THE TOEPLITZ NONCOMMUTATIVE SOLENOID AND ITS KMS STATES

NATHAN BROWNLOWE, MITCHELL HAWKINS, AND AIDAN SIMS

Abstract

We use Katsura's topological graphs to define Toeplitz extensions of Latrémolière and Packer's noncommutative-solenoid C^{*}-algebras. We identify a natural dynamics on each Toeplitz noncommutative solenoid and study the associated KMS states. Our main result shows that the space of extreme points of the KMS simplex of the Toeplitz noncommutative torus at a strictly positive inverse temperature is homeomorphic to a solenoid; indeed, there is an action of the solenoid group on the Toeplitz noncommutative solenoid that induces a free and transitive action on the extreme boundary of the KMS simplex. With the exception of the degenerate case of trivial rotations, at inverse temperature zero there is a unique KMS state, and only this one factors through Latrémolière and Packer's noncommutative solenoid.

1. Introduction

In this paper, we describe the KMS states of Toeplitz extensions of the noncommutative solenoids constructed by Latrémolière and Packer [22]. We prove that the extreme boundary of the KMS simplex is homeomorphic to a topological solenoid. In recent years, following Bost and Connes' work [2] relating KMS theory to the Riemann zeta function, there has been a great deal of interest in the KMS structure of C^{*}-algebras associated to algebraic and combinatorial objects. In particular Laca and Raeburn's results [20] about the Toeplitz algebra of the $a x+b$-semigroup over \mathbb{N} precipitated a surge of activity around computations of KMS states for Toeplitz-like extensions. Various authors have studied KMS states on Toeplitz algebras associated to algebraic objects [4, 21, 6], directed graphs [14, 12, 5], higher-rank graphs [28, 13, 9], C^{*}-correspondences [19, 15], and topological graphs [1]. The results suggest that the KMS structure of such algebras for their natural gauge actions frequently encodes key features of the generating object.

The noncommutative solenoids $\mathcal{A}_{\theta}^{\mathscr{g}}$ are C^{*}-algebras introduced by Latrémolière and Packer in [22]. They are among the first examples of twisted C^{*}-algebras of non-compactly-generated abelian groups to be studied in detail, and have interesting representation-theoretic properties [23, 24]. In addition to the definition of noncommutative solenoids as twisted group C^{*}-algebras, Latrémolière and Packer provide a number of equivalent descriptions. The one we are interested in realises them as direct limits of noncommutative tori. Specifically, given a positive integer N and a sequence θ_{n} of real numbers such that $N^{2} \theta_{n+1}-\theta_{n}$ is an integer for every n, there are homomorphisms $\mathcal{A}_{\theta_{n}} \rightarrow \mathcal{A}_{\theta_{n+1}}$ that send the canonical unitary generators of $\mathcal{A}_{\theta_{n}}$ to the N th powers of the corresponding generators of $\mathcal{A}_{\theta_{n+1}}$. The noncommutative solenoid for the sequence $\theta=\left(\theta_{n}\right)$ is the direct limit of the $\mathcal{A}_{\theta_{n}}$ under these homomorphisms. Latrémolière and Packer's work focusses on features like simplicity, K-theory and classification of noncommutative solenoids.

Here we use Katsura's theory of topological graph C^{*}-algebras [16] to introduce a class of Toeplitz extensions $\mathcal{T}_{\theta}^{\mathscr{G}}$ of noncommutative solenoids, realised as direct limits of Toeplitz extensions $\mathcal{T}\left(E_{\theta_{n}}\right)$ of noncommutative tori, and then study their KMS states. Our main result says that at inverse temperatures above zero, the extreme boundary of the KMS simplex of $\mathcal{T}_{\theta}^{\mathscr{S}}$ is homeomorphic to the classical solenoid \mathscr{S}, and there is an action of \mathscr{S} on $\mathcal{T}_{\theta}^{\mathscr{g}}$ that induces a free and transitive action on the extreme KMS states. This is further evidence that KMS structure for Toeplitz-like algebras recovers key features of the underlying generating

[^0]objects. Interestingly, this homeomorphism is subtler than one might expect: though the results of [1] show that the KMS simplex of each approximating subalgebra $\mathcal{T}\left(E_{\theta_{n}}\right) \subseteq \mathcal{T}_{\theta}^{\mathscr{g}}$ has extreme boundary homeomorphic to the circle, these homeomorphisms are not compatible with the connecting maps in the inductive system. In fact, none of the extreme points in the KMS simplex of any $\mathcal{T}\left(E_{\theta_{n}}\right)$ extend to KMS states of $\mathcal{T}_{\theta}^{\mathscr{\mathscr { C }}}$. Identifying the simplex of KMS states of a given $\mathcal{T}\left(E_{\theta_{n}}\right)$ that do extend to KMS states of $\mathcal{T}_{\theta}^{\mathscr{g}}$ requires a careful analysis of the interaction between the subinvariance relation, described in [1], that characterises KMS states on the $\mathcal{T}\left(E_{\theta_{n}}\right)$ and the compatibility relation imposed by the connecting maps $\mathcal{T}\left(E_{\theta_{n}}\right) \hookrightarrow \mathcal{T}\left(E_{\theta_{n+1}}\right)$. We think the ideas involved in this analysis may be applicable to other investigations of KMS states on direct-limit C^{*}-algebras. Our main result also shows that at inverse temperature β there is a unique KMS state (unless all the θ_{n} are zero, a degenerate case that we discuss separately), and that there are no KMS states at inverse temperatures below zero. Perhaps surprisingly, for nonzero θ the structure of the KMS simplex of $\mathcal{T}_{\theta}^{\mathscr{g}}$ does not depend on whether the θ_{n} are rational.

We proceed as follows. After a brief preliminaries section, we begin in Section 3 by considering KMS states for actions on direct limits that preserve the approximating subalgebras. We record a general - and presumably well known - description of the KMS simplex as a projective limit of the KMS simplices of the approximating subalgebras. The connecting maps in this projective system need not be surjective, which is the cause of the subtleties that arise in computing the KMS states of Toeplitz noncommutative solenoids later in the paper. In Section 4 , we consider the topological graph E_{γ} that encodes rotation on the circle \mathbb{R} / \mathbb{Z} by angle $\gamma \in \mathbb{R}$. We describe the Toeplitz algebra $\mathcal{T}\left(E_{\gamma}\right)$ of this topological graph as universal for an isometry S and a representation π of $C(\mathbb{R} / \mathbb{Z})$, and its topological-graph C^{*}-algebra $\mathcal{O}\left(E_{\gamma}\right)$ as the quotient by the ideal generated by $1-S S^{*}$. In particular, $\mathcal{O}\left(E_{\gamma}\right)$ is canonically isomorphic to the noncommutative torus \mathcal{A}_{γ}. In Section 5 we consider a sequence $\theta=\left(\theta_{n}\right)$ in \mathbb{R} / \mathbb{Z} such that $N^{2} \theta_{n+1}=\theta_{n}$ for all n. We use our description of $\mathcal{T}\left(E_{\gamma}\right)$ from the preceding section to describe homomorphisms $\psi_{n}: \mathcal{T}\left(E_{\theta_{n}}\right) \rightarrow \mathcal{T}\left(E_{\theta_{n+1}}\right)$ that descend through the quotient maps to the homomorphisms $\tau_{n}: \mathcal{O}\left(E_{\theta_{n}}\right) \rightarrow \mathcal{O}\left(E_{\theta_{n+1}}\right)$ for which the noncommutative solenoid $\mathcal{A}_{\theta}^{\mathscr{S}}$ is isomorphic to $\underset{\longrightarrow}{\lim }\left(\mathcal{O}\left(E_{\theta_{n}}\right), \tau_{n}\right)$.

In Section 6] we define the Toeplitz noncommutative solenoid as $\mathcal{T}_{\theta}^{\mathscr{S}}:=\underset{\longrightarrow}{\lim }\left(\mathcal{T}\left(E_{\theta_{n}}\right), \psi_{n}\right)$, by analogy with the description of $\mathcal{A}_{\theta}^{\mathscr{g}}$ outlined in Section 5 . We describe a dynamics α on $\mathcal{T}_{\theta}^{\mathscr{S}}$ built from the gauge actions on the approximating subalgebras $\mathcal{T}\left(E_{\theta_{n}}\right)$. Though the gauge actions on the $\mathcal{T}\left(E_{\theta_{n}}\right)$ are all periodic \mathbb{R}-actions, the dynamics α is not. We are interested in the KMS states for this dynamics. The case $\theta=\mathbf{0}:=(0,0,0, \ldots)$ is a degenerate case, and we outline in Remark 6.5 how to describe the KMS states in this instance by decomposing both the algebra $\mathcal{T}_{0}^{\mathscr{S}}$ and the dynamics α as tensor products. Since $\theta_{n} \neq 0$ implies $\theta_{n+1} \neq 0$, we can thereafter assume, without loss of generality, that every θ_{n} is nonzero. In the remainder of Section 6, we use our results about direct limits from Section 3 to realise the KMS simplex of $\mathcal{T}_{\theta}^{\mathscr{g}}$ for α at an inverse temperature $\beta>0$ as a projective limit of spaces $\Omega_{\mathrm{sub}}^{r_{n}}$ of probability measures on \mathbb{R} / \mathbb{Z} that satisfy a suitable subinvariance condition. This involves an interesting interplay between the subinvariance condition for KMS states on the $\mathcal{T}\left(E_{\theta_{n}}\right)$ obtained from [1], and the compatibility condition coming from the connecting maps ψ_{n}. We believe that this analysis and our analysis of the space $\Omega_{\text {sub }}^{r_{n}}$ in Section 7 may be of independent interest from the point of view of ergodic theory. The theorems in [1] are silent on the case $\beta=0$, so we must argue this case separately, and our results for this case in Section 6 appear less sharp than for $\beta>0$: they show only that the KMS_{0}-simplex embeds in the projective limit of the spaces $\Omega_{\text {sub }}^{0}$. But we shall see later that the subinvariance condition at $\beta=0$ has a unique solution, so that the projective limit in this case is a one-point set. So our embedding result for $\beta=0$ is sufficient to show that there is a unique KMS_{0} state.

In Section 7 we analyse the space $\Omega_{\text {sub }}^{r}$ for $r>0$. We first construct a measure m_{r} satisfying the desired subinvariance relation, and then show that the measures obtained by composing this m_{r} with rotations are all of the extreme points of $\Omega_{\mathrm{sub}}^{r}$. This yields an isomorphism of $\Omega_{\mathrm{sub}}^{r}$
with the space of regular Borel probability measures on \mathbb{R} / \mathbb{Z}. A key step in our analysis is the characterisation in [12] of the subinvariant measures on the vertex set of a simple-cycle graph. We then turn in Section 8 to the proof of our main theorem. The key step is to establish that the connecting maps $\psi_{n}: \mathcal{T}\left(E_{\theta_{n}}\right) \rightarrow \mathcal{T}\left(E_{\theta_{n+1}}\right)$ induce surjections $\Omega_{\text {sub }}^{r_{n}} \rightarrow \Omega_{\text {sub }}^{r_{n}}$ by showing that the induced maps carry extreme points to extreme points.

2. Preliminaries

In this section we recall the background that we need on topological graphs and their C^{*} algebras, as introduced by Katsura in [16]. We then recall the notion of a KMS state for a C^{*}-algebra A and dynamics α.

Topological graphs and their C^{*}-algebras. For details of the following, see [16]. A topological graph $E=\left(E^{0}, E^{1}, r, s\right)$ consists of locally compact Hausdorff spaces E^{0} and E^{1}, a continuous map $r: E^{1} \rightarrow E^{0}$, and a local homeomorphism $s: E^{1} \rightarrow E^{0}$. In [16] Katsura constructs from each topological graph E a Hilbert $C_{0}\left(E^{0}\right)$-bimodule $X(E)$ and two C^{*}-algebras: the Toeplitz algebra $\mathcal{T}(E)$ and the graph C^{*}-algebra $\mathcal{O}(E)$. In this article we only encounter topological graphs of the form $E=(Z, Z, \mathrm{id}, h)$, where $h: Z \rightarrow Z$ is a homeomorpism of a compact Hausdorff space Z, so we only discuss the details of $X(E), \mathcal{T}(E)$ and $\mathcal{O}(E)$ in this setting.

When $E=(Z, Z, \mathrm{id}, h)$, where Z is compact, the module $X(E)$ is a copy of $C(Z)$ as a Banach space. The left and right actions are given by

$$
g_{1} \cdot f \cdot g_{2}(z)=g_{1}(z) f(z) g_{2}(h(z)), \quad \text { for } g_{1}, g_{2} \in C(Z), f \in X(E),
$$

and the inner product by $\left\langle f_{1}, f_{2}\right\rangle(z)=\overline{f_{1}\left(h^{-1}(z)\right)} f_{2}\left(h^{-1}(z)\right)$, for $f_{1}, f_{2} \in X(E)$. We denote by φ the homomorphism $A \rightarrow \mathcal{L}(X(E))$ implementing the left action. In this case φ is injective.

A representation of $X(E)$ in a C^{*}-algebra B is a pair (ψ, π), consisting of a linear map $\psi: X(E) \rightarrow B$ and a homomorphism $\pi: C(Z) \rightarrow B$ satisfying

$$
\psi(f \cdot h)=\psi(f) \pi(h), \quad \psi^{*}(f) \psi(g)=\pi(\langle f, g\rangle) \quad \text { and } \quad \psi(h \cdot f)=\pi(h) \psi(f)
$$

for all $f, g \in X(E)$ and $h \in C(Z)$. The Toeplitz algebra $\mathcal{T}(E)$ is the Toeplitz algebra of $X(E)$, in the sense of [10], which is the universal C^{*}-algebra generated by a representation of $X(E)$. We denote by $\left(i_{X(E)}^{1}, i_{X(E)}^{0}\right)$ the representation generating $\mathcal{T}(E)$.

For $f_{1}, f_{2} \in X_{E}$ there is an adjointable operator $\Theta_{f_{1}, f_{2}} \in \mathcal{L}(X(E))$ given by $\Theta_{f_{1}, f_{2}}(g)=$ $f_{1}\left\langle f_{2}, g\right\rangle_{C(Z)}=f_{1} f_{2}^{*} g$. The algebra of generalised compact operators on $X(E)$ is

$$
\mathcal{K}(X(E)):=\overline{\operatorname{span}}\left\{\Theta_{f_{1}, f_{2}}: f_{1}, f_{2} \in X(E)\right\} .
$$

Since $\Theta_{1,1}=1_{\mathcal{L}(X(E))}$, we have $\mathcal{K}(X(E))=\mathcal{L}(X(E))$. For a representation (ψ, π) of $X(E)$ in B there is a homomorphism $(\psi, \pi)^{(1)}: \mathcal{K}(X(E)) \rightarrow B$ satisfying $(\psi, \pi)^{(1)}\left(\Theta_{f_{1}, f_{2}}\right)=\psi\left(f_{1}\right) \psi\left(f_{2}\right)^{*}$ (see [26, page 202]).

The graph algebra $\mathcal{O}(E)$ is the Cuntz-Pimsner algebra of $X(E)$. So $\mathcal{O}(E)$ is the quotient of $\mathcal{T}(E)$ by the ideal generated by

$$
\left.\left\{\left(i_{X(E)}^{1}, i_{X(E)}^{0}\right)\right)^{(1)}(\varphi(h))-i_{X(E)}^{0}(h): h \in C(Z)\right\}
$$

and is the universal C^{*}-algebra generated by a covariant representation of $X(E)$-that is, a representation (ψ, π) satisfying

$$
(\psi, \pi)^{(1)}(\varphi(h))=\pi(h) \quad \text { for all } h \in C(Z)
$$

We denote the quotient map $\mathcal{T}(E) \rightarrow \mathcal{O}(E)$ by q, and we define $\left(j_{X(E)}^{1}, j_{X(E)}^{0}\right):=\left(q \circ i_{X(E)}^{1}, q \circ\right.$ $\left.i_{X(E)}^{0}\right)$, the covariant representation generating $\mathcal{O}(E)$.

KMS states. For details of the following, see [3]. Given a C^{*}-algebra A and an action α : $\mathbb{R} \rightarrow \operatorname{Aut}(A)$, we say that $a \in A$ is analytic for α if the function $t \mapsto \alpha_{t}(a)$ is the restriction of an analytic function $z \mapsto \alpha_{z}(a)$ from \mathbb{C} into A. The set of analytic elements is always norm dense in A. A state ϕ of A is a KMS_{0}-state if it is an α-invariant trace on A. For $\beta \in \mathbb{R} \backslash\{0\}$, a state ϕ of A is a KMS_{β}-state, or a KMS-state at inverse temperature β, for the system (A, α) if it satisfies the KMS condition

$$
\phi(a b)=\phi\left(b \alpha_{i \beta}(a)\right) \quad \text { for all analytic } a, b \in A .
$$

It suffices to check this condition for all a, b in any α-invariant set of analytic elements that spans a dense subspace of A. The collection of KMS_{β}-states for a dynamics α on a unital C^{*}-algebra A forms a Choquet simplex, and we will denote it by $\operatorname{KMS}_{\beta}(A, \alpha)$.

3. KMS structure of direct limit C^{*}-algebras

The C^{*}-algebras of interest to us in this paper are examples of direct-limit C^{*}-algebras. In this short section we show that the simplex of KMS states of a direct-limit C^{*}-algebra, for an action that preserves the approximating subalgebras, is the projective limit of the simplicies of KMS states of the approximating subalgebras.

Proposition 3.1. Suppose $\beta \in[0, \infty)$, and that $\left\{\left(A_{j}, \varphi_{j}, \alpha_{j}\right): j \in \mathbb{N}\right\}$ is a sequence of unital C^{*}-algebras A_{j}, injective unital homomorphisms $\varphi_{j}: A_{j} \rightarrow A_{j+1}$, and strongly continuous actions $\alpha_{j}: \mathbb{R} \rightarrow$ Aut A_{j} satisfying $\alpha_{j+1, t} \circ \varphi_{j}=\varphi_{j} \circ \alpha_{j, t}$ for all $j \in \mathbb{N}$ and $t \in \mathbb{R}$. Denote by A_{∞} the direct limit $\xrightarrow{\underline{l i m}}\left(A_{j}, \varphi_{j}\right)$, and by $\varphi_{j, \infty}$ the canonical maps $A_{j} \rightarrow A_{\infty}$ satisfying $\varphi_{j+1, \infty} \circ \varphi_{j}=$ $\varphi_{j, \infty}$ for each $\vec{j} \in \mathbb{N}$. There is a strongly continuous action $\alpha: \mathbb{R} \rightarrow$ Aut A_{∞} satisfying $\varphi_{j, \infty} \circ \alpha_{j, t}=\alpha_{t} \circ \varphi_{j, \infty}$ for each $j \in \mathbb{N}$ and $t \in \mathbb{R}$. Moreover, there is an affine isomorphism from $\operatorname{KMS}_{\beta}\left(A_{\infty}, \alpha\right)$ onto $\varliminf_{¿}\left(K M S_{\beta}\left(A_{j}, \alpha_{j}\right), \phi \mapsto \phi \circ \varphi_{j-1}\right)$ that sends ϕ to $\left(\phi \circ \varphi_{j, \infty}\right)_{j=0}^{\infty}$.

