense.

Definition 2.1. For given u0 ∈ L2(Rd, µ) and positive V ∈ L∞(Rd \ {0}), we call a
function u ∈ C([0, T ];L2(Rd, µ)) a strong solution of equation (2.5) in L2(Rd, µ) with
initial value u0 if u satisfies u(0) = u0 in L2(Rd, µ),

u ∈ Lp(0, T ;W 1,p(Rd, µ)) ∩W 1,2(δ, T ;L2(Rd, µ))

for every δ > 0, and for a.e. t ∈ (0, T ), u(t) ∈ D(∂ϕ
V

) and∫
Rd

du

dt
(t) v dµ+

∫
Rd
|∇u(t)|p−2∇u(t)∇v dµ =

∫
Rd
∂ϕ

V
(u(t)) v dµ

for all v ∈ W 1,p(Rd, µ) ∩ L2(Rd, µ).

Our result on the existence of strong solutions of equation (2.5) for the truncated
potential Vm is given in the following proposition. Note that we make neither further
restriction on 1 < p <∞ nor on the positive potential V ∈ L∞loc(Rd \ {0}).

Proposition 2.2. Let V ∈ L∞loc(Rd \ {0}) be positive, T > 0, and m ≥ 1 an integer.
Then, for every positive u0 ∈ L2(Rd, µ), there is at least one positive strong solution
um ∈ L∞(Rd × (0, T )) of equation (2.5) with initial value um(0) = u0,m satisfying

um(x, t) ≤ um+1(x, t) (2.6)

for all t ∈ [0, T ], a.e. x ∈ Rd.

For the proof of Proposition 2.2 we employ a method due to Fujita [12]. The same
method has already been employed in [15, Section 6.] and [2, Section 2.] to study
equation (1.1) with density function ρ ≡ 1.

The following compactness result is quite interesting and helpful, for instance, to es-
tablish further auxiliary inequalities (see (2.8) below), which we use to establish existence
of strong solutions of equation (2.5) and weak solutions of equation (1.1). Note that the
density function ρ defined in (1.4) is, in general, not radial, compactness results con-
cerning weighted Sobolev spaces with radial weight functions are well-studied (see, for
instance, [1] or [3]).
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Theorem 2.3. Let d ≥ 2, 1 < p < ∞ and A be a real symmetric positive definite
(d× d)-matrix. Then the embedding from W 1,p(Rd, µ) into Lp(Rd, µ) is compact.

Since Theorem (2.3) is not the central object of this paper, we post its proof to the
appendix of this article. As an immediate consequence of this compactness result, we
obtain the following useful Poincaré inequality:

Corollary 2.4. Let d ≥ 2, 1 < p < ∞ and A be a real symmetric positive definite
(d× d)-matrix. Then, there is a constant C > 0 such that

‖u− u‖Lp(Rd,µ) ≤ ‖∇u‖Lp(Rd,µ)d (2.7)

for all u ∈ W 1,p(Rd, µ), where u =
∫
Rd u dµ.

Note that the proof of Corollary (2.4) follows immediately by using standard argu-
ments. Hence we omit its proof. By the triangle inequality and since Lq(Rd, µ) is contin-
uously embedded into L1(Rd, µ) for any 1 ≤ q ≤ ∞, we can conclude the following result,
which we state for later reference.

Corollary 2.5. Let d ≥ 2, 1 < p < ∞ and A be a real symmetric positive definite
(d× d)-matrix. Then for 1 ≤ q ≤ ∞, there is a constant C > 0 such that

‖u‖Lp(Rd,µ) ≤ ‖∇u‖Lp(Rd,µ)d + ‖u‖Lq(Rd,µ) (2.8)

for all u ∈ W 1,p(Rd, µ) ∩ Lq(Rd, µ).

For the proof of Proposition 2.2, we employ weak comparison principles. The following
one will be useful also later by establishing nonexistence (locally in time) of positive weak
solutions. Here, for a given open subset D of Rd and T > 0, we denote by W 1,p

0 (D,µ) the
closure of C∞c (D) in W 1,p(D,µ) and set DT = D × (0, T ) and PDT = (∂D × (0, T )) ∪
(D × {0}).

Lemma 2.6. Let D ⊆ Rd be a bounded open subset with a Lipschitz continuous boundary
and f : D×R→ R be a Carathéodory function satisfying f(x, 0) = 0 for a.e. x ∈ D and
there is a constant L > 0 such that |f(x, u)− f(x, û)| ≤ L |u− û| for all u, û ∈ R and
a.e. x ∈ D. Suppose that

u, v ∈ C([0, T ];L2(D,µ)) ∩W 1,2(δ, T ;L2(D,µ)) ∩ Lp(0, T ;W 1,p(D,µ))

for any 0 < δ < T and satisfy∫
D

[
du

dt
(t)− dv

dt
(t)

]
ϕ dµ+

∫
D

[|∇u(t)|p−2∇u(t)− |∇v(t)|p−2∇v(t)]∇ϕ dµ

+

∫
D

[f(x, u(t))− f(x, v(t))]ϕ dµ ≤ 0 ,

(2.9)

for all positive ϕ ∈ W 1,p
0 (D,µ) and a.e. t ∈ (0, T ). Then

ess sup
(x,t)∈DT

e−Lt(u− v)(x, t) ≤ ess sup
(x,t)∈PDT

e−Lt
[
u− v

]+
(x, t). (2.10)
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Proof. To prove the assertion of this lemma, we employ the truncation method of Stam-
pacchia (cf. the proof of Théorème X.3 in [6, p.211]). Suppose that

k = ess sup
(x,t)∈PDT

e−Lt
[
u− v

]+
(x, t) is finite,

where we denote by [v]+ := max{0, v(x, t)} the positive part of a measurable function v
defined on DT , and set

w(x, t) = u(x, t)− v(x, t)− keLt for a.e. (x, t) ∈ DT .

Since the function s 7→ [s]+ is Lipschitz-continuous on R, we have by [6, Corollaire VIII.10]
that w+ ∈ W 1,2(δ, T ;L2(D,µ)) ∩ Lp(0, T,W 1,p(D,µ)). And since by hypothesis, w+ = 0
on ∂D×(0, T ), we have by [23, Lemma 3.3], that w+ ∈ Lp(0, T ;W 1,p

0 (D,µ)). We denote by
1{u−v>keLt} the characteristic function of the set

{
(x, t) ∈ DT |u(x, t)−v(x, t) > keLt

}
, and

we set ϕ(t) = 1
2
‖w+(t)‖2

L2(D,µ) for all t ∈ [0, T ]. Then, ϕ ∈ W 1,2(δ, T ) for all 0 < δ < T ,
ϕ ∈ C[0, T ], ϕ(0) = 0, ϕ ≥ 0 on [0, T ], and for a.e. t ∈ (0, T ),

ϕ′(t) =

∫
D

[
du

dt
(t)− du

dt
(t)

]
w+(t) dµ−

∫
D

k L eLtw+(t) dµ

≤ −
∫
D

[|∇u(t)|p−2∇u(t)− |∇v(t)|p−2∇v(t)] [∇u(t)−∇v(t)]1{u−v>keLt}dµ

−
∫
D

[f(x, u(t))− f(x, v(t))]w+(t) dµ−
∫
D

k L eLtw+(t) dµ

≤ L

∫
{u−v>keLt}

[u(t)− v(t)]w+(t) dµ−
∫
D

k L eLtw+(t) dµ

≤ 0.

Thus, ϕ(t) ≡ 0, proving that inequality (2.10) holds.

Now, we turn to the proof of Proposition 2.2.

Proof of Proposition 2.2. Let u0 ∈ L2(Rd, µ) be positive and for m ≥ 1, let u0,m be given
by (2.2). Then, as a 1st Step, we begin by constructing iteratively a sequence (ym,k)k≥1

of positive strong solutions ym,k of equation

dym,k
dt

+ ∂ϕ(ym,k) = Vmy
p−1
m,k−1 on (0, T ) (2.11)

in L2(Rd, µ) with initial value ym,k(0) = u0,m satisfying

ym,k ∈ L∞(Rd × (0, T )) (2.12)

and
ym,k(x, t) ≤ ym,k+1(x, t) ≤ Lm := M +m (2.13)

for all t ∈ [0, T ], a.e. x ∈ Rd and all integers k ≥ 1, where for given T > 0, we choose
M > 0 such that T = M/(Lp−1

m m+m).
We begin by constructing the function ym,1. For this, we need the following two

auxiliary functions wm and vm. One easily verifies that the function

wm(x, t) := t (mLp−1
m +m) +m (2.14)

8



for all t ≥ 0 and x ∈ Rd, is the unique strong solution of equation

dwm
dt

+ ∂ϕ(wm) = mLp−1
m +m on (0, T )

in L2(Rd, µ) with initial value wm(0) = m. Further, by [8, Théorème 3.1], there is a
unique strong solution vm of

dvm
dt

+ ∂ϕ(vm) = 0 on (0, T ) (2.15)

in L2(Rd, µ) with initial value vm(0) = u0,m. Since 0 ≤ vm(0) = u0
m ≤ m = wm(0) and

since 0 ≤ mLp−1
m +m, the weak comparison principle (Lemma 2.6) implies

0 ≤ vm ≤ wm

for all t ∈ [0, T ] and a.e. x ∈ Rd. By [8, Théorème 3.6], there is a unique strong solution
ym,1 of equation

dym,1
dt

+ ∂ϕ(ym,1) = Vm v
p−1
m on (0, T )

in L2(Rd, µ) with initial value ym,1(0) = u0,m. Since T = M (Lp−1
m m + m)−1 and since

wm ≤M +m = Lm on Rd × (0, T ), one has that

0 ≤ Vm(vm)p−1 ≤ mLp−1
m +m

a.e. on Rd × (0, T ). Hence the weak comparison principle yields

0 ≤ vm(x, t) ≤ ym,1(x, t) ≤ wm(x, t)

for a.e. x ∈ Rd and all t ∈ [0, T ]. Now, iteratively, for every k ≥ 2, there is a unique
strong solution ym,k of equation (2.11) with initial value ym,k(0) = u0,m. Since

0 ≤ Vm (vm)p−1 ≤ Vm (ym,k−2)p−1 ≤ Vm (ym,k−1)p−1 ≤ mLp−1
m +m

a.e. on Rd × (0, T ) for all k ≥ 2, where we set ym,0 = vm if k = 2, the weak comparison
principle implies

0 ≤ vm(x, t) ≤ ym,k−1(x, t) ≤ ym,k(x, t) ≤ wm(x, t) ≤ Lm

for a.e. x ∈ Rd and for all t ∈ [0, T ]. Thus, every ym,k satisfies (2.12) and (2.13).

Step 2: Next, we show that the following a priori -estimates hold:

‖ym,k(t)‖L2(Rd,µ) ≤ ‖u0,m‖L2(Rd,µ) +

∫ t

0

∥∥Vmwp−1
m (s)

∥∥
L2(Rd,µ)

ds, (2.16)

∫ t

0

∫
Rd
|∇ym,k(s)|p dµ ds ≤ ‖u0,m‖2

L2(Rd,µ) + 3
2

[∫ t

0

∥∥Vmwp−1
m (s)

∥∥
L2(Rd,µ)

ds

]2

(2.17)

and if u0 ∈ W 1,p(Rd, µ) ∩ L2(Rd, µ) then∫ t

0

∥∥∥∥dym,kds
(s)

∥∥∥∥2

L2(Rd,µ)

ds+ 2
p

∫
Rd
|∇ym,k(t)|p dµ

≤ 2
p

∫
Rd
|∇u0,m|p dµ+

∫ t

0

∥∥Vmwp−1
m (s)

∥∥2

L2(Rd,µ)
ds

(2.18)
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and ∫ t

0

s

∥∥∥∥dym,kds
(s)

∥∥∥∥2

L2(Rd,µ)

ds+ t 2
p

∫
Rd
|∇ym,k(t)|p dµ

≤ 2
p
‖u0,m‖2

L2(Rd,µ) + 3
p

[∫ t

0

∥∥Vmwp−1
m (s)

∥∥
L2(Rd,µ)

ds

]2

+

∫ t

0

s
∥∥Vmwp−1

m (s)
∥∥2

L2(Rd,µ)
ds

(2.19)

for all k ≥ 1 and all t ∈ [0, T ]. To see that the estimates (2.16) and (2.17) hold, we multiply
equation (2.11) by ym,k with respect to the L2(Rd, µ) inner product and subsequently
integrate over (0, t), for t ∈ (0, T ]. Then, by Cauchy-Schwarz’s inequality and since
0 ≤ ym,k−1 ≤ wm, we obtain that

1
2
‖ym,k(t)‖2

L2(Rd,µ) +

∫ t

0

∫
Rd
|∇ym,k(s)|p dµ ds

≤ 1
2
‖u0,m‖2

L2(Rd,µ) +

∫ t

0

∥∥Vmwp−1
m (s)

∥∥
L2(Rd,µ)

‖ym,k(s)‖L2(Rd,µ) ds,

from where by [8, Lemme A.5] inequality (2.16) follows. Inserting inequality (2.16) into
the latter one and applying Young’s inequality, we see that inequality (2.17) holds. By [16,
Lemma 7.6], if u0 ∈ W 1,p(Rd, µ) ∩ L2(Rd, µ), then u0,m ∈ W 1,p(Rd, µ) ∩ L2(Rd, µ) with

∇u0,m = ∇u0 1{u0<m}.

