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Abstract

We consider the quantum vertex algebra associated with the trigonometric R-

matrix in type A as defined by Etingof and Kazhdan. We show that its center is a

commutative associative algebra and construct an algebraically independent family

of topological generators of the center at the critical level.

1 Introduction

A general definition of quantum vertex algebra was given by P. Etingof and D. Kazhdan [6].

In particular, a quantum affine vertex algebra can be associated with a rational, trigono-

metric or elliptic R-matrix. A suitably normalized Yang R-matrix gives rise to a quantum

vertex algebra structure on the vacuum module Vc(gln) over the double Yangian DY(gln).

In our previous paper [12] coauthored with N. Jing and F. Yang, we introduced the center

of an arbitrary quantum vertex algebra and described the center z
(
Vc(gln)

)
of the quan-

tum affine vertex algebra Vc(gln). We showed that the center at the critical level c = −n
possesses large families of algebraically independent topological generators in a complete

analogy with the affine vertex algebra [7]; see also [9].

Our goal in this paper is to give a similar description of the center of the quantized

universal enveloping algebra U(R), associated with a normalized trigonometric R-matrix R,

as a quantum vertex algebra. We show that the center of the h-adically completed quantum

affine vertex algebra Uc(R) at the level c ∈ C is a commutative algebra. Moreover, we

produce a family of algebraically independent topological generators of the center in an

explicit form. We show that taking their ‘classical limits’ reproduces the corresponding

generators of the center of the quantum affine vertex algebra Vc(gln). In particular, as with

the rational case, the center of the h-adic completion of Uc(R) is ‘large’ at the critical level

c = −n, and trivial otherwise.
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Despite an apparent analogy between the rational and trigonometric cases, there are

significant differences in the constructions. In the rational case, the quantum vertex algebra

structure is essentially determined by that of the double Yangian DY(gln). One could

expect that the role of the double Yangian in the trigonometric case to be played by the

quantum affine algebra Uq(gln). In fact, as explained in [6], a more subtle structure is

to be used instead. Nonetheless, the technical part is quite similar to that of the paper

[8], where explicit constructions of elements of the center of the completed quantum affine

algebra were given, and which stems from the pioneering work of N. Reshetikhin and

M. Semenov-Tian-Shansky [15]; see also J. Ding and P. Etingof [3] and E. Frenkel and

N. Reshetikhin [10].

2 Quantized universal enveloping algebra

In accordance to [6], a normalized R-matrix is needed to define an appropriate version

of the quantized universal enveloping algebra U(R). Namely, the R-matrix should satisfy

the unitarity and crossing symmetry properties. Its existence is established in [5, Proposi-

tion 1.2]. The normalizing factor does not admit a simple closed expression. A description

of this factor in the rational case is also given in [12, Section 2.2]. Here we give a similar

description in the trigonometric case which also implies the existence of the normalized

R-matrix. We start by recalling some standard tensor notation.

We let eij ∈ EndCn denote the standard matrix units. For an element

C =
n∑

i,j,r,s=1

cijrs eij ⊗ ers ∈ EndCn ⊗ EndCn,

and any two indices a, b ∈ {1, . . . ,m} such that a 6= b, we denote by Cab the element of

the algebra (EndCn)⊗m with m > 2 given by

Cab =
n∑

i,j,r,s=1

cijrs (eij)a (ers)b, (eij)a = 1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a). (2.1)

We regard the matrix transposition as the linear map

t : EndCn → EndCn, eij 7→ eji.

For any a ∈ {1, . . . ,m} we will denote by ta the corresponding partial transposition on the

algebra (EndCn)⊗m which acts as t on the a-th copy of EndCn and as the identity map

on all the other tensor factors.
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Introduce the two-parameter R-matrix R(u, v) ∈ EndCn⊗EndCn[[u, v, h]] as a formal

power series in the variables u, v, h by

R(u, v) =
(
eu−h/2 − ev+h/2

)∑
i

eii ⊗ eii +
(
eu − ev

)∑
i 6=j

eii ⊗ ejj

+
(
e−h/2 − eh/2

)
eu
∑
i>j

eij ⊗ eji +
(
e−h/2 − eh/2

)
ev
∑
i<j

eij ⊗ eji, (2.2)

where the summation indices run over the set {1, . . . , n}. We will also use the one-

parameter R-matrix R(u) ∈ EndCn ⊗ EndCn ((u))[[h]] defined by

R(u) =
R(u, 0)

eu−h/2 − eh/2
=
∑
i

eii ⊗ eii + e−h/2
1− eu

1− eu−h
∑
i 6=j

eii ⊗ ejj

+

(
1− e−h

)
eu

1− eu−h
∑
i>j

eij ⊗ eji +
1− e−h

1− eu−h
∑
i<j

eij ⊗ eji. (2.3)