Proof. For each $j \in \mathbb{N}$ and $t \in \mathbb{R}$ we have

$$
\left(\varphi_{j+1, \infty} \circ \alpha_{j+1, t}\right) \circ \varphi_{j}=\varphi_{j+1, \infty} \circ \varphi_{j} \circ \alpha_{j, t}=\varphi_{j, \infty} \circ \alpha_{j, t} .
$$

So the universal property of A_{∞} gives a homomorphism $\alpha_{t}: A_{\infty} \rightarrow A_{\infty}$ such that $\alpha_{t} \circ \varphi_{j, \infty}=$ $\varphi_{j, \infty} \circ \alpha_{j, t}$ for all j.

It is straightforward to check that each α_{t} is an automorphism of A_{∞} with inverse α_{-t}, and that $\alpha: \mathbb{R} \rightarrow$ Aut A_{∞} is an action satisfying $\varphi_{j, \infty} \circ \alpha_{j, t}=\alpha_{t} \circ \varphi_{j, \infty}$. An $\varepsilon / 3$-argument using that each α_{j} is strongly continuous and that $\bigcup_{j} \varphi_{j, \infty}\left(A_{j}\right)$ is dense in A_{∞} shows that α is strongly continuous.

For $j \in \mathbb{N}$ and $\phi \in \operatorname{KMS}_{\beta}\left(A_{\infty}, \alpha\right)$ define $h_{j}(\phi):=\phi \circ \varphi_{j, \infty}$. Since $\operatorname{KMS}_{\beta}$ states restrict to KMS_{β} states on invariant unital subalgebras, h_{j} maps $\operatorname{KMS}_{\beta}\left(A_{\infty}, \alpha\right)$ to $\operatorname{KMS}_{\beta}\left(A_{j}, \alpha_{j}\right)$ for each j. We have

$$
h_{j+1} \circ \varphi_{j}=\left(\phi \circ \varphi_{j+1, \infty}\right) \circ \varphi_{j}=\phi \circ\left(\varphi_{j+1, \infty} \circ \varphi_{j}\right)=\phi \circ \varphi_{j, \infty}=h_{j},
$$

and so the universal property of $\lim _{K M S_{\beta}}\left(A_{j}, \alpha_{j}\right)$ gives a map h from $\operatorname{KMS}_{\beta}\left(A_{\infty}, \alpha\right)$ into $\lim _{\operatorname{KMS}_{\beta}}\left(A_{j}, \alpha_{j}\right)$ satisfying $p_{j} \circ h=h_{j}$, where p_{j} denotes the canonical projection onto $\operatorname{KMS}_{\beta}\left(A_{j}, \beta_{j}\right)$. We claim that h is the desired affine isomorphism.

The map h is obviously affine. To see that h is surjective, fix $\left(\phi_{j}\right)_{j=0}^{\infty} \in \underset{\swarrow}{\lim }\left(\operatorname{KMS}_{\beta}\left(A_{j}, \alpha_{j}\right)\right)$, and take $j \leq k, a \in A_{j}$ and $b \in A_{k}$ with $\varphi_{j, \infty}(a)=\varphi_{k, \infty}(b)$. Then

$$
0=\varphi_{k, \infty}(b)-\varphi_{j, \infty}(a)=\varphi_{k, \infty}(b)-\varphi_{k, \infty}\left(\varphi_{k-1} \circ \cdots \circ \varphi_{j}(a)\right)=\varphi_{k, \infty}\left(b-\varphi_{k-1} \circ \cdots \circ \varphi_{j}(a)\right) .
$$

Since each φ_{j} is injective, each $\varphi_{j, \infty}$ is injective, and so $b=\varphi_{k-1} \circ \cdots \circ \varphi_{j}(a)$. Now

$$
\phi_{j}(a)=\phi_{k}\left(\varphi_{k-1} \circ \cdots \circ \varphi_{j}(a)\right)=\phi_{k}(b),
$$

and so there is a well-defined linear map $\phi_{\infty}: \bigcup_{j=0}^{\infty} \varphi_{j, \infty}\left(A_{j}\right) \rightarrow \mathbb{C}$ satisfying $\phi_{\infty}\left(\varphi_{j, \infty}(a)\right)=$ $\phi_{j}(a)$ for all $j \in \mathbb{N}$ and $a \in A_{j}$. Since each $\varphi_{j, \infty}$ is isometric and each ϕ_{j} is norm-decreasing, each $\phi_{\infty} \circ \varphi_{j, \infty}$ is norm-decreasing, so ϕ_{∞} is norm-decreasing. It therefore extends to a normdecreasing $\phi_{\infty}: A_{\infty} \rightarrow \mathbb{C}$. Since $\left\|\phi_{\infty}\right\| \geq\left\|\phi_{\infty} \circ \varphi_{j}\right\|=\left\|\phi_{j}\right\|=1$, we see that $\left\|\phi_{\infty}\right\|=1$. Since
$\bigcup_{j} \varphi_{j, \infty}\left(\left(A_{j}\right)_{+}\right)$is dense in $\left(A_{\infty}\right)_{+}$and since each $\phi_{\infty} \circ \varphi_{j, \infty}=\phi_{j}$ is positive, ϕ_{∞} is positive, and therefore a state of A_{∞}.

To see that ϕ_{∞} is KMS, observe that if $a \in A_{j}$ is α_{j}-analytic, then $\varphi_{j, \infty}(a)$ is α-analytic. Indeed, since $z \mapsto \varphi_{j, \infty}\left(\alpha_{j, z}(a)\right)$ is an analytic extension of $t \mapsto \alpha_{t}\left(\varphi_{j, \infty}(a)\right)$, the analytic extension of $t \mapsto \alpha_{t}\left(\varphi_{j, \infty}(a)\right)$ is given by

$$
\alpha_{z}\left(\varphi_{j, \infty}(a)\right)=\varphi_{j, \infty}\left(\alpha_{j, z}(a)\right) .
$$

So $\bigcup_{j}\left\{\varphi_{j, \infty}(a): a \in A_{j}\right.$ is analytic $\}$ is an α-invariant dense subspace of analytic elements in A_{∞}. So it suffices to show that $\phi_{\infty}\left(\varphi_{j, \infty}(a) \varphi_{k, \infty}(b)\right)=\phi_{\infty}\left(\varphi_{k, \infty}(b) \alpha_{i \beta}\left(\varphi_{j, \infty}(a)\right)\right)$ whenever $a \in A_{j}$ and $b \in A_{k}$ are analytic. For this, let $l:=\max \{j, k\}$ and observe that $a^{\prime}:=\varphi_{j, l}$ and $b^{\prime}:=\varphi_{k, l}(b)$ are α_{l}-analytic, and so

$$
\begin{aligned}
\phi_{\infty}\left(\varphi_{j, \infty}(a) \varphi_{k, \infty}(b)\right) & =\phi_{\infty}\left(\varphi_{l, \infty}\left(a^{\prime} b^{\prime}\right)=\phi_{l}\left(a^{\prime} b^{\prime}\right)=\phi_{l}\left(b^{\prime} \alpha_{l, i \beta}\left(a^{\prime}\right)\right)\right. \\
& =\phi_{\infty}\left(\varphi_{l, \infty}\left(b^{\prime}\right) \alpha_{i \beta}\left(\varphi_{l, \infty}\left(a^{\prime}\right)\right)\right)=\phi_{\infty}\left(\varphi_{j, \infty}(b) \alpha_{i \beta}\left(\varphi_{j, \infty}(a)\right)\right) .
\end{aligned}
$$

Since $h\left(\phi_{\infty}\right)=\left(\phi_{\infty} \circ \varphi_{j, \infty}\right)_{j=0}^{\infty}=\left(\phi_{j}\right)_{j=0}^{\infty}$, we see that h is surjective.
Checking that h is injective is straightforward: if $h(\phi)=h(\psi)$, then $\phi \circ \varphi_{j, \infty}=\psi \circ \varphi_{j, \infty}$ for all $j \in \mathbb{N}$, which implies that ϕ and ψ agree on the dense subset $\bigcup_{j=0}^{\infty} \varphi_{j, \infty}\left(A_{j}\right)$, giving $\phi=\psi$.

To see that h is continuous, let $\left(\phi_{\lambda}\right)_{\lambda \in \Lambda}$ be a net in $\operatorname{KMS}_{\beta}\left(A_{\infty}, \alpha\right)$ converging weak* to $\phi \in \operatorname{KMS}_{\beta}\left(A_{\infty}, \alpha\right)$. Then $p_{j}\left(h\left(\phi_{\lambda}\right)\right)=\phi_{\lambda} \circ \varphi_{j, \infty}$ converges weak* to $p_{j}(h(\phi))=\phi \circ \varphi_{j, \infty}$ for each $j \in \mathbb{N}$. Since the topology on the inverse limit is the initial topology induced by the projections p_{j}, this says that $h\left(\phi_{\lambda}\right)$ converges weak ${ }^{*}$ to $h(\phi)$. Hence h is continuous.

4. C^{*}-algebras from rotations on the circle

We are interested in topological graphs built from rotations on the circle. We write

$$
\mathbb{S}:=\mathbb{R} / \mathbb{Z}
$$

for the circle, which we frequently identify with $[0,1)$ under addition modulo 1.
For $\gamma \in \mathbb{R}$, let R_{γ} denote clockwise rotation of the circle \mathbb{S} by angle γ. So $R_{\gamma}(t)=$ $t-\gamma(\bmod 1)$. Each R_{γ} is a homeomorphism of \mathbb{S}, and we denote by $E_{\gamma}:=\left(\mathbb{S}, \mathbb{S}, \mathrm{id}_{\mathbb{S}}, R_{\gamma}\right)$ the corresponding topological graph. We denote the Hilbert bimodule $X\left(E_{\gamma}\right)$ by $C(\mathbb{S})_{\gamma}$, its inner product by $\langle\cdot, \cdot\rangle_{\gamma}$, and the homomorphism implementing the left action by $\phi_{\gamma}: C(\mathbb{S}) \rightarrow \mathcal{L}\left(C(\mathbb{R} / \mathbb{Z})_{\gamma}\right)$.

We can give alternative characterisations of the C^{*}-algebras $\mathcal{T}\left(E_{\gamma}\right)$ and $\mathcal{O}\left(E_{\gamma}\right)$. This is certainly not new: the description of $\mathcal{O}\left(E_{\gamma}\right)$ goes back to Pimsner [26, page 193, Example 3]. But we could not locate the exact formulation that we want for the description of $\mathcal{T}\left(E_{\gamma}\right)$ in the literature.

Definition 4.1. A Toeplitz pair for E_{γ} in a C^{*}-algebra B is a pair (π, S) consisting of a homomorphism π of $C(\mathbb{S})$ into B, and an isometry $S \in B$ satisfying

$$
S \pi(f)=\pi\left(f \circ R_{\gamma}\right) S \quad \text { for all } f \in C(\mathbb{S})
$$

A covariant pair for E_{γ} is a Toeplitz pair (π, W) in which W is a unitary.
Proposition 4.2. Let $\gamma \in \mathbb{R}$ and $E_{\gamma}=\left(\mathbb{S}, \mathbb{S}, \mathrm{id}_{\mathbb{S}}, R_{\gamma}\right)$.
(1) The pair $\left(i_{\gamma}, s_{\gamma}\right):=\left(i_{X\left(E_{\gamma}\right)}^{0}, i_{X\left(E_{\gamma}\right)}^{1}(1)\right)$ is a Toeplitz pair for E_{γ} that generates $\mathcal{T}\left(E_{\gamma}\right)$. Moreover, $\mathcal{T}\left(E_{\gamma}\right)$ is the universal C^{*}-algebra generated by a Toeplitz pair for E_{γ} : if (π, S) is a Toeplitz pair in a C^{*}-algebra B, then there is a homomorphism $\pi \times S: \mathcal{T}\left(E_{\gamma}\right) \rightarrow B$ satisfying $(\pi \times S) \circ i_{\gamma}=\pi$ and $(\pi \times S)\left(s_{\gamma}\right)=S$.
(2) The pair $\left(j_{\gamma}, w_{\gamma}\right):=\left(j_{X\left(E_{\gamma}\right)}^{0}, j_{X\left(E_{\gamma}\right)}^{1}(1)\right)$ is a covariant pair for E_{γ} that generates $\mathcal{O}\left(E_{\gamma}\right)$. Moreover, $\mathcal{O}\left(E_{\gamma}\right)$ is the universal C^{*}-algebra generated by a covariant pair for E_{γ} : if (π, W) is a covariant pair in a C^{*}-algebra B, then there is a homomorphism $\pi \times W$: $\mathcal{O}\left(E_{\gamma}\right) \rightarrow B$ satisfying $(\pi \times W) \circ j_{\gamma}=\pi$ and $(\pi \times W)\left(w_{\gamma}\right)=W$.

Proof. We have $s_{\gamma}^{*} s_{\gamma}=i_{X\left(E_{\gamma}\right)}^{0}\left(\langle 1,1\rangle_{\gamma}\right)=i_{X\left(E_{\gamma}\right)}^{0}(1)=1$, and so s_{γ} is an isometry. For each $f \in C(\mathbb{S})$ we have

$$
\begin{aligned}
i_{\gamma}\left(f \circ R_{\gamma}\right) s_{\gamma} & =i_{X\left(E_{\gamma}\right)}^{0}\left(f \circ R_{\gamma}\right) i_{X\left(E_{\gamma}\right)}^{1}(1)=i_{X\left(E_{\gamma}\right)}^{1}\left(\left(f \circ R_{\gamma}\right) \cdot 1\right) \\
& =i_{X\left(E_{\gamma}\right)}^{1}(1 \cdot f)=i_{X\left(E_{\gamma}\right)}^{1}(1) i_{X\left(E_{\gamma}\right)}^{0}(f)=s_{\gamma} i_{\gamma}(f),
\end{aligned}
$$

and so $\left(i_{\gamma}, s_{\gamma}\right)$ is a Toeplitz pair. For $f \in C(\mathbb{S})_{\gamma}$ we have $i_{X\left(E_{\gamma}\right)}^{1}(f)=i_{\gamma}(f) s_{\gamma}$, so the pair $\left(i_{\gamma}, i_{\eta}^{1}(1)\right)$ generates the ranges of both $i_{X\left(E_{\gamma}\right)}^{0}$ and $i_{X\left(E_{\gamma}\right)}^{1}$, and hence all of $\mathcal{T}\left(E_{\gamma}\right)$.

Now suppose B is a unital C^{*}-algebra and $\pi: C(\mathbb{S}) \rightarrow B$ and $S \in B$ form a Toeplitz pair (π, S) for E_{γ} in B. Define $\psi: C(\mathbb{S})_{\gamma} \rightarrow B$ by $\psi(f)=\pi(f) S$. We claim that (ψ, π) is a representation of $C(\mathbb{S})_{\gamma}$ in B. For each $f \in C(\mathbb{S})_{\gamma}$ and $g \in C(\mathbb{S})$ we have

$$
\pi(g) \psi(f)=\pi(g) \pi(f) S=\pi(g f) S=\psi(g f)=\psi(g \cdot f)
$$

and

$$
\psi(f) \pi(g)=\pi(f) S \pi(g)=\pi\left(f\left(g \circ R_{\gamma}\right)\right) S=\psi\left(f\left(g \circ R_{\gamma}\right)\right)=\psi(f \cdot g)
$$

To check that the inner product is preserved, we let $f, h \in C(\mathbb{S})_{\gamma}$ and calculate

$$
\begin{aligned}
\psi(f)^{*} \psi(h) & =S^{*} \pi\left(f^{*}\right) \pi(h) S=S^{*} \pi\left(f^{*} \circ R_{\gamma}^{-1} \circ R_{\gamma}\right) \pi\left(h \circ R_{\gamma}^{-1} \circ R_{\gamma}\right) S \\
& =\pi\left(f^{*} \circ R_{\gamma}^{-1}\right) S^{*} S \pi\left(h \circ R_{\gamma}^{-1}\right)=\pi\left(\left(f^{*} h\right) \circ R_{\gamma}^{-1}\right) .
\end{aligned}
$$

We have $\langle f, h\rangle_{\gamma}(z)=\overline{f\left(R_{\gamma}^{-1}(z)\right)} g\left(R_{\gamma}^{-1}(z)\right)=\left(f^{*} g\right) \circ R_{\gamma}^{-1}(z)$. So $\langle f, h\rangle_{\gamma}=\left(f^{*} h\right) \circ R_{\gamma}^{-1}$, and hence $\psi(f)^{*} \psi(h)=\pi\left(\langle f, h\rangle_{\gamma}\right)$. This proves the claim.

The universal property of $\mathcal{T}\left(E_{\gamma}\right)$ yields a homomorphism $\psi \times \pi: \mathcal{T}\left(E_{\gamma}\right) \rightarrow B$ satisfying $(\psi \times \pi) \circ i_{X\left(E_{\gamma}\right)}^{1}=\psi$ and $(\psi \times \pi) \circ i_{X\left(E_{\gamma}\right)}^{0}=\pi$. Let $\pi \times S:=\psi \times \pi$. Then

$$
(\pi \times S) \circ i_{X\left(E_{\gamma}\right)}^{0}=(\psi \times \pi) \circ i_{X\left(E_{\gamma}\right)}^{0}=\pi
$$

and

$$
(\pi \times S)\left(s_{\gamma}\right)=(\psi \times \pi)\left(i_{X\left(E_{\gamma}\right)}^{1}(1)\right)=\psi(1)=\pi(1) S=S .
$$

Hence $\mathcal{T}\left(E_{\gamma}\right)$ is the universal C^{*}-algebra generated by a Toeplitz pair for E_{γ}.
To prove (2) it suffices to show that the ideal I generated by

$$
\left\{\left(i_{X\left(E_{\gamma}\right)}^{1}, i_{X\left(E_{\gamma}\right)}^{0}\right)\left({ }^{1}\right)\left(\varphi_{\gamma}(f)\right)-i_{X\left(E_{\gamma}\right)}^{0}(f): f \in C(\mathbb{S})\right\}
$$

is the ideal generated by the element $s_{\gamma} s_{\gamma}^{*}-1$. We have

$$
\left.s_{\gamma} s_{\gamma}^{*}-1=\left(i_{X\left(E_{\gamma}\right)}^{1}, i_{X\left(E_{\gamma}\right)}^{0}\right)\right)^{(1)}\left(\Theta_{1,1}\right)-i_{X\left(E_{\gamma}\right)}^{0}=\left(i_{X\left(E_{\gamma}\right)}^{1}, i_{X\left(E_{\gamma}\right)}^{0}\right)^{(1)}\left(\phi_{\eta}(1)\right)-i_{X\left(E_{\gamma}\right)}^{0}(1) \in I,
$$

and hence the ideal generated by $s_{\gamma} s_{\gamma}^{*}-1$ is contained in I. For the reverse containment we first note that $\varphi_{\gamma}(f)=\Theta_{f, 1}$ for all $f \in C(\mathbb{S})$. Then

$$
\begin{aligned}
\left(i_{X\left(E_{\gamma}\right)}^{1}, i_{X\left(E_{\gamma}\right)}^{0}\right)^{(1)}\left(\varphi_{\eta}(f)\right)-i_{\eta}^{0}(f) & =\left(i_{X\left(E_{\gamma}\right)}^{1}, i_{X\left(E_{\gamma}\right)}^{0}\right)^{(1)}\left(\Theta_{f, 1}\right)-i_{\eta}^{0}(f) \\
& =i_{X\left(E_{\gamma}\right)}^{1}(f) i_{X\left(E_{\gamma}\right)}^{1}(1)^{*}-i_{\eta}^{0}(f) \\
& =i_{X\left(E_{\gamma}\right)}^{0}(f) i_{X\left(E_{\gamma}\right)}^{1}(1) i_{X\left(E_{\gamma}\right)}^{1}(1)^{*}-i_{X\left(E_{\gamma}\right)}^{0}(f) \\
& =i_{X\left(E_{\gamma}\right)}^{0}(f)\left(s_{\gamma} s_{\gamma}^{*}-1\right),
\end{aligned}
$$

and the result follows.
Remarks 4.3. (1) We saw in the proof of Proposition 4.2 that a Toeplitz pair (π, S) for E_{γ} gives a representation (ψ, π) of $X\left(E_{\gamma}\right)$ such that $\psi(f)=\pi(f) S$. We denote the homomorphism $(\psi, \pi)^{(1)}$ of $\mathcal{K}\left(X\left(E_{\gamma}\right)\right)$ by $(\pi, S)^{(1)}$; so $(\pi, S)^{(1)}\left(\Theta_{f, g}\right)=\pi(f) S S^{*} \pi(g)^{*}$.
(2) In [17, Theorem 6.2] Katsura proved a gauge-invariant uniqueness theorem for the Toeplitz algebra of a Hilbert bimodule. Suppose A is a C^{*}-algebra, X is a Hilbert A-bimodule, and (ψ, π) is a representation of X in a C^{*}-algebra B. The gauge-invariant
uniqueness theorem says that $\psi \times \pi: \mathcal{T}(X) \rightarrow B$ is injective if B carries a gauge action, $\psi \times \pi$ intertwines the gauge actions on $\mathcal{T}(X)$ and B, and the ideal

$$
\left.\left\{a \in A: \pi(a) \in(\psi, \pi)^{(1)} \mathcal{K}(X)\right)\right\}
$$

of A is trivial. If (π, S) is a Toeplitz pair for E_{γ}, then this ideal is $\{f \in C(\mathbb{S}): \pi(f) \in$ $\left.(\pi, S)^{(1)}\left(\mathcal{K}\left(X\left(E_{\gamma}\right)\right)\right)\right\}$, which we can write as

$$
\left\{f \in C(\mathbb{S}): \pi(f) \in \overline{\operatorname{span}}\left\{\pi(g) S S^{*} \pi(h): g, h \in C(\mathbb{S})\right\}\right\}
$$

We denote this ideal by $I_{(\pi, S)}$.
(3) Proposition 4.10 of [17] says that $I_{\left(i_{\gamma}, s_{\gamma}\right)}=0$.