Hence, multiplying equation (2.11) by 2
dym,k

dt
with respect to the L2(Rd, µ) inner prod-

uct and subsequently integrating over (0, t) for t ∈ (0, T ) and applying [8, Lemme 3.3],
Cauchy-Schwarz’s and Young’s inequality, we see that inequality (2.18) holds. Similarly,

by multiplying equation (2.11) with 2 t
dym,k

dt
and applying inequality (2.18), we see that

estimate (2.19) holds.

Step 3: The sequence (ym,k) constructed in Step 1 consists of positive measurable

functions ym,k on Rd × [0, T ], satisfies monotonicity property (2.13) and is uniformly
bounded on Rd × [0, T ]. Thus the limit function

um(x, t) := sup
k≥1

ym,k(x, t) = lim
k→∞

ym,k(x, t) (2.20)

exists for a.e. x ∈ Rd and every t ∈ [0, T ] and satisfies 0 ≤ um ≤ Lm on Rd × [0, T ]. We
show that the limit function

um ∈ C([0, T ];L2(Rd, µ)) ∩ L∞(Rd × (0, T ))

and satisfies um(0) = u0,m in L2(Rd, µ). By Lebesgue’s monotone convergence theorem
([29, Theorem 1.26]), the function um is measurable on Rd × [0, T ]. Moreover, one has
that

‖ym,k(t)‖L2(Rd,µ) ≤ ‖ym,k+1(t)‖L2(Rd,µ)

for every t ∈ [0, T ] and every k ≥ 1, and

‖ym,k(t)‖L2(Rd,µ) ↗ ‖um(t)‖L2(Rd,µ)
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as k →∞ for all t ∈ [0, T ]. Since

sup
k≥1

sup
t∈[0,T ]

‖ym,k(t)‖L2(Rd,µ) ≤ Lm

and ym,k ∈ C([0, T ];L2(Rd, µ)) for every k ≥ 1, Dini’s Theorem and the uniform convexity
of L2(Rd, µ) imply that um ∈ C([0, T ];L2(Rd, µ)) and

lim
k→∞

ym,k → um in C([0, T ];L2(Rd, µ)). (2.21)

In particular, since ym,k(0) = u0,m for all k ≥ 1, we have that um(0) = u0,m.

Step 4: First, we consider the case u0 ∈ W 1,p(Rd, µ)∩L2(Rd, µ). Due to the a priori -
estimates (2.16)–(2.18) and by inequality (2.8), the sequence (ym,k) is bounded in the
space W 1,2(0, T ;L2(Rd, µ)) ∩ Lp(0, T ;W 1,p(Rd, µ)). Since this space is reflexive and by
limit (2.21), we obtain that um ∈ W 1,2(0, T ;L2(Rd, µ)) ∩ Lp(0, T ;W 1,p(Rd, µ)) and there
is a subsequence of (yk,m), which we denote, for simplicity, again by (ym,k) such that

lim
k→∞

ym,k = um weakly in W 1,2(0, T ;L2(Rd, µ)) ∩ Lp(0, T ;W 1,p(Rd, µ)). (2.22)

Since 0 ≤ Vmy
p−1
m,k−1 ≤ mLp−1

m , we have for a.e t ∈ (0, T ) that ym,k−1(t) ∈ D(∂ϕ
Vm

),

∂ϕ
Vm

(ym,k−1(t)) = Vmy
p−1
m,k−1(t) and by limit (2.20),

lim
k→∞

∂ϕ
Vm

(ym,k−1(t)) = ∂ϕ
Vm

(um(t)) strongly in L2(Rd, µ).

Using again the fact that 0 ≤ Vmy
p−1
m,k−1 ≤ mLp−1

m , we see that∥∥Vmyp−1
m,k−1(t)

∥∥
L2(Rd,µ)

≤ mLp−1
m

for a.e. t ∈ (0, T ). Thus

lim
k→∞

∂ϕ
Vm

(ym,k−1) = ∂ϕ
Vm

(um) strongly in L2(0, T ;L2(Rd, µ)).

Moreover, for a.e. t ∈ (0, T ), ym,k(t) ∈ D(∂ϕ) with

∂ϕ(ym,k(t)) = ∂ϕ
Vm

(ym,k−1)− dym,k
dt

(t)

in L2(Rd, µ). Therefore

lim
k→∞

∂ϕ(ym,k(t)) = ∂ϕ
Vm

(um)− dum
dt

(t) weakly in L2(0, T ;L2(Rd, µ)). (2.23)

Since for ∂ϕ the associated operator on L2(0, T ;L2(Rd, µ)) is maximal monotone by [8,
Exemple 2.3.3], the two limits (2.23) and (2.21) imply by [8, Proposition 2.5] that for a.e.
t ∈ (0, T ), um(t) ∈ D(∂ϕ) and

∂ϕ(um(t)) = ∂ϕ
Vm

(um(t))− dum
dt

(t).
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This shows that um ∈ L∞(Rd× (0, T )) is a positive strong solution of equation (2.5) with
initial value um(0) = u0,m. Furthermore, sending k →∞ in the inequalities (2.16), (2.17)
and (2.19), and by using the limits (2.21) and (2.22) yields

‖um(t)‖L2(Rd,µ) ≤ ‖u0,m‖L2(Rd,µ) +

∫ t

0

∥∥Vmwp−1
m (s)

∥∥
L2(Rd,µ)

ds, (2.24)

∫ t

0

∫
Rd
|∇um(s)|p dµ ds ≤ ‖u0,m‖2

L2(Rd,µ) + 3
2

[∫ t

0

∥∥Vmwp−1
m (s)

∥∥
L2(Rd,µ)

ds

]2

. (2.25)

and ∫ t

0

s

∥∥∥∥dumds (s)

∥∥∥∥2

L2(Rd,µ)

ds

≤ 2
p
‖u0,m‖2

L2(Rd,µ) + 3
p

[∫ t

0

∥∥Vmwp−1
m (s)

∥∥
L2(Rd,µ)

ds

]2

+

∫ t

0

s
∥∥Vmwp−1

m (s)
∥∥2

L2(Rd,µ)
ds.

(2.26)

It is left to show that the sequence (um)m≥1 satisfies (2.6). If for every integer m ≥ 1,
wm is given by (2.14), then wm ≤ wm+1 and if vm denotes the unique strong solution of
problem (2.15) with initial value vm(0) = u0,m, then by the weak comparison principle,
0 ≤ vm ≤ vm+1 for a.e. x ∈ Rd and all t ∈ [0, T ]. Since M > 0 can always be chosen such
that T = M m−1 L1−p

m =: Tm for every m ≥ 1, we have that 0 ≤ ym,1 ≤ ym+1,1 ≤ wm+1,
and by iteration, 0 ≤ ym,k ≤ ym+1,k ≤ wm+1 for a.e. x ∈ Rd and all t ∈ [0, Tm+1].
Therefore, if we send k → +∞ in inequality

0 ≤ ym,k ≤ ym+1,k ≤ wm+1 (2.27)

for fixed m ≥ 1, then we find that 0 ≤ um ≤ um+1 ≤ wm+1 for a.e. x ∈ Rd and all
t ∈ [0, Tm+1]. This shows that the claim of this propositions holds if the positive initial
value u0 ∈ W 1,p(Rd, µ) ∩ L2(Rd, µ).

Now, let u0 ∈ L2(Rd, µ) be positive. Standard mollifying and truncation technics
show that C∞c (Rd) ⊆ W 1,p(Rd, µ) ∩ L2(Rd, µ) lies dense in L2(Rd, µ) and, in particular,

we may assume that there is a sequence (u
(j)
0 ) of positive functions u

(j)
0 ∈ W 1,p(Rd, µ) ∩

L2(Rd, µ) such that u
(j)
0 converges to u0 in L2(Rd, µ) as j → ∞. Fix m ≥ 1. Then

u
(j)
0,m := min{u(j)

0 ,m} converges to u0,m = min{u0,m} in L2(Rd, µ) as j → ∞. For every

j ≥ 1, there is a sequence (y
(j)
m,k) of strong solutions y

(j)
m,k of (2.11) satisfying initial value

y
(j)
m,k(0) = u

(j)
0,m and a sequence (u

(j)
m ) of strong solutions u

(j)
m of equation (2.5) with initial

value u
(j)
m (0) = u

(j)
0,m such that limit

u(j)
m (x, t) = sup

k≥1
y

(j)
m,k(x, t) = lim

k→∞
y

(j)
m,k(x, t)

and monotonicity property (2.27) hold a.e. on Rd × (0, T ) for y
(j)
m,k instead of ym,k. Thus

sending k →∞ in (2.27) for fixed j ≥ 1, we obtain

0 ≤ u(j)
m ≤ u

(j)
m+1 ≤ wm+1 (2.28)
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for every j ≥ 1 and every m ≥ 1. By the inequalities (2.24) and (2.26), the sequence

(u
(j)
m ) is bounded in W 1,2(δ, T ;L2(Rd, µ)) for every δ ∈ (0, T ). Hence (u

(j)
m ) is bounded

and equicontinuous in C([δ, T ];L2(Rd, µ)) for every δ ∈ (0, T ). By Arzelà-Ascoli, there
is a function um ∈ C((0, T ];L2(Rd, µ)) and by a diagonal sequence argument, there is a

subsequence (u
(kj)
m ) of (u

(j)
m ) such that

lim
j→∞

u(kj)
m = um strongly in C([δ, T ];L2(Rd, µ)) (2.29)

for every δ ∈ (0, T ). In particular, for every t ∈ (0, T ],

lim
j→∞

u(kj)
m (t) = um(t) a.e. on Rd. (2.30)

Thus, by (2.28), and since 0 ≤ Vm ≤ m, we have for all t ∈ (0, T ] that um(t) ∈ D(∂ϕ
Vm

)

with ∂ϕ
Vm

(um(t)) = Vm |um(t)|p−2 um(t) and

lim
j→∞

ϕ
Vm

(u(kj)
m ) = ϕ

Vm
(um) strongly in L2(0, T ;L2(Rd, µ)). (2.31)

Moreover, for a.e. t ∈ (0, T ), u
(kj)
m (t) ∈ D(∂ϕ) with

∂ϕ(u(kj)
m (t)) = ∂ϕ

Vm
(u(kj)

m (t))− du
(kj)
m

dt
(t)

in L2(Rd, µ) and

lim
k→∞

∂ϕ(u(kj)
m ) = ∂ϕ

Vm
(um)− dum

dt
(t) weakly in L2(δ, T ;L2(Rd, µ)) (2.32)

for every δ ∈ (0, T ). Since for ∂ϕ the associated operator on L2(0, T ;L2(Rd, µ)) is maximal
monotone, the two limits (2.29) and (2.32) imply that for a.e. t ∈ (0, T ), um(t) ∈ D(∂ϕ)
and

∂ϕ(um(t)) = ∂ϕ
Vm

(um(t))− dum
dt

(t).

On the other hand, by limit (2.30) and by (2.28)

lim
j→∞

Vm
∣∣u(kj)
m

∣∣p−2
u(kj)
m = Vm |um|p−2 um strongly in Lp′(0, T ;Lp′(Rd, µ))

and hence, in particular,

lim
j→∞

Vm
∣∣u(kj)
m

∣∣p−2
u(kj)
m = Vm |um|p−2 um strongly in Lp′(0, T ; (W 1,p(Rd, µ))′ + L2(Rd, µ)).

By the estimates (2.24) and (2.25), (u
(kj)
m ) is bounded in Lp(0, T ;W 1,p(Rd, µ)∩L2(Rd, µ)).

Therefore, (du
(kj)
m

dt
) is bounded in Lp′(0, T ; (W 1,p(Rd, µ))′ + L2(Rd, µ)) and so (u

(kj)
m ) is

bounded in the reflexive space

V := W 1,p′(0, T ; (W 1,p(Rd, µ))′ + L2(Rd, µ)) ∩ Lp(0, T ;W 1,p(Rd, µ) ∩ L2(Rd, µ)).