Here and below expressions of the form
(
1 − eu+ah

)−1
with a ∈ C should be understood

as elements of the algebra C((u))[[h]],

(
1− eu+ah

)−1
= −u−1

(∑
l>1

(u+ ah)l−1

l!

)−1(
1 + ah/u

)−1 ∈ C((u))[[h]].

Denote by D the diagonal n× n matrix

D = diag
[
e

(n−1)h
2 , e

(n−3)h
2 , . . . , e−

(n−1)h
2

]
(2.4)

with entries in C [[h]]. The following proposition goes back to [11, Proposition 4.7] and is

a version of [5, Proposition 1.2]. We use the notation (2.1).

Proposition 2.1. There exists a unique series g(u) ∈ 1 + hC((u))[[h]] (depending on n)

such that the R-matrix R(u) = g(u)R(u) possesses the unitarity property

R12(u)R21(−u) = 1 (2.5)

and the crossing symmetry properties(
R12(u)−1

)t2D2R12(u+ nh)t2 = D2 and R12(u+ nh)t1D1

(
R12(u)−1

)t1 = D1. (2.6)

Proof. Due to the well-known properties of the R-matrix (2.3) (see [11]), identities (2.5)

and (2.6) will hold for R(u) = g(u)R(u) if and only if g(u) satisfies the relations

g(u)g(−u) = 1 (2.7)
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and

g(u+ nh) = g(u)

(
1− eu+h

)(
1− eu+(n−1)h

)(
1− eu

)(
1− eu+nh

) . (2.8)

It is well known by [11] that there exists a unique formal power series f(x) ∈ C(q)[[x]] of

the form

f(x) = 1 +
∞∑
k=1

fkx
k, fk = fk(q), (2.9)

whose coefficients fk are determined by the relation

f(xq2n) = f(x)
(1− xq2)(1− xq2n−2)

(1− x)(1− xq2n)
. (2.10)

Equivalently, the series (2.9) is a unique solution of the equation

f(x)f(xq2) . . . f(xq2n−2) =
1− x

1− xq2n−2
. (2.11)

Observe that f(x) admits the presentation

f(x) = 1 +
∞∑
k=1

ak

( x

1− x

)k
, (2.12)

where all rational functions ak/(q − 1)k ∈ C(q) are regular at q = 1. Indeed, this claim

means that all coefficients of the formal series

b(z) = 1 +
∞∑
k=1

ak
(q − 1)k

zk

are regular at q = 1. However, rewriting the equation (2.11) in terms of b(z) we get

b(z) b
( zq2

1− z 1−q2
1−q

)
. . . b

( zq2n−2

1− z 1−q2n−2

1−q

)
=

1

1− z 1−q2n−2

1−q

.

This implies a system of recurrence relations for the coefficients of the series b(z) so that

an easy induction argument shows that each of the coefficients is regular at q = 1. Thus,

making the substitution

x = eu and q = eh/2 (2.13)

in (2.12) we obtain a well-defined element g̃(u) ∈ 1 + hC((u))[[h]] satisfying (2.8).

Now set

ϕ(u) = g̃(u) g̃(−u) ∈ 1 + hC((u))[[h]].

Since ϕ(u) = ϕ(−u), the Laurent series

ϕ(u) =
∑
s∈Z

ϕsu
s, ϕs ∈ C [[h]],
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contains only even powers of u. Moreover, (2.8) implies the relation

ϕ(u) = ϕ(u+ nh). (2.14)

By comparing the coefficients of the negative powers of u on both sides, we conclude that

ϕs = 0 for all s < 0. Similarly, by considering nonnegative powers of u in (2.14) we get

ϕs = 0 for all s > 0 so that ϕ(u) = ϕ0 is an element of 1 + hC [[h]]. Let ψ ∈ 1 + hC [[h]]

be such that ψ2ϕ0 = 1. Then the series g(u) = ψg̃(u) satisfies both (2.7) and (2.8).