We can give spanning families for $\mathcal{T}\left(E_{\gamma}\right)$ and $\mathcal{O}\left(E_{\gamma}\right)$ using Toeplitz and covariant pairs.
Proposition 4.4. Let $\gamma \in \mathbb{R}$ and $E_{\gamma}=\left(\mathbb{S}, \mathbb{S}, \mathrm{id}_{\mathbb{S}}, R_{\gamma}\right)$. Then

$$
\mathcal{T}\left(E_{\gamma}\right)=\overline{\operatorname{span}}\left\{s_{\gamma}^{m} i_{\gamma}(f) s_{\gamma}^{* n}: m, n \in \mathbb{N}, f \in C(\mathbb{S})\right\},
$$

and

$$
\mathcal{O}\left(E_{\gamma}\right)=\overline{\operatorname{span}}\left\{w_{\gamma}^{m} j_{\gamma}(f) w_{\gamma}^{* n}: m, n \in \mathbb{N}, f \in C(\mathbb{S})\right\} .
$$

Proof. The set $\operatorname{span}\left\{s_{\gamma}^{m} i_{\gamma}(f) s_{\gamma}^{* n}: m, n \in \mathbb{N}, f \in C(\mathbb{S})\right\}$ contains the generators of $\mathcal{T}\left(E_{\gamma}\right)$, so it suffices to show that it is a $*$-subalgebra. It is obviously closed under involution; that it is closed under multiplication follows from the calculation

$$
\begin{aligned}
s_{\gamma}^{m} i_{\gamma}(f) s_{\gamma}^{* n} s_{\gamma}^{p} i_{\gamma}(g) s_{\gamma}^{* q} & = \begin{cases}s_{\gamma}^{m} i_{\gamma}(f) s_{\gamma}^{* n-p} i_{\gamma}(g) s_{\gamma}^{* q} & \text { if } n \geq p \\
s_{\gamma}^{m} i_{\gamma}(f) s_{\gamma}^{p-n} i_{\gamma}(g) s_{\gamma}^{* q} & \text { if } n<p\end{cases} \\
& = \begin{cases}s_{\gamma}^{m} i_{\gamma}\left(f\left(g \circ R_{\gamma}^{-(n-p)}\right)\right) s_{\gamma}^{* n-p+q} & \text { if } n \geq p \\
s_{\gamma}^{m+p-n} i_{\gamma}\left(\left(f \circ R_{\gamma}^{-(p-n)}\right) g\right) s_{\gamma}^{* q} & \text { if } n<p .\end{cases}
\end{aligned}
$$

Since each $s_{\gamma}^{m} i_{\gamma}(f) s_{\gamma}^{* n}$ is mapped to $w_{\gamma}^{m} j_{\gamma}(f) w_{\gamma}^{* n}$ under the quotient map $\mathcal{T}\left(E_{\gamma}\right) \rightarrow \mathcal{O}\left(E_{\gamma}\right)$, we have $\mathcal{O}\left(E_{\gamma}\right)=\overline{\operatorname{span}}\left\{w_{\gamma}^{m} j_{\gamma}(f) w_{\gamma}^{* n}: m, n \in \mathbb{N}, f \in C(\mathbb{S})\right\}$.

5. An alternative description of the noncommutative solenoid

Throughout the rest of this paper we fix a natural number $N \geq 2$. In [22], given a sequence $\theta=\left(\theta_{n}\right)_{n=1}^{\infty}$ in $\mathbb{S}=\mathbb{R} / \mathbb{Z}$ such that $N^{2} \theta_{n+1}=\theta_{n}$ for all n, Latrémolière and Packer define the noncommutative solenoid $\mathcal{A}_{\theta}^{\mathscr{g}}$ as a twisted group C^{*}-algebra involving the N-adic rationals. In [22, Theorem 3.7] they give an equivalent characterisation of $\mathcal{A}_{\theta}^{\mathscr{S}}$. We will take this characterisation as our definition. We recall it now. Let

$$
\Xi_{N}:=\left\{\left(\theta_{n}\right)_{n=0}^{\infty}: \theta_{n} \in \mathbb{S} \text { and } N^{2} \theta_{n+1}=\theta_{n} \text { for each } n\right\} .
$$

Recall that for $\gamma \in \mathbb{S}$ the rotation algebra \mathcal{A}_{γ} is the universal C^{*}-algebra generated by unitaries U_{γ} and V_{γ} satisfying $U_{\gamma} V_{\gamma}=e^{2 \pi i \gamma} V_{\gamma} U_{\gamma}$.
Definition 5.1. Let $\theta=\left(\theta_{n}\right)_{n=0}^{\infty} \in \Xi_{N}$, and for each $n \in \mathbb{N}$ let $\varphi_{n}: \mathcal{A}_{\theta_{n}} \rightarrow \mathcal{A}_{\theta_{n+1}}$ be the homomorphism satisfying

$$
\varphi_{n}\left(U_{\theta_{n}}\right)=U_{\theta_{n+1}}^{N} \quad \text { and } \quad \varphi_{n}\left(V_{\theta_{n}}\right)=V_{\theta_{n+1}}^{N} .
$$

The noncommutative solenoid $\mathcal{A}_{\theta}^{\mathscr{S}}$ is the direct $\operatorname{limit} \underset{\longrightarrow}{\lim }\left(\mathcal{A}_{\theta_{n}}, \varphi_{n}\right)$.
Remark 5.2. We have taken a slightly different point of view to [22] in describing $\mathcal{A}_{\theta}^{\mathscr{S}}$. In [22], Latrémolière and Packer consider collections of $\left(\theta_{n}\right)$ such that $N \theta_{n+1}-\theta_{n} \in \mathbb{Z}$, and take the direct limit $\xrightarrow{\lim } \mathcal{A}_{\theta_{2 n}}$, with intertwining maps going from $\mathcal{A}_{\theta_{2 n}}$ to $\mathcal{A}_{\theta_{2 n+2}}$.

We now give an alternative characterisation of the noncommutative solenoid using topological graphs built from rotations of the circle as discussed in Section 4.
Notation 5.3. We denote by $\iota: \mathbb{S} \rightarrow \mathbb{T}$ the homeomorphism $t \mapsto e^{2 \pi i t}$, and by $p_{N}: \mathbb{S} \rightarrow \mathbb{S}$ the function $t \mapsto N t$.

Proposition 5.4. Let $N \geq 2$, and $\theta=\left(\theta_{n}\right)_{n=0}^{\infty} \in \Xi_{N}$. For each $n \in \mathbb{N}$ there is an injective homomorphism $\tau_{n}: \mathcal{O}\left(E_{\theta_{n}}\right) \rightarrow \mathcal{O}\left(E_{\theta_{n+1}}\right)$ satisfying

$$
\tau_{n}\left(j_{\theta_{n}}(f)\right)=j_{\theta_{n+1}}\left(f \circ p_{N}\right) \quad \text { and } \quad \tau_{n}\left(w_{\theta_{n}}\right)=w_{\theta_{n+1}}^{N},
$$

for all $f \in C(\mathbb{S})$. Moreover $\left.\xrightarrow{\lim (\mathcal{O}}\left(E_{\theta_{n}}\right), \tau_{n}\right) \cong \mathcal{A}_{\theta}^{\mathscr{S}}$.
We will prove the existence of the injective homomorphisms τ_{n} using the following result.
Lemma 5.5. Let $N \in \mathbb{N}$ with $N \geq 2$, and take $\gamma, \eta \in \mathbb{S}$ with $N^{2} \eta-\gamma \in \mathbb{Z}$. Then there is an injective homomorphism $\psi: \mathcal{T}\left(E_{\gamma}\right) \rightarrow \mathcal{T}\left(E_{\eta}\right)$ satisfying

$$
\psi\left(i_{\gamma}(f)\right)=i_{\eta}\left(f \circ p_{N}\right) \quad \text { and } \quad \psi\left(s_{\gamma}\right)=s_{\eta}^{N}
$$

for all $f \in C(\mathbb{S})$. The map ψ descends to an injective homomorphism $\tau: \mathcal{O}\left(E_{\gamma}\right) \rightarrow \mathcal{O}\left(E_{\eta}\right)$ satisfying $\tau\left(j_{\gamma}(f)\right)=j_{\eta}\left(f \circ p_{N}\right)$ and $\tau\left(w_{\gamma}\right)=w_{\eta}^{N}$ for all $f \in C(\mathbb{S})$.

Proof. Consider $\pi: C(\mathbb{S}) \rightarrow \mathcal{T}\left(E_{\eta}\right)$ given by $\pi(f)=i_{\eta}\left(f \circ p_{N}\right)$ and let $S:=s_{\eta}^{N}$. Since

$$
R_{\gamma} \circ p_{N}=R_{N^{2} \eta} \circ p_{N}=R_{\eta}^{N^{2}} \circ p_{N}=p_{N} \circ R_{\eta}^{N}
$$

we have

$$
\pi\left(f \circ R_{\gamma}\right) S=i_{\eta}\left(f \circ R_{\gamma} \circ p_{N}\right) s_{\eta}^{N}=i_{\eta}\left(f \circ p_{N} \circ R_{\eta}^{N}\right) s_{\eta}^{N}=s_{\eta}^{N} i_{\eta}\left(f \circ p_{N}\right)=S \pi(f) .
$$

So (π, S) is a Toeplitz pair for E_{γ}. The universal property of $\mathcal{T}\left(E_{\gamma}\right)$ now gives a homomorphism $\psi: \mathcal{T}\left(E_{\gamma}\right) \rightarrow \mathcal{T}\left(E_{\eta}\right)$ satisfying $\psi_{n}\left(i_{\gamma}(f)\right)=i_{\eta}\left(f \circ p_{N}\right)$ for all $f \in C(\mathbb{S})$, and $\psi\left(s_{\gamma}\right)=s_{\eta}^{N}$.

To see that ψ is injective, we aim to apply the gauge-invariant uniqueness theorem discussed in Remarks 4.3. We claim that $I_{(\pi, S)} \neq 0 \Longrightarrow I_{\left(i_{\eta}, s_{\eta}\right)} \neq 0$. To see this, suppose that $0 \neq f \in I_{(\pi, S)}$. Fix $\epsilon>0$, and choose $g_{i}, h_{i} \in C(\mathbb{S})$ with

$$
\left\|\pi(f)-\sum_{i=1}^{k} \pi\left(g_{i}\right) S S^{*} \pi\left(h_{i}\right)\right\|<\epsilon
$$

So

$$
\left\|i_{\eta}\left(f \circ p_{N}\right)-\sum_{i=1}^{k} i_{\eta}\left(g_{i} \circ p_{N}\right) s_{\eta}^{N} s_{\eta}^{* N} i_{\eta}\left(h_{i} \circ p_{N}\right)\right\|<\epsilon .
$$

For every function $g \in C(\mathbb{S})$ we have

$$
i_{\eta}\left(g \circ R_{-\eta}^{N-1}\right)=s_{\eta}^{* N-1} s_{\eta}^{N-1} i_{\eta}\left(g \circ R_{-\eta}^{N-1}\right)=s_{\eta}^{* N-1} i_{\eta}(g) s_{\eta}^{N-1} .
$$

Hence

$$
\begin{aligned}
\| i_{\eta}\left(f \circ p_{N} \circ R_{-\eta}^{N-1}\right) & -\sum_{i=1}^{k} i_{\eta}\left(g_{i} \circ p_{N} \circ R_{-\eta}^{N-1}\right) s_{\eta} s_{\eta}^{*} i_{\eta}\left(h_{i} \circ p_{N} \circ R_{-\eta}^{N-1}\right) \| \\
& =\left\|s_{\eta}^{* N-1} i_{\eta}\left(f \circ p_{N}\right) s_{\eta}^{N-1}-\sum_{i=1}^{k} s_{\eta}^{* N-1} i_{\eta}\left(g_{i} \circ p_{N}\right) s_{\eta}^{N} s_{\eta}^{* N} i_{\eta}\left(h_{i} \circ p_{N}\right) s_{\eta}^{N-1}\right\| \\
& \leq\left\|i_{\eta}\left(f \circ p_{N}\right)-\sum_{i=1}^{k} i_{\eta}\left(g_{i} \circ p_{N}\right) s_{\eta}^{N} s_{\eta}^{* N} i_{\eta}\left(h_{i} \circ p_{N}\right)\right\|<\epsilon .
\end{aligned}
$$

It follows that $i_{\eta}\left(f \circ p_{N} \circ R_{-\eta}^{N-1}\right) \in\left(i_{\eta}, s_{\eta}\right)^{(1)}\left(\mathcal{K}\left(X\left(E_{\eta}\right)\right)\right)$, and hence that $f \circ p_{N} \circ R_{-\eta}^{N-1} \in I_{\left(i_{\eta}, s_{\eta}\right)}$. This proves the claim.

By Remarks 4.3(3), $I_{\left(i_{\eta}, s_{\eta}\right)}=0$, so the claim gives $I_{(\pi, S)}=0$. We have $\psi\left(\mathcal{T}\left(E_{\gamma}\right)\right) \subseteq$ $\overline{\operatorname{span}}\left\{s_{\eta}^{a N} i_{\eta}(f) s_{\eta}^{* \delta N}: f \in C(\mathbb{S}), a, b \in \mathbb{N}\right\}$. Hence the gauge action ρ^{η} of \mathbb{T} on $\mathcal{T}\left(E_{\gamma}\right)$ satisfies $\rho_{z}^{\eta} \circ \psi=\rho_{z+e^{2 \pi i / N}}^{\eta} \circ \psi$ for all $z \in \mathbb{T}$. So there is an action $\tilde{\rho}^{\eta}$ of \mathbb{T} on $\psi\left(\mathcal{T}\left(E_{\gamma}\right)\right)$ such that
$\tilde{\rho}_{e^{2 \pi i t}}^{\eta} \circ \psi=\rho e^{e \pi i t / N}$ for all $t \in \mathbb{R}$. In particular,

$$
\begin{aligned}
\tilde{\rho}_{e^{2 \pi i t}}^{\eta} \circ \psi\left(s_{\gamma}^{a} i_{\eta}(f) s_{\gamma}^{* b}\right) & =\rho_{e^{2 \pi i t / N}}^{\eta}\left(s_{\eta}^{a N} i_{\eta}(f) s_{\eta}^{* b N}\right) \\
& =e^{2 \pi i t(a-b)} s_{\eta}^{a N} i_{\eta}(f) s_{\eta}^{* b N}=\psi \circ \rho_{e^{2 \pi i t}}^{\gamma}\left(s_{\eta}^{a N} i_{\eta}(f) s_{\eta}^{* b N}\right) .
\end{aligned}
$$

So continuity and linearity gives $\tilde{\rho}_{e^{2 \pi i t}}^{\eta}=\psi \circ \rho_{e^{2 \pi i t}}^{\gamma}$. Hence the gauge-invariant uniqueness theorem [17, Theorem 6.2] shows that ψ is injective.

To see that ψ descends to the desired injective homomorphism $\tau: \mathcal{O}\left(E_{\gamma}\right) \rightarrow \mathcal{O}\left(E_{\eta}\right)$, it suffices to show that the image under ψ of the kernel of the quotient map $\mathcal{T}\left(E_{\gamma}\right) \rightarrow \mathcal{O}\left(E_{\gamma}\right)$ is contained in the kernel of $\mathcal{T}\left(E_{\eta}\right) \rightarrow \mathcal{O}\left(E_{\eta}\right)$. For this, it suffices to show that $\psi\left(1-s_{\gamma} s_{\gamma}^{*}\right)$ is in the ideal generated by $1-s_{\eta} s_{\eta}^{*}$, which it is becase

$$
\psi\left(1-s_{\gamma} s_{\gamma}^{*}\right)=1-s_{\eta}^{N} s_{\eta}^{* N}=\sum_{i=1}^{N} s_{\eta}^{N-i}\left(1-s_{\eta} s_{\eta}\right) s_{\eta}^{* N-i}
$$

Proof of Proposition 5.4. For each $n \in \mathbb{N}$, Lemma 5.5 applied to $\gamma=\theta_{n}$ and $\eta=\theta_{n+1}$ gives the desired injective homomorphism τ_{n}.