Therefore, there is a u ∈ V and a subsequence of (u
(kj)
m ), which we denote again by

(u
(kj)
m ) such that u

(kj)
m converges to u weakly in V . Since V is continuously embedded

into C([0, T ];L2(Rd, µ)) (cf. [24, Remarque 1.2, Chapitre 2]), u ∈ C([0, T ];L2(Rd, µ)) and

u
(j)
0,m = u

(kj)
m (0) converges weakly to u(0) in L2(Rd, µ) as j → ∞. Hence and since u

(j)
0,m

converges to u0,m in L2(Rd, µ) as j → ∞, we have that um(0) = u0,m in L2(Rd, µ). In

addition, sending j → ∞ in (2.28) for appropriate subsequences (u
(kj)
m ) and (u

(k′j)

m+1), we
see that the sequence (um) satisfies the monotonicity property (2.6). This completes the
proof of this Proposition.
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2.2. Proof of Theorem 1.3

With these preliminaries, we can outline now the proof of Theorem 1.3.

2.2.1. Proof of claim (1) of Theorem 1.3

We begin to outline claim (1) of Theorem 1.3. As in the previous proof, we proceed
here in several steps.

Step 1: For given m ≥ 1 and positive u0 ∈ L2(Rd, µ), let um be a positive strong
solution of equation (2.5) with initial value um(0) = u0,m. Then we begin by showing that
(um) satisfies the following a priori -estimates:

‖um(t)‖L2(Rd,µ) ≤
[
‖u0,m‖2−p

L2(Rd,µ)
exp

(
(1− p

2
) t
)

+

+(2− p)
(
d−p
p

)p−1
Λ
p
2
A

∫ t

0

exp
(
(1− p

2
)(t− s)

)
ds

] 1
2−p (2.33)

if 1 < p < 2,

‖um(t)‖L2(Rd,µ) ≤ ‖u0,m‖L2(Rd,µ) exp

(
1+2
(
d−p
p

)p−1

Λ
p
2
A

2
t

)
(2.34)

if p = 2 < d, and if p > d ≥ 2, one has

‖um(t)‖L2(Rd,µ) ≤ ‖u0,m‖L2(Rd,µ) (2.35)

and ∫ t

0

‖um(s)‖p
Lp(Rd,µ)

ds ≤
(
p−d
p

)1−p
λ
− p

2
A

1
2
‖u0,m‖2

L2(Rd,µ) (2.36)

where λA and ΛA denote the smallest and largest eigenvalue of the matrix A. To see
this, multiply equation (2.5) by um with respect to the L2(Rd, µ) inner product and
subsequently integrate over (0, t), for t ∈ (0, T ]. First, consider the case 1 < p ≤ 2 and
p 6= d. Then, by using Hardy’s inequality (1.5) and Hölder’s inequality,

‖um(t)‖2
L2(Rd,µ) ≤ ‖u0,m‖2

L2(Rd,µ) + 2
(
d−p
p

)p−1
Λ
p
2
A

∫ t

0

‖um(s)‖p
L2(Rd,µ)

ds,

from where we can deduce the inequalities (2.33) and (2.34) by using a nonlinear general-
isation of Gronwall’s inequality (cf. [27, Theorem 1, p.360]. Now, consider the case p > d.
Then the reminder term (1.6) in Hardy’s inequality (1.5) has a negative sign. Hence

1
2
‖um(t)‖2

L2(Rd,µ) ≤
1
2
‖u0,m‖2

L2(Rd,µ) −
( |d−p|

p

)p−1
λ
p
2
A

∫ t

0

‖um(s)‖p
Lp(Rd,µ)

ds

from where we can deduce the inequalities (2.35) and (2.36).
Step 2: By Proposition 2.2, each strong solution um of equation (2.5) satisfies (2.6).

Thus by Lebesgue’s monotone convergence theorem, the function

u(x, t) := sup
m≥1

um(x, t) = lim
m→∞

um(x, t)

for all t ∈ [0, T ] and a.e. x ∈ Rd is measurable on Rd× (0, T ). In addition, since for every
t ∈ [0, T ],

|um(x, t)|2 ≤ |um+1(x, t)|2 ↗ |u(x, t)|2 ,
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for a.e. x ∈ Rd, Lebesgue’s monotone convergence theorem and by the bound (2.33)–
(2.35) combined with the boundedness of the sequences (u0,m), we obtain that for all
t ∈ [0, T ], u(t) ∈ L2(Rd, µ),

‖um(t)‖L2(Rd,µ) ≤ ‖um+1(t)‖L2(Rd,µ)

for every m ≥ 1 and
lim
m→∞

‖um(t)‖L2(Rd,µ) = ‖u(t)‖L2(Rd,µ) .

Now, we can apply Dini’s theorem, to deduce that u ∈ C([0, T ];L2(Rd, µ)) and

lim
m→∞

um = u in C([0, T ];L2(Rd, µ)). (2.37)

Moreover, since um(0)→ u(0) in L2(Rd, µ) and um(0) = u0,m → u0 in L2(Rd, µ), it follows
that u(0) = u0.

Step 3: Next, we show that (um) satisfies the following a priori -estimates on the annuli

Rk := {x ∈ Rd | 2−k < |x| < 2k} in Rd for any fixed k ≥ 1:∫
Rk

1
2
u2
m(t) dx+ 1

2 p′

∫ t

0

∫
Rk

|∇um(s)|p dx ds

≤
∫
Rk+1

1
2
u2

0,mζ
p dx+ C

∫ t

0

‖um(s)‖p
Lp(Rd,µ)

ds

(2.38)

for some constant C > 0 depending on p, 2k, ∇ξ and supRk+1
ρ−1. Fix k ≥ 1 and choose a

cutoff function ζ ∈ C∞c (Rk+1) satisfying 0 ≤ ζ ≤ 1 in Rk+1 and ζ ≡ 1 on Rk. If ρ denotes
the density function given by (1.4), then the weak gradient

∇(umζ
pρ−1) = ∇um ζpρ−1 + p umζ

p−1∇ζ ρ−1 − umζp∇ρρ2 .

Thus, multiplying equation (2.5) by um ζ
pρ−1 with respect to the L2(Rd, µ) inner product

and subsequently integrating over (0, t) for t ∈ (0, T ] yields∫
Rk+1

1
2
u2
m(t)ζp dx+

∫ t

0

∫
Rk+1

|∇um(s)|p ζp dx ds

+ p

∫ t

0

∫
Rk+1

|∇um(s)|p−2∇um(s)∇ζ ζp−1um(s) dx ds

=

∫
Rk+1

1
2
u2

0,mζ
p dx+

∫ t

0

∫
Rk+1

|∇um(s)|p−2∇um(s)∇ρ ζp um(s)
ρ

dx ds

+

∫ t

0

∫
Rk+1

upm(s)

|x|p
ζp dx ds

and so by applying Hölder’s and Young’s inequality, we see that inequality (2.38) holds.

Step 4: Since u0,m converges to u0 in L2(Rd, µ), the a priori -estimates (2.33)–(2.36)

imply that (um) is bounded in C([0, T ];L2(Rd, µ)) for 1 < p ≤ 2 and p 6= d and bounded
in C([0, T ];Lp(Rd, µ)) for p > d ≥ 2. Thus by a priori -estimate (2.38) on the annuli
(Rk), the sequence (um) is bounded in Lp(0, T ;W 1,p(Rk)) for every k ≥ 1. Now, fix
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k ≥ 1. Since the space Lp(0, T ;W 1,p(Rk)) is reflexive and by limit (2.37), it follows that
u ∈ Lp(0, T ;W 1,p(Rk)) and there is a subsequence (ukm) of (um) such that

lim
m→∞

ukm = u weakly in Lp(0, T ;W 1,p(Rk)). (2.39)

Furthermore, the operator

A0u := − ρ−1 div
(
ρ |∇u|p−2∇u

)
− |x|−p |u|p−2 u

maps bounded sets of Lp(0, T ;W 1,p(Rk)) into bounded sets of Lp′(0, T ;W−1,p′(Rk)), where
we denote by W−1,p′(Rk) the dual space of W 1,p

0 (Rk). Hence the sequence (ukm) is bounded
in the space W 1,p′(0, T ;W−1,p′(Rk))). Thus by the uniqueness of the limit (2.37), we have
that u ∈ W 1,p′(0, T ;W−1,p′(Rk)) and there is a subsequence of (ukm), which we denote,
for convenience, again by (ukm) such that

lim
m→∞

dukm
dt

= du
dt

weakly in Lp′(0, T ;W−1,p′(Rk)). (2.40)

If 2d
d+2

< p ≤ 2 and p 6= d, then by Rellich-Kondrachov (cf. [6, Théorème IX.16]), the em-
bedding from W 1,p(Rk) into L2(Rk) is compact. If p > d ≥ 2, we use that the embedding
from W 1,p(Rk) into Lp(Rk) is compact. Hence by the Lemma of Lions-Aubin (cf. [25,
Théorème 5.1]), the limit function u given by (2.37) belongs to Lp(0, T ;Lp(Rk)) and their
is a subsequence of (ukm) such that

lim
m→∞

ukm = u strongly in Lp(0, T ;Lq(Rk)) (2.41)

for q = 2 if 2d
d+2

< p ≤ 2, p 6= d, and q = p if p > d. Therefore, since ρ > 0 and since ρ is
bounded on Rk,

lim
m→∞

|ukm|
p−2 ukm
|x|p

=
|u|p−2 u

|x|p
strongly in Lp′(0, T ;Lp′(Rk, µ)). (2.42)

Furthermore, by a priori -estimate (2.38) on the annulus Rk, the sequence (∇ukm) is
bounded in Lp(0, T ;Lp(Rk, µ)d). Thus there is a function χk ∈ Lp′(0, T ;Lp′(Rk, µ)d) and
another subsequence of (ukm) such that

lim
m→∞

|∇ukm|
p−2∇ukm = χk weakly in Lp′(0, T ;Lp′(Rk, µ)d). (2.43)

Since Rk ⊆ Rk+1 such that
⋃
k≥1Rk = Rd \ {0} and since the limits (2.39), (2.41), (2.42),

(2.43) and (2.40) on Rk also hold on Rk−1, a diagonal sequence argument shows that
u ∈ Lp(0, T ;W 1,p

loc (Rd \ {0}, µ)), such that du
dt
∈ Lp′(0, T ;W−1,p′(Rd \ {0}, µ)) and there is

a subsequence (ukm) of (um) such that

lim
m→∞

ukm = u weakly in Lp(0, T ;W 1,p
loc (Rd \ {0}, µ)), (2.44)

lim
m→∞

ukm = u strongly in Lp(0, T ;Lqloc(R
d \ {0}, µ)), (2.45)

where q = 2 if 2d
d+2

< p ≤ 2, p 6= d, and q = p if p > d,

lim
m→∞

|ukm |
p−2 ukm
|x|p

=
|u|p−2 u

|x|p
strongly in Lp′(0, T ;Lp′loc(R

d \ {0}, µ)), (2.46)
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lim
m→∞

dukm
dt

= du
dt

weakly in Lp′(0, T ;W−1,p′
loc (Rd \ {0}, µ)). (2.47)

Moreover, there is a function χ ∈ Lp′(0, T ;Lp′loc(Rd \ {0}, µ)d) such that

lim
m→∞

|∇ukm|
p−2∇ukm = χ weakly in Lp′(0, T ;Lp′loc(R

d \ {0}, µ)d). (2.48)

Step 5: In this part of the proof, we prove that

χ = |∇u|p−2∇u a.e. on Rd × (0, T )

Fix k ≥ 1. Then, multiplying (2.5) by v ∈ Lp(0, T ;W 1,p
0 (Rk+1, µ))∩L2(0, T ;L2(Rk+1, µ))

and subsequently integrating over (0, T ) yields

〈〈dukm
ds

, v〉〉+

∫ T

0

∫
Rk+1

|∇ukm |
p−2∇ukm∇v dµ ds =

∫ t

0

∫
Rk+1

up−1
km

(s)

|x|p
v dµ ds,

where 〈〈·, ·〉〉 denotes the duality pairing between the spaces Lp′(0, T ;W−1,p′(Rk+1, µ))
and Lp(0, T ;W 1,p

0 (Rk+1, µ)). Now, sending m → +∞ in this equation and using the
limits (2.46), (2.47) and (2.48), we obtain

〈〈du
ds
, v〉〉+

∫ T

0

∫
Rk+1

χ∇v dµ ds =

∫ T

0

∫
Rk+1

up−1

|x|p
v dµ ds

for all v ∈ Lp(0, T ;W 1,p
0 (Rk+1, µ)) ∩ L2(0, T ;L2(Rk+1, µ)). Note that

〈〈du
ds
, uζp〉〉 = 1

2

∫
Rk+1

u2(T ) ζp dµ− 1
2

∫
Rk+1

u2(0) ζp dµ. (2.49)

This formula is easily proved by either approximating uζp by convolution (similarly as
described in [31, Section 1.5, p.264]) or by using the Steklov average together with
Lemma A.2. Thus taking v = uζp, in the last equation and applying formula (2.49)
yields

1
2

∫
Rk+1

u2(T ) ζp dµ+

∫ T

0

∫
Rk+1

χ∇u ζpdµ ds

= 1
2

∫
Rk+1

u2(0) ζp dµ− p
∫ T

0

∫
Rk+1

χ∇ζ ζp−1 u dµ ds

+

∫ T

0

∫
Rk+1

up−1

|x|p
v dµ ds.