A direct argument with formal series shows that the conditions (2.7) and (2.8) uniquely

determine g(u). The details are given in Appendix A which also contains a direct proof of

the existence of g(u).

The first few terms of the series g(u) are found by

g(u) = 1 +

(
n− 1

)(
1 + eu

)
2n
(
1− eu

) h+

(
n− 1

)2(
1 + eu

)2

8n2
(
1− eu

)2 h2 + . . . .

Corollary 2.2. The series g(u) satisfies the relation

g(u)g(u+ h) . . . g
(
u+ (n− 1)h

)
= e(n−1)h/2 1− eu

1− eu+(n−1)h
. (2.15)

Proof. Denote by G(u) the series on the left hand side of (2.15). This is an element of

1 + hC((u))[[h]] which satisfies

G(u)G
(
−u− (n− 1)h

)
= 1

and

G(u+ h) = G(u)
(1− eu+h)

(
1− eu+(n−1)h

)
(1− eu)(1− eu+nh)

by (2.7) and (2.8), respectively. The same argument as in Appendix A shows that any

series G(u) ∈ 1 + hC((u))[[h]] satisfying these two properties is determined uniquely. The

series on the right hand side of (2.15) also satisfies these two properties and so the claim

follows.

Remark 2.3. The R-matrices given in (2.3) and in [8, eq. (2.2)] are related by the change of

parameters (2.13). Note, however, that although the relations (2.8) and (2.10) correspond

to each other under this change, the difference equation (2.10) determines f(x) uniquely, as

an element of 1 + xC(q)[[x]], whereas g(u) is regarded as an element of a different algebra

of power series, namely, 1+hC((u))[[h]]. Moreover, as shown in Appendix A, the property

(2.7) is necessary to guarantee that g(u) is determined uniquely.
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To make a connection with the quantum affine vertex algebra associated with the

rational R-matrix (see Proposition 2.4 below), define the Z-gradation on the algebra

EndCn ⊗ EndCn[u±1, h] by setting

deg ukhl = −k − l (2.16)

and assigning the zero degree to elements of EndCn⊗EndCn. Extend the degree function

(2.16) to the algebra of formal series EndCn ⊗ EndCn((u))[[h]] by allowing it to take the

infinite value. Elements of finite degree will then form a subalgebra and we denote it by

EndCn ⊗ EndCn((u))[[h]]fin.

The R-matrix R(u) defined in (2.3) belongs to EndCn ⊗ EndCn((u))[[h]]fin and its

degree is zero. Denote by R
rat

(u) its component of degree zero. It is easy to check that

R
rat

(u) coincides with the Yang R-matrix, up to a scalar factor:

R
rat

(u) =
u

u− h

(
1− h

u
P
)
∈ EndCn ⊗ EndCn[[h/u]],

where P ∈ EndCn ⊗ EndCn is the permutation operator given by

P =
n∑

i,j=1

eij ⊗ eji. (2.17)

Similarly, denote the highest degree component of the R-matrix R(u), defined in Proposi-

tion 2.1, by R rat(u). The unitarity property (2.5) and the crossing symmetry properties

(2.6) for the R-matrix R(u) imply

R rat
12 (u)R rat

21 (−u) = 1 (2.18)

and (
R rat

12 (u)−1
)t2 R rat

12 (u+ nh)t2 = 1 and R rat
12 (u+ nh)t1

(
R rat

12 (u)−1
)t1 = 1.

Furthermore, let g rat(u) be the highest degree component of the series g(u), defined in

Proposition 2.1. ThenR rat(u) = g rat(u)R
rat

(u). It is clear from the proof of Proposition 2.1

that g rat(u) ∈ 1 + (h/u)C [[h/u]]. By taking the highest degree components in (2.8) we get

g rat(u+ nh) = g rat(u)
(u+ h)

(
u+ (n− 1)h

)
u(u+ nh)

. (2.19)

Since 1 − h/u is invertible in C [[h/u]], by replacing g rat(u) with (1 − h/u)g(u) in (2.19)

we obtain the equivalent equation

g(u+ nh) =
(

1− h2

u2

)
g(u). (2.20)
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Equation (2.20) has a unique solution for the series g(u) in 1 + (h/u)C [[h/u]]; see e.g. [12,

Section 2.2]. Therefore,

R rat(u) = g rat(u)R
rat

(u) = g(u)
(

1− h

u
P
)
.

