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Abstract

We consider the quantum vertex algebra associated with the double Yangian in

type A as defined by Etingof and Kazhdan. We show that its center is a commutative

associative algebra and construct algebraically independent families of topological

generators of the center at the critical level.

1 Introduction

Let g be a simple Lie algebra over C and let ĝ be the corresponding affine Kac–Moody al-

gebra. The vacuum module Vκ(g) at the level κ ∈ C over ĝ has a vertex algebra structure;

see, e.g., books by E. Frenkel and D. Ben-Zvi [12], I. Frenkel, J. Lepowsky and A. Meur-

man [13] and V. Kac [18]. The center of any vertex algebra is a commutative associative

algebra. Unless the level κ is critical, the center of the affine vertex algebra Vκ(g) is triv-

ial (coincides with C). By a theorem of B. Feigin and E. Frenkel [7], the center at the

critical level z(ĝ) is an algebra of polynomials in infinitely many variables. Moreover, the

algebra z(ĝ) is canonically isomorphic to the algebra of functions on a space of opers; see

E. Frenkel [11, Ch. 4] for a detailed exposition.

Explicit formulas for generators of the Feigin–Frenkel center z(ĝ) were given in [2] and

[3] for type A (see also [24]), in [22] for types B, C and D; and in [25] for type G2. Due

to general results of [8], [9] and [28], these formulas lead to explicit constructions of com-

mutative subalgebras of the universal enveloping algebra U(g) and to explicit higher order

Hamiltonians and their eigenvalues on the Bethe vectors in the Gaudin model associated

with g; see also [14], [23].

A general definition of quantum vertex algebra was given by P. Etingof and D. Kazh-

dan [6]. In accordance with [6], a quantum affine vertex algebra can be associated with

a rational, trigonometric or elliptic R-matrix. In particular, a suitably normalized Yang

R-matrix gives rise to a quantum vertex algebra structure on the vacuum module Vc(glN)

at the level c ∈ C over the double Yangian DY(glN) of type A.
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In this paper we introduce the center z(V ) of an arbitrary quantum vertex algebra V and

describe its general properties. We show that the center is an S-commutative associative

algebra; see (3.27) for the definition. In general, it need not be commutative. Our main

focus will be on the center z
(
Vc(glN)

)
of the quantum affine vertex algebra Vc(glN). The

vacuum module is isomorphic to the dual Yangian Y+(glN), as a vector space, and we

prove that the center can be identified with a commutative subalgebra of Y+(glN). This

subalgebra is invariant under a derivation D, the translation operator, arising from the

quantum vertex algebra structure on the vacuum module.

We show that the center at the critical level c = −N possesses large families of alge-

braically independent topological generators so that a quantum analogue of the Feigin–

Frenkel theorem holds. Moreover, unlike the center of the affine vertex algebra V−N(glN),

it turns out to be possible to produce such families parameterized by arbitrary partitions

with at most N parts. The construction depends of the fusion procedure originated in the

work of A. Jucys [17] for the symmetric group providing factorized R-matrix formulas for

all primitive idempotents. These families thus generalize to the context of quantum vertex

algebras the quantum immanants of A. Okounkov [27] which form a basis of the center of

the universal enveloping algebra U(glN).

By taking a classical limit we recover explicit generators of the center of the affine

vertex algebra V−N(glN); cf. [2], [3] and [29]. In principle, this approach is also applicable

to construct generators of the Feigin–Frenkel center z(ĝ) for an arbitrary simple Lie algebra

g. A required ingredient is a fusion procedure providing R-matrix formulas for idempotents

in appropriate centralizer algebras. This is already in place for the types B, C and D so

that the construction of [22] can be reproduced in this way.

We also give a construction of central elements of a completed double Yangian at the

critical level prompted by the quantum vertex algebra structure. They are used to show

that the center z
(
Vc(glN)

)
is commutative. If the level is not critical, then the center

is trivial in the sense that its generators are elements associated with the center of the

Lie algebra glN . They are found as the coefficients of the quantum determinant of the

generator matrix of the dual Yangian.

Our arguments are based on explicit constructions of elements of the center of the

quantum affine vertex algebra and rely on the R-matrix calculations used in [10] to produce

explicit Sugawara operators for the quantum affine algebra in type A at the critical level.

The research reported in this paper was supported by the South China University of

Technology in Guangzhou. This work was finalized during the third author’s visit to the

University. He would like to thank the Center of Quantum Algebra and the School of

Mathematical Sciences for the warm hospitality during his visit.
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2 Vacuum module for the double Yangian

We recall and reproduce some basic properties of the double Yangian for glN . Our def-

initions follow Etingof and Kazhdan [5], [6] and Iohara [16], where a centrally extended

double Yangian over the ring C [[h]] was considered. To simplify our formulas, we first

define this algebra over C (formally putting h = −1 in the notation of [16]), although this

will require a certain completion; cf. Nazarov [26]. We will return to the closely related

definition of the double Yangian over C [[h]] to study the associated structure of quantum

vertex algebra in Sec. 4.

2.1 Yangian and dual Yangian for glN

The Yangian Y(glN) is the associative algebra with generators t
(r)
ij , where 1 6 i, j 6 N

and r = 1, 2, . . . and the defining relations

[t
(r)
ij , t

(s)
kl ] =

min{r,s}∑
a=1

(
t
(a−1)
kj t

(r+s−a)
il − t(r+s−a)

kj t
(a−1)
il

)
, (2.1)

where t
(0)
ij = δij. In terms of the formal series

tij(u) = δij +
∞∑
r=1

t
(r)
ij u

−r ∈ Y(glN)[[u−1]]

the defining relations can be written as

(u− v) [tij(u), tkl(v)] = tkj(u) til(v)− tkj(v) til(u). (2.2)

They admit the following matrix form. Consider the Yang R-matrix R(u), which is a

rational function in a complex parameter u with values in the tensor product algebra

EndCN ⊗ EndCN defined by

R(u) = 1− P u−1, (2.3)

where P is the permutation operator in CN ⊗ CN . Then (2.1) is equivalent to the RTT

relation

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v), (2.4)

where

T (u) =
N∑

i,j=1

eij ⊗ tij(u) ∈ EndCN ⊗ Y(glN)[[u−1]] (2.5)

and the eij are the matrix units. We use a subscript to indicate a copy of the matrix of

the form (2.5) in the multiple tensor product algebra

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

⊗Y(glN)[[u−1]] (2.6)
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so that

Ta(u) =
N∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a) ⊗ tij(u). (2.7)

We take m = 2 for the defining relations (2.4).

This notation for elements of algebras of the form (2.6) will be extended as follows. For

an element

C =
N∑

i,j,r,s=1

cijrs eij ⊗ ers ∈ EndCN ⊗ EndCN ,

and any two indices a, b ∈ {1, . . . ,m} such that a 6= b, we denote by Cab the element of

the algebra (EndCN)⊗m with m > 2 given by

Cab =
N∑

i,j,r,s=1

cijrs (eij)a (ers)b, (eij)a = 1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a). (2.8)

We regard the matrix transposition as the linear map

t : EndCN → EndCN , eij 7→ eji.

For any a ∈ {1, . . . ,m} we will denote by ta the corresponding partial transposition on the

algebra (2.6) which acts as t on the a-th copy of EndCN and as the identity map on all

the other tensor factors.

The algebra Y(glN) possesses a natural ascending filtration defined by deg t
(r)
ij = r − 1

for all r > 1. Denote by gr Y(glN) the associated graded algebra. We have the isomorphism

gr Y(glN) ∼= U
(
glN [t]

)
. The image t̄

(r)
ij of the generator t

(r)
ij in the (r − 1)-th component

of the graded algebra gr Y(glN) corresponds to the element Eij[r − 1] of U
(
glN [t]

)
, where

the Eij are the standard basis elements of glN and we use the notation X[r] = Xtr for

X ∈ glN and any r ∈ Z .

Let E = [Eij] denote the matrix whose (i, j) entry is the element Eij of U(glN). For

any a ∈ C the mapping

eva : T (u) 7→ 1 + E (u− a)−1, (2.9)

defines a homomorphism Y(glN) → U(glN) known as the evaluation homomorphism. In

terms of generators, eva : t
(r)
ij 7→ Eij a

r−1.

For more details on the origins, structure and representations of the Yangian see [21].

The dual Yangian Y+(glN) can be defined as the associative algebra with generators

t
(−r)
ij , where 1 6 i, j 6 N and r = 1, 2, . . . subject to the defining relations

[t
(−r)
ij , t

(−s)
kl ] = δkj t

(−r−s)
il − δil t(−r−s)kj +

min{r,s}∑
a=1

(
t
(−r−s+a−1)
kj t

(−a)
il − t(−a)

kj t
(−r−s+a−1)
il

)
. (2.10)
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Combining the generators into the formal power series

t+ij(u) = δij −
∞∑
r=1

t
(−r)
ij ur−1 ∈ Y+(glN)[[u]]

we can write the defining relations as

(u− v) [t+ij(u), t+kl(v)] = t+kj(u) t+il (v)− t+kj(v) t+il (u) (2.11)

which thus take the same form as (2.2). So they are equivalent to

R(u− v)T+
1 (u)T+

2 (v) = T+
2 (v)T+

1 (u)R(u− v) (2.12)

as in (2.4), where we use the Yang R-matrix (2.3) and

T+(u) =
N∑

i,j=1

eij ⊗ t+ij(u) ∈ EndCN ⊗ Y+(glN)[[u]]. (2.13)

Consider the ascending filtration on the dual Yangian Y+(glN) defined by deg t
(−r)
ij = −r

for all r > 1. We have the isomorphism for the associated graded algebra

gr Y+(glN) ∼= U
(
t−1glN [t−1]

)
. (2.14)

The image t̄
(−r)
ij of the generator t

(−r)
ij in the (−r)-th component of the graded algebra

gr Y+(glN) corresponds to the element Eij[−r] of U
(
t−1glN [t−1]

)
. The isomorphism relies

on the Poincaré–Birkhoff–Witt theorem for Y+(glN) which can be proved in a way similar

to the Yangian; cf. [21, Ch. 1] and references therein. We will give a more general proof

below in the context of the double Yangian which would imply (2.14); see Corollary 2.3.

For any nonzero a ∈ C the mapping

eva : T+(u) 7→ 1 + E (u− a)−1, (2.15)

defines the evaluation homomorphism Y+(glN) → U(glN). We assume an expansion into

a power series in u so that in terms of generators it takes the form eva : t
(−r)
ij 7→ Eij a

−r.

2.2 Double Yangian for glN

The double Yangian DY(glN) for glN is defined as the associative algebra generated by

the central element C and elements t
(r)
ij and t

(−r)
ij , where 1 6 i, j 6 N and r = 1, 2, . . . ,

subject to the defining relations written in terms of the generator matrices (2.5) and (2.13)

as follows; see [5], [6] and [16]. They are given by (2.4), (2.12) together with the relation

R
(
u− v + C/2

)
T1(u)T+

2 (v) = T+
2 (v)T1(u)R

(
u− v − C/2

)
, (2.16)
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where

R(u) = g(u)R(u) = g(u)
(
1− P u−1

)
(2.17)

and

g(u) = 1 +
∞∑
i=1

gi u
−i, gi ∈ C , (2.18)

is a formal power series in u−1 whose coefficients are uniquely determined by the relation

g(u+N) = g(u) (1− u−2). (2.19)

Its first few terms are

g(u) = 1 +
1

N
u−1 +

N2 + 1

2N2
u−2 +

N4 + 4N2 + 1

6N3
u−3 + . . . .