(2.50)

On the other hand, multiplying equation (2.5) by ukm ζ
p with respect to the L2(Rk+1, µ)

inner product and then integrating over (0, T ) gives∫ T

0

∫
Rk+1

|∇ukm|
p ζpdµ ds

= 1
2

∫
Rk+1

u2
m(0) ζp dµ− 1

2

∫
Rk+1

u2
km(T ) ζp dµ

− p
∫ T

0

∫
Rk+1

|∇ukm|
p−2∇ukm∇ζ ζp−1 um dµ ds

+

∫ T

0

∫
Rk+1

Vm |ukm |
p ζp dµ ds.

(2.51)
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Sending m → ∞ in this equation and using the limits (2.37), (2.45), (2.46), (2.48) and
subsequently comparing the resulting limit with equation (2.50) yields

lim
m→∞

∫ T

0

∫
Rk+1

|∇ukm|
p ζpdµ ds =

∫ T

0

∫
Rk+1

χ∇u ζpdµ ds. (2.52)

Now, we use a method due to Leray and Lions [24]. For every m ≥ 1, let

Hkm(x, t) := (|∇ukm |
p−2∇ukm − |∇u|

p−2∇u,∇ukm −∇u)Rd

for a.e. (x, t) ∈ Rk+1×(0, T ). Every Hkm is a positive measurable function on Rk+1×(0, T )
and the limits (2.44), (2.48) and (2.52) imply that Hkmζ

p converges to 0 in L1(Rk+1, µ).
Since we have chosen ζ ≡ 1 on Rk, it follows

lim
m→∞

Hkm = 0 in L1(Rk × (0, T )). (2.53)

There is a subsequence of (ukm) and there is a measurable subset Z ⊆ Rk × (0, T ) of
Lebesgue measure zero such that for all (x, t) ∈ Rk × (0, T ) \ Z, Hkm(x, t) is finite and
Hkm(x, t) converges to 0 in R as m→ +∞. By Hölder’s and Young’s inequality,

|∇ukm(x, t)|p ≤ Hkm(x, t) + |∇u(x, t)|p−2∇u(x, t)∇ukm(x, t)

+ |∇ukm|
p−2∇ukm∇u(x, t)− |∇u|p

≤ Hkm(x, t) + c |∇u(x, t)|p + 1
2
|∇ukm(x, t)|p ,

for some constant c = c(p, η, β) > 0 and so

1
2
|∇ukm(x, t)|p ≤ Hkm(x, t) + c |∇u(x, t)|p (2.54)

for every m ≥ 1. Thus, for every (x, t) ∈ Rk × (0, T ) \ Z, the sequence (∇um(x, t)) is
bounded in Rd and so there is an ξ(x, t) ∈ Rd and a subsequence of (ukm) such that
∇ukm(x, t) → ξ(x, t) in Rd as m → +∞. On one side, Hkm(x, t) converges to 0 as
m→ +∞, but on the other side,

lim
m→∞

Hkm(x, t) =
(
|ξ(x, t)|p−2 ξ(x, t)− |∇u(x, t)|p−2∇u(x, t)

)(
ξ(x, t)−∇u(x, t)

)
Hence (

|ξ(x, t)|p−2 ξ(x, t)− |∇u(x, t)|p−2∇u(x, t)
)(
ξ(x, t)−∇u(x, t)

)
= 0

and so the strict convexity of x 7→ |x|p on Rd implies that ξ(x, t) = ∇u(x, t) in Rd.
Since we can identify the limit of the sequence (∇ukm(x, t)) as m → ∞ with ∇u(x, t)
for every (x, t) ∈ Rk × (0, T ) \ Z and since Hkm(x, t) converges to 0 as m → ∞ for
every (x, t) ∈ Rk × (0, T ) \ Z, we have thereby shown that ∇ukm(x, t) converges ∇u(x, t)
for all (x, t) ∈ Rk × (0, T ) \ Z. Integrating inequality (2.54) over a measurable subset
E ⊆ Rk × (0, T ) yields

1
2

∫
E

|∇um|p dµds ≤
∫
E

Hkm + c

∫
E

|∇u|p dµds

and so by limit (2.53), the sequence (|∇ukm|
p) is equi-integrable in L1(Rk× (0, T )). Thus

Vitali’s convergence theorem implies that

lim
m→∞

∇um = ∇u strongly in Lp(Rk × (0, T ))d
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and so by limit χ = |∇u|p−2∇u a.e. on Rk × (0, T ). Since k ≥ 1 was arbitrary and since⋃
k≥1Rk = Rd \ {0}, we have thereby shown that χ = |∇u|p−2∇u a.e. on Rd × (0, T ).

Using again a diagonal sequence arguments shows that there is a subsequence of (ukm)
such that

lim
m→∞

ukm = u strongly in Lp(0, T ;W 1,p
loc (Rd \ {0}, µ)). (2.55)

Now, let K b Rd \ {0} and 0 ≤ t1 < t2 < T . Multiplying equation (2.5) with
ϕ ∈ W 1,2(t1, t2;L2(K, µ))∩Lp(t1, t2;W 1,p

0 (K, µ)) and subsequently integrating over (t1, t2)
yields ∫

Rd
ukm ϕ dµ

∣∣∣t2
t1

+

∫ t2

t1

∫
Rd

{
ukm

dϕ
dt

+ |∇ukm|
p−2∇ukm∇ϕ

}
dµ ds

=

∫ t2

t1

∫
Rd

|ukm|
p−2 ukm
|x|p

ϕ dµ ds.

Sending m → ∞ in this equation and using the limits (2.37), (2.55) and (2.46) shows
that u is a weak solution of equation (1.1) and by Step 2., u ∈ C([0, T ];L2(Rd, µ)), u is
positive and u(0) = u0. This completes the proof of claim (1) of Theorem 1.3.

2.2.2. Proof of claim (2) of Theorem 1.3

Here, we show that claim (2) of Theorem 1.3 holds.

Proof of Theorem 1.3 (continued). Suppose that 1 < p < 2d
d+2

and λ ∈ R. Then, we note
first that Hölder’s inequality yields∫

Rd

(
|λ|
|x|p

) 2
2−p

dµ

≤ |λ|
2

2−p σ(Sd−1)

∫ +∞

0

(
rp
)− 2

2−p+ d−p
p e−

λ
p/2
A
p

rp rp−1 dr

≤ |λ|
2

2−p σ(Sd−1)

(
p

λ
p/2
A

)− 2
2−p+ d−p

p

λ
−p/2
A

∫ +∞

0

t1−
2

2−p+ d−p
p
−1 e−t dt =: M0,

(2.56)

where λA > 0 is the lowest eigenvalue of the positive definite matrix A. Since

1− 2

2− p
+
d− p
p

> 0 if and only if p < 2d
d+2

,

the integral ∫ +∞

0

t1−
2

2−p+ d−p
p
−1 e−t dt

is finite and hence M0 is finite. Now, we proceed again in several steps.

Step 1: Let u0 ∈ L2(Rd, µ) be positive. Then for every m ≥ 1, the approximate
solution um of (2.5) satisfies the following a priori -estimates:

‖um(t)‖L2(Rd,µ) ≤
[
‖u0,m‖2−p

L2(Rd,µ)
exp

(
(1− p

2
) t
)

+

+(2− p)M0

∫ t

0

exp
(
(1− p

2
)(t− s)

)
ds

] 1
2−p

,

(2.57)
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∫ t

0

∫
Rd
|∇um(s)|p dµ ds ≤ ‖u0,m‖2

L2(Rd,µ) +

∫ t

0

M0 ‖um(s)‖p
L2(Rd,µ)

ds (2.58)

and if u0 ∈ W 1,p(Rd, µ) ∩ L2(Rd, µ),∫ t

0

s

∥∥∥∥dumds (s)

∥∥∥∥2

L2(Rd,µ)

ds+ t
p

∫
Rd
|∇um(t)|p dµ+ 1

p

∫ t

0

∫
Rd
Vm |um|p dµds

≤ 1
p

∫ t

0

∫
Rd
|∇um(s)|p dµ ds+ M0 t

p
‖um(s)‖p

L2(Rd,µ)
ds

(2.59)

To see this, multiply equation (2.5) by um with respect to the L2(Rd, µ) inner product
and subsequently integrate over (0, t), for t ∈ (0, T ]. Then, by (1.2) and estimate (2.56),

‖um(t)‖2
L2(Rd,µ) +

∫ t

0

∫
Rd
|∇um(s)|p dµ ds ≤ ‖u0,m‖2

L2(Rd,µ) +

∫ t

0

M0 ‖um(s)‖p
L2(Rd,µ)

ds

from where we can deduce the inequalities (2.57) and (2.58) by using a nonlinear generali-
sation of Gronwall’s inequality. If u0 ∈ W 1,p(Rd, µ)∩L2(Rd, µ), then u0,m ∈ W 1,p(Rd, µ)∩
L2(Rd, µ). Hence multiplying equation (2.5) by s dum

ds
(s) with respect to the L2(Rd, µ)

inner product, subsequently integrating over (0, t), for t ∈ (0, T ] and then applying [8,
Lemme 3.3], the fact that the potential V satisfies (1.2) and estimate (2.56) yields in-
equality (2.59). Now, proceeding as in Step 4. of the proof of Proposition 2.2, we see that
the claim (2) of Theorem 1.3 holds. Since this part of the proof of Theorem 1.3 coincides
with Step 4. of the proof of Proposition 2.2, we omit the details of the proof.

3. Nonexistence of positive solutions

This section is dedicated to the proof of Theorem 1.4. We make use of several lemmata.
Thus we divide this section into two subsections.

3.1. Preliminaries for the proof of Theorem 1.4

We begin this subsection with the following Lemma, which generalizes [19, Proposition
A.1].

Lemma 3.1. Let D ⊆ Rd be a bounded domain and let 1 ≤ p < d. If the function
M ∈ Ld/p(D,µ), then for every ε ∈ (0, 1), there is a constant C(ε) > 0 such that∫

D

M |φ|p dµ ≤ ε
1−ε

∫
D

|∇φ|p dµ+ C(ε)

∫
D

|φ|p dµ for all φ ∈ W 1,p
0 (D,µ). (3.1)

Proof. Let (Mn)n≥1 be the sequence defined by Mn(x) := min{M(x), n} for a.e. x ∈ D,
and every n ≥ 1. Then, Mn(x) → M(x) as n → +∞ for a.e. x ∈ D and |Mn| ≤ |M(x)|
for a.e. x ∈ D and all n ≥ 1. Thus and since by hypothesis, M ∈ Ld/p(D,µ), we have by
Lebesgue’s dominated convergence theorem (see Théorème IV.2 in [6]) that

Mn →M in Ld/p(D,µ) as n→ +∞. (3.2)

We fix φ ∈ C1
c (D). Then by Hölder’s inequality, for every n ≥ 1,∫

D

M |φ|p dµ

≤
∫
D

|M −Mn| |φ|p dµ+ n

∫
D

|φ|p dµ

≤
(∫

D

|M −Mn|
d
p dµ

) p
d

‖ρ‖
d−p
d

L∞(D)

(∫
D

|φ|
d p
d−p dx

) d−p
d

+ n

∫
D

|φ|p dµ.

(3.3)
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Since φ is assumed to have a compact support, the function φ belongs in particular to
C1
c (Rd). Thus by the Sobolev-Gagliardo-Nirenberg inequality (see Théorème IX.9 in [6]),

there is a constant C = C(p, d) > 0 such that(∫
D

|φ|
d p
d−p dx

) (d−p)p
dp

≤ C

∫
D

|∇φ|p dx ≤ C
∥∥ρ−1

∥∥
L∞(D)

∫
D

|∇φ|p dµ.

Inserting this inequality into estimate (3.3), gives∫
D

M |φ|p dµ ≤
(∫

D

|M −Mn|
d
p dµ

) p
d

‖ρ‖
d−p
d

L∞(D) C
∥∥ρ−1

∥∥
L∞(D)

∫
D

|∇φ|p dµ+n

∫
D

|φ|p dµ.