The quantized universal enveloping algebra U(R) is the associative algebra over C [[h]]

generated by elements l
(−r)
ij , where 1 6 i, j 6 n and r = 1, 2, . . . , subject to the defining

relations

R(u− v)L+
1 (u)L+

2 (v) = L+
2 (v)L+

1 (u)R(u− v), (2.21)

where the matrix L+(u) is given by

L+(u) =
n∑

i,j=1

eij ⊗ l+ij(u) ∈ EndCn ⊗ U(R)[[u]] (2.22)

and

l+ij(u) = δij − h
∞∑
r=1

l
(−r)
ij ur−1 ∈ U(R)[[u]].

Here we extend the notation (2.1) to matrices of the form (2.22). A subscript indicates its

copy in the multiple tensor product algebra

EndCn ⊗ . . .⊗ EndCn︸ ︷︷ ︸
m

⊗U(R)[[u]],

so that

L+
a (u) =

n∑
i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a) ⊗ l+ij(u).

We take m = 2 for the defining relations (2.21). Note that the R-matrix R(u) in (2.21)

can be replaced with R(u) to define the same algebra U(R).

Recall that the dual Yangian Y+(gln) for gln is the associative algebra over C [[h]]

generated by elements t
(−r)
ij , where 1 6 i, j 6 n and r = 1, 2, . . . , subject to the defining

relations

R rat(u− v)T+
1 (u)T+

2 (v) = T+
2 (v)T+

1 (u)R rat(u− v), (2.23)

where the matrix T+(u) is given by

T+(u) =
n∑

i,j=1

eij ⊗ t+ij(u) ∈ EndCn ⊗ Y+(gln)[[u]]

and

t+ij(u) = δij − h
∞∑
r=1

t
(−r)
ij ur−1 ∈ Y+(gln)[[u]].
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Introduce the descending filtration

· · · ⊃ U(2) ⊃ U(1) ⊃ U(0) ⊃ U(−1) ⊃ U(−2) ⊃ · · ·

on U(R) by setting

deg h = −1 and deg l
(−r)
ij = r (2.24)

so that for any r ∈ Z the subspace U(r) is the linear span of the elements of U(R) whose

degrees do not exceed r. Let

gr U(R) =
⊕
r∈Z

U(r)/U(r−1)

be the associated graded algebra. It inherits a C [h]-module structure from U(R). Let l
(−r)
ij

denote the image of l
(−r)
ij in the r-th component of gr U(R). We will also write

L
+

(u) =
n∑

i,j=1

eij ⊗ l
+

ij (u) ∈ EndCn ⊗ gr U(R)[[u]],

where

l
+

ij (u) = δij − h
∞∑
r=1

l
(−r)
ij ur−1.

Proposition 2.4. We have an isomorphism

gr U(R)⊗C [h] C [[h]] ∼= Y+(gln)

defined on the generators by

l
(−r)
ij 7→ t

(−r)
ij (2.25)

for all 1 6 i, j 6 n and r = 1, 2, . . . .

Proof. Observe that both sides of (2.21) are elements of finite degrees of the algebra

EndCn ⊗ EndCn ⊗ U(R)((u))((v))[[h]],

with respect to the degree function defined by (2.16) and (2.24) together with deg v = −1.

Moreover, by taking the highest degree components (which are of the zero degree) we get

the defining relations (2.23) for the dual Yangian Y+(gln):

R rat(u− v)L
+

1 (u)L
+

2 (v) = L
+

2 (v)L
+

1 (u)R rat(u− v).

Note that the coefficients of any monomial uavb on both sides of this relation coincide

with the highest degree components of the respective coefficients of the monomial uavb on

both sides of (2.21). This implies that the mapping t
(−r)
ij 7→ l

(−r)
ij defines a homomorphism

from the Yangian to the extended graded algebra. This homomorphism is clearly surjec-

tive, while its injectivity follows from well-known versions of the Poincaré–Birkhoff–Witt

theorem for the algebras Y+(gln) and U(R); see [4, Section 3.4].
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3 Quantum affine vertex algebra

We follow [6] to introduce a quantum vertex algebra structure on the h-adic completion

Ũ(R) of the quantized universal enveloping algebra U(R). The corresponding structure

associated with the rational R-matrix was studied in [12] where a description of the center

of the quantum vertex algebra was given. Our goal is to obtain an analogous description

of the center of Ũ(R) at the critical level.