The relation (2.19) ensures that the R-matrix R(u) = R12(u) possesses the crossing sym-

metry properties(
R12(u)−1

)t1 R12

(
u+N

)t1 = 1 and
(
R12(u)−1

)t2 R12

(
u+N

)t2 = 1. (2.20)

Moreover, the following unitarity property holds

R12(u)R12(−u) = 1. (2.21)

Indeed, replacing u with −u−N in (2.19) we get

g(−u) = g(−u−N)
(
1− (u+N)−2

)
and so

g(u)g(−u) (1− u−2) = g(u+N)g(−u−N)
(
1− (u+N)−2

)
.

This means that the series on the left hand side is invariant under the shift u 7→ u + N

which is only possible when

g(u)g(−u) (1− u−2) = 1

thus implying (2.21). The series g(u) can be defined equivalently as a unique formal power

series of the form (2.18) satisfying the relation

g(u) g(u+ 1) . . . g(u+N − 1) =
(
1− u−1

)−1
. (2.22)

To see the equivalence of the definitions, observe that by (2.19), the series G(u) defined by

the left hand side of (2.22) satisfies G(u+ 1) = G(u) (1− u−2). However, G(u) is uniquely

determined by this relation and so coincides with the right hand side of (2.22).
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Given any c ∈ C we will introduce the double Yangian at the level c as the quotient

DYc(glN) of DY(glN) by the ideal generated by C − c. In particular, we have the natural

epimorphism

ϕ : DY(glN)→ DY0(glN), C 7→ 0, t
(r)
ij 7→ t

(r)
ij . (2.23)

Equip the Lie algebra glN with the invariant symmetric bilinear form given by

〈X, Y 〉 = tr(XY )− 1

N
trX trY, X, Y ∈ glN .

Consider the corresponding affine Kac–Moody algebra ĝlN = glN [t, t−1]⊕ CK defined by

the commutation relations[
Eij[r], Ekl[s ]

]
= δkj Ei l[r + s ]− δi lEkj[r + s ] + rδr,−sK

(
δkj δi l −

δij δkl
N

)
, (2.24)

and the element K is central.

Introduce the ascending filtration on the double Yangian DY(glN) by

deg t
(r)
ij = r − 1 and deg t

(−r)
ij = −r (2.25)

for all r > 1; the degree of the central element C is defined to be equal to zero. Denote by

gr DY(glN) the corresponding graded algebra. We will use the notation t̄
(r)
ij and t̄

(−r)
ij for

the images of the generators in the respective components of the graded algebra and let C

be the image of C in the zeroth component.

Proposition 2.1. The assignments

Eij[r − 1] 7→ t̄
(r)
ij , Eij[−r] 7→ t̄

(−r)
ij and K 7→ C (2.26)

with r > 1 define a homomorphism

U(ĝlN)→ gr DY(glN). (2.27)

Proof. As we pointed out in the previous sections, there are homomorphisms

U
(
glN [t]

)
→ gr Y(glN) and U

(
t−1glN [t−1]

)
→ gr Y+(glN)

which are defined by the assignments (2.26). We will now use the defining relations (2.16)

to verify that the generators t̄
(r)
ij and t̄

(−s)
kl with r, s > 1 of the graded algebra satisfy the

desired relations in U(ĝlN). Introduce re-scaled generators of DY(glN) by setting

t̃
(r)
ij = hr−1 t

(r)
ij and t̃

(−r)
ij = h−r t

(−r)
ij
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for r > 1, where h is a complex-valued parameter. The relations satisfied by t̄
(r)
ij and t̄

(−s)
kl

in the graded algebra gr DY(glN) will be recovered by calculating the relations between

t̃
(r)
ij and t̃

(−s)
kl and then taking the limit as h→ 0. Set

t̃ij(u) =
∞∑
r=1

t̃
(r)
ij u−r =

1

h

(
tij

(u
h

)
− δij

)
and

t̃+kl(v) =
∞∑
s=1

t̃
(−s)
kl vs−1 =

1

h

(
δkl − t+kl

(v
h

))
.

Write (2.16) in terms of the generating series:

g
(
u− v + C/2

) (
tij(u) t+kl(v)− 1

u− v + C/2
tkj(u) t+il (v)

)
= g
(
u− v − C/2

) (
t+kl(v) tij(u)− 1

u− v − C/2
t+kj(v) til(u)

)
. (2.28)

Note the expansion into a power series in (u− v)−1:

g
(
u− v − C/2

)
g
(
u− v + C/2

) = 1 +
C

N (u− v)2
+ . . . . (2.29)

Now replace u by u/h and v by v/h in (2.28) to get the corresponding relations between

the series t̃ij(u) and t̃+kl(v). We have

(
δij + ht̃ij(u)

)(
δkl − ht̃+kl(v)

)
− h

u− v + hC/2

(
δkj + ht̃kj(u)

)(
δil − ht̃+il (v)

)
−
((
δkl − ht̃+kl(v)

)(
δij + ht̃ij(u)

)
− h

u− v − hC/2
(
δkj − ht̃+kj(v)

)(
δil + ht̃il(u)

))
×
(

1 +
h2C

N (u− v)2
+ . . .

)
= 0.

As a power series in h, the left hand side is divisible by h2. Hence, dividing by h2 we get

the relation modulo h,[
t̃ij(u), t̃+kl(v)

]
≡ 1

u− v

(
δkj
(
t̃il(u) + t̃+il (v)

)
− δil

(
t̃kj(u) + t̃+kj(v)

))
+

C

N (u− v)2

(
N δkj δil − δij δkl

)
.
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Thus, taking the coefficients of u−rvs−1 with r, s > 1 on both sides, in the limit h → 0 in

the graded algebra we get

[
t̄

(r)
ij , t̄

(−s)
kl

]
=


δkj t̄

(r−s)
i l − δi l t̄ (r−s)

k j + (r − 1) δr,s+1C
(
δkj δi l −

δij δkl
N

)
if r > s,

δkj t̄
(r−s−1)
i l − δi l t̄ (r−s−1)

k j + (r − 1) δr,s+1 C
(
δkj δi l −

δij δkl
N

)
if r 6 s.

Comparing with (2.24), we may conclude that the assignments (2.26) define a homomor-

phism (2.27).

To equip the double Yangian with a Hopf algebra structure, we will need to use shifts

u 7→ u + a of the variable u. They are well-defined for the generator series tij(u) but not

for t+ij(u). So we will consider the completion Ŷ+(glN) of the dual Yangian with respect

to the descending filtration defined by setting the degree of t
(−r)
ij with r > 1 to be equal

to r. By the defining relations, the double Yangian DY(glN) is spanned over C [C] by the

products xy with x ∈ Y+(glN) and y ∈ Y(glN). This follows by an easy induction based

on the relation obtained by swapping the indices i and k in (2.28) and solving the system

of equations for tij(u) t+kl(v) and tkj(u) t+il (v). The extended double Yangian DY◦(glN) can

now be defined as the space of finite C [C]-linear combinations of all products of the form

xy with x ∈ Ŷ+(glN) and y ∈ Y(glN) with the multiplication extended by continuity from

the double Yangian.

The Hopf algebra structure on DY◦(glN) is defined by the coproduct

∆ : tij(u) 7→
N∑
k=1

tik
(
u+ C2/4

)
⊗ tkj

(
u− C1/4

)
,

∆ : t+ij(u) 7→
N∑
k=1

t+ik
(
u− C2/4

)
⊗ t+kj

(
u+ C1/4

)
,

∆ : C 7→ C ⊗ 1 + 1⊗ C,

where C1 = C ⊗ 1 and C2 = 1⊗ C; the antipode

S : T (u) 7→ T (u)−1, S : T+(u) 7→ T+(u)−1, S : C 7→ −C;

and the counit

ε : T (u) 7→ 1, ε : T+(u) 7→ 1, ε : C 7→ 0.

We are now in a position to prove the Poincaré–Birkhoff–Witt theorem for the double

Yangian. We will do this for a particular ordering ≺ on the set of generators. Observe

that due to the defining relations,[
t
(r)
ij , t

(s)
ij

]
= 0 and

[
t
(−r)
ij , t

(−s)
ij

]
= 0
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for all r, s > 1. Hence, a total ordering ≺ on the series tij(u) and t+ij(u) will induce a

well-defined total ordering on the generators (with the central element C included in the

ordering in an arbitrary way). We set t+ij(u) ≺ tkl(u) for all i, j, k, l. Furthermore, set

t+ij(u) ≺ t+kl(u) and tij(u) ≺ tkl(u) if and only if (i, j) ≺ (k, l) in the lexicographical order.

Theorem 2.2. Any element of the algebra DY(glN) can be written uniquely as a linear

combination of ordered monomials in the generators.

Proof. It follows by an easy induction from the defining relations (2.2), (2.11) and (2.28)

that the ordered monomials span the algebra DY(glN).

The next step is to demonstrate that the ordered monomials are linearly independent.

We consider the level zero algebra DY0(glN) first and follow an idea used by Etingof and

Kazhdan [4, Proposition 3.15] and by Nazarov [26, Proposition 2.2]. It is based on the

existence of the evaluation modules for DY0(glN): for each nonzero a ∈ C we have the

representation defined by

πa : DY0(glN)→ EndCN , t
(r)
ij 7→ ar−1eij, t

(−r)
ij 7→ a−r eij

for all r > 1. If there is a nontrivial linear combination of ordered monomials equal to

zero, we employ the coproduct on DY0(glN) to conclude that the image of this linear

combination is zero under any representation πa1 ⊗ . . . ⊗ πal with nonzero parameters ai.

This leads to a contradiction exactly as in [26] by considering the top degree components of

all monomials with respect to the filtration defined by (2.25) and by employing associated

evaluation modules over U
(
glN [t, t−1]

)
as implied by Proposition 2.1.

To show that ordered monomials are linearly independent in DY(glN), observe that

C 6= 0 due to the existence of the level 1 representations. Here we rely on the work by

Iohara [16] providing such representations in terms of the Drinfeld presentation of DY(glN)

to be written in terms of the RTT presentation via the Ding–Frenkel isomorphism. Now

prove by the induction on k > 1 that the powers 1, C, . . . , Ck are linearly independent.

Suppose that

dkC
k + · · ·+ d1C + d0 = 0, di ∈ C , dk 6= 0.

By applying the homomorphism ϕ defined in (2.23) we find that d0 = 0. If k = 1 then

this makes a contradiction since C 6= 0. Now suppose that k > 2 and apply the coproduct

map ∆ to get

dk (C ⊗ 1 + 1⊗ C)k + · · ·+ d1 (C ⊗ 1 + 1⊗ C) = 0.

This simplifies to

dk (kCk−1 ⊗ C + · · ·+ kC ⊗ Ck−1) + · · ·+ 2d2C ⊗ C = 0.