Due to the limit (3.2), for every given ε ∈ (0, 1), there is a n(ε) ≥ 1 such that(∫
D

∣∣M −Mn(ε)

∣∣ dp dµ

) p
d

≤ ε
(1−ε)C ‖ρ‖

− d−p
d

L∞(D)

∥∥ρ−1
∥∥−1

L∞(D)
,

and hence ∫
D

M |φ|p dµ ≤ ε
1−ε

∫
D

|∇φ|p dµ+ n(ε)

∫
D

|φ|p dµ.

Since C1
c (D) lies dense in W 1,p

0 (D,µ), the claim of this lemma holds with C(ε) = n(ε).

The next Lemma generalizes [32, Remark 2.1.4, p.158].

Lemma 3.2. Let p 6= 2, and let V ∈ L∞loc(Rd \ {0}) be positive. If u is a weak solution of
equation (1.1) and if g : R→ R is Lipschitz-continuous, then for every φ ∈ C1

c (Rd \ {0})
and every 0 ≤ t1 < t2 < T ,∫

Rd

∫ u(t2)

0

g(s) ds φ dµ−
∫
Rd

∫ u(t1)

0

g(s) ds φ dµ+

∫ t2

t1

∫
Rd
|∇u|p g′(u)φ dµ dt

+

∫ t2

t1

∫
Rd
|∇u|p−2∇u∇φ g(u) dµ dt =

∫ t2

t1

∫
Rd
V |u|p−2 u g(u)φ dµ dt.

(3.4)

Proof. We fix φ ∈ C1
c (Rd \{0}), and for fixed 0 < t < t+h < T , we take t1 = t, t2 = t+h,

and multiply equation (1.8) by h−1. Then,∫
Rd
h−1 (u(t+ h)− u(t)) φ dµ+

∫ t+h

t

∫
Rd
h−1

(
|∇u|p−2∇u

)
∇φ dµ dt

=

∫ t+h

t

∫
Rd
h−1

(
V |u|p−2 u

)
φ dµ dt.

Let uh be the Steklov average of u (cf. Definition A.1 in the Appendix). Then by Fubini’s
theorem, since ∂uh

∂t
(t) = h−1 (u(t+ h)− u(t)), and by definition of the Steklov average,

the last equation can be rewritten as∫
Rd

∂uh
∂t

(t)φ dµ+

∫
Rd

(
|∇u|p−2∇u

)
h

(t)∇φ dµ =

∫
Rd

(
V |u|p−2 u

)
h

(t)φ dµ.

By the hypothesis and by Theorem 2.1.11 in [33], for any t ∈ (0, T ), g(uh(t))φ ∈
W 1,p

0 (K, µ) with distributional partial derivatives

∂
∂xi

(g(uh(t))φ) = g′(uh(t))(
∂u
∂xi

)h(t)φ+ g(uh(t))
∂φ
∂xi
,
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where K b Rd \ {0} is chosen such that the support of φ is contained in K. Thus, we
can replace φ by g(uh(t))φ in the last equation. Now, we integrate the resulting equation
over ]t1, t2[ for fixed 0 ≤ t1 < t2 < T and apply first Fubini’s theorem and then the
fundamental theorem of calculus with respect to dt. We obtain that∫

Rd

(∫ uh(t2)

0

g(s) ds

)
φ dµ−

∫
Rd

(∫ uh(t1)

0

g(s) ds

)
φ dµ

+

∫ t2

t1

∫
Rd

{(
|∇u|p−2∇u

)
h

(t) g′(uh(t))(∇u)h(t)φ +
(
|∇u|p−2∇u

)
h

(t) g(uh(t))∇φ
}

dµ dt

=

∫ t2

t1

∫
Rd

(
V |u|p−2 u

)
h

(t) g(uh(t))φ dµ dt.

Sending h→ 0+ in the last equation and using Lemma A.2 leads to equation (3.4).

Lemma 3.3. Let D ⊆ Rd be an open and bounded set with ∂D ∈ C2, and let d(x) denote
the distance of a point x ∈ D to the boundary ∂D. If u ∈ L1(D,µ) and if there is a
constant c > 0 such that u(x) ≥ c d(x) for a.e. x ∈ D, then

log(u d) ∈ Lp(D,µ) for all p > 1. (3.5)

For the proof of Lemma 3.3, we have been partially inspired by the proof of [20,
Theorem 1.1].

Proof. We set D = D1∪̇D2 with D1 = {x ∈ D |ud < 1} and D2 = {x ∈ D |ud ≥ 1}.
Since D is bounded, the diameter diam(D) := sup{|x− y| |x, y ∈ D} of D is bounded.
Then, ∫

D

|log(u d)|p dµ =

∫
D1

|log(u d)|p dµ+

∫
D2

|log(u d)|p dµ. (3.6)

We have D2 = D2,1∪̇D2,2 with D2,1 = D2 ∩ {ud ≥ ep−1} and D2,2 = D2 ∩ {ud < ep−1}.
Hence ∫

D2

|log(u d)|p dµ = I2,1 + I2,2

with

I2,1 =

∫
D2,1

|log(u d)|p dµ and I2,2 =

∫
D2,2

|log(u d)|p dµ.

We show that I2,1 and I2,2 are both finite. Indeed,

I2,2 =

∫
D2,2

(log(u d))p dµ ≤ µ(D) (p− 1)p is finite.

To see that I2,1 is also finite, we assume that µ(D2,1) > 0, since otherwise there would be
nothing to show. The mapping s 7→ (log s)p is concave on the interval ]ep−1,+∞[. Thus
by Jensen’s inequality for concave functions and since d(x) ≤ diam(D) for every x ∈ D,
we obtain that

I2,1 =

∫
D2,1

(log(u d))p dµ ≤ µ(D)

(
log diam(D)

µ(D2,1)

∫
D2,1

u dµ

)p

.

Since u ∈ L1(D,µ), the right hand-side of this inequality is finite and so the second
integral on the right hand-side in equation (3.6) is finite. It remains to verify that also
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the first integral on the right hand-side in equation (3.6) is finite. For this, we note that
log(ud) < 0 on D1. Thus and since by hypothesis, there is a c > 0 such that u(x) ≥ c d(x)
for a.e. x ∈ D1, we have that∫

D1

|log(u d)|p dµ =

∫
D1

(− log(u d))p dµ

≤
∫
D1

(− log(c d2))p dµ

≤ Cp

(
|log c|p µ(D1) + 2p

∫
D

|log d|p dµ

)
.

Since we have assumed that D has a C2 boundary, log d ∈ Lp(D) for every p > 1. Thus
and since ρ > 0 is bounded on D, we obtain that log d ∈ Lp(D,µ) and so by the last
estimate, the claim of this lemma holds.

Lemma 3.4. Let D ⊆ Rd be a bounded domain with ∂D ∈ C2. If v ∈ C2,1(D× (0, T )) is
a positive nontrivial solution of the boundary value problem{

vt −K2v = 0 in D × (0, T ),

v = 0 on ∂D × (0, T ),

then for every t ∈ (0, T ), there is a constant C(t) > 0 such that

v(x, t) ≥ C(t) d(x) for all x ∈ D. (3.7)

Proof. By the weak maximum principle, v attains its minimum at the boundary ∂D ×
(0, T ). Since D has a C2 boundary ∂D, then the boundary ∂D satisfies a uniform interior
sphere condition (cf. [11, Proposition B.2]). Thus at every point z ∈ ∂D there is an open
ball B(y, r) centred at some y ∈ D with some radius r > 0 such that B(y, r) ⊆ D and
B(y, r) ∩ ∂D = {z} and by [28, Theorem 6], the outer normal derivative ∂v

∂ν
(·, t) < 0 on

∂D for every t ∈ (0, T ). Since for every t ∈ (0, T ), ∂v
∂ν

(·, t) is continuous on the compact
set ∂D, ∂v

∂ν
(·, t) attains a maximum on ∂D and so ν0(t) := max

{
∂v
∂ν

(x, t) |x ∈ ∂D
}
< 0.

For the rest of this proof, we fix t ∈ (0, T ).
By [11, Proposition B.3], there is a δ ∈ (0, 1) such that for every z ∈ ∂D, the open

ball Bz,δ := B(z−ν(z) δ
2
, δ

2
) ⊆ Dδ := {x ∈ D | d(x) < δ} and ∂Bz,δ ∩∂D = {z}. Here ν(z)

denotes the unit outward normal vector to ∂D at z. Furthermore, for every x ∈ Dδ :=
{x ∈ D | d(x) < δ}, there exists a unique z = z(x) ∈ ∂D such that |x− z(x)| = d(x) holds.
Thus every x ∈ Dδ can be written as x = z(x) − ν(z(x))d(x) for a unique d(x) ∈ (0, δ).
By hypothesis,

d∑
i,j=1

∥∥∥∂2v(·,t)
∂xi∂xj

∥∥∥
C(D)

+ 1 =: C(t) is finite.

We calculate the Taylor expansion of v(·, t) at z(x) ∈ ∂D for every x ∈ Dδ. Then for
every x ∈ Dδ, there is a θ(x) ∈ (0, 1) such that

v(x, t) = v(z(x)− ν(z(x))d(x), t)

= −〈∇v(z(x), t), ν(z(x))〉Rd d(x) + 1
2
〈ν(z(x))tHv(θ(x)ν(z(x))), ν(z(x))〉Rd d(x)2

= −∂v
∂ν

(z(x), t) d(x) + 1
2
〈ν(z(x))tHv(θ(x)ν(z(x))), ν(z(x))〉Rd d(x)2

≥ (−ν0(t)) d(x)− C(t) d2(x),
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where Hv denotes the Hessian of v. We take δ0 = min
{
δ, (−ν0(t))

2C(t)

}
. Then, for all x ∈ Dδ0 ,

(−ν0(t))− C(t) d(x) > (−ν0(t))
2

. Therefore

v(x, t) ≥ (−ν0(t))
2

d(x) for all x ∈ Dδ0 .

On the other hand, by the strong maximum principle ([28, Theorem 5]), v(t) > 0 on
the compact set D \Dδ0 . Thus and since D \Dδ0 has a positive and uniform distance to
the boundary of D, there is a constant C2(t) > 0 such that

v(x, t) ≥ C2(t) d(x) for all x ∈ D \Dδ0 .

Therefore, if we set C3(t) = min{C2(t), (−ν0(t))
2
}, then C3(t) > 0 and for this constant v(t)

satisfies inequality (3.7) on D.

The following weak comparison principle for positive weak solutions is a refined version
of [18, Proposition 4.1].

Lemma 3.5. Consider the case p = 2. Let u0 ∈ L2(Rd, µ) and V ∈ L∞loc(Rd \ {0}) be both
positive, D be an open and bounded subset of Rd with a Lipschitz-continuous boundary,
and g ∈ L∞(D) be such that

0 ≤ g(x) ≤ V (x) for a.e. x ∈ D. (3.8)

If for given m ≥ 1, vm ∈ W 1,2(δ, T ;L2(D,µ)) ∩ L2(0, T ;W 1,2
0 (D,µ)), (δ ∈ (0, T )), is the

unique positive strong solution of
∂vm
∂t
−K2v = g(x)v in D × (0, T ),

v = 0 on ∂D × (0, T ),

v(0) = u0,m in D,

(3.9)

and if u is a positive weak solution of equation (1.1) for p = 2 with initial value u(0) = u0,
then 0 ≤ vm ≤ u almost everywhere on D × (0, T ).

Proof. Note first that by [8, Proposition 3.12], for every positive u0 ∈ L2(Rd, µ) and
m ≥ 1, problem (3.9) admits a unique strong solution vm. In addition, by the weak
maximum principle (see Lemma 2.6), the solution vm is positive.

Now, for given ε ∈ (0, T ), let ϕ ∈ W 1,2(0, T ;L2(D,µ)) ∩ L2(0, T ;W 1,2
0 (D,µ)) be

positive such that ϕ(·, T − ε) ≡ 0. If we extend ϕ by zero on (Rd \ D) × (0, T ),
the extension has compact support in Rd for almost every t ∈ (0, T ) and belongs to
W 1,2(0, T ;L2(Rd, µ)) ∩ L2(0, T ;W 1,2

0 (Rd, µ)). Thus every weak solution u of equation
(1.1) on Rd×(0, T ) is, in particular, a weak solution of equation (1.1) on D×(0, T ). Thus∫ T−ε

0

∫
D

u
{
− ϕs −K2ϕ

}
dµ ds = (u(0), ϕ)L2(D,µ) +

∫ T−ε

0

∫
D

V (x)uϕ dµ ds. (3.10)

Next, the strong solution vm satisfies

(∂vm
∂t

(t), φ)L2(D,µ) = (K2vm(t), φ)L2(D,µ) + (g(x)vm(t), φ)L2(D,µ)

for almost every t ∈ (0, T ), and all φ ∈ L2(D,µ). If we take φ = ϕ in this equation,
integrate over (0, T −ε), and apply integration by parts once with respect to ds and twice
with respect to dµ, then∫ T−ε

0

∫
D

vm

{
− ϕs −K2ϕ

}
dµ ds = (vm(0), ϕ)L2(D,µ) +

∫ T−ε

0

∫
D

g(x) vm ϕ dµ ds. (3.11)
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Using both equations (3.10) and (3.11), we obtain for (vm − u) that∫ T−ε

0

∫
D

(vm − u)
{
− ϕs −K2ϕ− g(x)ϕ

}
dµ ds

= (vm(0)− u(0), ϕ)L2(D,µ) +

∫ T−ε

0

∫
D

[g(x)− V (x)]uϕ dµ ds.