Proposition 4.2 says that each $\mathcal{O}\left(E_{\eta}\right)$ is the crossed product $C(\mathbb{S}) \rtimes \mathbb{Z}$ for the automorphism $f \mapsto f \circ R_{\eta}$ of $C(\mathbb{S})$, which is the rotation algebra \mathcal{A}_{η} (see [7, Example VIII.1.1] for details). So for each $n \in \mathbb{N}$ there is an isomorphism from $\mathcal{O}\left(E_{\theta_{n}}\right)$ to $\mathcal{A}_{\theta_{n}}$ carrying $j_{\theta_{n}}(\iota)$ to $U_{\theta_{n}}$ and $w_{\theta_{n}}$ to $V_{\theta_{n}}$. Since each τ_{n} satisfies

$$
\tau_{n}\left(j_{\theta_{n}}(\iota)\right)=j_{\theta_{n+1}}\left(\iota \circ p_{N}\right)=j_{\theta_{n+1}}(\iota)^{N} \quad \text { and } \quad \tau_{n}\left(w_{\theta_{n}}\right)=w_{\theta_{n+1}}^{N},
$$

the diagrams

commute. Hence $\underset{\longrightarrow}{\lim }\left(\mathcal{O}\left(E_{\theta_{n}}\right), \tau_{n}\right) \cong \mathcal{A}_{\theta}^{\mathscr{S}}$.
Remark 5.6. In [18, Section 2], Katsura studies factor maps between topological-graph C^{*} algebras, and the C^{*}-homomorphisms that they induce. He shows that the projective limit of a sequence $\left(E_{n}\right)$ of topological graphs under factor maps is itself a topological graph. He then proves that the C^{*}-algebra $\mathcal{O}\left(\lim _{n} E_{n}\right)$ of this topological graph is isomorphic to the direct limit $\xrightarrow{\lim } \mathcal{O}\left(E_{n}\right)$ of the C^{*}-algebras of the E_{n} under the homomorphisms induced by the factor maps. So it is natural to ask whether the maps $\tau_{n}: \mathcal{O}\left(E_{\theta_{n}}\right) \rightarrow \mathcal{O}\left(E_{\theta_{n+1}}\right)$ correspond to factor maps. This is not the case: as observed on page 88 of [11], there is no factor map from $E_{\theta_{n+1}} \rightarrow E_{\theta_{n}}$ that induces the homomorphism of C^{*}-algebras described in Lemma 5.5.

6. The Toeplitz noncommutative solenoid and its KMS structure

In this section we introduce our Toeplitz noncommutative solenoids $\mathcal{T}_{\theta}^{\mathscr{S}}$. We introduce a natural dynamics on $\mathcal{T}_{\theta}^{\mathscr{y}}$ and apply Proposition 3.1 to begin to study its KMS structure.

Given $\theta=\left(\theta_{n}\right)_{n=0}^{\infty} \in \Xi_{N}$, Lemma 5.5 gives a sequence of injective homomorphisms ψ_{n} : $\mathcal{T}\left(E_{\theta_{n}}\right) \rightarrow \mathcal{T}\left(E_{\theta_{n+1}}\right)$ satisfying

$$
\psi_{n}\left(i_{\theta_{n}}(f)\right)=i_{\theta_{n+1}}\left(f \circ p_{N}\right) \quad \text { and } \quad \psi_{n}\left(s_{\theta_{n}}\right)=s_{\theta_{n+1}}^{N},
$$

for all $f \in C(\mathbb{S})$.
Definition 6.1. We define $\mathcal{T}_{\theta}^{\mathscr{S}}:=\underline{\lim }\left(\mathcal{T}\left(E_{\theta_{n}}\right), \psi_{n}\right)$ and call it the Toeplitz noncommutative solenoid. We write $\psi_{n, \infty}: \mathcal{T}\left(E_{\theta_{n}}\right) \rightarrow \overrightarrow{\mathcal{T}_{\theta}}$ for the canonical inclusions, so that $\psi_{n, \infty}=\psi_{n+1, \infty} \circ \psi_{n}$ for all n.

The following lemma indicates why it is sensible to regard $\mathcal{T}_{\theta}^{\mathscr{y}}$ as a natural Toeplitz extension of the noncommutative solenoid.

Lemma 6.2. In the notation established in Proposition5.4, there is a surjective homomorphism $q: \mathcal{T}_{\theta}^{\mathscr{S}} \rightarrow \mathcal{A}_{\theta}^{\mathscr{S}}$ such that $q\left(\psi_{n, \infty}\left(i_{\theta_{n}}(f)\right)\right)=\tau_{n, \infty}\left(j_{\theta_{n}}(f)\right)$ and $q\left(\psi_{n, \infty}\left(s_{\theta_{n}}\right)\right)=\tau_{n, \infty}\left(w_{\theta_{n}}\right)$ for all $n \in \mathbb{N}$ and all $f \in C(\mathbb{S})$. Moreover, $\operatorname{ker}(q)$ is generated as an ideal by $\psi_{1, \infty}\left(i_{\theta_{1}}(1)-s_{\theta_{1}} s_{\theta_{1}}^{*}\right)$.
Proof. For the first statement observe that the canonical homomorphisms $q_{n}: \mathcal{T}\left(E_{\theta_{n}}\right) \rightarrow$ $\mathcal{O}\left(E_{\theta_{n}}\right)$ intertwine the ψ_{n} with the τ_{n}. For the second statement, let I be the ideal of $\mathcal{T}_{\theta}^{\mathscr{g}}$ generated by $\psi_{1, \infty}\left(i_{\theta_{1}}(1)-s_{\theta_{1}} s_{\theta_{1}}^{*}\right)$. Since $\operatorname{ker}(q)$ clearly contains $\psi_{1, \infty}\left(i_{\theta_{1}}(1)-s_{\theta_{1}} s_{\theta_{1}}^{*}\right)$, we have $I \subseteq \operatorname{ker}(q)$. For the reverse inclusion, note that for $n \geq 1$,

$$
\begin{aligned}
\psi_{1, n}\left(i_{\theta_{1}}(1)-s_{\theta_{1}} s_{\theta_{1}}^{*}\right) & =i_{\theta_{n}}\left(1 \circ \iota_{N^{n}}\right)-s_{\theta_{n}}^{n N} s_{\theta_{n}}^{* n N} \\
& =i_{\theta_{n}}(1)-s_{\theta_{n}}\left(s_{\theta_{n}}^{n N-1} s_{\theta_{n}}^{*(n N-1)}\right) s_{\theta_{n}}^{*} \geq i_{\theta_{n}}(1)-s_{\theta_{n}} s_{\theta_{n}}^{*},
\end{aligned}
$$

so each $\psi_{n, \infty}\left(i_{\theta_{n}}(1)-s_{\theta_{n}} s_{\theta_{n}}^{*}\right) \leq \psi_{n, \infty}\left(\psi_{1, n}\left(i_{\theta_{1}}(1)-s_{\theta_{1}} s_{\theta_{1}}^{*}\right)\right)=\psi_{1, \infty}\left(i_{\theta_{1}}(1)-s_{\theta_{1}} s_{\theta_{1}}^{*}\right)$, which belongs to I. Thus $\psi_{n, \infty}\left(i_{\theta_{n}}(1)-s_{\theta_{n}} s_{\theta_{n}}^{*}\right) \in I$. Since $\operatorname{ker}(q)=\overline{\bigcup_{n} \operatorname{ker}(q) \cap \psi_{n, \infty}\left(\mathcal{T}\left(E_{\theta_{n}}\right)\right)}=$ $\overline{\bigcup_{n} \psi_{n, \infty}\left(\operatorname{ker}\left(q_{n}\right)\right)}$, it therefore suffices to show that each $\operatorname{ker}\left(q_{n}\right)$ is generated by $i_{\theta_{n}}(1)-s_{\theta_{n}} s_{\theta_{n}}^{*}$, which follows from Proposition 4.2.
Proposition 6.3. There is a strongly continuous action $\alpha: \mathbb{R} \rightarrow$ Aut $\mathcal{T}_{\theta}^{\mathscr{g}}$ satisfying

$$
\begin{equation*}
\alpha_{t}\left(\psi_{j, \infty}\left(s_{\theta_{j}}^{m} i_{\theta_{j}}(f) s_{\theta_{j}}^{* n}\right)\right)=e^{i t(m-n) / N^{j}} \psi_{j, \infty}\left(s_{\theta_{j}}^{m} i_{\theta_{j}}(f) s_{\theta_{j}}^{* n}\right), \tag{6.1}
\end{equation*}
$$

for each $j, m, n \in \mathbb{N}$ and $f \in C(\mathbb{S})$. This α descends to a strongly continuous action, also written α, on the noncommutative solenoid $\mathcal{A}_{\theta}^{\mathscr{S}}$.
Proof. For each $j \in \mathbb{N}$ we denote by ρ the gauge action on $\mathcal{T}\left(E_{\theta_{j}}\right)$, and by ρ_{j} the strongly continuous action $t \mapsto \rho_{e^{i t / N j}}$ of \mathbb{R} on $\mathcal{T}\left(E_{\theta_{j}}\right)$; so $\rho_{j, t} \circ i_{\theta_{j}}=i_{\theta_{j}}$ and $\rho_{j, t}\left(s_{\theta_{j}}\right)=e^{i t / N^{j}} s_{\theta_{j}}$ for each $t \in \mathbb{R}$. For each $j \in \mathbb{N}$ and $t \in \mathbb{R}$ we have

$$
\begin{aligned}
\rho_{j+1, t} \circ \psi_{j}\left(s_{\theta_{j}}^{m} i_{\theta_{j}}(f) s_{\theta_{j}}^{* n}\right) & =e^{i t(N m-N n) / N^{j+1}} s_{\theta_{j+1}}^{N m} i_{\theta_{j+1}}(f) s_{\theta_{j+1}^{* N}}^{* N n} \\
& =e^{i t(m-n) / N^{j}} s_{\theta_{j+1}^{N m}}^{N m} i_{\theta_{j+1}}(f) s_{\theta_{j+1}}^{* N n}=\psi_{j} \circ \rho_{j, t}\left(s_{\theta_{j}}^{m} i_{\theta_{j}}(f) s_{\theta_{j}}^{* n}\right) .
\end{aligned}
$$

Hence $\rho_{j+1, t} \circ \psi_{j}=\psi_{j} \circ \rho_{j, t}$, and Proposition 3.1 applied to each $\left(A_{j}, \alpha_{j}\right)=\left(\mathcal{T}\left(E_{\theta_{j}}\right), \rho_{j}\right)$ gives the desired action $\alpha: \mathbb{R} \rightarrow$ Aut $\mathcal{T}_{\theta}^{\mathscr{S}}$.

For the final statement, observe that the α_{t} all fix $\psi_{1, \infty}\left(i_{\theta_{1}}(1)-s_{\theta_{1}} s_{\theta_{1}}^{*}\right)$, and so leave the ideal that it generates invariant; so they descend to $\mathcal{A}_{\theta}^{\mathscr{S}}$ by Lemma 6.2.
Remark 6.4. The actions on graph C^{*}-algebras and their analogues studied in, for example, [5, 8, 1, 12] are lifts of circle actions, and so are periodic in the sense that $\alpha_{t}=\alpha_{t+2 \pi}$ for all t. By contrast, while the action α of the preceding proposition restricts to a periodic action on each approximating subalgebra $\psi_{j, \infty}\left(\mathcal{T}\left(E_{\theta_{j}}\right)\right)$, it is itself not periodic: $\alpha_{t}=\alpha_{s} \Longrightarrow t=s$.

We now wish to study the KMS structure of the Toeplitz noncommutative solenoid $\mathcal{T}_{\theta}^{\mathscr{G}}$ under the dynamics α of Proposition 6.3.
Remark 6.5. The case $\theta=\mathbf{0}=(0,0, \ldots)$ is relatively easy to analyse. Let $\mathscr{S}=\lim \left(\mathbb{S}, p_{N}\right)$ denote the classical solenoid, and \mathcal{T} the Toeplitz algebra. Write s for the isometry generating \mathcal{T}, and $\kappa: \mathcal{T} \rightarrow \mathcal{T}$ for the homomorphism given by $\kappa(s)=s^{N}$. Then $\mathcal{T}_{0}^{\mathscr{L}} \cong C(\mathscr{S}) \otimes \underset{\longrightarrow}{\lim }(\mathcal{T}, \kappa)$. This isomorphism intertwines the quotient map $q: \mathcal{T}_{\mathbf{0}}^{\mathscr{S}} \rightarrow \mathcal{A}_{\mathbf{0}}^{\mathscr{S}}$ with the canonical quotient map id $\otimes \tilde{q}: C(\mathscr{S}) \otimes \underset{\longrightarrow}{\lim }(\mathcal{T}, \kappa) \rightarrow C(\mathscr{S}) \otimes C(\mathscr{S})$. It also intertwines α with $1 \otimes \tilde{\alpha}$ where $\tilde{\alpha}_{t}\left(\kappa_{j, \infty}(s)\right)=e^{i t / N^{j}} \kappa_{j, \infty}(s)$. That is, $\tilde{\alpha}$ is equivariant over $\kappa_{j, \infty}$ with an action $\tilde{\alpha}_{j}$ on \mathcal{T} that is a rescaling of the gauge dynamics studied in [12]. Theorems 3.1 and 4.3 of [12] imply that $\left(\mathcal{T}, \tilde{\alpha}_{j}\right)$ has a unique KMS_{β} state for every $\beta \geq 0$ and has no KMS_{β} states for $\beta<0$, and that the KMS_{0} state is the only one that factors through $C(\mathbb{S})$. So Proposition 3.1 implies that $(\underset{\longrightarrow}{\lim }(\mathcal{T}, \kappa), \tilde{\alpha})$ has a unique KMS_{β} state ϕ_{β} for each $\beta \geq 0$ and has no KMS_{β} states for $\beta<0$, and that the KMS_{0} state is the only one that factors through $C(\mathscr{S})$. Hence the map $\psi \mapsto \psi \otimes \phi_{\beta}$ determines an affine isomorphism of the state space of $C(\mathscr{S})$ onto $\mathrm{KMS}_{\beta}\left(\mathcal{T}_{0}^{\mathscr{I}}, \alpha\right)$
for each $\beta \geq 0$, there are no KMS_{β} states for $\beta<0$, and the KMS_{0} states are the only ones that factor through $\mathcal{A}_{\mathbf{0}}^{\mathscr{S}}$.

In light of Remark 6.5, we will from now on consider only those $\theta \in \Xi_{N}$ such that $\theta_{j} \neq 0$ for some j. Since $\theta_{j} \neq 0$ implies $\theta_{j+1} \neq 0$, and since $\underset{\longrightarrow}{\lim }\left(\left(\mathcal{A}_{\theta_{n}}, \varphi_{n}\right)_{n=1}^{\infty}\right)=\xrightarrow{\lim }\left(\left(\mathcal{A}_{\theta_{n}}, \varphi_{n}\right)_{n=j}^{\infty}\right)$ for any j, we may therefore assume henceforth that $\theta_{j} \neq \overrightarrow{0}$ for all j.

Our main result is the following.
Theorem 6.6. Take $N \in\{2,3, \ldots\}$, take $\theta=\left(\theta_{j}\right)_{j=0}^{\infty} \in \Xi_{N}$, and take $\beta \in(0, \infty)$. Suppose that $\theta_{j} \neq 0$ for all j. Then $\operatorname{KMS}_{\beta}\left(\mathcal{T}_{\theta}^{\mathscr{S}}, \alpha\right)$ is isomorphic to the Choquet simplex of regular Borel probability measures on the solenoid $\mathscr{S}:=\underset{\rightleftarrows}{\lim }\left(\mathbb{S}, p_{N}\right)$, and there is an action λ of \mathscr{S} on $\mathcal{T}_{\theta}^{\mathscr{g}}$ that induces a free and transitive action of $\mathscr{\mathscr { S }}$ on the extreme boundary of $\mathrm{KMS}_{\beta}\left(\mathcal{T}_{\theta}^{\mathscr{\mathscr { S }}}, \alpha\right)$. There is a unique KMS_{0}-state on $\mathcal{T}_{\theta}^{\mathscr{g}}$ for α, and this is the only $K M S$ state for α that factors through $\mathcal{A}_{\theta}^{\mathscr{S}}$. There are no KMS_{β} states for $\beta<0$.

The first step in proving Theorem 6.6 is to combine the results of [1] on KMS states of local homeomorphism C^{*}-algebras with Proposition 3.1 to characterise the KMS states of $\mathcal{T}_{\theta}^{\mathscr{S}}$ in terms of subinvariant probability measures on the circle. We start with some notation.

It is helpful to recall what the results of [1] say in the context of the topological graphs E_{γ}. Recall that ρ denotes tha gauge action on $\mathcal{T}\left(E_{\gamma}\right)$; we also use ρ for the lift of the gauge action to an action of \mathbb{R} on $\mathcal{T}\left(E_{\gamma}\right)$. Combining Proposition 4.2 and Theorem 5.1 of [1], we see that for each regular Borel probability measure μ on \mathbb{S} that is subinvariant in the sense that $\mu\left(R_{\gamma}(U)\right) \leq e^{\beta} \mu(U)$ for every Borel $U \subseteq \mathbb{S}$, there is a KMS_{β}-state $\phi_{\mu} \in \operatorname{KMS}_{\beta}\left(\mathcal{T}\left(E_{\gamma}\right), \rho\right)$ satisfying

$$
\begin{equation*}
\phi_{\mu}\left(s_{\gamma}^{a} i_{\gamma}(f) s_{\gamma}^{* b}\right)=\delta_{a, b} e^{-a \beta} \int_{\mathbb{S}} f d \mu \tag{6.2}
\end{equation*}
$$

and moreover, the map $\mu \mapsto \phi_{\mu}$ is an affine isomorphism of the simplex of subinvariant regular Borel probability measures on \mathbb{S} to $\operatorname{KMS}_{\beta}\left(\mathcal{T}\left(E_{\gamma}\right), \rho\right)$.
Definition 6.7. Fix $r, s \in[0, \infty)$, and $\gamma \in \mathbb{S}$. Let $M(\mathbb{S})$ denote the set of regular Borel probability measures on \mathbb{S}. We define

$$
M_{\mathrm{sub}}(s, \gamma):=\left\{m \in M(\mathbb{S}): m\left(R_{\gamma}(U)\right) \leq e^{s} m(U) \text { for all Borel } U \subseteq \mathbb{S}\right\}
$$

and

$$
\begin{equation*}
\Omega_{\text {sub }}^{r}:=\left\{m \in M(\mathbb{S}): m\left(R_{t}(U)\right) \leq e^{r t} m(U) \text { for all } t \in[0, \infty) \text { and Borel } U \subseteq \mathbb{S}\right\} \tag{6.3}
\end{equation*}
$$

Notation 6.8. For the rest of the section we fix $\theta=\left(\theta_{j}\right)_{j=0}^{\infty} \in \Xi_{N}$ such that $\theta_{j} \neq 0$ for all j, and $\beta \in[0, \infty)$. We define

$$
r_{j}:=\beta / N^{j} \theta_{j} \quad \text { for all } j \in \mathbb{N} .
$$

Theorem 6.9. Take $N \in \mathbb{N}$ with $N \geq 2, \theta=\left(\theta_{j}\right)_{j=0}^{\infty} \in \Xi_{N}$, and $\beta \in[0, \infty)$. Suppose that $\theta_{j} \neq 0$ for all j. Then there is an affine injection

$$
\omega: \operatorname{KMS}_{\beta}\left(\mathcal{T}_{\theta}^{\mathscr{S}}, \alpha\right) \rightarrow \lim _{\leftrightarrows}\left(\Omega_{\mathrm{sub}}^{r_{j}}, m \mapsto m \circ p_{N}^{-1}\right)
$$

such that

$$
\begin{equation*}
\phi \circ \psi_{j, \infty}\left(s_{\theta_{j}}^{a} i_{\theta_{j}}(f) s_{\theta_{j}}^{* b}\right)=\delta_{a, b} e^{-a \beta / N^{j}} \int_{\mathbb{S}} f d \omega(\phi)_{j} \tag{6.4}
\end{equation*}
$$

for each $\phi \in \operatorname{KMS}_{\beta}\left(\mathcal{T}_{\theta}^{\mathscr{g}}, \alpha\right)$ and $j \in \mathbb{N}$. If $\beta>0$, then ω is an isomorphism.
Write ρ for the gauge action on $\mathcal{T}\left(E_{\theta_{j}}\right)$, and ρ_{j} for the action $t \mapsto \rho_{e^{i t / N^{j}}}$ of \mathbb{R} on $\mathcal{T}\left(E_{\theta_{j}}\right)$. Since the dynamics α on $\mathcal{T}_{\theta}^{\mathscr{S}}$ is induced by the ρ_{j}, Proposition 3.1 yields an affine isomorphism

$$
\operatorname{KMS}_{\beta}\left(\mathcal{T}_{\theta}^{\mathscr{S}}, \alpha\right) \cong \lim _{\check{ }}\left(\operatorname{KMS}_{\beta}\left(\mathcal{T}\left(E_{\theta_{j}}\right), \rho_{j}\right), \phi \mapsto \phi \circ \psi_{j-1}\right)
$$

For each $j \in \mathbb{N}$ and $t \in \mathbb{R}$ we have $\rho_{j, t}=\rho_{t / N^{j}}$, so $\operatorname{KMS}_{\beta}\left(\mathcal{T}\left(E_{\theta_{j}}\right), \rho_{j}\right)=\operatorname{KMS}_{\beta / N^{j}}\left(\mathcal{T}\left(E_{\theta_{j}}\right), \rho\right)$. For $\beta>0$, the KMS_{β} simplex of each $\left(\mathcal{T}\left(E_{\theta_{j}}\right), \rho\right)$ is well understood by the results of [1] (see the discussion preceding (6.2), and we use these results to prove the following.