However, this is impossible since the powers 1, C, . . . , Ck−1 are linearly independent by

the induction hypothesis. Now suppose that a linear combination of ordered monomials is
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zero,

A(C) +
∑

A
r1... rp
i1j1... ipjp

(C)t
(r1)
i1j1

. . . t
(rp)
ipjp

= 0, (2.30)

where the summation is over a finite nonempty set of indices, A(C) is a polynomial in C,

and the coefficients A
r1... rp
i1j1... ipjp

(C) are nonzero polynomials in C. Regarding DY(glN) as a

subalgebra of DY◦(glN), apply the homomorphism ψ = (id ⊗ ϕ) ∆ to its elements. The

action on polynomials in C is given by

ψ : B(C) 7→ B(C)⊗ 1,

whereas the images of the generators t
(r)
ij under ψ are found from the expansions

tij(u) 7→
N∑
k=1

tik(u)⊗ tkj
(
u− C1/4

)
and t+ij(u) 7→

N∑
k=1

t+ik(u)⊗ t+kj
(
u+ C1/4

)
.

Let p0 be the maximum length of the monomials occurring in the linear combination in

(2.30) and let r0 be the maximum degree among the monomials of length p0. Now apply

the homomorphism ψ to the left hand side of (2.30) and use the defining relations of the

double Yangian to write the image as a (possibly infinite) linear combination of products

of the form x ⊗ y, where x and y are ordered monomials in the generators. The defining

relations and coproduct formulas imply that the part of this linear combination containing

the monomials y of length p0 and degree r0 has the form∑
A
r1... rp
i1j1... ipjp

(C)⊗ t(r1)
i1j1

. . . t
(rp)
ipjp

, (2.31)

where p = p0 and the sum of the degrees of the generators is equal to r0. On the other

hand, the ordered monomials t
(r1)
i1j1

. . . t
(rp)
ipjp

are linearly independent in DY(glN) over C , as

follows from the Poincaré–Birkhoff–Witt theorem for the level zero algebra DY0(glN) by the

application of the homomorphism (2.23). This implies that the coefficients A
r1... rp
i1j1... ipjp

(C) in

(2.31) must be zero, thus making a contradiction with the assumptions in (2.30). Therefore,

all ordered monomials are linearly independent.

Corollary 2.3. The homomorphism (2.27) is injective and so it defines an isomorphism

U(ĝlN) ∼= gr DY(glN). (2.32)

Proof. This is immediate from Theorem 2.2 and the Poincaré–Birkhoff–Witt theorem for

the algebra U(ĝlN).

2.3 Invariants of the extended vacuum module

Theorem 2.2 implies the vector space decomposition for the extended double Yangian as a

C [C]-module,

DY◦(glN) ∼= Ŷ+(glN)⊗ Y(glN). (2.33)
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Introduce the extended vacuum module V̂c(glN) at the level c as the quotient of the algebra

DY◦(glN) by the left ideal generated by C − c and all elements t
(r)
ij with r > 1. We let

1 denote the image of 1 in the quotient. As a vector space, V̂c(glN) is isomorphic to the

completed dual Yangian Ŷ+(glN) due to the decomposition (2.33).

Now assume that the level is critical, c = −N , and set V̂cri = V̂−N(glN). Introduce the

subspace of Y(glN)-invariants by

z(V̂cri) = {v ∈ V̂cri | tij(u)v = δij v}, (2.34)

so that any element of z(V̂cri) is annihilated by all operators t
(r)
ij with r > 1. We will discuss

the structure of the space z(V̂cri) below in Sec. 4.4 in the context of quantum vertex algebra

structure on V−N(glN). In particular, we will see that z(V̂cri) is a commutative associative

algebra which can be identified with a subalgebra of the completed dual Yangian Ŷ+(glN).

Our goal in this section is to construct some families of elements of z(V̂cri).

We will work with the tensor product algebra

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

⊗ Ŷ+(glN) (2.35)

and introduce the rational function in variables u1, . . . , um with values in (2.35) (with the

identity component in Ŷ+(glN)) by

R(u1, . . . , um) =
∏

16a<b6m

Rab(ua − ub), (2.36)

where the product is taken in the lexicographical order on the set of pairs (a, b). We point

out the identity

R(u1, . . . , um)T+
1 (u1) . . . T+

m(um) = T+
m(um) . . . T+

1 (u1)R(u1, . . . , um), (2.37)

implied by a repeated application of (2.12).

Suppose that µ is a Young diagram with m boxes whose length does not exceed N . For

a standard µ-tableau U with entries in {1, . . . ,m} introduce the contents ca = ca(U) for

a = 1, . . . ,m so that ca = j − i if a occupies the box (i, j) in U . Let eU ∈ C [Sm] be the

primitive idempotent associated with U through the use of the orthonormal Young bases

in the irreducible representations of Sm. The symmetric group Sm acts by permuting the

tensor factors in (CN)⊗m. Denote by EU the image of eU under this action. We will need an

expression for EU provided by the fusion procedure originated in [17]; see also [21, Sec. 6.4]

for more details and references. By a version of the procedure, the consecutive evaluations

of the function R(u1, . . . , um) are well-defined and the result is proportional to EU ,

R(u1, . . . , um)
∣∣
u1=c1

∣∣
u2=c2

. . .
∣∣
um=cm

= h(µ) EU , (2.38)
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where h(µ) is the product of all hook lengths of the boxes of µ.

Using the tensor product algebra (2.35), set

T+
µ (u) = tr1,...,m EU T+

1 (u+ c1) . . . T+
m(u+ cm). (2.39)

This is a power series in u whose coefficients are elements of the completed dual Yangian

Ŷ+(glN). The series (2.39) can be regarded as a Yangian extension of the quantum im-

manants of [27]. In particular, by the argument of [27, Sec. 3.4], this series does not depend

on the standard tableau U of shape µ thus justifying the notation.

Theorem 2.4. All coefficients of the series T+
µ (u)1 belong to the subspace of invariants

z(V̂cri) of the extended vacuum module.

Proof. Consider the tensor product algebra

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m+1

⊗ Ŷ+(glN) (2.40)

with the m+ 1 copies of EndCN labeled by 0, 1, . . . ,m. We need to verify the identity

T0(z)T+
µ (u)1 = T+

µ (u)1, (2.41)

where we identify the vector spaces V̂cri
∼= Ŷ+(glN). By the defining relations (2.16), for

all a = 1, . . . ,m we can write

T0(z)T+
a (u+ ca) = R0a(z − u− ca −N/2)−1 T+

a (u+ ca)T0(z)R0a(z − u− ca +N/2).

Hence, suppressing the arguments of the R-matrices we get

T0(z) tr1,...,m EU T+
1 (u+ c1) . . . T+

m(u+ cm)1

= tr1,...,m EU R
−1

01 . . . R
−1

0m T
+
1 (u+ c1) . . . T+

m(u+ cm)T0(z)R0m . . . R011

= tr1,...,m EU R
−1

01 . . . R
−1

0m T
+
1 (u+ c1) . . . T+

m(u+ cm)R0m . . . R011,

where the last equality holds since T0(z) acts as the identity operator on the subspace

End (CN)⊗ (m+1) ⊗ 1. Using the notation (2.36) we get

R(u1, . . . , um)R0m(u0 − um) . . . R01(u0 − u1)

= R01(u0 − u1) . . . R0m(u0 − um)R(u1, . . . , um), (2.42)

where u0 is another variable. This follows by a repeated application of the Yang–Baxter

equation

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u) (2.43)

13



satisfied by the Yang R-matrix. Relation (2.42) will remain valid if each factor R0a(u0−ua)
is replaced with R0a(u0 − ua). Hence, by the fusion procedure (2.38), the consecutive

evaluations ua = ca for a = 1, . . . ,m imply

EU R0m(u0 − cm) . . . R01(u0 − c1) = R01(u0 − c1) . . . R0m(u0 − cm) EU .

By inverting the R-matrices we also get

EU R01(u0 − c1)−1 . . . R0m(u0 − cm)−1 = R0m(u0 − cm)−1 . . . R01(u0 − c1)−1 EU .

Returning now to the calculation of T0(z)T+
µ (u)1, recall that EU is an idempotent and

use the cyclic property of trace together with (2.37) and (2.38) to write

tr1,...,mEUXY = tr1,...,mX
◦EU Y = tr1,...,mX

◦E2
U Y

= tr1,...,mEUXY ◦EU = tr1,...,mXY ◦E2
U = tr1,...,mXY ◦EU = tr1,...,mX EU Y,

where we set

X = R
−1

01 . . . R
−1

0m, Y = T+
1 (u+ c1) . . . T+

m(u+ cm)R0m . . . R01

and used the notation X◦ and Y ◦ for the same products written in the opposite order.

Thus, we can write

T0(z)T+
µ (u)1 = tr1,...,mX EU Y 1 = tr1,...,mX

t1...tm
(
EU Y

)t1...tm 1.

We have (
EU Y

)t1...tm = R
tm
0m . . . R

t1
01

(
EU T+

1 (u+ c1) . . . T+
m(u+ cm)

)t1...tm
and

X t1...tm =
(
R
−1

01

)t1
. . .
(
R
−1

0m

)tm
.

By the crossing symmetry (2.20), we have(
R
−1

0a

)ta
R
ta
0a = 1

for all a = 1, . . . ,m and so

T0(z)T+
µ (u)1 = tr1,...,m

(
EU T+

1 (u+ c1) . . . T+
m(u+ cm)

)t1...tm 1 = T+
µ (u)1

as required.

Note two important particular cases of Theorem 2.4 where µ is a row or column diagram.

In each case there is a unique standard tableau U , and the corresponding idempotents EU
coincide with the respective images H(m) and A(m) of the symmetrizer and anti-symmetrizer

h(m) =
1

m!

∑
s∈Sm

s and a(m) =
1

m!

∑
s∈Sm

sgn s · s

under the action of Sm on (CN)⊗m.
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Corollary 2.5. All coefficients of the series

tr1,...,mH
(m) T+

1 (u) . . . T+
m(u+m− 1) and tr1,...,mA

(m) T+
1 (u) . . . T+

m(u−m+ 1)

belong to the subspace of invariants z(V̂cri) of the extended vacuum module.

In the particular case m = N the second series coincides with the quantum determinant

qdetT+(u) of the matrix T+(u); see also Proposition 2.8 below.

One more family of elements of z(V̂cri) can be constructed by making use of the

well-known fact that the matrix M = T+(u)e−∂u with entries in the extended algebra

Ŷ+(glN)[[u, ∂u]] is a Manin matrix; see [1]. Namely, by the Newton identity [1, Theo-

rem 4], we have

∂z cdet(1 + zM) = cdet(1 + zM)
∞∑
m=0

(−z)m trMm+1, (2.44)

where

cdet(1 + zM) =
N∑
m=0

zm tr1,...,mA
(m)M1 . . .Mm.

Corollary 2.6. All coefficients of the series

trT+(u) . . . T+(u−m+ 1), m > 1,

belong to the subspace of invariants z(V̂cri) of the extended vacuum module.

Proof. Note that

Mm = T+(u) . . . T+(u−m+ 1) e−m∂u

so that the claim follows from (2.44).