By hypothesis, vm(0) = u0,m ≤ u0 = u(0), since we have assumed that g(x) satisfies
condition (3.8), and since u is positive, we can deduce from the last equation that∫ T−ε

0

∫
D

(vm − u)
{
− ϕs −K2ϕ− g(x)ϕ

}
dµ ds ≤ 0 (3.12)

for all positive ϕ ∈ W 1,2(0, T − ε;L2(D,µ)) ∩ L2(0, T − ε;W 1,2
0 (D,µ)).

Now, let ψ ∈ C([0, T − ε];C∞c (D)) be positive and consider the parabolic problem
zt −K2z = g(x)z + ψ in D × (0, T − ε),

z = 0 on ∂D × (0, T − ε),
z(0) = 0 in D.

(3.13)

By [8, Proposition 3.12], problem (3.13) has a unique strong solution

z ∈ W 1,2(0, T − ε;L2(D,µ)) ∩ C([0, T − ε];W 1,2
0 (D,µ))

and this solution is positive by the weak maximum principle. If we set ϕ0(x, s) = z(x, t−s)
for a.e. x ∈ D and all s ∈ [0, T − ε], then ϕ0 is a strong solution of

−ϕ0 t −K2ϕ0 − g(x)ϕ0 = ψ in D × (0, T − ε),
ϕ0 = 0 on ∂D × (0, T − ε),
ϕ0(T − ε) = 0 in D.

Inserting ϕ0 into inequality (3.12) shows that for all positive ψ ∈ C([0, T − ε];C∞c (D)),∫ T−ε

0

∫
D

(v − u)ψ dµ dt ≤ 0.

The set C([0, T−ε];C∞c (D)) lies dense in L2(0, T−ε;L2(D,µ)). Thus by an approximation
argument, we can take ψ = [v−u]+ in the last inequality and hence we obtain that v ≤ u
a.e. on D× (0, T − ε). Since ε > 0 has been arbitrary, the claim of this lemma holds.

The statement of the next Lemma, is well-known in the case ρ ≡ 1 (cf. [6, Remarque
18. in IX.4, p. 171] or [4, Remark 2.6 on p. 1019]).

Lemma 3.6. Let d ≥ 2, D be an open subset of Rd, and let 1 ≤ p < d. Then,

W 1,p
0 (D,µ) = W 1,p

0 (D \ {a}, µ) for every a ∈ D.

Proof. In this proof, we follow the idea of [4, Lemma 2.4 and Remark 2.6 ]. Let (ρn)n≥1

denote a standard mollifier (see [6, p.70]): that is, for every n ≥ 1, ρn ∈ C∞c (Rd), the
support supp(ρn) ⊆ B(0, 1

n
), ρn ≥ 0, and

∫
Rd ρn dx = 1. We fix a ∈ D and set

ψ(x) =

∫
Rd
ρ5(y)1B(a,5/4)(x− y) dy for all x ∈ Rd,
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where 1B(a,5/4) denote the indicator function over the open ball B(a, 5
4
) of center x = a

and radius r = 5
4
. Then, it is not hard to verify that ψ ∈ C∞c (Rd), ψ ≥ 0, ψ ≡ 1 on

B(a, 1) and ψ ≡ 0 on Rd \ B(a, 2). For every n ≥ 1, we set ψn(x) = ψ(nx) for every
x ∈ Rd. Then, ψn ∈ C∞c (Rd), ψn ≥ 0, ψ ≡ 1 on B(a, 1

n
), and ψ ≡ 0 on Rd \B(a, 2

n
). Since

‖ψn‖Lp(Rd) = n−
d
p ‖ψ‖Lp(Rd) and

∥∥∥∂ψn∂xi

∥∥∥
Lp(Rd)

= n−
d−p
p

∥∥∥ ∂ψ∂xi∥∥∥Lp(Rd)

for every i = 1, . . . , d, and since by hypothesis, p < d, we have that ψn → 0 in W 1,p(Rd)
as n→ +∞.

Obviously, it suffices to show that W 1,p
0 (D,µ) ⊆ W 1,p

0 (D \ {a}, µ) since the other
implication is clear. Since W 1,p

0 (D,µ) is the closure of the set C1
c (D) in W 1,p(D,µ), we

need to show that for every ϕ ∈ C1
c (D) and for every ε > 0, there is θ ∈ C1

c (D \ {a})
such that ‖ϕ− θ‖W 1,p(D,µ) ≤ ε. To do so, we fix ϕ ∈ C1

c (D) and ε > 0. Since D is open
and a ∈ D, there is an r > 0 such that the open ball B(a, r) of center x = a and radius
r is contained in D. By the first step of this proof, there is an index nr ≥ 1 such that
ψn ∈ C∞c (B(a, r)) for every n ≥ nr. Then, for every n ≥ nr, θn := ϕ(1−ψn) ∈ C1

c (D\{a})
and

‖ϕ− θn‖W 1,p(D,µ) = ‖ϕψn‖W 1,p(D,µ) ≤ C ‖ψn‖W 1,p(Rd) ,

where the constant C ≥ 0 depends on ϕ and ‖ρ‖L∞(supp(ϕ)) but is independent of ψn.
Since we can choose n ≥ nr large enough such that ‖ψn‖W 1,p(Rd) ≤

ε
C+1

, the claim of this
Lemma holds.

3.2. Proof of Theorem 1.4

With the prerequisites of the preceding subsection in mind, we finally turn to the proof
of Theorem 1.4.

Proof of Theorem 1.4. First, we study the case 1 < p < 2 if d = 2, and 2d
d+2
≤ p < 2 if

d ≥ 3. In this part of the proof, the authors follow partially the idea given in [19]. Let
λ >

(
d−p
p

)p
. We argue by contradiction and hence we suppose that there is a positive

nontrivial u0 ∈ L2
µ,loc(Rd \ {0}, µ) such that there is a T > 0 and a positive very weak

solution u of equation (1.1) with initial value u(0) = u0. We fix some bounded domain
D ⊆ Rd containing x = 0. Let ϕ ∈ C1

c (D \ {0}), and for every integer k ≥ 1 and every
s ∈ R, let gk(s) := (s+ 1

k
)1−p if s ≥ 0 and gk(s) = kp−1 if s < 0. Then, by Lemma 3.2 for

g = gk, φ = |ϕ|p, t1 = 0, and t2 = t,∫
D

(u(t)+ 1
k

)2−p

2−p |ϕ|p dµ−
∫
D

(u(0)+ 1
k

)2−p

2−p |ϕ|p dµ+ (1− p)
∫ t

0

∫
D

|∇u(s)|p |ϕ|p

(u(s)+ 1
k

)p
dµ ds

+ p

∫ t

0

∫
D

|∇u(s)|p−2∇u(s) |ϕ|p−2ϕ

(u(s)+ 1
k

)p−1 ∇ϕ dµ ds =

∫ t

0

∫
D

λ
|x|p

up−1(s)

(u(s)+ 1
k

)p−1 |ϕ|
p dµ ds.

(3.14)

By Young’s inequality,

p

∫ t

0

∫
D

|∇u(s)|p−2∇u(s) (u(s) + 1
k
)1−p∇ϕ |ϕ|p−2 ϕ dµ ds

≤ (p− 1)

∫ t

0

∫
D

|∇u(s)|p (u(s) + 1
k
)−p |ϕ|p dµ ds+ t

∫
D

|∇ϕ|p dµ,
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and since (u(0) + 1
k
)2−p |ϕ|p ≥ 0 a.e. on D, we can deduce from equality (3.14) that∫ t

0

∫
D

λ
|x|pu

p−1(s) (u(s) + 1
k
)1−p |ϕ|p dµ ds

≤ t

∫
D

|∇ϕ|p dµ+ 1
2−p

∫
D

(u(t) + 1
k
)2−p |ϕ|p dµ.

(3.15)

For almost every (x, s) ∈ D × (0, t), we have that

0 ≤ λ
|x|p

up−1(x,s) |ϕ(x)|p

(u(x,s)+ 1
k

)p−1 ↗ λ
|x|p |ϕ(x)|p and (u(x, s) + 1

k
)2−p |ϕ(x)|p ↘ u2−p(x, s) |ϕ(x)|p

as k → +∞. Thus, by Beppo-Levi’s theorem, sending k → +∞ in inequality (3.15) gives

t

∫
D

λ
|x|p |ϕ|

p dµ− t
∫
D

|∇ϕ|p dµ ≤ 1
2−p

∫
D

u2−p(t) |ϕ|p dµ.

First, consider the case d = 2 and 1 < p < 2. Then, (2 − p)2
p
< 2, and so p

(2−p) > 1.
Thus by Hölder’s inequality,∫

D

u(t)
(2−p)2
p dµ ≤ µ(D)

2p−2
p ‖u‖

p
2−p
L2(D,µ) .

Since u(t) ∈ L2(D,µ), the last estimate implies that u2−p ∈ L2/p(D,µ).

Next, consider the case d ≥ 3 and let 2d
d+2
≤ p < 2. Then, (2 − p)d

p
≤ 2 and since

u(t) ∈ L2(D,µ), we obtain again by Hölder’s inequality that u2−p ∈ Ld/p(D,µ).

Therefore in both cases, d = 2 and 1 < p < 2 or d ≥ 3 and 2d
d+2
≤ p < 2, Lemma 3.1

implies that for any ε ∈ (0, 1), there is constant C(ε) > 0 such that∫
D

λ
|x|p |ϕ|

p dµ−
∫
D

|∇ϕ|p dµ ≤ ε
1−ε

∫
D

|∇ϕ|p dµ+ C(ε)

∫
D

|ϕ|p dµ. (3.16)

If the matrix A is positive definite, then there are

λA, ΛA > 0 such that λA |x|2 ≤ xtAx ≤ ΛA |x|2 for all x ∈ Rd. (3.17)

Furthermore, by Lemma 3.6 and since 1 < p < 2 ≤ d, the set C1
c (D \ {0}) lies dense in

W 1,p
0 (D,µ). Therefore, by estimate (3.16), and since ϕ ∈ C1

c (D \ {0}) has been arbitrary,
we obtain that

inf

∫
D
|∇ϕ|p dµ− [(1− ε)λ]

p−1
p
∫
D
|ϕ|p (xtAx)p/2

|x|p dµ− (1− ε)
∫
D

λ
|x|p |ϕ|

p dµ∫
D
|ϕ|p dµ

≥ −Λ
p/2
A [(1− ε)λ]

p−1
p − C(ε) (1− ε) > −∞,

(3.18)

where the infimum is taken over all ϕ ∈ W 1,p
0 (D,µ) with ‖ϕ‖Lp(D,µ) > 0.

But for every

0 < ε < 1− λ−1
(
d−p
p

)p
we have that (1− ε)λ >

(
d−p
p

)p
.
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Thus and since 0 ∈ D, (3.18) obviously contradicts to the optimality of the constant(
d−p
p

)p
in Hardy’s inequality (1.5). Therefore the assumption is false and hence claim (i)

of Theorem 1.4 is true for 1 < p < 2 if d = 2 and 2d
d+2
≤ p < 2 if d ≥ 3.