3.1 The center of a quantum vertex algebra

We shall say that the C [[h]]-module V is topologically free if V = V0[[h]] for some complex

vector space V0. Denote by Vh((z)) the space of all Laurent series

v(z) =
∑
r∈Z

vrz
−r−1 ∈ V [[z±1]]

satisfying vr → 0 as r →∞, in the h-adic topology.

Definition 3.1. Let V = V0[[h]] be a topologically free C[[h]]-module. A quantum vertex

algebra V over C[[h]] is the following data.

(a) A C[[h]]-module map (the vertex operators)

Y : V ⊗ V → Vh((z)), v ⊗ w 7→ Y (z)(v ⊗ w). (3.1)

Setting Y (v, z)w = Y (z)(v⊗w) defines the map Y (v, z) : V → Vh((z)) which satisfies

the weak associativity property: for any u, v, w ∈ V and n ∈ Z>0 there exists ` ∈ Z>0

such that

(z0 + z2)` Y (v, z0 + z2)Y (w, z2)u− (z0 + z2)` Y
(
Y (v, z0)w, z2

)
u ∈ hnV [[z±1

0 , z±1
2 ]].

(b) A vector 1 ∈ V (the vacuum vector) which satisfies Y (1, z)v = v for all v ∈ V , and for

any v ∈ V the series Y (v, z)1 is a Taylor series in z with the property

Y (v, z)1
∣∣
z=0

= v. (3.2)

(c) A C[[h]]-module map D : V → V (the translation operator) which satisfies

D1 = 0 and
d

dz
Y (v, z) = [D, Y (v, z)] for all v ∈ V.
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(d) A C[[h]]-module map S : V ⊗ V → V ⊗ V ⊗ C((z)) which satisfies

S(z)(v ⊗ w)− v ⊗ w ⊗ 1 ∈ hV ⊗ V ⊗ C((z)) for v, w ∈ V,

[D ⊗ 1,S(z)] = − d

dz
S(z),

the Yang–Baxter equation

S12(z1)S13(z1 + z2)S23(z2) = S23(z2)S13(z1 + z2)S12(z1),

the unitarity condition S21(z) = S−1(−z), and the S-locality: for any v, w ∈ V and

n ∈ Z>0 there exists ` ∈ Z>0 such that for any u ∈ V

(z1 − z2)` Y (z1)
(
1⊗ Y (z2)

)(
S(z1 − z2)(v ⊗ w)⊗ u

)
− (z1 − z2)` Y (z2)

(
1⊗ Y (z1)

)
(w ⊗ v ⊗ u) ∈ hnV [[z±1

1 , z±1
2 ]].

The tensor products in Definition 3.1 are understood as h-adically completed. In par-

ticular, V ⊗ V denotes the space (V0 ⊗ V0)[[h]] and V ⊗ V ⊗ C((z)) denotes the space(
V0 ⊗ V0 ⊗ C((z))

)
[[h]].

Let V be a quantum vertex algebra. As in [12], we define the center of V as the

C [[h]]-submodule

z(V ) =
{
v ∈ V | wrv = 0 for all w ∈ V and all r > 0

}
.

It was proved in [12] that the center of a quantum vertex algebra is a unital associative

algebra with the product z(V )⊗ z(V )→ z(V ) given by

v · w = v−1w for all v, w ∈ V.

The algebra z(V ) need not be commutative; see [12, Proposition 4.3]. Instead, it possesses

the S-commutativity property as demonstrated in [12, Proposition 3.7]. The next proposi-

tion shows that this property (as given in (3.3) below) is characteristic for elements of the

center.

Proposition 3.2. Let V be a quantum vertex algebra. Vector v ∈ V belongs to z(V ) if and

only if

Y (z1) (1⊗ Y (z2)) (S(z1 − z2)(v ⊗ w)⊗ u) = Y (w, z2)Y (v, z1)u (3.3)

for all w ∈ V and u ∈ z(V ).
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Proof. Let v ∈ V satisfy (3.3) for all w ∈ V and u ∈ z(V ). Recall the S-Jacobi identity:

z−1
0 δ

(
z2 − z1

z0

)
Y (w, z2)Y (v, z1)u

− z−1
0 δ

(
z1 − z2

−z0

)
Y (z1)

(
1⊗ Y (z2)

)(
S(−z0)(v ⊗ w)⊗ u

)
= z−1

1 δ

(
z2 − z0

z1

)
Y
(
Y (w, z0)v, z1

)
u,

which holds in any quantum vertex algebra; see [13]. Taking the residue Resz0 on both

sides, we obtain the S-commutator formula

Y (w, z2)Y (v, z1)u− Y (z1) (1⊗ Y (z2)) (S(z1 − z2)(v ⊗ w)⊗ u)

= Res
z0

z−1
1 δ

(
z2 − z0

z1

)
Y
(
Y (w, z0)v, z1

)
u.