Remark 2.7. The MacMahon Master Theorem for Manin matrices [15] implies a relation-

ship between the two families of Corollary 2.5:[
cdet(1− zM)

]−1
=

∞∑
m=0

zm tr1,...,mH
(m)M1 . . .Mm (2.45)

for M = T+(u)e−∂u ; see also [24] for another proof and a super-extension.

We have the following well-known properties of quantum determinants.

Proposition 2.8. The coefficients of the quantum determinants

qdetT (u) =
∑
σ∈SN

sgnσ · tσ(1)1(u) . . . tσ(N)N(u−N + 1), (2.46)

qdetT+(u) =
∑
σ∈SN

sgnσ · t+σ(1)1(u) . . . t+σ(N)N(u−N + 1), (2.47)
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belong to the center of the extended double Yangian DY◦(glN).1

Proof. The respective coefficients of qdetT (u) and qdetT+(u) are central in the Yangian

Y(glN) and completed dual Yangian Ŷ+(glN); see e.g. [21, Ch. 1]. Furthermore, in the

algebra (2.35) with m = N we have

A(N)T+
1 (u) . . . T+

N (u−N + 1) = A(N) qdetT+(u). (2.48)

Arguing as in the beginning of the proof of Theorem 2.4, and keeping the notation, we find

T0(z)A(N)T+
1 (u) . . . T+

N (u−N + 1)

= A(N)R
−1

01 . . . R
−1

0N T
+
1 (u) . . . T+

N (u−N + 1)T0(z)R0N . . . R01.

Now use the identity

A(N)R0N(v +N − 1) . . . R01(v) = A(N).

It is implied by (2.22) and the following property of the Yang R-matrix (2.3)

A(N)R0N(v +N − 1) . . . R01(v) = A(N) (1− v−1);

see e.g. [21, Ch. 1]. This proves that T0(z) commutes with qdetT+(u). By the same

calculation, T+
0 (z) commutes with qdetT (u).

Recall that the vacuum module at the critical level Vcri = V−N(glN) over the affine

Kac–Moody algebra ĝlN is defined as the quotient of U(ĝlN) by the left ideal generated by

glN [t] and K +N . The Feigin–Frenkel center is the subspace z(ĝlN) of invariants

z(ĝlN) = {v ∈ Vcri | glN [t]v = 0}. (2.49)

This subspace is a commutative associative algebra which can be identified with a subal-

gebra of U
(
t−1glN [t−1]

)
. By a theorem of Feigin and Frenkel [7], z(ĝlN) is an algebra of

polynomials in infinitely many variables; see [11] for a detailed exposition of these results.

Our goal now is to use a classical limit to reproduce a construction of elements of z(ĝlN);

cf. [29]. By Theorem 2.2, we can regard elements of the completed dual Yangian Ŷ+(glN)

as infinite linear combinations ∑
A
r1... rp
i1j1... ipjp

t
(r1)
i1j1

. . . t
(rp)
ipjp

1The corresponding result for the quantum affine algebra Uq(ĝln) stated in [10, Lemma 4.3] holds

for an arbitrary level as well (not just for the critical level). This follows from the property

f(x)f(xq2) . . . f(xq2n−2) = (1− x)/(1− xq2n−2) of the series f(x) used in the proof of that lemma.
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of ordered monomials over C , where all ri are negative integers. This shows that the

isomorphism (2.14) will hold true in the same form, if we replace Y+(glN) with the com-

pleted dual Yangian Ŷ+(glN) equipped with the inherited ascending filtration defined by

deg t
(−r)
ij = −r; see Corollary 2.3. Moreover, for any element S ∈ z(V̂cri) its image S in the

graded algebra, regarded as an element of U
(
t−1glN [t−1]

)
, belongs to the Feigin–Frenkel

center z(ĝlN). We will use Corollary 2.5 to construct appropriate linear combinations of

elements of z(V̂cri) whose graded images will be generators of z(ĝlN).

Extend the ascending filtration on the completed dual Yangian to the algebra of formal

series Ŷ+(glN)[[u, ∂u]] by setting deg u = 1 and deg ∂u = −1 so that the associated graded

algebra is isomorphic to U
(
t−1glN [t−1]

)
[[u, ∂u]]. Then the element

tr1,...,mA
(m)
(
1− T+

1 (u)e−∂u
)
. . .
(
1− T+

m(u)e−∂u
)

(2.50)

has degree −m and its image in the graded algebra coincides with

tr1,...,mA
(m)
(
∂u + E+(u)1

)
. . .
(
∂u + E+(u)m

)
, (2.51)

where

E+(u) =
∞∑
r=1

E[−r]ur−1. (2.52)

On the other hand, the element (2.50) equals

tr1,...,mA
(m)

m∑
k=0

∑
16i1<···<ik6m

(−1)k T+
i1

(u) . . . T+
ik

(u− k + 1)e−k∂u .

Transform this expression by applying conjugations by suitable elements of Sm and using

the cyclic property of trace to bring it to the form

tr1,...,mA
(m)

m∑
k=0

(−1)k
(
m

k

)
T+

1 (u) . . . T+
k (u− k + 1)e−k∂u .

Calculating partial traces of the anti-symmetrizer, we can write this as

m∑
k=0

(−1)k
(
N − k
m− k

)
tr1,...,k A

(k) T+
1 (u) . . . T+

k (u− k + 1)e−k∂u . (2.53)

By Corollary 2.5, we can conclude that all coefficients of (2.51) belong to z(ĝlN).

Together with a similar argument for the other two families of invariants in Corollar-

ies 2.5 and 2.6, we thus reproduce the following result on generators of z(ĝlN) from [2],

[3] and [24]; see Corollary 2.9 below. Alternatively, for those two families it can also be

derived with the use of the observation that M = ∂u + E+(u) is a Manin matrix and
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applying (2.44) and (2.45). Introduce the power series φma(u), ψma(u) and θma(u) by the

expansions:

tr1,...,mA
(m)
(
∂u + E+(u)1

)
. . .
(
∂u + E+(u)m

)
= φm0(u) ∂mu + · · ·+ φmm(u), (2.54)

tr1,...,mH
(m)
(
∂u + E+(u)1

)
. . .
(
∂u + E+(u)m

)
= ψm0(u) ∂mu + · · ·+ ψmm(u), (2.55)

and

tr
(
∂u + E+(u)

)m
= θm0(u) ∂mu + θm1(u) ∂m−1

u + · · ·+ θmm(u). (2.56)

Define their coefficients by

φmm(u) =
∞∑
r=0

φ(r)
mmu

r, ψmm(u) =
∞∑
r=0

ψ(r)
mmu

r and θmm(u) =
∞∑
r=0

θ(r)
mmu

r.

Corollary 2.9. Each family φ
(r)
mm, ψ

(r)
mm and θ

(r)
mm with m = 1, . . . , N and r = 0, 1, . . . is

algebraically independent and generates the algebra z(ĝlN).

Proof. The algebraic independence follows by considering the symbols of the elements in

the symmetric algebra as in [11, Ch. 3].

3 Quantum vertex algebras

We will follow [6] to introduce quantum vertex algebras. We will be most concerned with

the center of a quantum vertex algebra which we introduce by analogy with vertex algebra

theory. Our goal is to use the constructions of invariants of the extended vacuum module

given in Sec. 2.3 to describe the structure of the center; see Sec. 4 below.

3.1 Definition and basic properties

Let h be a formal parameter, V0 a complex vector space and V = V0[[h]] a topologically

free C[[h]]-module. Denote by Vh((z)) the space of all Laurent series

v(z) =
∑
r∈Z

vrz
−r−1 ∈ V [[z±1]]

satisfying vr → 0 as r → ∞, in the h-adic topology. More precisely, Vh((z)) consists of

all Laurent series v(z) satisfying the following condition: for every n ∈ Z>0 there exists

s ∈ Z such that r > s implies vr ∈ hnV . Note that the space Vh((z)) can be identified

with V0((z))[[h]].

Definition 3.1. Let V be a topologically free C[[h]]-module. A quantum vertex algebra V

over C[[h]] is the following data.
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(a) A C[[h]]-module map (the vertex operators)

Y : V ⊗ V → Vh((z)), v ⊗ w 7→ Y (z)(v ⊗ w). (3.1)

For any v ∈ V the map Y (v, z) : V → Vh((z)) is then defined by

Y (v, z)w = Y (z)(v ⊗ w)

and which satisfies the weak associativity property: for any u, v, w ∈ V and n ∈ Z>0

there exists ` ∈ Z>0 such that

(z0 +z2)` Y (v, z0 +z2)Y (w, z2)u−(z0 +z2)` Y
(
Y (v, z0)w, z2

)
u ∈ hnV [[z±1

0 , z±1
2 ]]. (3.2)

(b) A vector 1 ∈ V (the vacuum vector) which satisfies

Y (1, z)v = v for all v ∈ V, (3.3)

and for any v ∈ V the series Y (v, z)1 is a Taylor series in z with the property

Y (v, z)1
∣∣
z=0

= v. (3.4)

(c) A C[[h]]-module map D : V → V (the translation operator) which satisfies

D1 = 0; (3.5)

d

dz
Y (v, z) = [D, Y (v, z)] for all v ∈ V. (3.6)

(d) A C[[h]]-module map S : V ⊗ V → V ⊗ V ⊗ C((z)) which satisfies

S(z)(v ⊗ w)− v ⊗ w ⊗ 1 ∈ hV ⊗ V ⊗ C((z)) for v, w ∈ V, (3.7)

[D ⊗ 1,S(z)] = − d

dz
S(z), (3.8)

the Yang–Baxter equation

S12(z1)S13(z1 + z2)S23(z2) = S23(z2)S13(z1 + z2)S12(z1), (3.9)

the unitarity condition

S21(z) = S−1(−z), (3.10)

and the S-locality: for any v, w ∈ V and n ∈ Z>0 there exists ` ∈ Z>0 such that for

any u ∈ V

(z1 − z2)` Y (z1)
(
1⊗ Y (z2)

)(
S(z1 − z2)(v ⊗ w)⊗ u

)
− (z1 − z2)` Y (z2)

(
1⊗ Y (z1)

)
(w ⊗ v ⊗ u) ∈ hnV [[z±1

1 , z±1
2 ]]. (3.11)
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In the relations used in Definition 3.1 we applied a common expansion convention: for

` < 0 an expression of the form (z ± w)` should be expanded into a Taylor series of the

variable appearing on the right. For example,

(z − w)−1 =
∑
r>0

wr

zr+1
∈ C((z))[[w]] and (w − z)−1 =

∑
r>0

zr

wr+1
∈ C((w))[[z]].

We will apply this convention throughout the paper, unless stated otherwise. Also, the

tensor products are understood as h-adically completed. In particular, V ⊗ V denotes the

space (V0 ⊗ V0)[[h]] and V ⊗ V ⊗ C((z)) denotes the space
(
V0 ⊗ V0 ⊗ C((z))

)
[[h]].

For any r ∈ Z the r-product vrw of elements v and w of V is defined as the Laurent

coefficient of the series

Y (v, z)w = Y (z)(v ⊗ w) =
∑
r∈Z

(vrw) z−r−1.

It is clear from Definition 3.1 that the quotient V = V/hV of a quantum vertex algebra

is a vertex algebra, as defined, e.g. in [12], [13] and [18].