We turn to the case p = 2 and d ≥ 3. In this case, we follow partially an idea given in

[9]. Again, we argue by contradiction. Let λ >
(
d−2

2

)2
and let u0 be a positive nontrivial

element of L2(Rd, µ). We suppose that there is a T > 0 and there is a positive weak
solution u of equation (1.1) with initial value u(0) = u0. Let (Dl)l≥1 be a sequence of
bounded domains Dl of Rd satisfying 0 ∈ Dl ⊆ Dl+1, Dl ⊆ Rd, with boundary ∂Dl of class
C∞, and

⋃
l≥1Dl = D. Then by hypothesis, there is an Dl0 ⊆ Rd such that u0 6= 0 almost

everywhere on Dl0 . We set D = Dl0 and fix ϕ ∈ C1
c (D). For every integer n ≥ 1, let um

be the unique positive strong solutions of equation (2.5) with initial value um(0) = u0,m.
Further, let vm be the unique positive strong solutions of (3.9) with g(x) ≡ 0. Then by
the weak comparison principle (see Lemma 2.6 and Lemma 3.5), for all m ≥ 1,

0 ≤ v1 ≤ vm ≤ um ≤ u almost everywhere on D × (0, T ). (3.19)

Since the boundary of D is smooth, v1 is infinitely differentiable in D × (0, T ) and v1,
∂v1
∂xi

and ∂2v1
∂xi∂xj

are continuous up to the boundary of D (cf. [22, Theorem 12.1 in Chapter

III & Theorem 1.1 in Chapter V]). Since v1 is positive and since v1(0) 6= 0 a.e. on D,
the strong maximum principle (cf. [28, Chapter III, Theorem 5]) implies that for every
t ∈ (0, T ), v1(t) > 0 on the compact subset supp(ϕ) of D. Thus for all t ∈ (0, T ), there is
a constant C0(t) > 0 such that for all n ≥ 1,

u(t) ≥ um(t) ≥ vm(t) ≥ v1(t) ≥ C0(t) > 0 on supp(ϕ).

Thus, for every m ≥ 1, we may multiply the equation (2.5) with truncated potential Vm
by u−1

m |ϕ|
2 with respect to the L2(D,µ) inner product, and subsequently integrate over

the interval (t0, t) with respect to ds for any fixed 0 < t0 < t < T . Then, we obtain∫
D

log
(
un(t)
un(t0)

)
|ϕ|2 dµ−

∫ t

t0

∫
D

|∇un(s)|2 (un(s))−2 |ϕ|2 dµ ds

+ 2

∫ t

t0

∫
D

∇un(s)∇ϕ (un(s))−1 ϕ dµ ds = (t− t0)

∫
D

min
{
n, λ
|x|2
}
|ϕ|2 dµ.

(3.20)

By Young’s inequality,

2

∫ t

t0

∫
D

∇un(s)∇ϕ (un(s))−1 ϕ dµ ds

≤ (t− t0)

∫
D

|∇ϕ|2 dµ+

∫ t

t0

∫
D

|∇un(s)|p (un(s))−2 |ϕ|2 dµ ds.

Thus, we can deduce from equality (3.20) that∫
D

min
{
n, λ
|x|2
}
|ϕ|2 dµ−

∫
D

|∇ϕ|2 dµ ≤ 1
t−t0

∫
D

log
(
un(t)
un(t0)

)
|ϕ|2 dµ. (3.21)

Furthermore, by Lemma 3.4, for every t ∈ (0, T ), there is another constant C1(t) > 0 such
that v1(t) ≥ C1(t) d(x) for all x ∈ D and so by (3.19), we have that for all n ≥ 1,

u(x, t) ≥ un(x, t) ≥ C1(t) d(x) for almost every x ∈ D.
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Thus ∫
D

log
(
un(t)
un(t0)

)
|ϕ|2 dµ ≤

∫
D

log
(

u(t)
C1(t0) d

)
|ϕ|2 dµ =

∫
D

log
(

u(t) d
C1(t0) d2

)
|ϕ|2 dµ

and hence sending n→ +∞ in inequality (3.21) yields to∫
D

λ
|x|2 |ϕ|

2 dµ−
∫
D

|∇ϕ|2 dµ ≤ 1
t−t0

∫
D

log
(

u(t) d
C1(t0) d2

)
|ϕ|2 dµ.

By Lemma 3.3, log(u d) ∈ Lp(D) for all p > 1 and since D has smooth boundary,

log(C1(t0) d2) = log(C1(t0)) + 2 log d ∈ Lp(D,µ)

for all p > 1. Thus log
(

u(t) d
C1(t0) d2

)
∈ Ld/2(D,µ). By Lemma 3.1, for every ε ∈ (0, 1) there

is a C(ε) > 0 such that∫
D

λ
|x|2 |ϕ|

2 dµ−
∫
D

|∇ϕ|2 dµ ≤ ε
1−ε

∫
D

|∇ϕ|2 dµ+ C(ε)

∫
D

|ϕ|2 dµ.

Now, we proceed as in the proof of claim (i) and reach a contradiction to the optimality

of
(
d−2

2

)2
in Hardy’s inequality (1.5).

Let p > 2, d 6= p, and let λ >
( |d−p|

p

)p
and let u0 ∈ L2

µ,loc(Rd) be positive and satisfying

(1.9) for some r > 0. We argue by contradiction and so we assume, there is a T > 0, for
which equation (1.1) has a positive weak solution u on [0, T ) with initial value u(0) = u0.
For the above given r > 0, we fix ϕ ∈ C1

c (B(0, r) \ {0}) and for every integer k ≥ 1 and
every s ∈ R, we set gk(s) = (s + 1

k
)1−p if s ≥ 0 an gk(s) = kp−1 if s < 0. Then, by

Lemma 3.2 for t1 = 0, t2 = t > 0, and φ = |ϕ|p, we obtain that∫
B(0,r)

(u(0)+ 1
k

)2−p

p−2
|ϕ|p dµ−

∫
B(0,r)

(u(t)+ 1
k

)2−p

p−2
|ϕ|p dµ

+ (1− p)
∫ t

0

∫
B(0,r)

|∇u(s)|p|ϕ|p

(u(s)+ 1
k

)p
dµ ds+ p

∫ t

0

∫
B(0,r)

|∇u(s)|p−2∇u(s) |ϕ|p−2ϕ

(u(s)+ 1
k

)p−1 ∇ϕ dµ ds

=

∫ t

0

∫
B(0,r)

λ
|x|p

up−1(s)

(u(s)+ 1
k

)p−1 |ϕ|
p dµ ds.

(3.22)

By Young’s inequality

p

∫ t

0

∫
B(0,r)

|∇u(s)|p−2∇u(s) (u(s) + 1
k
)1−p∇ϕ |ϕ|p−2 ϕ dµ ds

≤ (p− 1)

∫ t

0

∫
B(0,r)

|∇u(s)|p (u(s) + 1
k
)−p |ϕ|p dµ ds+ t

∫
B(0,r)

|∇ϕ|p dµ,

and since (u(t) + 1
k
)2−p |ϕ|p is positive, we can deduce from (3.22) that∫ t

0

∫
B(0,r)

λ
|x|pu

p−1(s) (u(s) + 1
k
)1−p |ϕ|p dµ ds

≤ t

∫
B(0,r)

|∇ϕ|p dµ+

∫
B(0,r)

(u(0)+ 1
k

)2−p

p−2
|ϕ|p dµ.
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We send k → +∞ in this inequality. Then, by Beppo-Levi’s convergence theorem, we
obtain that∫

B(0,r)

λ
|x|p |ϕ|

p dµ−
∫
B(0,r)

|∇ϕ|p dµ ≤ 1
t (p−2)

∫
B(0,r)

u2−p(0) |ϕ|p dµ. (3.23)

Thus, since supp(ϕ) ⊆ B(0, r) \ {0}, and by hypothesis (1.9), we have that∫
B(0,r)

λ
|x|p |ϕ|

p dµ−
∫
B(0,r)

|∇ϕ|p dµ ≤ δ2−p

t (p−2)

∫
B(0,r)

|ϕ|p dµ. (3.24)

Since the matrix A is positive definite, inequality (3.17) holds. Thus and since inequality
(3.24) holds for all ϕ ∈ C1

c (B(0, r) \ {0}), we can conclude that

inf

∫
B(0,r)

|∇ϕ|p dµ− λ
p−1
p
∫
B(0,r)

|ϕ|p (xtAx)p/2

|x|p dµ−
∫
B(0,r))

λ
|x|p |ϕ|

p dµ∫
B(0,r)

|ϕ|p dµ

≥ − δ2−p

t (2−p) − Λ
p/2
A λ

p−1
p ,

where the infimum is taken over all ϕ ∈ C1
c (B(0, r) \ {0}) with ‖ϕ‖Lpµ(B(0,r)) > 0.

If 2 < p < d, then by Lemma 3.6, the set C1
c (B(0, r) \ {0}) lies dense in W 1,p

µ,0(B(0, r))

and if p > d ≥ 2, then the set C1
c (B(0, r)\{0}) lies dense in W 1,p

µ,0(B(0, r)\{0}). Therefore

in both cases, the last inequality contradicts to the optimality of the constant
( |d−p|

p

)p
in

Hardy’s inequality (1.5).

A. Appendix

A.1. Steklov averages and an integration by parts

In the this subsection of the appendix, we recall some well-known facts about Steklov
averages in purpose to proof an integration by parts formula (Lemma 3.2).

For any open subset D of Rd and any T > 0, we denote by DT the cylinder D× (0, T ).
For q, r ≥ 1, we denote by Lq,r(DT ) the parabolic Lebesgue space Lr(0, T ;Lq(D)). The
space Lq,r(DT ) is equipped by the norm

‖u‖Lq,r(DT ) :=

(∫ T

0

(∫
D

|u(x)|q dx

) r
q

)1/r

for all u ∈ Lq,r(DT ).

Definition A.1. Let D an open subset of Rd and let T > 0. Then, for v ∈ L1(DT ),
h > 0, t ∈ (0, T ), and for a.e. x ∈ D, we define the Steklov mean value of v (also called
Steklov average) by

vh(x, t) :=

{
1
h

∫ t+h
t

v(x, s) ds if t ∈ (0, T − h), and

0 if t > T − h.

The following Lemma is a more detailed version of Lemma 4.7 in [22, p.85]. Never-
theless, this lemma is quite standard (cf. [22, 10]) and so we omit its proof.

Lemma A.2. Let D ⊆ Rd be an open set. Then the following assertions hold true.
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(i) For v ∈ Lq,r(DT ), let ṽ(t) := v(t) if t ∈ [0, T ] and ṽ(t) = 0 if t ∈ R \ [0, T ]. Further
for every 0 < h < δ < T , let ρh(t) = h−1 1[−1,0](h

−1t) for every t ∈ R. Then,∫
R
ρh(t) dt = 1, ρh ≥ 0, lim

h→0+

∫
R\(−r,r)

ρh dt→ 0 for all 0 < r < T , (A.1)

and

(ṽ ∗ ρh)(t) =

∫
R
ṽ(s) ρh(t− s) ds = vh(t) for every t ∈ (0, T − δ). (A.2)

(ii) If v ∈ Lq,r(DT ), then for every 0 < δ < T ,

vh → v in Lq,r(DT−δ) as h→ 0+.

(iii) If v ∈ C([0, T ];Lq(D)), then vh(t) can be defined in t = 0 by vh(x, 0) = 1
h

∫ 0+h

0
v(x, s) ds

(x ∈ D) for all h > 0, and for every 0 < ε < T and every t ∈ [0, T − ε),

vh → v in C([0, T − δ];Lq(D)) as h→ 0+.

(iv) If v ∈ V p(DT ) := C([0, T ];L2(D)) ∩ Lp(0, T ;W 1,p(D)), then

vh ∈ W 1,2([0, T − δ];L2(D)), and ∂vh
∂t

(t) = h−1(v(t+ h)− v(t))

for every t ∈ (0, T − δ) and every 0 < h < δ < T ,

In the standard references (as, e.g., [22, 10]) the second and third claim of Lemma A.2
are often employed, but in general without any proof. Thus we give its proof here.

Proof. First, we proof that the sequence (ρh)h>0 defined in (i) satisfies the properties
(A.1). Since 1[−1,0](h

−1t) = 1[−h,0](t) for all t ∈ R,∫
R
ρh(t) dt = h−1

∫ 0

−h
1 dt = 1.

Further, for every 0 < r < T , we have that (R \ (−r, r))∩ [−h, 0] = ∅ for every 0 < h < r.
Hence ∫

R\]−r,r[
ρh(t) dt = h−1

∫
R\]−r,r[

1[−h,0] dt = 0.

To see that formula (A.2) holds, we fix t ∈]0, T −δ[, and note that 1[−1,0](
t−s
h

) = 1[t,t+h](s)
for every s ∈ R. Hence,

(ṽ ∗ ρh)(t) = h−1

∫
R
ṽ(s)1[−1,0](

t−s
h

) ds = h−1

∫
R
v(s)1[t,t+h](s) ds = vh(t).