The left hand side is equal to zero by (3.3), so that

Res
z0

z−1
1 δ

(
z2 − z0

z1

)
Y
(
Y (w, z0)v, z1

)
u = 0.

This implies ∑
r>0

(−1)r
(
b+ r

r

)
(wrv)−a−b−r−2u = 0 for all a, b ∈ Z.

Let m > 0. By (3.1) there exists r0 > 0 such that wrv ∈ hmV for all r > r0. Therefore,

r0∑
r=0

(−1)r
(
b+ r

r

)
(wrv)−a−b−r−2u = 0 mod hmV for all a, b ∈ Z.

By evaluating (a, b) = (−i − 1 + c, i) for all i = 0, . . . , r0 with a fixed integer c, we

obtain a system of r0 + 1 homogeneous linear equations in the variables (wrv)−r−c−1u with

r = 0, . . . , r0. It is easily verified that its matrix is invertible, so there is a unique solution,

(wrv)−r−c−1u = 0 mod hmV for all r = 0, . . . , r0.

By taking here c = −r, u = 1 and using (3.2) we get wrv ∈ hmV for all r = 0, . . . , r0.

We may conclude that wrv ∈ hmV for all r,m > 0. Since V is a topologically free C [[h]]-

module, V is separated, so that ∩m>1h
mV = 0. This implies that wrv = 0 for all r > 0

which means that the vector v belongs to the center of V .

The “only if ” part holds due to [12, Proposition 3.7].
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3.2 The center of the quantum affine vertex algebra

Here we recall some results of [6] describing the quantum vertex algebra structure on

U(R). Let Ũ(R) = U(R)[[h]] be the h-adic completion of U(R). The following property

will play a central role; see [6, Lemma 2.1]. For any nonnegative integer m, consider the

tensor product space (EndCn)⊗(m+1)⊗ Ũ(R) with the copies of the endomorphism algebra

labelled by 0, 1, . . . ,m. Let v1, . . . , vm be variables.

Lemma 3.3. For any c ∈ C there exists a unique series L(u) ∈ EndCn⊗
(
End Ũ(R)

)
h
((u))

such that for all m > 0 we have

L0(u)L+
1 (v1) . . . L+

m(vm)1 = R01(u− v1 + hc/2)−1 . . . R0m(u− vm + hc/2)−1

× L+
1 (v1) . . . L+

m(vm)R0m(u− vm − hc/2) . . . R01(u− v1 − hc/2)1.

Fix an arbitrary complex number c. As the action of the operator L(u) on Ũ(R) depends

on the choice of c, we will indicate this dependence by denoting the completed quantized

universal enveloping algebra Ũ(R) by Ũc(R). The complex number c will be called the

level of Ũc(R). This terminology is motivated by the fact that the classical limit of the

quantum vertex algebra Ũc(R) coincides with the affine vertex algebra for gln at the level

c; see [6]. The following relations hold for operators on EndCn ⊗ EndCn ⊗ Ũc(R):

R(u− v)L1(u)L2(v) = L2(v)L1(u)R(u− v), (3.4)

R(u− v + hc/2)L1(u)L+
2 (v) = L+

2 (v)L1(u)R(u− v − hc/2). (3.5)

Given a variable z and a family of variables u = (u1, . . . , um), set

L[m](u|z) = L1(z + u1) . . . Lm(z + um), L+
[m](u|z) = L+

1 (z + u1) . . . L+
m(z + um).

The respective components of the matrices L+(u) and L(u) are understood as operators

on Ũc(R). The series Li(z + ui) should be expanded in nonnegative powers of ui.

By the results of Etingof and Kazhdan [6], for any c ∈ C there exists a unique well-

defined structure of quantum vertex algebra on the quantized universal enveloping algebra

Ũc(R). In particular, the vacuum vector is 1 = 1 ∈ Ũc(R), the vertex operators are defined

by

Y
(
L+

[m](u|0)1, z
)

= L+
[m](u|z)L[m](u|z + hc/2)−1

and the translation operator D is given by

ezD L+(u1) . . . L+(um)1 = L+(z + u1) . . . L+(z + um)1.