Remark 3.2. In the original definition of the quantum VOA in [6], the hexagon identity

S(z1)
(
Y (z2)⊗ 1

)
=
(
Y (z2)⊗ 1

)
S23(z1)S13(z2 + z1) (3.12)

was considered instead of the weak associativity property (3.2). It was proved therein

that (3.12) implies (3.2). Furthermore, the authors introduced the notion of nondegenerate

vertex algebra and proved that if the other axioms hold, then the hexagon identity is

equivalent to the weak associativity property when V/hV is a nondegenerate vertex algebra.

Remark 3.3. A more general notion of the ~-adic (weak ) quantum vertex algebra was

studied in [20]. The author proved that weak associativity (3.2) and a certain weaker form

of the S-locality (3.11) imply the Jacobi identity

z−1
0 δ

(
z2 − z1

z0

)
Y (w, z2)Y (v, z1)u

− z−1
0 δ

(
z1 − z2

−z0

)
Y (z1)

(
1⊗ Y (z2)

)(
S(−z0)(v ⊗ w)⊗ u

)
= z−1

1 δ

(
z2 − z0

z1

)
Y
(
Y (w, z0)v, z1

)
u (3.13)

so it holds for any elements u, v, w of a quantum vertex algebra V . On the other hand, the

S-locality and weak associativity can be recovered from (3.13) by using properties of the

formal δ-function defined by

δ(z) =
∑
r∈Z

zr.
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In particular, since Y (w, z0)v ∈ Vh((z0)), for every n > 0 there exists ` > 0 such that

z`0Y (w, z0)v is a Taylor series in z0 modulo hnV [[z±1
0 ]]. By taking the residue Resz0 z

`
0 in

(3.13) we recover the S-locality (3.11).

As with the vertex algebra theory, the translation operator D is determined by the

vertex operators. Namely, suppose that v and w are elements of a quantum vertex algebra

V . By applying (3.6) to the vector w and considering the coefficient of z−r−1 we get

− rvr−1w = Dvrw − vrDw for all r ∈ Z. (3.14)

Now taking w = 1, r = −1 in (3.14) and using (3.4) and (3.5) we obtain

Dv = v−21 for all v ∈ V. (3.15)

3.2 The center of a quantum vertex algebra

Let V be a vertex algebra. Recall that the center of V is defined by

z(V ) =
{
v ∈ V | wrv = 0 for all w ∈ V and all r > 0

}
; (3.16)

see, e.g., [11] and [12]. Equivalently, in terms of the vertex operators we have

z(V ) =
{
v ∈ V | [Y (v, z1), Y (w, z2)] = 0 for all w ∈ V

}
.

Consequently, the center of a vertex algebra has a structure of a unital commutative associa-

tive algebra equipped with a derivation. The multiplication is defined by the (−1)-product

v · w = v−1w for v, w ∈ V .

We will now introduce a quantum version of z(V ). Let V be a quantum vertex algebra.

Define the center of V as the subspace

z(V ) = {v ∈ V | wrv = 0 for all w ∈ V and all r > 0} . (3.17)

Proposition 3.4. Let V be a quantum vertex algebra. For any element v ∈ V and for any

w, u ∈ z(V ) we have

Y (v, z0 + z2)Y (w, z2)u = Y
(
Y (v, z0)w, z2

)
u. (3.18)

Proof. By (3.2) for every n > 0 there exists ` > 0 such that

(z0 + z2)`Y (v, z0 + z2)Y (w, z2)u− (z0 + z2)`Y
(
Y (v, z0)w, z2

)
u ∈ hnV [[z±1

0 , z±1
2 ]]. (3.19)

Set

A(z0, z2) = Y (v, z0 + z2)Y (w, z2)u and B(z0, z2) = Y
(
Y (v, z0)w, z2

)
u.
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The definition of the center (3.17), together with the assumptions w, u ∈ z(V ), imply

B(z0, z2) ∈ V [[z0, z2]]. Similarly, we have Y (w, z2)u ∈ V [[z2]] because u ∈ z(V ) and so

A(z0, z2) ∈ V ((z0))[[z2]]. However, by (3.1) we have Y (a, z)b ∈ Vh((z)) for all a, b ∈ V , and

hence A(z0, z2) ∈ V0((z0))[[h]][[z2]]. Furthermore, observe that (z0 + z2)±` ∈ C((z0))((z2)).

Since V0 is a vector space over C, we may regard VF = V0((z0))((h))((z2)) as a vector

space over the field F = C((z0))((h))((z2)). By the above argument,

A(z0, z2), B(z0, z2) ∈ VF and (z0 + z2)±` ∈ F.

Therefore, multiplying (3.19) by (z0 + z2)−` ∈ C((z0))((z2)) ⊂ F we find

Y (v, z0 + z2)Y (w, z2)u− Y
(
Y (v, z0)w, z2

)
u ∈ hnV [[z±1

0 , z±1
2 ]]. (3.20)

Relation (3.20) holds for all n > 0 which implies

Y (v, z0 + z2)Y (w, z2)u− Y
(
Y (v, z0)w, z2

)
u = 0,

as required.

We point out some consequences of Proposition 3.4. Observe that the right hand side

of (3.18) is a Taylor series in the variables z0, z2:

Y
(
Y (v, z0)w, z2

)
u =

∑
m,n<0

(vmw)nu z
−m−1
0 z−n−1

2 . (3.21)

The left hand side of (3.18) can be written as

Y (v, z0 + z2)Y (w, z2)u =
∑
r∈Z
s<0

vrwsu (z0 + z2)−r−1z−s−1
2

=
∑
r,s<0

vrwsu (z0 + z2)−r−1z−s−1
2 +

∑
r>0
s<0

vrwsu (z0 + z2)−r−1z−s−1
2 . (3.22)

Since the expressions in (3.21) and (3.22) are equal by (3.18), we get∑
r>0
s<0

vrwsu(z0 + z2)−r−1z−s−1
2 = 0 and (3.23)

∑
r,s<0

vrwsu(z0 + z2)−r−1z−s−1
2 =

∑
m,n<0

(vmw)nuz
−m−1
0 z−n−1

2 . (3.24)

Proposition 3.5. The center of a quantum vertex algebra is closed under all s-products

with s ∈ Z.
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Proof. Let v ∈ V be an element of a quantum vertex algebra V and let w, u ∈ z(V ). We

can write (3.23) as

0 =
∑
r>0
s<0

vrwsu(z0 + z2)−r−1z−s−1
2 =

∑
r>0
s<0

∑
`>0

(
−r − 1

`

)
vrwsuz

−r−`−1
0 z`−s−1

2 . (3.25)

The coefficient of z−1
0 in (3.25) is zero and so v0wsu = 0 for all s ∈ Z (note that wsu = 0 for

s > 0). By taking the coefficient of z−2
0 we find that v1wsu = 0 for all s ∈ Z. Continuing

by the induction on the power of z0 in (3.25) we conclude that vrwsu = 0 for all s ∈ Z and

r > 0. Hence, wsu ∈ z(V ) for all s ∈ Z so the proposition follows.

Define the product z(V ) ⊗ z(V ) → z(V ) on the center of a quantum vertex algebra V

by setting

w · u = w−1u for any w, u ∈ z(V ). (3.26)

By Proposition 3.5 the product is well-defined.

Proposition 3.6. The product (3.26) defines the structure of a unital associative algebra

on z(V ). Moreover, this algebra is equipped with a derivation defined as the restriction of

the translation operator D.

Proof. Let v, w, u be arbitrary elements of z(V ). By taking the constant terms in (3.24) we

get (v ·w) · u = v · (w · u). Furthermore, (3.3) implies 1 · v = v, while (3.4) implies v · 1 = v

and 1 ∈ z(V ), so 1 is the identity in the associative algebra z(V ).

Taking r > 0 in (3.14), we find that Dw ∈ z(V ) for any w ∈ z(V ) so that the restriction

of D is a well-defined operator on z(V ). By setting w = 1 and considering the coefficient

of z0 in (3.24) we get v−21−1u = (v−21)−1u for all v, u ∈ z(V ). Therefore, using (3.15) and

vacuum axiom (3.3) we calculate

(Dv) · u = (Dv)−1u = (v−21)−1u = v−21−1u = v−2u.

Using (3.14) with r = −1 we can write this as Dv−1u− v−1Du = D(v ·u)− v ·D(u). Since

D1 = 0 by (3.5), we conclude that D : z(V )→ z(V ) is a derivation.

The final result of this section will demonstrate that the center of a quantum vertex

algebra is S-commutative, as stated in the next proposition. This replaces the commuta-

tivity property of the center of a vertex algebra in the quantum case. In general, the center

of a quantum vertex algebra need not be commutative, as demonstrated by Proposition 4.2

below.

Proposition 3.7. Let V be a quantum vertex algebra. For any w ∈ V and any v, u ∈ z(V )

we have

Y (z1)
(
1⊗ Y (z2)

)(
S(z1 − z2)(v ⊗ w)⊗ u

)
= Y (z2)

(
1⊗ Y (z1)

)
(w ⊗ v ⊗ u). (3.27)
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Proof. By (3.11) for any w ∈ V , v ∈ z(V ) and n > 0 there exists ` > 0 such that for any

u ∈ z(V ) we have

(z1 − z2)` Y (z1)
(
1⊗ Y (z2)

)(
S(z1 − z2)(v ⊗ w)⊗ u

)
(3.28)

− (z1 − z2)` Y (z2)
(
1⊗ Y (z1)

)
(w ⊗ v ⊗ u) ∈ hnV [[z±1

1 , z±1
2 ]]. (3.29)

Since v and u lie in the center of V and the center is closed under all s-products by

Proposition 3.5, the expression Y (z1)(v⊗u) occurring in (3.29) is a Taylor series in z1 with

coefficients in z(V ). Therefore,

Y (z2)
(
1⊗ Y (z1)

)
(w ⊗ v ⊗ u) ∈ V [[z1, z2]].

Now consider (3.28). Recall that S(z)(a ⊗ b) ∈ V ⊗ V ⊗ C((z)) for any a, b ∈ V . Since

u ∈ z(V ), the expression
(
1⊗Y (z2)

)(
S(z1− z2)(v⊗w)⊗ u

)
lies in (V0⊗V0)((z1))[[h]][[z2]]

and can be written as ∑
k>0

(∑
fin

v
(1)
k ⊗ v

(2)
k ⊗ ak(z1 − z2)

)
hk, (3.30)

where the internal sum is finite and denotes an element of V0⊗V0⊗C((z1))[[z2]]. Applying

the operator Y (z1) to (3.30) we get∑
k>0

(∑
fin

Y (v
(1)
k , z1)v

(2)
k ⊗ ak(z1 − z2)

)
hk. (3.31)

For every m > 0 the coefficient of zm2 in ak(z1 − z2) lies in C[z−1
1 ], so the internal finite

sum is an element of Vh((z1))[[z2]] ≡ V0((z1))[[h]][[z2]] for every k > 0. Hence, we conclude

that (3.31) lies in V0((z1))[[h]][[z2]]. The proof is now completed as for Proposition 3.4 by

multiplying the expression which occurs in (3.28) and (3.29) by (z1 − z2)−`.