Now, let v ∈ Lq,r(DT ) and fix 0 < h < δ < T . Then, for every t ∈]0, T − δ[,

vh(t) = h−1

∫ t+h

t

v(s) ds =

∫ t+h
h

t
h

v(h r) dr =

∫ 1

0

v(h (s+ t
h
)) ds,
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where we applied in the first equality the substitution s 7→ r(s) = h−1 s and in the second
equality the substitution r 7→ s(r) = r − t

h
. Hence for every t ∈ (0, T − δ),

‖vh(t)− v(t)‖Lq(D) =

∥∥∥∥∫ 1

0

(
v(h (s+ t

h
))− v(t)

)
ds

∥∥∥∥
Lq(D)

≤
∫ 1

0

∥∥v(h (s+ t
h
))− v(t)

∥∥
Lq(D)

ds.

(A.3)

If v ∈ C([0, T ];Lq(D)), then v is uniformly continuous on [0, T − δ] with values in Lq(D).
Thus for every ε > 0, there is a δ̃ > 0 such that for all 0 < h < δ̃, and all s ∈ [0, 1], all
t ∈ [0, T − δ], ∥∥v(h (s+ t

h
))− v(t)

∥∥
Lq(D)

< ε,

and so by estimate (A.3), for all 0 < h < δ̃,

sup
t∈[0,T−δ]

‖vh(t)− v(t)‖Lq(D) < ε.

This shows that claim (iii) holds. On the other hand, by estimate (A.3) and by Hölder’s
inequality,(∫ T−δ

0

‖vh(t)− v(t)‖rLq(D) dt

)1/r

≤
(∫ T−δ

0

(∫ 1

0

‖v(h · s+ t)− v(t)‖Lq(D) ds

)r
dt

)1/r

≤
(∫ T−δ

0

∫ 1

0

‖v(h · s+ t)− v(t)‖rLq(D) ds dt

)1/r

.

By Tonelli’s theorem and again Hölder’s inequality,(∫ T−δ

0

∫ 1

0

‖v(h · s+ t)− v(t)‖rLq(D) ds dt

)1/r

=

(∫ 1

0

∫ T−δ

0

‖v(h · s+ t)− v(t)‖rLq(D) dt ds

)1/r

≤
∫ 1

0

(∫ T−δ

0

‖v(h · s+ t)− v(t)‖rLq(D) dt

)1/r

ds.

If v ∈ Lq,r(DT ), then for a.e. s ∈ (0, 1),(∫ T−δ

0

‖v(h · s+ t)− v(t)‖rLq(D) dt

)1/r

→ 0 as h→ 0+,

and by Minkowski’s inequality, for a.e. s ∈ (0, 1) and all 0 < h < δ,(∫ T−δ

0

‖v(h · s+ t)− v(t)‖rLq(D) dt

)1/r

≤
(∫ T−δ

0

(
‖v(h · s+ t)‖Lq(D) + ‖v(t)‖Lq(D)

)r
dt

)1/r

≤
(∫ T−δ

0

‖v(h · s+ t)‖rLq(D) dt

)1/r

+ ‖v‖Lq,r(DT−δ)
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=

(∫ h·s+T−δ

h·s
‖v(τ)‖rLq(D) dτ

)1/r

+ ‖v‖Lq,r(DT−δ)

≤ 2 · ‖v‖Lq,r(DT ) .

Therefore, by Lebesgue’s dominated convergence theorem, we obtain that claim (ii) holds.
To see that claim (iv) holds, let 0 < h < δ and fix ξ ∈ C1

c (0, T − δ). Then by Fubini’s
theorem, ∫ T−δ

0

h−1

∫ t+h

t

v(s) dξ
dt

(t) ds dt

= h−1

∫ T+h−δ

0

∫ min{s,T−δ}

max{0,s−h}
v(s) dξ

dt
(t) dt ds

= h−1

∫ h

0

∫ s

0

v(s) dξ
dt

(t) dt ds+ h−1

∫ T−δ

h

∫ s

0

v(s) dξ
dt

(t) dt ds

+ h−1

∫ T+h−δ

T−δ

∫ T−δ

s−h
v(s) dξ

dt
(t) dt ds .

Therefore∫ T−δ

0

vh(t)
dξ
dt

(t) dt =

∫ T−δ

0

h−1

∫ t+h

t

v(s) dξ
dt

(t) ds dt

= h−1

∫ h

0

∫ s

0

v(s) dξ
dt

(t) dt ds+ h−1

∫ T−δ

h

∫ s

0

v(s) dξ
dt

(t) dt ds

+ h−1

∫ T+h−δ

T−δ

∫ T−δ

s−h
v(s) dξ

dt
(t) dt ds

= h−1

∫ h

0

v(s)(ξ(s)− ξ(0)) ds+ h−1

∫ T−δ

h

v(s)(ξ(s)− ξ(s− h)) ds

+ h−1

∫ T+h−δ

T−δ
v(s)(ξ(T − δ)− ξ(s− h)) ds

= h−1

∫ T−δ

0

v(s)ξ(s) ds− h−1

∫ T−δ

h

v(s)ξ(s− h) ds

− h−1

∫ T+h−δ

T−δ
v(s)ξ(s− h) ds

= h−1

∫ T−δ

0

v(s)ξ(s) ds− h−1

∫ T+h−δ

h

v(s)ξ(s− h) ds

= h−1

∫ T−δ

0

v(s)ξ(s) ds− h−1

∫ T−δ

0

v(r + h)ξ(r) dr

= −
∫ T−δ

0

h−1(v(s+ h)− v(s)) ξ(s) ds.

Therefore, claim (iv) holds true and this completes the proof of Lemma A.2.

A.2. Proof of Theorem 2.3

Let D be an open set in Rd for d ≥ 1. We call a real-valued measurable function
ω : D → [0,∞] a weight function. For 1 ≤ p <∞ we denote by Lp(D,ωdx) the set of all

33



equivalent classes of measurable functions u having finite integral

‖u‖pLp(D,ωdx) :=

∫
D

|u(x)|p ω(x)dx,

where two measurable functions belong to the same equivalent class if they coincide a.e. on
D. Then Lp(D,ωdx) equipped with the norm ‖·‖Lp(D,ωdx) is a Banach space. Furthermore,

we define the weighted Sobolev space W 1,p(D,ωdx) as the set of all u ∈ Lp(D,ωdx)
such that all weak partial derivatives ∂u

∂x1
, . . . , ∂u

∂xd
belong again to Lp(D,ωdx). We equip

W 1,p(D,ωdx) with the norm

‖u‖pW 1,p(D,ωdx) := ‖u‖pLp(D,ωdx) + ‖∇u‖pLp(D,ωdx)

for every u ∈ W 1,p(D,ωdx).

For the proof of Theorem 2.3, we need the following classical result of a sufficient
condition for compact embeddings in the non-weighted case:

Lemma A.3 ([1, Theorem 6.47]). Let D be an open set in Rd having the following prop-
erties:

1. There exists a sequence {D∗N}∞N=1 of open subsets of D such that D∗N ⊆ D∗N+1 and
such that for each N the embedding

W 1,p(D∗N) ↪→ Lp(D∗N)

is compact.

2. There is a continuously differentiable function Φ : U → D, where U ⊆ D × R is an
open set containing D × {0}, and which satisfies Φ(x, 0) = x for every x ∈ D and
if DN = D \D∗N then

(a) DN × [0, 1] ⊆ U for each N ,
(b) Φ(·, t) is injective on D for every fixed t,
(c) there is a constant M ≥ 0 such that

∣∣ ∂
∂t

Φ(x, t)
∣∣ ≤M for all (x, t) ∈ U .

3. The function dN(t) = supx∈DN |detDxφ(x, t)|−1 satisfy

(a) limN→∞ dN(1) = 0,

(b) limN→∞
∫ 1

0
dN(t)

dt = 0.

Then the embedding
W 1,p(D) ↪→ Lp(D)

is compact.

Moreover, we make use of the following sufficient condition for compact embeddings
in the weighted case.

Lemma A.4 ([3, Theorem 4.3]). Let D be an open set in Rd and ω a weight function
such that the sets D0 := {x ∈ D |ω(x) = 0} and D0 := {x ∈ D |ω(x) = +∞} are both
closed subsets of D with Lebesgue measure zero. Further suppose the ω is bounded from
below and above by positive constants on every compact subsets K ⊆ D \ (D0 ∪D∞). If
the subgraph

Dω :=
{

(x, z) ∈ D × R
∣∣∣ 0 < z < ω(x)

}
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is such that the embedding
W 1,p(Dω) ↪→ Lp(Dω) (A.4)

is compact, then the embedding

W 1,p(D,ωdx) ↪→ Lp(D, ωdx)

is compact.

Proof of Theorem 2.3. Since A is a real symmetric positive definite (d×d)-matrix, there is
orthogonal (d×d)-matrix B and eigenvalues λ1 > 0, . . . , λd > 0 of A such that BtAB = Λ,
where Λ is a (d × d)-diagonal matrix with entries λ1, . . . , λd. By using the isomorphism
Ψ1 : Rd+1 → Rd+1 defined by Φ1(x, z) = (Btx, z), we see that the subgraph Dρ is linear
isomorphic to the subgraph{

(y, z) ∈ Rd × R
∣∣∣ 0 < z < C(A, d) e−

1
p(

∑d
i=1 λiy

2
i )
p/2}

,

wherein we denote the vector Btx = y = (y1, . . . , yd). Since all eigenvalues λi are strictly
positive, we have that

‖y‖ :=

(
d∑
i=1

λiy
2
i

)1/2

(A.5)

for every y ∈ Rd, defines a norm on Rd. Now, if we set r = ‖y‖ and θ := y/ ‖y‖ for every
y ∈ Rd\{0} and r = 0 and θ = 0 if y = 0, then the mapping Ψ2 : [0,∞)×Sd−1×R→ Rd+1

defined by Ψ2(r, θ, z) := (rθ, z) is another linear isomorphism of Rd+1, where Sd−1 := {y ∈
Rd | ‖y‖ = 1} denotes the unit sphere in Rd with respect to the norm ‖·‖ defined in (A.5).
By using this isomorphic transformation, we see that subgraph

Dρ =
{

(r, θ, z) ∈ [0,∞)× Sd−1 × R
∣∣∣ 0 < z < g(r)

}
,

where the function g(r) := C(A, d) e−
1
p
rp for every r ≥ 0 and equality of the two sets

means isomorphic. For the rest of the proof, we follow partially the idea of the proof of [3,
Lemma 5.3]. To do so, consider for every positive integer N the set

(Dρ)N :=
{

(r, θ, z) ∈ Dρ

∣∣∣ r ≥ N
}
.

Since the function g belongs to C1([0,∞)), is non-increasing, and has bounded derivative,
we see that the set (Dρ)

∗
N := Dρ \ (Dρ)N is bounded and has the cone property (see [1,

Definition 4.3, p.66]). Hence the embedding

W 1,p((Dρ)
∗
N) ↪→ Lp((Dρ)

∗
N)

is compact. Moreover, we have that (Dρ)
∗
N ⊆ (Dρ)

∗
N+1 for all N . Now, consider the

mapping Φ : U → Dρ defined by

Φ(r, θ, z, t) :=

(
r − t, θ, g(r − t)

g(r)
z

)
for every (r, θ, z, t) ∈ U :=

{
(r, θ, z, t)

∣∣∣ (r, θ, z, ) ∈ Dρ, 0 ≤ t < r
}

. Obviously, the open

set U contains the sets Dρ×{0} and (Dρ)N× [0, 1] for every N . Since g is strictly positive
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and of class C1, the mapping Φ is continuously differentiable on U . By construction of Φ
and by g, one sees that Φ(·, ·, ·, t) is injective on Dρ for every fixed t. In addition,

∂

∂t
Φ(r, θ, z, t) =

(
−1, 0,

−g′(r − t)
g(r)

z

)
for every (r, θ, z, t) ∈ U . Thus and since g′ is bounded on [0,∞), we have that∣∣∣∣ ∂∂tΦ(r, θ, z, t)

∣∣∣∣ ≤ (1 + ‖g′‖2
L∞([0,∞)))

1/2

for every (r, θ, z, t) ∈ U . Moreover,

detD(r,θ,z)Φ(r, θ, z, t) =
g(r − t)
g(r)

on U and so

dN(t) = sup
(r,θ,z)∈(Dρ)N

∣∣∣∣ g(r)

g(r − t)

∣∣∣∣ = sup
r≥N

e
1
p

((r−t)p−rp)

For 1 < p < ∞, we have that p(r − t)p−1t ≤ rp − (r − t)p for every r ≥ t, and so
(r − t)p − rp ≤ (−p)(r − t)p−1t for every r ≥ t. Hence

dN(t) ≤ e−(N−t)p−1t

for every t ∈ [0, 1]. Thus Φ satisfies the conditions in Lemma A.3 and so the embed-
ding (A.4) is compact with ω = ρ. Therefore and by Lemma A.4 we can conclude that
the embedding from W 1,p(Rd, µ) into Lp(Rd, µ) is compact. This completes the proof of
this theorem.
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