Proposition 6.10. With the hypotheses of Theorem 6.9, there is an affine injection

$$
\tau: \varliminf_{\rightleftarrows}\left(\operatorname{KMS}_{\beta / N^{j}}\left(\mathcal{T}\left(E_{\theta_{j}}\right), \rho\right), \phi \mapsto \phi \circ \psi_{j-1}\right) \rightarrow \varliminf_{\rightleftarrows}^{\lim }\left(M_{\mathrm{sub}}\left(\beta / N^{j}, \theta_{j}\right), m \mapsto m \circ p_{N}^{-1}\right)
$$

such that $\phi_{j}=\phi_{\tau\left(\left(\phi_{k}\right)_{k=0}^{\infty}\right)_{j}}$, as defined at (6.2), for all $\left(\phi_{k}\right)_{k=0}^{\infty}$ and $j \in \mathbb{N}$. If $\beta>0$ then τ is an isomorphism.

Throughout the rest of this section we suppress intertwining maps in projective limits.
Proof of Proposition 6.10. We first claim that for each $j \in \mathbb{N}$ there is an affine injection τ_{j} of $\operatorname{KMS}_{\beta / N^{j}}\left(\mathcal{T}\left(E_{\theta_{j}}\right), \rho\right)$ onto $M_{\text {sub }}\left(\beta / N^{j}, \theta_{j}\right)$ satisfying

$$
\phi\left(i_{\theta_{j}}(f)\right)=\int_{\mathbb{S}} f d\left(\tau_{j}(\phi)\right) \quad \text { for all } \phi \in \operatorname{KMS}_{\beta / N^{j}}\left(\mathcal{T}\left(E_{\theta_{j}}\right), \rho\right) \text { and } f \in C(\mathbb{S})
$$

and that for $\beta>0$, this τ_{j} is an isomorphism. The statement for $\beta>0$ follows directly from [1, Theorem 5.1] (see (6.2).

To prove the claim for $\beta=0$, recall that the KMS_{0} states on $\mathcal{T}\left(E_{\theta_{j}}\right)$ for ρ are the ρ-invariant traces. Let $\left(i_{\theta_{j}}, s_{\theta_{j}}\right)$ be the universal Toeplitz pair for $E_{\theta_{j}}$. If ϕ is a KMS_{0}-state, then (with the convention that $s^{n}:=s^{*|n|}$ for $n<0$),

$$
\begin{align*}
\phi\left(s_{\theta_{j}}^{n} i_{\theta_{j}}(f) s_{\theta_{j}}^{* m}\right) & =\phi\left(i_{\theta_{j}}(f) s_{\theta_{j}}^{* m} s_{\theta_{j}}^{n}\right)=\phi\left(i_{\theta_{j}}(f) s_{\theta_{j}}^{n-m}\right) \\
& =\int_{\mathbb{S}} \phi\left(\rho_{t}\left(i_{\theta_{j}}(f) s_{\theta_{j}}^{n-m}\right)\right) d \mu(t)=\delta_{m, n} \phi\left(i_{\theta_{j}}(f)\right) . \tag{6.5}
\end{align*}
$$

So the Riesz-Markov-Kakutani representation theorem gives a regular Borel probability measure m_{ϕ} on \mathbb{S} such that $\phi\left(s_{\theta_{j}}^{n} i_{\theta_{j}}(f) s_{\theta_{j}}^{* m}\right)=\int_{\mathbb{S}} f(t) d m_{\phi}(t)$. For $f \in C(\mathbb{S})_{+}$, we have

$$
\begin{aligned}
\phi\left(i_{\theta_{j}}(f)\right) & \geq \phi\left(i_{\theta_{j}}(\sqrt{f}) s_{\theta_{j}} s_{\theta_{j}}^{*} i_{\theta_{j}}(\sqrt{f})\right) \\
& =\phi\left(s_{\theta_{j}}^{*} i_{\theta_{j}}(\sqrt{f}) i_{\theta_{j}}(\sqrt{f}) s_{\theta_{j}}\right)=\phi\left(s_{\theta_{j}}^{*} i_{\theta_{j}}(f) s_{\theta_{j}}\right)=\phi\left(i_{\theta_{j}}\left(f \circ R_{-\theta_{j}}\right) .\right.
\end{aligned}
$$

Hence $m_{\phi}\left(R_{\theta_{j}}(U)\right) \leq m_{\phi}(U)$ for all Borel U. So $\phi \mapsto m_{\phi}$ is an affine map from $\operatorname{KMS}_{0}\left(\mathcal{T}\left(E_{\theta_{j}}\right), \rho\right)$ and (6.5) shows that it is injective. This completes the proof of the claim.

For each $j \in \mathbb{N}$ let p_{j} be the projection from $\lim _{\leftarrow} \operatorname{KMS}_{\beta / N^{j}}\left(\mathcal{T}\left(E_{\theta_{j}}\right), \rho\right)$ to $\operatorname{KMS}_{\beta / N^{j}}\left(\mathcal{T}\left(E_{\theta_{j}}\right), \rho\right)$, and π_{j} the projection from $\lim _{\leftrightarrows} M_{\text {sub }}\left(\beta / N^{j}, \theta_{j}\right)$ to $M_{\text {sub }}\left(\beta / N^{j}, \theta_{j}\right)$. Fix an element $\left(\phi_{j}\right)_{j=0}^{\infty}$ of $\varliminf_{幺} \operatorname{KMS}_{\beta / N^{j}}\left(\mathcal{T}\left(E_{\theta_{j}}\right), \rho\right)$. For each $k \geq 1$ and $f \in C(\mathbb{S})$ we have

$$
\begin{aligned}
\int_{\mathbb{S}} f d\left(\tau_{k-1}\left(\phi_{k-1}\right)\right) & =\phi_{k-1}\left(i_{\theta_{k-1}}(f)\right)=\phi_{k}\left(\psi_{k-1}\left(i_{\theta_{k-1}}(f)\right)\right) \\
& =\phi_{k}\left(i_{\theta_{k}}\left(f \circ p_{N}\right)\right)=\int_{\mathbb{S}}\left(f \circ p_{N}\right) d\left(\tau_{k}\left(\phi_{k}\right)\right)=\int_{\mathbb{S}} f d\left(\tau_{k}\left(\phi_{k}\right) \circ p_{N}^{-1}\right),
\end{aligned}
$$

and hence $\tau_{k-1}\left(\phi_{k-1}\right)=\tau_{k}\left(\phi_{k}\right) \circ p_{N}^{-1}$. It follows that

$$
\tau_{k-1} \circ p_{k-1}\left(\left(\phi_{j}\right)_{j=0}^{\infty}\right)=\tau\left(\phi_{k-1}\right)=\tau_{k}\left(\phi_{k}\right) \circ p_{N}^{-1}=\tau_{k} \circ p_{k}\left(\left(\phi_{j}\right)_{j=0}^{\infty}\right) \circ p_{N}^{-1},
$$

for each $k \geq 1$. The universal property of $\lim _{幺} M_{\text {sub }}\left(\beta / N^{j}, \theta_{j}\right)$ yields a map
whose image is \varliminf_{im} range $\left(\tau_{k}\right)$, satisfying $\pi_{k} \circ \tau=\tau_{k} \circ p_{k}$ for each $k \in \mathbb{N}$. For $\beta>0$, we have $\lim _{\leftrightarrows} \operatorname{range}\left(\tau_{k}\right)=\lim _{\text {sub }}\left(\beta / N^{j}, \theta_{j}\right)$, and otherwise it is a compact affine subset, so it now suffices to prove that τ is an affine isomorphism onto its range. Since τ is an injective map from a compact space to a Hausdorff space, it therefore suffices to show that it is affine and continuous.

Suppose $\sum_{i=1}^{q} \lambda_{i}\left(\phi_{j}^{i}\right)_{j=0}^{\infty}$ is a convex combination in $\varliminf_{\swarrow} \operatorname{KMS}_{\beta / N^{j}}\left(\mathcal{T}\left(E_{\theta_{j}}\right), \rho\right)$. For each $k \in \mathbb{N}$ and $f \in C(\mathbb{S})$ we have

$$
\begin{aligned}
\int_{\mathbb{S}} f d\left(\tau_{k}\left(\sum_{i=1}^{q} \lambda_{i} \phi_{k}^{i}\right)\right) & =\left(\sum_{i=1}^{q} \lambda_{i} \phi_{k}^{i}\right)\left(i_{\theta_{k}}(f)\right)=\sum_{i=1}^{q} \lambda_{i} \phi_{k}^{i}\left(i_{\theta_{k}}(f)\right) \\
& =\sum_{i=1}^{k} \lambda_{i} \int_{\mathbb{S}} f d\left(\tau_{k}\left(\phi_{k}^{i}\right)\right)=\int_{\mathbb{S}} f d\left(\sum_{i=1}^{q} \lambda_{i} \tau_{k}\left(\phi_{k}^{i}\right)\right) .
\end{aligned}
$$

So the Riesz-Markov-Kakutani representation theorem gives $\tau_{k}\left(\sum_{i=1}^{q} \lambda_{i} \phi_{k}^{i}\right)=\sum_{i=1}^{q} \lambda_{i} \tau_{k}\left(\phi_{k}^{i}\right)$, and it follows that τ is affine.

Straightforward arguments using that $\pi_{k} \circ \tau=\tau_{k} \circ p_{k}$ for each $k \in \mathbb{N}$, and that each τ_{k} is injective, show that τ is injective. We just need to show that τ is continuous. Let $\left(\left(\phi_{j}^{\lambda}\right)_{j=0}^{\infty}\right)_{\lambda \in \Lambda}$ be a net in $\lim _{\leftrightarrows} \mathrm{KMS}_{\beta / N^{j}}\left(\mathcal{T}\left(E_{\theta_{j}}\right), \rho\right)$ converging in the initial topology to $\left(\phi_{j}\right)_{j=0}^{\infty}$. Then $\left.p_{k}\left(\left(\left(\phi_{j}^{\lambda}\right)_{j=0}^{\infty}\right)_{\lambda \in \Lambda}\right)=\overleftarrow{\left(\phi_{k}^{\lambda}\right.}\right)_{\lambda \in \Lambda}$ converges weak* to $p_{k}\left(\left(\phi_{j}\right)_{j=0}^{\infty}\right)=\phi_{k}$ for each $k \in \mathbb{N}$. Since τ_{k} is continuous and $\pi_{k} \circ \tau=\tau_{k} \circ p_{k}$ for each $k \in \mathbb{N}$, we have that $\pi_{k}\left(\tau\left(\left(\left(\phi_{j}^{\lambda}\right)_{j=0}^{\infty}\right)_{\lambda \in \Lambda}\right)\right)=\tau_{k}\left(\left(\phi_{k}^{\lambda}\right)_{\lambda \in \Lambda}\right)$ converges weak* to $\tau_{k}\left(\phi_{k}\right)=\pi_{k}\left(\tau\left(\left(\phi_{j}\right)_{j=0}^{\infty}\right)\right)$. Hence $\tau\left(\left(\left(\phi_{j}^{\lambda}\right)_{j=0}^{\infty}\right)_{\lambda \in \Lambda}\right)$ converges in the initial topology to $\tau\left(\left(\phi_{j}\right)_{j=0}^{\infty}\right)$. So τ is continuous.
Remark 6.11. Fix $\beta>0$. Let h be the affine isomorphism of Proposition 3.1 and let τ be the affine isomorphism of Proposition 6.10. Setting $\omega:=\tau \circ h$ gives an affine isomorphism

$$
\omega: \operatorname{KMS}_{\beta}\left(\mathcal{T}_{\theta}^{\mathscr{S}}, \alpha\right) \rightarrow \underset{\varlimsup}{\varliminf_{\mathrm{sub}}}\left(\beta / N^{j}, \theta_{j}\right)
$$

satisfying $\phi \circ \psi_{j, \infty}=\phi_{\omega(\phi)_{j}}$ for each $\phi \in \operatorname{KMS}_{\beta}\left(\mathcal{T}_{\theta}^{\mathscr{g}}, \alpha\right)$ and $j \in \mathbb{N}$. So to prove Theorem 6.9 it now suffices to show that $\lim M_{\text {sub }}\left(\beta / N^{j}, \theta_{j}\right) \cong \lim \Omega_{\text {sub }}^{r_{j}}$.

Fix $\left(m_{j}\right)_{j=0}^{\infty} \in \lim \Omega_{\text {sub }}^{r_{j}}$. Taking $t=\theta_{j}$ in the definition of $\Omega_{\text {sub }}^{r_{j}}$ (see Definition 6.7) shows that $\Omega_{\text {sub }}^{r_{j}} \subseteq M_{\text {sub }}\left(\overleftarrow{\beta} / N^{j}, \theta_{j}\right)$. Hence $\lim _{\leftrightarrows} \Omega_{\text {sub }}^{r_{j}}$ is contained in $\lim _{\leftrightarrows} M_{\text {sub }}\left(\beta / N^{j}, \theta_{j}\right)$. So we need the reverse containment. We start with a lemma.

Lemma 6.12. Let m be a regular Borel probability measure on \mathbb{S}, and fix $\gamma \in(0,1), s \in[0, \infty)$ and $N \in \mathbb{N}$ with $N \geq 2$. Suppose that $m\left(R_{\gamma / N^{k}}(U)\right) \leq e^{s / N^{k}} m(U)$ for every $k \in \mathbb{N}$ and every Borel set $U \subseteq \mathbb{S}$. Then $m \in \Omega_{\text {sub }}^{s / \gamma}$.
Proof. We need to show that $m\left(R_{t}(U)\right) \leq e^{(s / \gamma) t} m(U)$ for all $t \geq 0$ and Borel $U \subseteq \mathbb{S}$; or equivalently, that $m\left(R_{t \gamma}(U)\right) \leq e^{s t} m(U)$ for all $t \geq 0$ and Borel $U \subseteq \mathbb{S}$. By the Riesz-MarkovKakutani representation theorem, it suffices to show that

$$
\begin{equation*}
\int_{\mathbb{S}} f \circ R_{-t \gamma} d m \leq e^{s t} \int_{\mathbb{S}} f d m \tag{6.6}
\end{equation*}
$$

for every $t \geq 0$ and every $f \in C(\mathbb{S})_{+}$. Furthermore, if (6.6) holds whenever $0 \leq t \leq 1$, then for arbitrary $T \in[0, \infty)$, we can iterate (6.6) $\lceil T\rceil$ times for $t=\frac{T}{\lceil T\rceil}$ to obtain (6.6) for T; so it suffices to establish (6.6) for $t \in[0,1]$.

Fix $t \in[0,1]$ and $f \in C(\mathbb{S})$. Write

$$
t=\sum_{i=1}^{\infty} \frac{a_{i}}{N^{i}}
$$

where each $a_{i} \in\{0, \ldots, N-1\}$. For each $n \in \mathbb{N}$, let $t_{n}:=\sum_{i=1}^{n} \frac{a_{i}}{N^{i}}$. So t_{n} is a monotone increasing sequence in $[0,1]$ converging to t. Since the action $s \mapsto R_{s}$ of \mathbb{R} on \mathbb{S} by rotations is uniformly continuous, we have $f \circ R_{-t_{n} \gamma} \rightarrow f \circ R_{-t \gamma}$ in $\left(C(\mathbb{S}),\|\cdot\|_{\infty}\right)$. Since m is a Borel probability measure, the functional $f \mapsto \int_{\mathbb{S}} f d m$ is a state, and so

$$
\int_{\mathbb{S}} f \circ R_{-t_{n} \gamma} d m \rightarrow \int_{\mathbb{S}} f \circ R_{-t \gamma} d m
$$

So it suffices to show that each $\int_{\mathbb{S}} f \circ R_{-t_{n} \gamma} \leq e^{s t} \int_{\mathbb{T}} f d m$. So fix $n \in \mathbb{N}$. Let $K:=\sum_{i=1}^{n} a_{i} N^{n-i}$, so that $t>t_{n}=\frac{K}{N^{n}}$. By hypothesis, for every Borel U, we have

$$
m\left(R_{\frac{K \gamma}{N^{n}}}(U)\right) \leq e^{\frac{s}{N^{n}}} m\left(R_{\frac{(K-1) \gamma}{N^{n}}}(U)\right) \leq \cdots \leq e^{\frac{s K}{N^{n}}} m(U) \leq e^{s t} m(U),
$$

and it follows that $\int_{\mathbb{S}} f \circ R_{-t_{n} \gamma} \leq e^{s t} \int_{\mathbb{S}} f d m$ as required.
Proof of Theorem 6.9. As described in Remark 6.11, it suffices to show that lim $M_{\text {sub }}\left(\beta / N^{j}, \theta_{j}\right)$ is contained in $\lim _{\leftrightarrows} \Omega_{\text {sub }}^{r_{j}}$. For each $\gamma \in \mathbb{S}$ we have $p_{N} \circ R_{\gamma}=R_{N \gamma} \circ p_{N}$, which implies that $p_{N}^{-1}\left(R_{N \gamma}(U)\right)=\overleftarrow{R_{\gamma}}\left(p_{N}^{-1}(U)\right)$ for all Borel $U \subseteq \mathbb{S}$. An iterative argument shows that

$$
\begin{equation*}
p_{N}^{-k}\left(R_{N^{k} \gamma}(U)\right)=R_{\gamma}\left(p_{N}^{-k}(U)\right) \quad \text { for all Borel } U \subseteq \mathbb{S} \text { and } k \in \mathbb{N} . \tag{6.7}
\end{equation*}
$$

Fix $\left(m_{j}\right)_{j=0}^{\infty} \in \lim _{幺} M_{\operatorname{sub}}\left(\beta / N^{j}, \theta_{j}\right)$. Since the connecting maps in $\lim _{\leftrightarrows} M_{\mathrm{sub}}\left(\beta / N^{j}, \theta_{j}\right)$ and $\lim \Omega_{\text {sub }}^{r_{j}}$ are the same, it suffices to show that $m_{j} \in \Omega_{\text {sub }}^{r_{j}}$ for each $j \in \mathbb{N}$. Fix $j \in \mathbb{N}$. For each $k \in \mathbb{N}$ we have $N^{2 k} \theta_{j+k}=\theta_{k}$ and $m_{j+k} \circ p_{N}^{-k}=m_{j}$. These identities and (6.7) give

$$
\begin{aligned}
m_{j}\left(R_{\theta_{j} / N^{k}}(U)\right) & =m_{j}\left(R_{N^{k} \theta_{j+k}}(U)\right)=m_{j+k}\left(p_{N}^{-k}\left(R_{N^{k} \theta_{j+k}}(U)\right)\right) \\
& =m_{j+k}\left(R_{\theta_{j+k}}\left(p_{N}^{-k}(U)\right)\right) \leq e^{\beta / N^{j+k}} m_{j+k}\left(p_{N}^{-k}(U)\right)=e^{\beta / N^{j+k}} m_{j}(U)
\end{aligned}
$$

for every Borel $U \subseteq \mathbb{S}$. So Lemma 6.12 with $\gamma=\theta_{j}$ and $s=\beta / N^{j}$ gives $m_{j} \in \Omega_{\text {sub }}^{r_{j}}$.