Remark 3.8. By the definition of z(V ), the center z(V ) of the vertex algebra V = V/hV

coincides with z(V )/h z(V ). Hence, due to the property (3.7) of the map S, we recover

from Proposition 3.7 that the product on z(V ) is commutative.

4 Quantum affine vertex algebra

Following [6] we introduce the quantum vertex algebra associated with the double Yangian

for glN . In accordance with the general definitions of Sec. 3, we will consider this algebra

as a module over C [[h]]. So we will start by restating definitions of Sec. 2.2 in this context

and then verify the axioms for the quantum vertex algebra on the vacuum module.
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4.1 Double Yangian over C[[h]]

From now on we will work with algebras and modules over C [[h]] and keep the same

notation for the objects associated with the double Yangian DY(glN) as in Sec. 2.2. The

definitions of the algebras are readily translated into the C [[h]]-module context by the

formal re-scaling u 7→ u/h of the ‘spectral parameter’ and generators

t
(r)
ij 7→ hr−1 t

(r)
ij , t

(−r)
ij 7→ h−r t

(−r)
ij , C 7→ C,

for r > 1. Conversely, the formal evaluation h = 1 can be used to recover some of the

definitions and formulas of Sec. 2.2. The Yang R-matrix (2.3) now takes the form

R(u) = 1− P hu−1, (4.1)

while for the normalized R-matrix (2.17) we have

R(u) = g(u/h)
(
1− P hu−1

)
. (4.2)

The double Yangian DY(glN) is now defined as the associative algebra over C [[h]]

generated by the central element C and elements t
(r)
ij and t

(−r)
ij , where 1 6 i, j 6 N and

r = 1, 2, . . . , subject to the defining relations

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v), (4.3)

R(u− v)T+
1 (u)T+

2 (v) = T+
2 (v)T+

1 (u)R(u− v), (4.4)

R
(
u− v + hC/2

)
T1(u)T+

2 (v) = T+
2 (v)T1(u)R

(
u− v − hC/2

)
, (4.5)

where the matrices T (u) and T+(u) are given by

T (u) =
N∑

i,j=1

eij ⊗ tij(u) and T+(u) =
N∑

i,j=1

eij ⊗ t+ij(u) (4.6)

with

tij(u) = δij + h
∞∑
r=1

t
(r)
ij u

−r and t+ij(u) = δij − h
∞∑
r=1

t
(−r)
ij ur−1.

The coproduct now takes the form

∆ : tij(u) 7→
N∑
k=1

tik
(
u+ hC2/4

)
⊗ tkj

(
u− hC1/4

)
,

∆ : t+ij(u) 7→
N∑
k=1

t+ik
(
u− hC2/4

)
⊗ t+kj

(
u+ hC1/4

)
,

∆ : C 7→ C ⊗ 1 + 1⊗ C,
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where the tensor products are understood as h-adically completed. The antipode and

counit are defined by the same formulas as for the extended double Yangian DY◦(glN); see

Sec. 2.2.

The Poincaré–Birkhoff–Witt theorem for the double Yangian extends to the algebra

DY(glN) over C [[h]]; see Theorem 2.2. Therefore the subalgebra of DY(glN) generated by

the elements t
(r)
ij with 1 6 i, j 6 N and r > 1 can be identified with the Yangian Y(glN)

defined by the relations (4.3). Similarly, the subalgebra generated by the elements t
(−r)
ij

with 1 6 i, j 6 N and r > 1 can be identified with the dual Yangian Y+(glN) defined by

the relations (4.4).

4.2 Vacuum module as a quantum vertex algebra

The double Yangian at the level c ∈ C is the quotient DYc(glN) of DY(glN) by the ideal

generated by C − c. Similar to Sec. 2.3, the vacuum module Vc(glN) at the level c over the

double Yangian is the quotient

Vc(glN) = DYc(glN)/DYc(glN)〈t (r)
ij | r > 1〉. (4.7)

By the Poincaré–Birkhoff–Witt theorem (Theorem 2.2), we can identify this quotient with

the dual Yangian Y+(glN) as a C [[h]]-module.

As demonstrated in [6], the h-adically completed vacuum module possesses a quantum

vertex algebra structure. In the classical limit h→ 0 it turns into the affine vertex algebra

Vc(glN). Accordingly, (4.7) is called the quantum affine vertex algebra. To introduce the

structure, we need some notation. For a positive integer n, consider the tensor product

space

(EndCN)⊗n ⊗ Vc(glN). (4.8)

Given a variable z and a family of variables u = (u1, . . . , un), set

Tn(u) = T1n+1(u1) . . . Tnn+1(un),

T+
n (u) = T+

1n+1(u1) . . . T+
nn+1(un),

Tn(u|z) = T1n+1(z + u1) . . . Tnn+1(z + un),

T+
n (u|z) = T+

1n+1(z + u1) . . . T+
nn+1(z + un).

Here we extend the notation (2.8) to include the vacuum module as a component of tensor

products so that the subscript n+ 1 corresponds to Vc(glN). For n = 0 these products will

be considered as being equal to the identity. The respective components of the matrices

(4.6) are understood as operators on Vc(glN). The series Ti n+1(z + ui) and T+
i n+1(z + ui)

should be expanded in nonpositive and nonnegative powers of z, respectively.
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For nonnegative integers m and n introduce functions depending on a variable z and

the families of variables u = (u1, . . . , un) and v = (v1, . . . , vm) with values in the space

(EndCN)⊗n ⊗ (EndCN)⊗m (4.9)

by

R12
nm(u|v|z) =

−→∏
j=1,...,n

←−∏
i=n+1,...,n+m

Rji(z + uj − vi) (4.10)

with the arrows indicating the order of the factors, where we use the Yang R-matrix (4.1)

and adopt the matrix notation as in (2.8). As above, empty products will be understood

as being equal to the identity. We also define R
12

nm(u|v|z) by the same formula (4.10),

where the R-matrix (4.2) is used instead of R(u). The superscripts 1 and 2 are meant to

indicate the tensor factors in (4.9). We also adopt the superscript notation for multiple

tensor products of the form

(EndCN)⊗n ⊗ (EndCN)⊗m ⊗ (EndCN)⊗k ⊗ Vc(glN)⊗ Vc(glN)⊗ Vc(glN). (4.11)

Expressions like T 14
n (u) or T 35

k (u) will be understood as the respective operators Tn(u)

or Tk(u), whose non-identity components belong to the corresponding tensor factors. In

particular, the non-identity components of T 35
k (u) belong to the factors

n+m+ 1, n+m+ 2, . . . , n+m+ k and n+m+ k + 2.

Employing this notation, we point out some immediate consequences of the defining

relations (4.3)–(4.5) for operators on

(EndCN)⊗n ⊗ (EndCN)⊗m ⊗ Vc(glN).

They follow by a straightforward induction and take the form

R12
nm(u|v|z − w)T+13

n (u|z)T+23
m (v|w) = T+23

m (v|w)T+13
n (u|z)R12

nm(u|v|z − w), (4.12)

R12
nm(u|v|z − w)T 13

n (u|z)T 23
m (v|w) = T 23

m (v|w)T 13
n (u|z)R12

nm(u|v|z − w), (4.13)

R
12

nm(u|v|z − w + hc/2)T 13
n (u|z)T+23

m (v|w) = T+23
m (v|w)T 13

n (u|z)R
12

nm(u|v|z − w − hc/2).

(4.14)

It will also be convenient to use an ordered product notation for elements of the tensor

product of two associative algebras A⊗ B. Suppose that A1, A2 ∈ A and B1, B2 ∈ B. Let

F = A1 ⊗B1 and define the following products

llF (A2 ⊗B2) = A1A2 ⊗B1B2,
lrF (A2 ⊗B2) = A1A2 ⊗B2B1,

rlF (A2 ⊗B2) = A2A1 ⊗B1B2,
rrF (A2 ⊗B2) = A2A1 ⊗B2B1, (4.15)
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indicating the left and right multiplication of the components. For α, β ∈ {l, r} we will

denote by (αβF )−1 the operator G such that (αβG)F = 1. Note that (αβF )−1 and αβ
(
F−1

)
need not be equal.

This notation will often be applied to products of R-matrices F = R12
nm(u|v|z), where

the roles of A and B will be played by the first and second components in (4.9). We point

out the formulas for the inverse operators associated with the R-matrix (4.1):(
lrR(u)

)−1
=
(
rlR(u)

)−1
=
(
1− hNu−1

)−1(
R(−u)− hNu−1

)
,(

llR(u)
)−1

=
(
rrR(u)

)−1
= R(u)−1 =

(
1− h2u−2

)−1
R(−u),

which can be used to calculate the inverse operators corresponding to F = R12
nm(u|v|z).

We will now use the general definition of quantum vertex algebra reproduced in Sec. 3;

see Definition 3.1. The following theorem is due to Etingof and Kazhdan [6].

Theorem 4.1. There exists a unique well-defined structure of quantum vertex algebra on

the vacuum module Vc(glN) with the following data.

(a) The vacuum vector is

1 = 1 ∈ Vc(glN). (4.16)

(b) The vertex operators are defined by

Y
(
T+
n (u)1, z

)
= T+

n (u|z)Tn(u|z + hc/2)−1. (4.17)

(c) The translation operator D is defined by

ezD T+(u1) . . . T+(un)1 = T+(z + u1) . . . T+(z + un)1. (4.18)

(d) The map S is defined by the relation

S34(z)
(
R

12

nm(u|v|z)−1 T+24
m (v)R

12

nm(u|v|z − hc)T+13
n (u)(1⊗ 1)

)
= T+13

n (u)R
12

nm(u|v|z + hc)−1 T+24
m (v)R

12

nm(u|v|z)(1⊗ 1) (4.19)

for operators on

(EndCN)⊗n ⊗ (EndCN)⊗m ⊗ Vc(glN)⊗ Vc(glN). (4.20)

Proof. We add some details as compared to [6], to take care of the variations of the defini-

tion of the quantum vertex algebra. Let V = Vc(glN). We start by pointing out that Y is

a well-defined operator as in (3.1). Indeed, since the coefficients of the series T+
n (u)1 span
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Vc(glN), it suffices to verify that Y preserves the ideal of relations of the dual Yangian.

This follows by employing (4.3) and (4.4) as in the proof of [6, Lemma 2.1]. As a next

step, we will verify the weak associativity property (3.2). Let m, n and k be nonnegative

integers and let u = (u1, . . . , un), v = (v1, . . . , vm) and w = (w1, . . . , wk) be families of

variables. Note the following relation which is a consequence of (4.14):

T 14
n (u|z0 + hc/2)−1R

12

nm(u|v|z0 + hc)−1 T+24
m (v)

= T+24
m (v)R

12

nm(u|v|z0)−1 T 14
n (u|z0 + hc/2)−1. (4.21)

Here and below we use the additional variables z0 and z2 as in (3.2). Using the definition

of the vacuum module together with (4.17) and (4.21) we get

Y
(
T+14
n (u)1, z0

)
R

12

nm(u|v|z0 + hc)−1 T+24
m (v)1

= T+14
n (u|z0)T 14

n (u|z0 + hc/2)−1R
12

nm(u|v|z0 + hc)−1 T+24
m (v)1

= T+14
n (u|z0)T+24

m (v)R
12

nm(u|v|z0)−1 T 14
n (u|z0 + hc/2)−11

= T+14
n (u|z0)T+24

m (v)R
12

nm(u|v|z0)−11.

For fixed positive integers M and p and operators A and B on (4.11) of this form, we will

say that A and B are equivalent, if the coefficients of all monomials

ur11 . . . urnn v
s1
1 . . . vsmm wt11 . . . w

tk
k with 0 6 r1, . . . , rn, s1, . . . , sm, t1, . . . , tk 6M (4.22)

in A−B belong to the subspace hpV [[z±1
0 , z±1

2 ]]. Let ` be a nonnegative integer such that

the coefficients of the monomials (4.22) in the operator

z` T 14
n (u|z + hc/2)−1T+34

k (w)1

have only nonnegative powers of z modulo hp. By the above calculation, the operator

(z0 + z2)` Y
(
Y
(
T+14
n (u)1, z0

)
R

12

nm(u|v|z0 + hc)−1 T+24
m (v)1, z2

)
T+34
k (w)1 (4.23)

equals

(z0 + z2)` Y
(
T+14
n (u|z0)T+24

m (v)R
12

nm(u|v|z0)−11, z2

)
T+34
k (w)1

which by (4.17) coincides with

(z0 + z2)` T+14
n (u|z2 + z0)T+24

m (v|z2)T 24
m (v|z2 + hc/2)−1

× T 14
n (u|z2 + z0 + hc/2)−1R

12

nm(u|v|z0)−1 T+34
k (w)1.
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By our assumption on `, only nonnegative powers of z0 + z2 will occur in the expansion of

this operator modulo hp, so that we may swap z0 and z2 to get an equivalent operator

(z0 + z2)` T+14
n (u|z0 + z2)T+24

m (v|z2)T 24
m (v|z2 + hc/2)−1

× T 14
n (u|z0 + z2 + hc/2)−1R

12

nm(u|v|z0)−1 T+34
k (w)1. (4.24)

On the other hand, by (4.17) the operator

Y
(
T+14
n (u)1, z0 + z2

)
Y
(
R

12

nm(u|v|z0 + hc)−1T+24
m (v)1, z2

)
T+34
k (w)1 (4.25)

equals

T+14
n (u|z0 + z2)T 14

n (u|z0 + z2 + hc/2)−1

×R 12

nm(u|v|z0 + hc)−1 T+24
m (v|z2)T 24

m (v|z2 + hc/2)−1 T+34
k (w)1.

Applying (4.21) and then (4.13) we can write this as

T+14
n (u|z0 + z2)T+24

m (v|z2)

× T 24
m (v|z2 + hc/2)−1 T 14

n (u|z0 + z2 + hc/2)−1R
12

nm(u|v|z0)−1 T+34
k (w)1.

Observe that after multiplication by (z0 + z2)` this coincides with (4.24). Therefore, when

the operator (4.25) is multiplied by (z0 + z2)`, it will be equal to (4.23) modulo hp. By

applying rl
(
(rlR

12

nm(u|v|z0+hc)−1)−1
)

to both sides of this equality we get (3.2), as required.

The vacuum axioms (3.3) and (3.4) are immediate from the definitions of the vacuum

vector and vertex operators.

Now we verify the translation operator D is well-defined by (4.18) and satisfies the

axioms (3.5) and (3.6). We need to check that D preserves the defining relations (4.4) of

the dual Yangian. This is a straightforward calculation; cf. [6, Lemma 2.1]. Furthermore,

ezD1 = 1 so that (3.5) holds. Now suppose that m and n are nonnegative integers. Taking

the coefficient of z in (4.18) we get

DT+(u1) . . . T+(un)1 =
( n∑
l=1

∂

∂ul

)
T+(u1) . . . T+(un)1. (4.26)

Therefore, using (4.17) we obtain

∂

∂z
Y
(
T+13
n (u)1, z

)
T+23
m (v)1 =

∂

∂z
T+13
n (u|z)T 13

n (u|z + hc/2)−1 T+23
m (v)1

which can be written as( n∑
l=1

∂

∂ul

)
T+13
n (u|z)T 13

n (u|z + hc/2)−1 T+23
m (v)1.
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This coincides with

DY
(
T+13
n (u)1, z

)
T+23
m (v)1− Y

(
T+13
n (u)1, z

)
DT+23

m (v)1,

since

DY
(
T+13
n (u)1, z

)
T+23
m (v)1

=
( n∑
l=1

∂

∂ul
+

m∑
k=1

∂

∂vk

)
T+13
n (u|z)T 13

n (u|z + hc/2)−1 T+23
m (v)1

and

Y
(
T+13
n (u)1, z

)
DT+23

m (v)1 = T+13
n (u|z)T 13

n (u|z + hc/2)−1
( m∑
k=1

∂

∂vk

)
T+23
m (v)1,

thus verifying (3.6). Now turn to the axioms concerning the map S. Using the notation

(4.15), we can write the operators appearing in (4.19) in the form

R
12

nm(u|v|z)−1 T+24
m (v)R

12

nm(u|v|z − hc)T+13
n (u)

= llR
12

nm(u|v|z)−1 lrR
12

nm(u|v|z − hc)T+13
n (u)T+24

m (v)

and

T+13
n (u)R

12

nm(u|v|z + hc)−1 T+24
m (v)R

12

nm(u|v|z)

= rrR
12

nm(u|v|z) rlR
12

nm(u|v|z + hc)−1 T+13
n (u)T+24

m (v).

Hence (4.19) can be written as

S34(z)
(
llR

12

nm(u|v|z)−1 lrR
12

nm(u|v|z − hc)T+13
n (u)T+24

m (v)(1⊗ 1)
)

= rrR
12

nm(u|v|z) rlR
12

nm(u|v|z + hc)−1 T+13
n (u)T+24

m (v)(1⊗ 1)

which is equivalent to

S34(z)
(
T+13
n (u)T+24

m (v)(1⊗ 1)
)

= lr
(
(rlR

12

nm(u|v|z − hc))−1
)
llR

12

nm(u|v|z)

× rrR
12

nm(u|v|z) rlR
12

nm(u|v|z + hc)−1 T+13
n (u)T+24

m (v)(1⊗ 1).

This form of S is convenient for checking that the map is well-defined; cf. [6, Lemma 2.1].

Furthermore, (3.7) clearly holds since the value of the R-matrix (4.2) at h = 0 is the

identity operator. Property (3.8) is checked in the same way as (3.6) with the use of

(4.26). The Yang–Baxter equation (3.9), the unitarity condition (3.10) and the S-locality

property (3.11) are verified by straightforward calculations which rely on the Yang–Baxter

equation (2.43) satisfied by the R-matrix (4.2) and the unitarity property (2.21).
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We now give an example based on the structure of the dual Yangian to demonstrate

that the center of a quantum vertex algebra need not be commutative, in general. We use

the same notation for products of generators matrices as in the beginning of this section.

Proposition 4.2. There exists a unique well-defined structure of quantum vertex algebra

on the C [[h]]-module V = Y+(glN) with the following data.

(a) The vacuum vector is

1 = 1 ∈ Y+(glN). (4.27)

(b) The vertex operators are defined by

Y
(
T+
n (u)1, z

)
= T+

n (u|z). (4.28)

(c) The translation operator D is defined by

ezD T+(u1) . . . T+(un)1 = T+(z + u1) . . . T+(z + un)1. (4.29)

(d) The map S is defined by the relation

S34(z)
(
T+13
n (u)T+24

m (v)(1⊗ 1)
)

= R
12

nm(u|v|z)T+13
n (u)T+24

m (v)R
12

nm(u|v|z)−1(1⊗ 1). (4.30)

Moreover, the center z(V ) of the quantum vertex algebra V coincides with V .

Proof. The last claim follows since the image of the vertex operator map Y is contained

in V [[z]]. In particular, z(V ) is not commutative for N > 2.

The maps Y , D and S are well-defined, as follows by the same arguments as for the

proof of Theorem 4.1. The quantum vertex algebra axioms are also checked in a similar

way with some obvious modifications. We only verify the S-commutativity (3.27) which

implies the S-locality property (3.11). Set z = z1 − z2 and consider the left hand side in

(3.27). The application of S45(z)⊗ 1 to

T+14
n (u)T+25

m (v)T+36
k (w)(1⊗ 1⊗ 1)

gives

R
12

nm(u|v|z)T+14
n (u)T+25

m (v)R
12

nm(u|v|z)−1 T+36
k (w)(1⊗ 1⊗ 1).

Further applying 1⊗ Y (z2) we get

R
12

nm(u|v|z)T+14
n (u)T+25

m (v|z2)R
12

nm(u|v|z)−1 T+35
k (w)(1⊗ 1)
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which becomes

R
12

nm(u|v|z)T+14
n (u|z1)T+24

m (v|z2)R
12

nm(u|v|z)−1 T+34
k (w)1 (4.31)

after the application of Y (z1). For the right hand side we have

T+24
m (v)T+15

n (u)T+36
k (w)(1⊗ 1⊗ 1)

1⊗Y (z1)7−−−−−→ T+24
m (v)T+15

n (u|z1)T+35
k (w)(1⊗ 1)

and the application of Y (z2) gives

T+24
m (v|z2)T+14

n (u|z1)T+34
k (w)1. (4.32)

Now (4.12) implies that (4.31) coincides with (4.32) and so the S-commutativity property

(3.27) follows.

4.3 Central elements of the completed double Yangian

As with the affine vertex algebras, the vertex operator formulas (4.17) suggest a construc-

tion of central elements of a completed double Yangian; cf. [11, Sec. 4.3.2] and Remark 4.6

below. However, we will not use the quantum vertex algebra structure, but rather give a

direct proof as in [10].

Introduce the completion of the double Yangian DYc(glN) at the level c as the inverse

limit

D̃Yc(glN) = lim
←−

DYc(glN)/Ip, (4.33)

where p > 1 and Ip denotes the left ideal of DYc(glN), generated by all elements t
(r)
ij with

r > p. Using the idempotents EU as in Theorem 2.4, introduce the Laurent series in u with

coefficients in the h-adically completed algebra of formal power series D̃Y−N(glN) at the

critical level c = −N by

T̃µ(u) = tr1,...,m EU T+
1 (u+ hc1) . . . T+

m(u+ hcm)

× Tm
(
u+ hcm − hN/2

)−1
. . . T1

(
u+ hc1 − hN/2

)−1
, (4.34)

where ca = ca(U) is the content of the box occupied by a ∈ {1, . . . ,m} in the standard

tableau U . By the argument of [27, Sec. 3.4], the series T̃µ(u) does not depend on the

standard tableau U of shape µ.