7. Subinvariant measures on \mathbb{S}

Throughout the section we fix $r \in[0, \infty)$ and denote Lebesgue measure on \mathbb{S} by μ. The main result of this section gives a concrete description of the simplex $\Omega_{\text {sub }}^{r}$ of (6.3). Define $W_{r}: \mathbb{S} \rightarrow[0, \infty)$ by

$$
W_{r}(t)=\left(\frac{r}{1-e^{-r}}\right) e^{-r t} .
$$

For each Borel $U \subseteq \mathbb{S}$, define

$$
\begin{equation*}
m_{r}(U):=\int_{U} W_{r}(t) d t \tag{7.1}
\end{equation*}
$$

This defines a regular Borel probability measure m_{r} on \mathbb{S}.
Theorem 7.1. The simplex $\Omega_{\text {sub }}^{r}$ is the weak*-closed convex hull $\overline{\operatorname{conv}}\left\{m_{r} \circ R_{s}: 0 \leq s<1\right\}$. If $r=0$, then $m_{r}=\mu$ and $\Omega_{\text {sub }}^{r}=\{\mu\}$.

We need a number of results to prove this theorem.
Lemma 7.2. Let $m \in \Omega_{\text {sub }}^{r}$ and $n \in \mathbb{N}$. For $0 \leq j<2^{n}$, let $U_{j}^{n}=\left[j / 2^{n},(j+1) / 2^{n}\right) \subseteq \mathbb{S}$, and let v_{j}^{n} be the vector

$$
\begin{equation*}
v_{j}^{n}:=\frac{1-e^{-r / 2^{n}}}{1-e^{-r}}\left(e^{-\left(2^{n}-j\right) r / 2^{n}}, \ldots, e^{-\left(2^{n}-1\right) r / 2^{n}}, 1, e^{-r / 2^{n}}, e^{-2 r / 2^{n}}, \ldots, e^{-\left(2^{n}-(j+1)\right) r / 2^{n}}\right) \in \mathbb{R}^{2^{n}} \tag{7.2}
\end{equation*}
$$

Then $\left(m\left(U_{0}^{n}\right), m\left(U_{1}^{n}\right), \ldots, m\left(U_{2^{n}-1}^{n}\right)\right) \in \operatorname{conv}\left\{v_{j}^{n}: 0 \leq j<2^{n}\right\}$.
Proof. Let $x=\left(x_{0}, x_{1}, \ldots, x_{2^{n}-1}\right)$ be the vector $\left(m\left(U_{0}^{n}\right), m\left(U_{1}^{n}\right), \ldots, m\left(U_{2^{n}-1}^{n}\right)\right)$. For each $0 \leq$ $j<2^{n}$ we have

$$
x_{j}=m\left(U_{j}^{n}\right)=m\left(R_{2^{-n}}\left(U_{j+1}^{n}\right)\right) \leq e^{r / 2^{n}} m\left(U_{j+1}^{n}\right)=e^{r / 2^{n}} x_{j+1},
$$

where addition in indices is modulo 2^{n}. Let $C^{2^{n}}$ denote the graph with vertices $\mathbb{Z} / 2^{n} \mathbb{Z}$ and edges $\left\{e_{j}: j \in \mathbb{Z} / 2^{n} \mathbb{Z}\right\}$ with $s\left(e_{j}\right)=j$ and $r\left(e_{j}\right)=j+1\left(\bmod 2^{n}\right)$, and let $A_{C^{2^{n}}}$ denote the adjacency matrix of $C^{2^{n}}$. Then x satisfies $A_{C^{2 n}} x \leq e^{r / 2^{n}} x$. So x is subinvariant for $A_{C^{2 n}}$ in the
sense of [12, Theorem 3.1], and is a probability measure because m is. By [12, Theorem 3.1(a)], there is a vector $y \in[1, \infty)^{\mathbb{Z} / 2^{n} \mathbb{Z}}$ such that

$$
y_{j}=\sum_{\mu \in\left(C^{2 n}\right)^{*}, s(\mu)=j} e^{-r / 2^{n}|\mu|}=\sum_{k=0}^{\infty} e^{-k r / 2^{n}}=\left(1-e^{-r / 2^{n}}\right)^{-1} \quad \text { for } j \in \mathbb{Z} / 2^{n} \mathbb{Z}
$$

For $0 \leq j<2^{n}$, define $\epsilon_{j} \in[0, \infty)^{\mathbb{Z} / 2^{n} \mathbb{Z}}$ by

$$
\epsilon_{j}(k)= \begin{cases}1-e^{-r / 2^{n}} & \text { if } k=j \\ 0 & \text { otherwise }\end{cases}
$$

We have

$$
\begin{aligned}
&\left(I-e^{-r / 2^{n}} A_{C^{2}}\right) v_{j}^{n} \\
&=\frac{1-e^{-r / 2^{n}}}{1-e^{-r}}\left(I-e^{-r / 2^{n}} A_{C^{2^{n}}}\right)\left(e^{-\left(2^{n}-j\right) r / 2^{n}}, \ldots, e^{-\left(2^{n}-1\right) r / 2^{n}}, 1, e^{-r / 2^{n}}, \ldots, e^{-\left(2^{n}-(j+1)\right) r / 2^{n}}\right) \\
&=\frac{1-e^{-r / 2^{n}}}{1-e^{-r}}\left(\left(e^{-\left(2^{n}-j\right) r / 2^{n}}, \ldots, e^{-\left(2^{n}-1\right) r / 2^{n}}, 1, e^{-r / 2^{n}}, \ldots, e^{-\left(2^{n}-(j+1)\right) r / 2^{n}}\right)\right. \\
&\left.\quad \quad-e^{-r / 2^{n}}\left(e^{-\left(2^{n}-(j+1)\right) r / 2^{n}}, \ldots, e^{-\left(2^{n}-1\right) r / 2^{n}}, 1, e^{-r / 2^{n}}, \ldots, e^{-\left(2^{n}-(j+2)\right) r / 2^{n}}\right)\right) \\
&=\frac{1-e^{-r / 2^{n}}}{1-e^{-r}}\left(0, \ldots, 0,1-e^{-r}, 0, \ldots, 0\right) \\
&=\left(1-e^{-r / 2^{n}}\right)(0, \ldots, 0,1,0, \ldots, 0) \\
&=\epsilon_{j} .
\end{aligned}
$$

So $v_{j}^{n}=\left(I-e^{-r / 2^{n}} A_{C^{2}}\right)^{-1} \epsilon_{j}$. Since the ϵ_{j} are the extreme points of the simplex $\{\epsilon: \epsilon \cdot y=1\}$, it follows from [12, Theorem 3.1(c)] that the v_{j}^{n} are the extreme points of the simplex of subinvariant probability measures on $\mathbb{Z} / 2^{n} \mathbb{Z}$. Since x is a subinvariant probability measure, it follows that it is a convex combination of the v_{j}^{n}.

We now approximate m_{r} by convex combinations of restrictions of Lebesgue measure.
Lemma 7.3. For $n \in \mathbb{N}$ and $j \in \mathbb{Z} / 2^{n} \mathbb{Z}$, let $U_{j}^{n}=\left[j / 2^{n},(j+1) / 2^{n}\right) \subseteq \mathbb{S}$, and let $W_{n, r}$ be the simple function

$$
W_{n, r}=\sum_{j=0}^{2^{n}-1} 2^{n}\left(v_{0}^{n}\right)_{j} 1_{U_{j}^{n}}
$$

Let $m_{n, r}$ be the measure $m_{n, r}(U)=\int_{U} W_{n, r}(t) d \mu(t)$ for Borel $U \subseteq \mathbb{S}$. Then $\lim _{n \rightarrow \infty} \| m_{r}-$ $m_{n, r} \|_{1}=0$.

Proof. Fix $n \in \mathbb{N}$ and $0 \leq j<2^{-n}$. Then the average value of W_{r} over the interval U_{j}^{n} is

$$
\begin{aligned}
2^{n} \int_{U_{j}^{n}} W_{r}(t) d \mu(t) & =2^{n} \int_{j / 2^{n}}^{(j+1) / 2^{n}}\left(\frac{r}{1-e^{-r}}\right) e^{-r t} d \mu(t)=2^{n}\left[\left(\frac{-1}{1-e^{-r}}\right) e^{-r t}\right]_{j / 2^{n}}^{(j+1) / 2^{n}} \\
& =\left(\frac{-2^{n}}{1-e^{-r}}\right)\left(e^{-(j+1) r / 2^{n}}-e^{-j r / 2^{n}}\right)=2^{n}\left(\frac{1-e^{-r / 2^{n}}}{1-e^{-r}}\right) e^{-j r / 2^{n}}=2^{n}\left(v_{0}^{n}\right)_{j}
\end{aligned}
$$

the constant value of $W_{n, r}$ on U_{j}^{n}. The Mean Value Theorem—applied to $\int W_{r}(t) d \mu(t)$ —implies that there exists $c_{j}^{n} \in\left(j / 2^{n},(j+1) / 2^{n}\right)$ such that $W_{r}\left(c_{j}^{n}\right)=W_{n, r}\left(c_{j}^{n}\right)$.

Fix $\epsilon>0$. The function W_{r} is uniformly continuous on $[0,1)$, and so there exists $N \in \mathbb{N}$ such that $\left|W_{r}(s)-W_{r}(t)\right|<\epsilon$ whenever $s, t \in[0,1)$ satisfy $|s-t|<2^{-N}$. In particular, for $n \geq N$
and $0 \leq j<2^{n}$, the point c_{j}^{n} of the preceding paragraph satisfies

$$
\begin{aligned}
\sup \left\{W_{r}(t)-W_{n, r}(t):\right. & \left.j / 2^{n} \leq t<(j+1) / 2^{n}\right\} \\
& =\sup \left\{W_{r}(t)-W_{n, r}\left(c_{j}^{n}\right): j / 2^{n} \leq t<(j+1) / 2^{n}\right\} \\
& =\sup \left\{W_{r}(t)-W_{r}\left(c_{j}^{n}\right): j / 2^{n} \leq t<(j+1) / 2^{n}\right\} \leq \epsilon
\end{aligned}
$$

So for $n \geq N$,

$$
\begin{aligned}
\left\|m_{r}-m_{n, r}\right\|_{1} & =\int_{0}^{1}\left|W_{r}(t)-W_{n, r}(t)\right| d \mu(t) \\
& =\sum_{j=0}^{2^{n}-1} \int_{j / 2^{n}}^{(j+1) / 2^{n}}\left|W_{r}(t)-W_{n, r}(t)\right| d \mu(t) \leq \sum_{j=0}^{2^{n}-1} \int_{j / 2^{n}}^{(j+1) / 2^{n}} \epsilon d \mu(t)=\epsilon,
\end{aligned}
$$

and hence $\lim _{n \rightarrow \infty}\left\|m_{r}-m_{n, r}\right\|_{1}=0$.
Corollary 7.4. Given a sequence $\left(\lambda^{n}\right)_{n=1}^{\infty}$ of vectors $\lambda^{n} \in[0,1]^{2^{n}}$ satisfying $\sum_{j=0}^{2^{n}-1} \lambda_{j}^{n}=1$ for all n, we have

$$
\lim _{n \rightarrow \infty}\left\|\sum_{j=0}^{2^{n}-1} \lambda_{j}^{n}\left(m_{r} \circ R_{j / 2^{n}}\right)-\sum_{j=0}^{2^{n}-1} \lambda_{j}^{n}\left(m_{n, r} \circ R_{j / 2^{n}}\right)\right\|_{1}=0 .
$$

Proof. The triangle inequality gives

$$
\begin{aligned}
\left\|\sum_{j=0}^{2^{n}-1} \lambda_{j}^{n}\left(m_{r} \circ R_{j / 2^{n}}\right)-\sum_{j=0}^{2^{n}-1} \lambda_{j}^{n}\left(m_{n, r} \circ R_{j / 2^{n}}\right)\right\|_{1} & \leq \sum_{j=0}^{2^{n}-1} \lambda_{j}^{n}\left\|m_{r} \circ R_{j / 2^{n}}-m_{n, r} \circ R_{j / 2^{n}}\right\|_{1} \\
& =\left\|m_{r}-m_{n, r}\right\|_{1},
\end{aligned}
$$

and so the result follows from Lemma 7.3
Proof of Theorem 7.1. We first have to show that each $m_{r} \circ R_{s} \in \Omega_{\text {sub }}^{r}$. To see that $m_{r} \in \Omega_{\text {sub }}^{r}$, it suffices to prove that $W_{r}\left(R_{t}\left(t_{0}\right)\right) \leq e^{r t} W_{r}\left(t_{0}\right)$ for all $t_{0} \in \mathbb{S}$ and $t \in[0, \infty)$. Fix such a t_{0} and t, and write $t_{0}-t=t_{1}+k$ for $t_{1} \in[0,1)$ and $0 \geq k \in \mathbb{Z}$. Then

$$
\begin{aligned}
W_{r}\left(R_{t}\left(t_{0}\right)\right) & =W_{r}\left(t_{1}\right)=\left(\frac{r}{1-e^{-r}}\right) e^{-r t_{1}}=\left(\frac{r}{1-e^{-r}}\right) e^{r k} e^{-r\left(t_{1}+k\right)} \\
& =\left(\frac{r}{1-e^{-r}}\right) e^{r k} e^{-r\left(t_{0}-t\right)}=e^{r k} e^{r t} W_{r}\left(t_{0}\right) \leq e^{r t} W_{r}\left(t_{0}\right),
\end{aligned}
$$

where the inequality follows because $r k \leq 0$. So $m_{r} \in \Omega_{\text {sub }}^{r}$. For $0 \leq s<1$ and Borel $U \subseteq \mathbb{S}$, we have $m_{r} \circ R_{s}\left(R_{t}(U)\right)=m_{r}\left(R_{t}\left(R_{s}(U)\right)\right) \leq e^{r t} m_{r} \circ R_{s}(U)$ for all $t \in[0, \infty)$ and Borel $U \subseteq \mathbb{S}$, and hence $m_{r} \circ R_{s} \in \Omega_{\text {sub }}^{r}$.

Since $\Omega_{\text {sub }}^{r}$ is convex and weak* closed, we have $\overline{\operatorname{conv}}\left\{m_{r} \circ R_{s}: 0 \leq s<1\right\} \subseteq \Omega_{\text {sub }}^{r}$. For the reverse containment, fix $m \in \Omega_{\text {sub }}^{r}$. For each $n \in \mathbb{N}$ and $0 \leq j<2^{n}$ we let $U_{j}^{n}:=$ $\left[j / 2^{n},(j+1) / 2^{n}\right)$, and

$$
x_{n}:=\left(m\left(U_{j}^{n}\right)\right)_{j=0}^{2^{n}-1} \in[0,1]^{2^{n}} .
$$

By Lemma 7.2 we can express x_{n} as a convex combination $x_{n}=\sum_{j=1}^{2^{n}-1} \lambda_{j}^{n} v_{j}^{n}$ of the vectors $\left\{v_{0}^{n}, \ldots, v_{2^{n}-1}^{n}\right\}$ described at (7.2). We claim that the measures

$$
M_{n}:=\sum_{j=0}^{2^{n}-1} \lambda_{j}^{n}\left(m_{r} \circ R_{j / 2^{n}}\right)
$$

converge weak* to m. To see this, fix $f \in C(\mathbb{S})_{+}$. It suffices to prove that $\int f d M_{n} \rightarrow \int f d m$. For each n, let

$$
M_{n}^{\prime}:=\sum_{j=0}^{2^{n}-1} \lambda_{j}^{n}\left(m_{n, r} \circ R_{j / 2^{n}}\right) .
$$

Corollary 7.4 shows that $\left\|M_{n}-M_{n}^{\prime}\right\|_{1} \rightarrow 0$ and in particular, $\int f d M_{n}-\int f d M_{n}^{\prime} \rightarrow 0$. So it suffices to prove that

$$
\int f d M_{n}^{\prime} \rightarrow \int f d m .
$$

For each n, define $f_{n}: \mathbb{S} \rightarrow \mathbb{R}$ by

$$
f_{n}=\sum_{j=0}^{2^{n}-1} f\left(j / 2^{n}\right) 1_{U_{j}^{n}} .
$$

Since f is uniformly continuous on \mathbb{S} we have $f_{n} \rightarrow f$ pointwise on \mathbb{S}. Since $|f|$ and each $\left|f_{n}\right|$ are bounded above by $\|f\|_{\infty}$, the Dominated Convergence Theorem implies that $\int f_{n} d m \rightarrow \int f d m$. So it now suffices to prove that

$$
\left|\int f_{n} d m-\int f d M_{n}^{\prime}\right| \rightarrow 0
$$

Fix $j, k \in \mathbb{Z} / 2 \mathbb{Z}$. Then $\left(v_{0}^{n}\right)_{j-k}=\left(v_{j}^{n}\right)_{k}$, and hence

$$
\int_{U_{k}^{n}} f d\left(m_{n, r} \circ R_{j / 2^{n}}\right)=2^{n}\left(v_{0}^{n}\right)_{j-k} \int_{U_{k}^{n}} f d \mu=2^{n}\left(v_{j}^{n}\right)_{k} \int_{U_{k}^{n}} f d \mu .
$$