Theorem 4.3. All coefficients of T̃µ(u) belong to the center of the h-adically completed

algebra D̃Y−N(glN).
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Proof. We need to show that

T0(z) T̃µ(u) = T̃µ(u)T0(z) and T+
0 (z) T̃µ(u) = T̃µ(u)T+

0 (z). (4.35)

Repeat the corresponding part of the proof of Theorem 2.4 and use the relations

T0(z)R0a(z − u− hca + hN/2)Ta
(
u+ hca − hN/2

)−1

= Ta
(
u+ hca − hN/2

)−1
R0a(z − u− hca + hN/2)T0(z)

implied by (2.4) to get

T0(z) T̃µ(u) = T̃
′
µ(u)T0(z),

where we set

T̃
′
µ(u) = tr1,...,m EU R

−1

01 . . . R
−1

0m T
+
1 (u+ hc1) . . . T+

m(u+ hcm)

× Tm
(
u+ hcm − hN/2

)−1
. . . T1

(
u+ hc1 − hN/2

)−1
R0m . . . R01.

The same argument as in the proof of Theorem 2.4 shows that T̃
′
µ(u) = T̃µ(u) thus verifying

the first relation in (4.35). A similar calculation verifies the second relation. It relies on

the identity

T+
0 (z)T+

a (u+ hca) = R0a(z − u− hca)−1 T+
a (u+ hca)T

+
0 (z)R0a(z − u− hca)

implied by (2.4), and

T+
0 (z)R0a(z − u− hca)Ta

(
u+ hca − hN/2

)−1

= Ta
(
u+ hca − hN/2

)−1
R0a(z − u− hca + hN)T+

0 (z)

which follows from (2.16) with the use of (2.21).

The following formula for T̃µ(u) in the case where µ = (1N) is a column diagram is a

consequence of (2.48) and its counterpart for the matrix T (u).

Proposition 4.4. At the critical level c = −N we have

T̃ (1N )(u) = qdetT+(u)
(
qdetT (u− hN/2)

)−1
.

By applying T̃µ(u) to the vacuum vector of the module V̂cri we get

T̃µ(u)1 = T+
µ (u)1, (4.36)

where

T+
µ (u) = tr1,...,m EU T+

1 (u+ hc1) . . . T+
m(u+ hcm), (4.37)

in accordance with Sec. 2.3. In particular, Theorem 2.4 follows from Theorem 4.3; cf. [10].

As another application of (4.36), we get the following.
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Corollary 4.5. The coefficients of all series T+
µ (u) generate a commutative subalgebra of

the h-adically completed dual Yangian Y+(glN).

Proof. Let µ and ν be partitions having at most N parts. By Theorem 4.3 we have

T̃µ(u)T̃ν(u)1 = T̃µ(u)T+
ν (u)1 = T+

ν (u)T̃µ(u)1 = T+
ν (u)T+

µ (u)1.

Swapping the operators, we conclude that the coefficients of the series T+
µ (u) and T+

ν (u)

pairwise commute in the dual Yangian.

Remark 4.6. Following (2.39), set

T+
µ (u) = tr1,...,m EU T+

1 (u+ hc1) . . . T+
m(u+ hcm) ∈ V−N(glN)[[u]].

By the definition (4.17) of the vertex operators, we have Y
(
T+
µ (0)1, z

)
= T̃µ(z), where

T̃µ(z) is given by (4.34), but the coefficients of this series are now understood as operators

on the vacuum module; cf. [11, Sec. 3.2.2].

4.4 Center of the quantum affine vertex algebra

By Proposition 3.6, the center of a quantum vertex algebra is an associative algebra with

respect to the product defined in (3.26). Moreover, due to Proposition 3.7, this algebra is

S-commutative, i.e. its elements satisfy (3.27). The results of this section will imply that

the center of the quantum affine vertex algebra Vc(glN) associated with glN is commutative,

so it shares the commutativity property of the center of a vertex algebra; cf. [11, Lemma

3.3.2]. It follows from the definition (3.17) that the center coincides with the subspace of

invariants

z
(
Vc(glN)

)
= {v ∈ Vc(glN) | t (r)

ij v = 0 for r > 1 and all i, j} (4.38)

of the h-adically completed vacuum module Vc(glN); cf. (2.34). Hence, z
(
Vc(glN)

)
can be

identified with a subspace of the h-adically completed dual Yangian Y+(glN). Moreover,

it follows from (4.17) that the product (3.26) on the center coincides with the product

in the algebra Y+(glN). Therefore, by Proposition 3.6 the center can be regarded as a

D-invariant associative subalgebra of the dual Yangian.

Now assume that the level is critical, c = −N , and set Vcri = V−N(glN). In Corollar-

ies 2.5 and 2.6 we constructed three families of invariants of the extended vacuum module

at the critical level. In accordance with the definition (3.17), we can reformulate these

results for the current setting by stating that all coefficients of the series

tr1,...,mH
(m) T+

1 (u− hm+ h) . . . T+
m(u), tr1,...,mA

(m) T+
1 (u) . . . T+

m(u− hm+ h)
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and

trT+(u) . . . T+(u− hm+ h),

belong to the center z(Vcri) of the quantum affine vertex algebra Vcri (we have used the

shift u 7→ u− hm+ h for the first series). We will use these families to produce generators

of z(Vcri). Extend Vcri
∼= Y+(glN) to a module over the field C((h)) and introduce its

elements as coefficients of the series

Φm(u) = h−m
m∑
k=0

(−1)k
(
N − k
m− k

)
tr1,...,k A

(k) T+
1 (u) . . . T+

k (u− hk + h),

Ψm(u) = h−m
m∑
k=0

(−1)k
(
N +m− 1

m− k

)
tr1,...,kH

(k) T+
1 (u− hk + h) . . . T+

k (u),

and

Θm(u) = h−m
m∑
k=0

(−1)k
(
m

k

)
trT+(u) . . . T+(u− hk + h).

Define the coefficients by

Φm(u) =
∞∑
r=0

Φ(r)
m ur, Ψm(u) =

∞∑
r=0

Ψ(r)
m ur and Θm(u) =

∞∑
r=0

Θ(r)
m ur.

Proposition 4.7. All coefficients of the series Φm(u), Ψm(u) and Θm(u) belong to the

C [[h]]-module z(Vcri). Moreover, each family Φ
(r)
m , Ψ

(r)
m and Θ

(r)
m with m = 1, . . . , N and

r = 0, 1, . . . is algebraically independent.

Proof. First consider the series Φm(u). As in Sec. 2.3 embed the dual Yangian into the

algebra of formal series Y+(glN)[[u, ∂u]] and introduce the element

tr1,...,mA
(m)
(
1− T+

1 (u)e−h∂u
)
. . .
(
1− T+

m(u)e−h∂u
)

(4.39)

as in (2.50). By repeating the corresponding argument in Sec. 2.3 we find that the element

(4.39) coincides with

m∑
k=0

(−1)k
(
N − k
m− k

)
tr1,...,k A

(k) T+
1 (u) . . . T+

k (u− hk + h)e−kh∂u . (4.40)

Observe that the constant term of (4.40), as a formal power series in ∂u, coincides with

hmΦm(u). On the other hand, each factor in (4.39) takes the form

1− T+
i (u)e−h∂u ≡ h (∂u + T (−1) + T (−2)u+ . . . ) mod h2 Vcri,

where T (−r) = [t
(−r)
ij ] is the matrix of generators. This shows that the series hmΦm(u)

belongs to hmY+(glN)[[u]] and so all coefficients of Φm(u) belong to the C [[h]]-module
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z(Vcri). Furthermore, taking the classical limit h = 0 we find that the image of the series

T (−1) + T (−2)u + . . . in the algebra U
(
t−1glN [t−1]

)
[[u]] coincides with E+(u) as defined

in (2.52). By Corollary 2.9, the family of elements φ
(r)
mm, found as constant terms of

the polynomials (2.53) in ∂u, is algebraically independent. Hence so is the family of the

coefficients Φ
(r)
m . Indeed, if there is a polynomial with coefficients in C [[h]] providing an

algebraic dependence of the Φ
(r)
m , we may assume that at least one of its coefficients is not

zero modulo h. Then the evaluation h = 0 makes a contradiction.

The arguments for the families Ψm(u) and Θm(u) are quite similar. One additional

observation for the family Ψm(u) is the identity

tr1,...,mH
(m) T+

1 (u− hm+ h) . . . T+
m(u) = tr1,...,m T+

1 (u) . . . T+
m(u− hm+ h)H(m).

It follows by applying the fusion formula (2.38) for H(m), then the defining relations (2.12)

and the conjugation by the longest permutation of Sm.

We can now prove a quantum analogue of the Feigin–Frenkel theorem [7]; see Sec. 2.3.

Theorem 4.8. The center at the critical level z(Vcri) is a commutative algebra. It is

topologically generated by each of the families Φ
(r)
m , Ψ

(r)
m and Θ

(r)
m with m = 1, . . . , N and

r = 0, 1, . . .

Proof. First we point out that the coefficients of all series Φm(u), Ψm(u) and Θm(u) pair-

wise commute. This is well-known for the Yangian counterparts of the series introduced

in Corollaries 2.5 and 2.6 (with the matrix T+(u) replaced with T (u)) in relation with

Bethe subalgebras [19]; see also [21, Ch. 1]. The same proof applies for the dual Yangian.

Alternatively, this fact is obtained as a consequence of Corollary 4.5.

Now suppose that w ∈ z(Vcri). We will prove by induction that for all n > 0 there

exists a polynomial Q in the variables Φ
(r)
m such that w − Q ∈ hnVcri. Assuming that this

holds for some n > 0, write

w −Q = hnwn + hn+1wn+1 + . . . with wk ∈ V0,

where we assume that Vcri = V0[[h]]. Since w − Q belongs to the center of the vacuum

module, we can conclude that wn ∈ z(Vcri) mod h. Taking the classical limit h = 0 we

find that the image wn of wn in U
(
t−1glN [t−1]

)
belongs to the Feigin–Frenkel center z(ĝlN).

Therefore, wn is a polynomial S in the variables φ
(r)
mm; see Corollary 2.9. Replace these

variables with the respective elements Φ
(r)
m to get a polynomial S ′ ∈ z(Vcri). The difference

wn − S ′ belongs to hVcri. Therefore,

w −Q− hnS ′ ∈ hn+1Vcri,

which completes the induction argument.
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Thus, any element w ∈ z(Vcri) can be approximated by polynomials in the variables

Φ
(r)
m and so they are topological generators of the center. The same argument works for the

other two families. In particular, this implies that the algebra z(Vcri) is commutative.

Finally, consider the quantum affine vertex algebra Vc(glN) with c 6= −N . The center

of the affine vertex algebra Vκ(glN) with κ 6= −N is known to be generated by the elements

E11[−r − 1] + · · ·+ ENN [−r − 1], r = 0, 1, . . . . (4.41)

By Proposition 2.8, the coefficients of the quantum determinant

qdetT+(u) =
∑
σ∈SN

sgnσ · t+σ(1)1(u) . . . t+σ(N)N(u− hN + h), (4.42)

as defined in (2.47), belong to the center z
(
Vc(glN)

)
. Write

qdetT+(u) = 1− h
(
d0 + d1u+ d2u

2 + . . .
)
.

Under the classical limit h → 0, the image of dr in U
(
t−1glN [t−1]

)
coincides with the

element (4.41). The same argument as in the proof of Theorem 4.8 yields the following.

Proposition 4.9. The center z
(
Vc(glN)

)
with c 6= −N is a commutative algebra. It is

topologically generated by the family d0, d1, . . . of algebraically independent elements.

In particular, z
(
Vc(glN)

)
is a commutative algebra for all values of c.
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