Hence

$$
\begin{aligned}
\left|\int f_{n} d m-\int f d M_{n}^{\prime}\right| & =\left|\sum_{i=0}^{2^{n}-1} f\left(i / 2^{n}\right) m\left(U_{i}^{n}\right)-\sum_{j=0}^{2^{n}-1} \lambda_{j}^{n}\left(\sum_{k=0}^{2^{n}-1} \int_{U_{k}^{n}} f d\left(m_{n, r} \circ R_{j / 2^{n}}\right)\right)\right| \\
& =\left|\sum_{i=0}^{2^{n}-1} f\left(i / 2^{n}\right)\left(\sum_{l=0}^{2^{n}-1} \lambda_{l}^{n} v_{l}^{n}\right)_{i}-\sum_{j=0}^{2^{n}-1} \lambda_{j}^{n} \sum_{k=0}^{2^{n}-1}\left(2^{n}\left(v_{j}^{n}\right)_{k} \int_{U_{k}^{n}} f d \mu\right)\right| \\
& =\left|\sum_{l=0}^{2^{n}-1} \lambda_{l}^{n} \sum_{i=0}^{2^{n}-1}\left(f\left(i / 2^{n}\right)\left(v_{l}^{n}\right)_{i}\right)-\sum_{j=0}^{2^{n}-1} \lambda_{j}^{n} \sum_{k=0}^{2^{n}-1}\left(2^{n}\left(v_{j}^{n}\right)_{k} \int_{U_{k}^{n}} f d \mu\right)\right| \\
& =\left|\sum_{j=0}^{2^{n}-1} \lambda_{j}^{n}\left(\sum_{i=0}^{2^{n}-1}\left(f\left(i / 2^{n}\right)\left(v_{j}^{n}\right)_{i}\right)-\sum_{k=0}^{2^{n}-1}\left(2^{n}\left(v_{j}^{n}\right)_{k} \int_{U_{k}^{n}} f d \mu\right)\right)\right| \\
& =\left|\sum_{j=0}^{2^{n}-1} \lambda_{j}^{n}\left(\sum_{i=0}^{2^{n}-1}\left(f\left(i / 2^{n}\right)\left(v_{j}^{n}\right)_{i}-2^{n}\left(v_{j}^{n}\right)_{k} \int_{U_{k}^{n}} f d \mu\right)\right)\right| .
\end{aligned}
$$

Since each $\left\|v_{j}^{n}\right\|_{1}=1$ and each $\sum_{j} \lambda_{j}^{n}=1$, the triangle inequality gives

$$
\begin{aligned}
\left|\int f_{n} d m-\int f d M_{n}^{\prime}\right| & \left.\leq \sum_{j=0}^{2^{n}-1} \lambda_{j}^{n} \mid \sum_{i=0}^{2^{n}-1}\left(f\left(i / 2^{n}\right)-2^{n} \int_{U_{i}^{n}} f d \mu\right)\left(v_{j}^{n}\right)_{i}\right) \mid \\
& \leq \max _{0 \leq j<2^{n}} \sum_{i=0}^{2^{n}-1}\left(v_{j}^{n}\right)_{i}\left|f\left(i / 2^{n}\right)-2^{n} \int_{U_{i}^{n}} f d \mu\right| \\
& \leq \max _{0 \leq j<2^{n}}\left(\max _{0 \leq i<2^{n}}\left|f\left(i / 2^{n}\right)-2^{n} \int_{U_{i}^{n}} f d \mu\right|\right) \\
& =\max _{0 \leq i<2^{n}}\left|f\left(i / 2^{n}\right)-2^{n} \int_{U_{i}^{n}} f d \mu\right| .
\end{aligned}
$$

Fix $0 \leq i \leq 2^{n}$. The quantity $2^{n} \int_{U_{i}^{n}} f d \mu$ is the average value of f over U_{i}^{n}. Since f is continuous, the Mean Value Theorem implies that there exists $c \in U_{i}^{n}$ such that $f(c)=2^{n} \int_{U_{i}^{n}} f d \mu$. Hence

$$
\left|\int f_{n} d m-\int f d M_{n}^{\prime}\right| \leq \max _{0 \leq i<2^{n}} \sup _{c \in U_{i}^{n}}\left|f\left(i / 2^{n}\right)-f(c)\right| .
$$

Fix $\epsilon>0$. By uniform continuity of f there exists N such that $|x-y|<2^{-N} \Longrightarrow \mid f(x)-$ $f(y) \mid<\epsilon$. For $n \geq N$ we have $\sup _{c \in U_{i}^{n}}\left|f\left(i / 2^{n}\right)-f(c)\right| \leq \epsilon$ for all i, giving $\mid \int f_{n} d m-$
 $\Omega_{\text {sub }}^{r} \subseteq \overline{\operatorname{conv}}\left\{m_{r} \circ R_{s}: 0 \leq s<1\right\}$ as required.

For the final statement, observe that

$$
\Omega_{\text {sub }}^{0}=\left\{m \in M(\mathbb{S}): m\left(R_{t}(U)\right) \leq m(U) \text { for all } t \in[0, \infty) \text { and Borel } U \subseteq \mathbb{S}\right\}
$$

So if $m \in \Omega_{\text {sub }}^{0}$, then $m(U)=m\left(R_{1-t}\left(R_{t}(U)\right)\right) \leq m\left(R_{t}(U)\right) \leq m(U)$ for all U, t, forcing $m(U)=m\left(R_{t}(U)\right)$ for all U, t. Uniqueness of the Haar measure μ on the compact group \mathbb{S} therefore gives $m=\mu$. So $\Omega_{\mathrm{sub}}^{0} \subseteq\{\mu\}$. The reverse containment is trivial.

We can use Theorem 7.1 to describe the extreme points of $\Omega_{\text {sub }}^{r}$.
Proposition 7.5. The set $\left\{m_{r} \circ R_{s}: 0 \leq s<1\right\}$ is the set of extreme points of $\Omega_{\mathrm{sub}}^{r}$.
The first step in proving Proposition 7.5 will be to show that m_{r} itself is an extreme point of $\Omega_{\text {sub }}^{r}$. The following lemma will help.

Lemma 7.6. Let $m \in \Omega_{\text {sub }}^{r}$ and $n \in \mathbb{N}$ with $n \geq 1$. If $m\left(\left[\frac{n-1}{n}, 1\right)\right) \leq m_{r}\left(\left[\frac{n-1}{n}, 1\right)\right)$, then $m\left(\left[\frac{i}{n}, \frac{i+1}{n}\right)\right)=m_{r}\left(\left[\frac{i}{n}, \frac{i+1}{n}\right)\right)$ for all $0 \leq i<n$.

Proof. First observe that by definition of m_{r}, we have $m_{r}\left(R_{t}(U)\right)=e^{r t} m_{r}(U)$ whenever $U \cup$ $U-t \subseteq[0,1)$. Using this at the fourth equality, we note that if $m\left(\left[\frac{n-1}{n}, 1\right)\right) \leq m_{r}\left(\left[\frac{n-1}{n}, 1\right)\right)$, then subinvariance forces

$$
\begin{aligned}
1=m(\mathbb{S})=\sum_{i=0}^{n-1} m\left(\left[\frac{i}{n}, \frac{i+1}{n}\right)\right) & =\sum_{i=0}^{n-1} m\left(R_{(n-1-j) / n}\left(\left[\frac{n-1}{n}, 1\right)\right)\right) \\
& \leq \sum_{i=0}^{n-1} e^{(n-1-j) r / n} m\left(\left[\frac{n-1}{n}, 1\right)\right) \\
& \leq \sum_{i=0}^{n-1} e^{(n-1-j) r / n} m_{r}\left(\left[\frac{n-1}{n}, 1\right)\right) \\
& =\sum_{i=0}^{n-1} m_{r}\left(\left[\frac{i}{n}, \frac{i+1}{n}\right)\right) \\
& =1 .
\end{aligned}
$$

So we have equality throughout. From this we deduce first that

$$
\sum_{i=0}^{n-1} m\left(\left[\frac{i}{n}, \frac{i+1}{n}\right)\right)=\sum_{i=0}^{n-1} e^{(n-1-j) r / n} m\left(\left[\frac{n-1}{n}, 1\right)\right)
$$

Since the subinvariance relation forces $m\left(\left[\frac{i}{n}, \frac{i+1}{n}\right)\right) \leq e^{(n-1-j) r / n} m\left(\left[\frac{n-1}{n}, 1\right)\right)$ for each i, we deduce that $m\left(\left[\frac{i}{n}, \frac{i+1}{n}\right)\right)=e^{(n-1-j) r / n} m\left(\left[\frac{n-1}{n}, 1\right)\right)$ for each i. Since

$$
\sum_{i=0}^{n-1} e^{(n-1-j) r / n} m\left(\left[\frac{n-1}{n}, 1\right)\right)=\sum_{i=0}^{n-1} e^{(n-1-j) r / n} m_{r}\left(\left[\frac{n-1}{n}, 1\right)\right),
$$

we also have $m\left(\left[\frac{n-1}{n}, 1\right)\right)=m_{r}\left(\left[\frac{n-1}{n}, 1\right)\right)$. Hence for each i we have

$$
m\left(\left[\frac{i}{n}, \frac{i+1}{n}\right)\right)=e^{(n-1-j) r / n} m\left(\left[\frac{n-1}{n}, 1\right)\right)=e^{(n-1-j) r / n} m_{r}\left(\left[\frac{n-1}{n}, 1\right)\right)=m\left(\left[\frac{i}{n}, \frac{i+1}{n}\right)\right) .
$$

Proof of Proposition 7.5. We first show that m_{r} is an extreme point of $\Omega_{\mathrm{sub}}^{r}$. First suppose $m \in \Omega_{\text {sub }}^{r}$ satisfies $m\left(\left[\frac{n-1}{n}, 1\right)\right) \leq m_{r}\left(\left[\frac{n-1}{n}, 1\right)\right)$ for all n. We claim that $m=m_{r}$. Fix $f \in C(\mathbb{S})_{+}$. For each n define $f_{n}: \mathbb{S} \rightarrow \mathbb{R}$ by

$$
f_{n}=\sum_{i=0}^{n-1} f(i / n) 1_{\left[\frac{i}{n}, \frac{i+1}{n}\right)} .
$$

The Dominated Convergence Theorem gives $\int f_{n} d m \rightarrow \int f d m$. By Lemma 7.6, $m\left(\left[\frac{i}{n}, \frac{i+1}{n}\right)\right)=$ $m_{r}\left(\left[\frac{i}{n}, \frac{i+1}{n}\right)\right)$ for all $n \geq 1$ and $0 \leq i<n$. Hence the Dominated Convergence Theorem gives $\int f_{n} d m=\int f_{n} d m_{r} \rightarrow \int f d m_{r}$. It follows that $m=m_{r}$.

Now suppose that $m_{1}, m_{2} \in \Omega_{\text {sub }}^{r}, t \in(0,1)$ and that one of m_{1} and m_{2} is not equal to m_{r}; say $m_{1} \neq m_{r}$. The above claim yields n such that $m_{1}\left(\left[\frac{n-1}{n}, 1\right)\right)>m_{r}\left(\left[\frac{n-1}{n}, 1\right)\right)$. So

$$
\left(t m_{1}+(1-t) m_{2}\right)\left(\left[\frac{n-1}{n}, 1\right)\right)>\left(t m_{r}+(1-t) m_{2}\right)\left(\left[\frac{n-1}{n}, 1\right)\right) \geq m_{r}\left(\left[\frac{n-1}{n}, 1\right)\right)
$$

and hence $t m_{1}+(1-t) m_{2} \neq m_{r}$. So m_{r} cannot be expressed as a nontrivial convex combination of subinvariant probability measures, and hence is an extreme point of $\Omega_{\text {sub }}^{r}$.

For $s \in \mathbb{S}$, the map $m \mapsto m \circ R_{s}$ is an affine homeomorphism of $\Omega_{\mathrm{sub}}^{r}$, so each $m \circ R_{s}$ is an extreme point of $\Omega_{\text {sub }}^{r}$. This gives $\left\{m_{r} \circ R_{s}: s \in \mathbb{S}\right\} \subseteq \partial \Omega_{\text {sub }}^{r}$.

For the reverse containment, observe that the space $\Omega_{\text {sub }}^{r}$ of all subinvariant probability measures on \mathbb{S} is a compact convex subset of the Banach space of all signed Borel measures on \mathbb{S}. The map $s \mapsto m_{r} \circ R_{s}$ is a homeomorphism of \mathbb{S} onto $Z:=\left\{m_{r} \circ R_{s}: s \in \mathbb{S}\right\}$. So Z is compact and in particular closed. Since $\Omega_{\text {sub }}^{r}$ is the closed convex hull of Z it follows from [25, Proposition 1.5] that the set of extreme points of $\Omega_{\mathrm{sub}}^{r}$ is contained in the closure of Z and therefore in Z itself.

8. Proof of the main theorem

We are now almost ready to prove Theorem 6.6. We saw in Theorem 6.9 that the KMS_{β} simplex of $\mathcal{T}_{\theta}^{\mathscr{S}}$ is affine isomorphic to the projective limit of the $\Omega_{\text {sub }}^{r_{j}}$ under the maps induced by the covering maps $p_{N}: \mathbb{S} \rightarrow \mathbb{S}$. So we now show that these induced maps carry extreme points to extreme points.

Lemma 8.1. Let $N \in \mathbb{N}$ with $N \geq 2, \theta=\left(\theta_{j}\right)_{j=0}^{\infty} \in \Xi_{N}$, and $\beta \in(0, \infty)$. Suppose that $\theta_{j} \neq 0$ for all j. For each $j \in \mathbb{N}$, let $r_{j}:=\frac{\beta}{N^{j} \theta_{j}}$, and let $m_{r_{j}}$ be the subinvariant measure on \mathbb{S} defined by (7.1). For each $s \in[0,1)$, we have $m_{r_{j+1}} \circ R_{s} \circ p_{N}^{-1}=m_{r_{j}} \circ R_{N s}$.

Proof. We first establish the result with $s=0$. Fix $0 \leq a<b \leq 1$. It suffices to prove that $m_{r_{j+1}} \circ \iota_{N}^{-1}((a, b))=m_{r_{j}}((a, b))$. We have

$$
\begin{equation*}
m_{r_{j}}((a, b))=\int_{a}^{b} W_{r_{j}}(t) d t=\frac{r_{j}}{1-e^{-r_{j}}} \int_{a}^{b} e^{-r_{j} t} d t=\frac{-1}{1-e^{-r_{j}}}\left(e^{-r_{j} b}-e^{-r_{j} a}\right) \tag{8.1}
\end{equation*}
$$

We also have

$$
\begin{equation*}
m_{r_{j+1}} \circ p_{N}^{-1}((a, b))=\sum_{i=0}^{N} m_{r_{j+1}}\left(\left(\frac{a+i}{N}, \frac{b+i}{N}\right)\right)=\sum_{i=0}^{N} \int_{\frac{a+i}{N}}^{\frac{b+i}{N}} W_{r_{j+1}}(t) d t \tag{8.2}
\end{equation*}
$$

Since

$$
\int W_{r_{j+1}}(t) d t=\int\left(\frac{r_{j+1}}{1-e^{-r_{j+1}}}\right) e^{-r_{j+1} t} d t=\frac{-1}{1-e^{-r_{j+1}}} e^{-r_{j+1} t}
$$

Equation (8.2) gives

$$
\begin{align*}
m_{r_{j}}((a, b)) & =\frac{-1}{1-e^{-r_{j+1}}} \sum_{i=0}^{N}\left[e^{-r_{j+1} t}\right]_{\frac{a+i}{N}}^{\frac{b+i}{N}} \\
& =\frac{-1}{1-e^{-r_{j+1}}} \sum_{i=0}^{N} e^{-\frac{i}{N} r_{j+1}}\left(e^{-\frac{b}{N} r_{j+1}}-e^{-\frac{a}{N} r_{j+1}}\right) \\
& =\frac{-1}{1-e^{-r_{j+1}}} \frac{1-e^{-r_{j+1}}}{1-e^{-\frac{r_{j+1}}{N}}}\left(e^{-\frac{b}{N} r_{j+1}}-e^{-\frac{a}{N} r_{j+1}}\right) \\
& =\frac{-1}{1-e^{-\frac{r_{j+1}}{N}}}\left(e^{-\frac{b}{N} r_{j+1}}-e^{-\frac{a}{N} r_{j+1}}\right) . \tag{8.3}
\end{align*}
$$

Since $N^{2} \theta_{j+1}=\theta_{j}$, we have

$$
\frac{r_{j+1}}{N}=\frac{\beta /\left(N^{j+1} \theta_{j+1}\right)}{N}=\beta /\left(N^{j} \cdot N^{2} \theta_{j+1}\right)=\beta / N^{j} \theta_{j}=r_{j},
$$

and so (8.3) is precisely (8.1).
Now for $s \neq 0$, observe that $p_{N} \circ R_{s}=R_{N s} \circ p_{N}$ so that $R_{s}\left(p_{N}^{-1}(U)\right)=p_{N}^{-1}\left(R_{N s}(U)\right)$ for all $U \subseteq \mathbb{S}$. Hence

$$
m_{r_{j+1}} \circ R_{s} \circ p_{N}^{-1}=m_{r_{j+1}} \circ p_{N}^{-1} \circ R_{N s}=m_{r_{j}} \circ R_{N s} .
$$

We now describe the extreme points of the space $\varliminf_{\varliminf}\left(\Omega_{\text {sub }}^{r_{j}}, m \mapsto m \circ p_{N}^{-1}\right)$. Given a Borel map $\psi: X \rightarrow Y$, we write $\psi_{*}: M_{1}(X) \rightarrow M_{1}(Y)$ for the induced map $\psi_{*}(m)(U)=m\left(\psi^{-1}(U)\right)$.

Lemma 8.2. Take $N \in\{2,3, \ldots\}$, fix $\theta=\left(\theta_{j}\right)_{j=0}^{\infty} \in \Xi_{N}$, and fix $\beta \in(0, \infty)$. Suppose that $\theta_{j} \neq 0$ for all j. For each $j \in \mathbb{N}$, let $r_{j}:=\frac{\beta}{N^{j} \theta_{j}}$, and let $m_{r_{j}}$ be the subinvariant measure on \mathbb{S} defined by (7.1). The map $\pi:\left(s_{j}\right)_{j=1}^{\infty} \mapsto\left(m_{r_{j}} \circ R_{s_{j}}\right)_{j=1}^{\infty}$ is a homeomorphism of $\varliminf_{\ddagger}\left(\mathbb{S}, p_{N}\right)$ onto the set of extreme points of $\varliminf_{幺}\left(\Omega_{\text {sub }}^{r_{j}},\left(p_{N}\right)_{*}\right)$.
Proof. Since the $\Omega_{\text {sub }}^{r_{j}}$ are compact convex sets and $\left(p_{N}\right)_{*}$ is affine and continuous, the projective limit $\lim _{\rightleftarrows} \Omega_{\text {sub }}^{r_{j}}$ is a compact convex set. The map π is continuous, so its range is compact and hence closed. So to see that the image of π contains all of the extreme points of $\varliminf_{幺} \Omega_{\text {sub }}^{r_{j}}$, it suffices by [25, Proposition 1.5] to show that $\lim _{\rightleftarrows} \Omega_{\text {sub }}^{r_{j}}$ is contained in the closed convex hull of the $\pi\left(\left(s_{j}\right)_{j=1}^{\infty}\right)$.

For this, fix a point $\left(m_{j}\right)_{j=1}^{\infty} \in \lim \Omega_{\text {sub }}^{r_{j}}$. Take an open neighbourhood U of $\left(m_{j}\right)$. By definition of the projective-limit topology, there exist $k \in \mathbb{N}$ and $U_{k} \subseteq \Omega_{\text {sub }}^{r_{k}}$ open such that the cylinder set $Z\left(U_{k}\right)$ satisfies $\left(m_{j}\right)_{j=1}^{\infty} \in Z\left(U_{k}\right) \subseteq U$. By Theorem 7.1 , there exist $t_{1}, \ldots, t_{L} \in[0,1]$ with $\sum t_{l}=1$ such that

$$
\sum_{l=1}^{L} t_{l}\left(m_{r_{k}} \circ R_{s_{l}}\right) \in U_{k} .
$$

Now for each $j \in \mathbb{N}$, define $m_{j}^{\prime}:=\sum_{l=1}^{L} t_{l}\left(m_{r_{l}} \circ R_{N^{j-l_{s_{l}}}}\right.$). Lemma 8.1 shows that for $j \leq j^{\prime} \in \mathbb{N}$ we have $m_{j}^{\prime}=\left(p_{N}\right)_{*}^{j^{\prime}-j}\left(m_{j^{\prime}}^{\prime}\right)$, and so $\left(m_{j}^{\prime}\right)_{j=1}^{\infty} \in \varliminf_{\succeq} \Omega_{\text {sub }}^{r_{j}}$. For $l \leq L$, we have $\left(m_{r_{l}} \circ R_{N^{j-l} s_{l}}\right)_{j=1}^{\infty}=$ $\pi\left(\left(N^{j-l} s_{l}\right)_{j=1}^{\infty}\right)$, and so

$$
\left(m_{j}^{\prime}\right)_{j=1}^{\infty} \in \operatorname{conv} \pi\left(\underset{\rightleftarrows}{\lim }\left(\mathbb{S}, p_{N}\right)\right) \cap U .
$$

That is, $\lim _{\leftrightarrows} \Omega_{\text {sub }}^{r_{j}} \subseteq \overline{\operatorname{conv}}(\pi(\lim \mathbb{S}))$. So the range of π contains all the extreme points of $\lim _{\rightleftharpoons}\left(\Omega_{\text {sub }}^{r_{j}},\left(p_{N}\right)_{*}\right)$.

For the reverse containment, it suffices to show that each $\pi\left(\left(s_{j}\right)_{j=1}^{\infty}\right)$ is an extreme point of $\varliminf_{\subsetneq} \Omega_{\text {sub }}^{r_{j}}$. For this, suppose that $t \in(0,1)$ and $m^{\prime}, m^{\prime \prime} \in \varliminf_{\lessdot} \Omega_{\text {sub }}^{r_{j}}$ satisfy

$$
\pi\left(\left(s_{j}\right)_{j=1}^{\infty}\right)=t m^{\prime}+(1-t) m^{\prime \prime} .
$$

For each j,

$$
m_{r_{j}} \circ R_{s_{j}}=\pi\left(\left(s_{j}\right)_{j=1}^{\infty}\right)_{j}=\left(t m^{\prime}+(1-t) m^{\prime \prime}\right)_{j}=t m_{j}^{\prime}+(1-t) m_{j}^{\prime \prime} .
$$

Proposition 7.5 shows that each $m_{r_{j}} \circ R_{s_{j}}$ is an extreme point of $\Omega_{\text {sub }}^{r_{j}}$, forcing $m_{j}^{\prime}=m_{j}^{\prime \prime}=$ $m_{r_{j}} \circ R_{s_{j}}$. So $m^{\prime}=m^{\prime \prime}=\pi\left(\left(s_{j}\right)_{j=1}^{\infty}\right)$.

Finally, π is a homeomorphism onto its range because it is a continuous injection from a compact space to a Hausdorff space.

The final ingredient needed for the proof of Theorem 6.6 is a suitable action λ of \mathscr{S} on $\mathcal{T}_{\theta}^{\mathscr{S}}$.
Lemma 8.3. There is an action λ of $\mathscr{S}=\underset{\rightleftarrows}{\lim }\left(\mathbb{S}, p_{N}\right)$ on $\mathcal{T}_{\theta}^{\mathscr{\mathscr { ~ }}}$ such that

$$
\lambda_{\left(s_{j}\right)_{j=1}^{\infty}}\left(\psi_{j, \infty}\left(s_{\theta_{j}}^{a} i_{\theta_{j}}(f) s_{\theta_{j}}^{* b}\right)\right)=s_{\theta_{j}}^{a} i_{\theta_{j}}\left(f \circ R_{s_{j}}\right) s_{\theta_{j}}^{* b}
$$

for all $j, a, b \geq 0$ and $f \in C(\mathbb{S})$.
Proof. For each $j \in \mathbb{N}$, and each $t \in \mathbb{S}$, there is an automorphism of the topological graph $E_{\theta_{j}}$ given by $s \mapsto s+t$ for $s \in E_{\theta_{j}}^{0}=\mathbb{S}$, and $s \mapsto s+t$ for $s \in E_{\theta_{j}}^{1}=\mathbb{S}$. This automorphism induces an automorphism $\lambda_{j, t}$ of $\mathcal{T}\left(E_{\theta_{j}}\right)$ such that $\lambda_{j, t}\left(s_{\theta_{j}}^{a} i_{\theta_{j}}(f) s_{\theta_{j}}^{* b}\right)=s_{\theta_{j}}^{a} i_{\theta_{j}}\left(f \circ R_{t}\right) s_{\theta_{j}}^{* b}$ for all $j, a, b \geq 0$ and $f \in C(\mathbb{S})$.

Since $\lambda_{j, t}\left(s_{\theta_{j}}\right)=s_{\theta_{j}}$ and $\lambda_{j, t}\left(i_{\theta_{j}}(f)\right)=i_{\theta_{j}}\left(f \circ R_{t}\right)$ for all $f \in C(\mathbb{S})$, a routine calculation shows that for $\left(s_{j}\right)_{j=1}^{\infty} \in \mathscr{S}$, we have $\psi_{j} \circ \lambda_{j, s_{j}}=\lambda_{j+1, s_{j+1}} \circ \psi_{j}$, and so the universal property of the direct limit yields the desired action λ of \mathscr{S} on $\underset{\longrightarrow}{\lim }\left(\mathcal{T}\left(E_{\theta_{j}}\right), \psi_{j}\right)=\mathcal{T}_{\theta}^{\mathscr{S}}$.
Proof of Theorem 6.6. Theorem 6.9 yields an affine isomorphism

$$
\omega: \operatorname{KMS}_{\beta}\left(\mathcal{T}_{\theta}^{\mathscr{S}}, \alpha\right) \rightarrow \varliminf_{\check{l}}^{\lim ^{2}}\left(\Omega_{\mathrm{sub}}^{r_{j}},\left(p_{N}\right)_{*}\right) .
$$

Lemma 8.2 shows that the space of extreme points of $\varliminf_{\succcurlyeq} \Omega_{\text {sub }}^{r_{j}}$ is homeomorphic to the solenoid $\underset{\varliminf}{\lim } \mathbb{S}$, so the extreme boundary of $\operatorname{KMS}_{\beta}\left(\mathcal{T}_{\theta}^{\mathscr{Y}}, \alpha\right)$ is homeomorphic to $\underset{\rightleftarrows}{\lim } \mathbb{S}$. As discussed on pages 141 and 138 of [27], the set of KMS states for a given dynamics on a unital C^{*}-algebra at given inverse temperature β is a Choquet simplex. $\operatorname{So~}_{\operatorname{KMS}}^{\beta} \boldsymbol{(\mathcal { T } _ { \theta } ^ { \mathscr { P } } , \alpha) \text { is a Choquet simplex, and }}$ therefore affine isomorphic to the simplex of regular Borel probability measures on its extreme boundary.

We claim that the action λ of Lemma 8.3 induces a free and transitive action of \mathscr{S} on the extreme boundary of the KMS_{β}-simplex. The formula (6.4) shows that for $l \in \mathbb{N}$, we have

$$
\omega\left(\phi \circ \lambda_{\left(s_{j}\right)_{j=1}^{\infty}}\right)_{l}=\omega(\phi)_{l} \circ R_{s_{l}} .
$$

That is, for $\left(m_{j}\right)_{j=1}^{\infty} \in \underset{\leftarrow}{\lim }\left(\Omega_{\text {sub }}^{r_{j}}\right)$, we have $\omega^{-1}\left(\left(m_{j}\right)_{j=1}^{\infty}\right) \circ \lambda_{\left(s_{j}\right)_{j=1}^{\infty}}=\omega^{-1}\left(\left(m_{j} \circ R_{s_{j}}\right)_{j=1}^{\infty}\right)$. In particular, if $\pi: \lim _{\leftrightarrows} \rightarrow \lim _{\leftrightarrows} \Omega_{\text {sub }}^{r_{j}}$ is the map of Lemma 8.2, then

$$
\omega^{-1}\left(\pi\left(\left(t_{j}\right)_{j=1}^{\infty}\right)\right) \circ \lambda_{\left(s_{j}\right)_{j=1}^{\infty}}=\omega^{-1}\left(\pi\left(\left(t_{j}-s_{j}\right)_{j=1}^{\infty}\right)\right)
$$

That is, the homeomorphism $\omega^{-1} \circ \pi$ of \mathscr{S} onto the extreme boundary of $\mathrm{KMS}_{\beta}\left(\mathcal{T}_{\theta}^{\mathscr{S}}, \alpha\right)$ intertwines λ with the action of \mathscr{S} on itself by translation, which is free and transitive.

Now suppose that $\beta=0$. Then each $\Omega_{\text {sub }}^{r_{j}}=\Omega_{\text {sub }}^{0}=\{\mu\}$, and so Theorem 6.9 gives an affine injection of $\operatorname{KMS}_{0}\left(\mathcal{T}_{\theta}^{\mathscr{S}}, \alpha\right)$ into the 1-point space $\varliminf_{\varliminf}(\{\mu\}, \mathrm{id})$. So there is at most one $\mathrm{KMS}_{0^{-}}$ state. That there is one follows from a standard argument: Choose $\beta_{n} \in(0, \infty)$ converging to 0 . For each n, fix $\phi_{n} \in \mathrm{KMS}_{\beta_{n}}\left(\mathcal{T}_{\theta}^{\mathscr{\mathscr { S }}}, \alpha\right)$. Weak*-compactness of the state space ensures that the ϕ_{n} have a convergent subsequence. Its limit is a KMS_{0}-state by [3, Proposition 5.3.23].

It remains to show that the KMS_{0} state is the only one that factors through $\mathcal{A}_{\theta}^{\mathscr{g}}$, and that there are no KMS_{β} states for $\beta<0$. For any β, if ϕ is a KMS_{β} state of $\mathcal{T}_{\theta}^{\mathscr{S}}$, then in particular,

$$
\begin{equation*}
\phi\left(\psi_{1, \infty}\left(s_{\theta_{1}} s_{\theta_{1}}^{*}\right)\right)=\phi\left(\psi_{1, \infty}\left(s_{\theta_{1}}^{*}\right) \alpha_{i \beta}\left(\psi_{1, \infty}\left(s_{\theta_{1}}\right)\right)\right)=e^{-\beta} \phi\left(\psi_{1, \infty}\left(s_{\theta_{1}}^{*} s_{\theta_{1}}\right)\right)=e^{-\beta} \phi\left(1_{\mathcal{T}_{\theta}^{\mathscr{S}}}\right), \tag{8.4}
\end{equation*}
$$

and since ϕ is a state, we deduce that $\phi\left(1_{\mathcal{T}_{\theta}^{\mathscr{\delta}}}-\psi_{1, \infty}\left(s_{\theta_{1}} s_{\theta_{1}}^{*}\right)\right)=1-e^{-\beta}$. Since $s_{\theta_{1}}$ is an isometry, we have $1_{\mathcal{T}_{\theta}^{\mathscr{S}}}-\psi_{1, \infty}\left(s_{\theta_{1}} s_{\theta_{1}}^{*}\right) \geq 0$ forcing $1-e^{-\beta} \geq 0$ and hence $\beta \geq 0$. So there are no $\operatorname{KMS}_{\beta}$ states for $\beta<0$.

If $\beta>0$, then (8.4) shows that $\phi\left(1_{\mathcal{T}_{\theta}^{\mathscr{g}}}-\psi_{1, \infty}\left(s_{\theta_{1}} s_{\theta_{1}}^{*}\right)\right)>0$, whereas the image of $1_{\mathcal{T}_{\theta}^{\mathscr{g}}}-$ $\psi_{1, \infty}\left(s_{\theta_{1}} s_{\theta_{1}}^{*}\right)$ in $\mathcal{A}_{\theta}^{\mathscr{S}}$ is equal to zero. Hence ϕ does not factor through $\mathcal{A}_{\theta}^{\mathscr{S}}$.

It remains to prove that if ϕ is a KMS_{0} state, then ϕ factors through $\mathcal{A}_{\theta}^{\mathscr{g}}$. Equation 8.4 implies that $\phi\left(1_{\mathcal{T}_{\theta}^{\mathscr{g}}}-\psi_{1, \infty}\left(s_{\theta_{1}} s_{\theta_{1}}^{*}\right)\right)=0$. The projection $1_{\mathcal{T}_{\theta}^{\mathscr{g}}}-\psi_{1, \infty}\left(s_{\theta_{1}} s_{\theta_{1}}^{*}\right)$ is fixed by α, and Lemma 6.2 implies that it generates the kernel of the quotient map $q: \mathcal{T}_{\theta}^{\mathscr{S}} \rightarrow \mathcal{A}_{\theta}^{\mathscr{S}}$. So [12, Lemma 2.2] implies that ϕ factors through $\mathcal{A}_{\theta}^{\mathscr{S}}$.

References

[1] Z. Afsar, A. an Huef and I. Raeburn, KMS states on C^{*}-algebras associated to local homeomorphisms, Internat. J. Math. 25 (2014), 1450066, 28pp.
[2] J.-B. Bost and A. Connes, Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory, Selecta Math. (N.S.) 1 (1995), 411-457.
[3] O. Bratteli and D.W. Robinson, Operator algebras and quantum statistical mechanics. 2, Equilibrium states. Models in quantum statistical mechanics, Springer-Verlag, Berlin, 1997, xiv+519.
[4] N. Brownlowe, A. an Huef, M. Laca and I. Raeburn, Boundary quotients of the Toeplitz algebra of the affine semigroup over the natural numbers, Ergodic Theory Dynam. Systems 32 (2012), 35-62.
[5] J. Christensen and K. Thomsen, Finite digraphs and KMS states, J. Math. Anal. Appl. 433 (2016), 16261646.
[6] L.O. Clarke, A. an Huef and I. Raeburn, Phase transitions on the Toeplitz algebras of Baumslag-Solitar semigroups, Indiana University Mathematical Journal, to appear (arXiv:1503.04873 [math.OA]).
[7] K.R. Davidson, C^{*}-algebras by example, American Mathematical Society, Providence, RI, 1996, xiv+309.
[8] M. Enomoto, M. Fujii and Y. Watatani, KMS states for gauge action on O_{A}, Math. Japon. 29 (1984), 607-619.
[9] C. Farsi, E. Gillaspy, S. Kang and J.A. Packer, Separable representations, KMS states, and wavelets for higher-rank graphs, J. Math. Anal. Appl. 434 (2016), 241-270.
[10] N. J. Fowler and I. Raeburn, The Toeplitz algebra of a Hilbert bimodule, Indiana Univ. Math. J. 48 (1999), 155-181.
[11] M. Hawkins, Applications of compact topological graph C^{*}-algebras to noncommutative solenoids, PhD Thesis, University of Wollongong 2015.
[12] A. an Huef, M. Laca, I. Raeburn and A. Sims, KMS states on the C^{*}-algebras of finite graphs, J. Math. Anal. Appl. 405 (2013), 388-399.
[13] A. an Huef, M. Laca, I. Raeburn and A. Sims, KMS states on the C^{*}-algebra of a higher-rank graph and periodicity in the path space, J. Funct. Anal. 268 (2015), 1840-1875.
[14] T. Kajiwara and Y. Watatani, KMS states on finite-graph C*-algebras, Kyushu J. Math. 67 (2013), 83-104.
[15] E.T.A. Kakariadis, $K M S$ states on Pimsner algebras associated with C^{*}-dynamical systems, J. Funct. Anal. 269 (2015), 325-354.
[16] T. Katsura, A class of C^{*}-algebras generalizing both graph algebras and homeomorphism C^{*}-algebras I, Fundamental results, Trans. Amer. Math. Soc. 356 (2004), 4287-4322.
[17] T. Katsura, On C^{*}-algebras associated with C^{*}-correspondences, J. Funct. Anal. 217 (2004), 366-401.
[18] T. Katsura, A class of C^{*}-algebras generalizing both graph algebras and homeomorphism C^{*}-algebras II. Examples, Internat. J. Math. 17 (2006), 791-833.
[19] M. Laca and S. Neshveyev, KMS states of quasi-free dynamics on Pimsner algebras, J. Funct. Anal. 211 (2004), 457-482.
[20] M. Laca and I. Raeburn, Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers, Adv. Math. 225 (2010), 643-688.
[21] M. Laca, I. Raeburn, J. Ramagge and M.F. Whittaker, Equilibrium states on the Cuntz-Pimsner algebras of self-similar actions, J. Funct. Anal. 266 (2014), 6619-6661.
[22] F. Latrémolière and J.A. Packer Noncommutative solenoids, New York J. Math., to appear (arXiv:1110.6227 [math.OA]).
[23] F. Latrémolière and J.A. Packer, Noncommutative solenoids and their projective modules, Contemp. Math., 603, Commutative and noncommutative harmonic analysis and applications, 35-53, Amer. Math. Soc., Providence, RI, 2013.
[24] F. Latrémolière and J.A. Packer, Explicit construction of equivalence bimodules between noncommutative solenoids, Contemp. Math., 650, Trends in harmonic analysis and its applications, 111-140, Amer. Math. Soc., Providence, RI, 2015.
[25] R.R. Phelps, Lectures on Choquet's theorem, Springer-Verlag, Berlin, 2001, viii+124.
[26] M.V. Pimsner, A class of C^{*}-algebras generalizing both Cuntz-Krieger algebras and crossed products by Z, Fields Inst. Commun., 12, Free probability theory (Waterloo, ON, 1995), 189-212, Amer. Math. Soc., Providence, RI, 1997.
[27] M. Takesaki and M. Winnink, Local normality in quantum statistical mechanics, Comm. Math. Phys. 30 (1973), 129-152.
[28] D. Yang, Endomorphisms and modular theory of 2-graph C^{*}-algebras, Indiana Univ. Math. J. 59 (2010), 495-520.

Nathan Brownlowe, School of Mathematics and Statistics, University of Sydney, NSW 2006, AUSTRALIA

E-mail address: nathan.brownlowe@sydney.edu.au

Mitchell Hawkins and Aidan Sims, School of Mathematics and Applied Statistics, University of Wollongong, NSW 2522, AUSTRALIA

E-mail address: mrhawkins1989@gmail.com, asims@uow.edu.au

[^0]: Date: August 5, 2016.
 1991 Mathematics Subject Classification. 46L55 (primary); 28D15, 37A55 (secondary).
 This research was supported by the Australian Research Council grant DP150101595.