We will not reproduce the definition of the map S as it requires some additional notation

and it will not be used below. The map is defined in the same way as for the rational

R-matrix; see also [12, Section 4.2].
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Consider the h-permutation operator P h ∈ EndCn ⊗ EndCn[[h]] defined by

P h =
∑
i

eii ⊗ eii + eh/2
∑
i>j

eij ⊗ eji + e−h/2
∑
i<j

eij ⊗ eji. (3.6)

The symmetric group Sk acts on the space (Cn)⊗k by sa 7→ P h
sa = P h

a a+1 for a = 1, . . . , k−1,

where sa denotes the transposition (a, a + 1). For a reduced decomposition σ = sa1 . . . sal
of an element σ ∈ Sk set P h

σ = P h
sa1
. . . P h

sal
. Denote by A(k) the image of the normalized

symmetrizer under this action, so that

A(k) =
1

k!

∑
σ∈Sk

sgnσ · P h
σ .

Using the two-parameter R-matrix (2.2), for arbitrary variables u1, . . . , uk set

R(u1, . . . , uk) =
∏

16a<b6k

Rab(ua, ub),

where the product is taken in the lexicographical order on the pairs (a, b). Note that (2.21)

implies the relation

R(u1, . . . , uk)L
+
1 (u1) . . . L+

k (uk) = L+
k (uk) . . . L

+
1 (u1)R(u1, . . . , uk). (3.7)

We will need the following well-known case of the fusion procedure for the R-matrix (2.2)

going back to [1].

Lemma 3.4. Set ua = u− (a− 1)h for a = 1, . . . , k. We have

R(u1, . . . , uk) = k! euk(k−1)/2
∏

06a<b6k−1

(e−ah − e−bh)A(k).

Combining relation (3.7) and Lemma 3.4 we get for ua = u− (a− 1)h

A(k)L+
1 (u1) . . . L+

k (uk) = L+
k (uk) . . . L

+
1 (u1)A(k). (3.8)

Also, since

R(u, v)D1D2 = D2D1R(u, v),

we have

A(k)D1 . . . Dk = Dk . . . D1A
(k) (3.9)

for the diagonal matrix (2.4).

Now consider the h-adically completed quantum vertex algebra Ũc(R) at the critical

level c = −n and introduce its elements as the coefficients of the power series in u given

by

φk(u) = tr1,...,kA
(k)L+

1 (u) . . . L+
k (u− (k − 1)h)D1 . . . Dk (3.10)

for k = 1, . . . , n.

13



Proposition 3.5. The coefficients of all series φk(u) belong to z(Ũ−n(R)).

Proof. The argument is essentially a version of the proofs of [8, Theorem 3.2] and [12,

Theorem 2.4] which we adjust for the current context. It is sufficient to show that

L0(v)φk(u) = φk(u)

for all k = 1, . . . , n. Relation (3.5) implies

L0(v)L+
1 (u1) . . . L+

k (uk) = R01(v − u1 − hn/2)−1 . . . R0k(v − uk − hn/2)−1

× L+
1 (u1) . . . L+

k (uk)L0(v)R0k(v − uk + hn/2) . . . R01(v − u1 + hn/2). (3.11)

Since L0(v) commutes with A(k) and Da for a = 1, . . . , k, using (3.11) and L0(v)1 = 1 we

get

L0(v)φk(u) = tr1,...,k A
(k)R01(v − u1 − hn/2)−1 . . . R0k(v − uk − hn/2)−1

× L+
1 (u1) . . . L+

k (uk)R0k(v − uk + hn/2) . . . R01(v − u1 + hn/2)D1 . . . Dk. (3.12)

Hence, we only have to prove that the right hand side in (3.12) equals φk(u). Set

X = R01(v − u1 − hn/2)−1 . . . R0k(v − uk − hn/2)−1

Y = L+
1 (u1) . . . L+

k (uk)R0k(v − uk + hn/2) . . . R01(v − u1 + hn/2)D1 . . . Dk

and denote by Xop and Y op the respective expressions obtained from these products by

reversing the order of some factors:

Xop = R0k(v − uk − hn/2)−1 . . . R01(v − u1 − hn/2)−1

Y op = L+
k (uk) . . . L

+
1 (u1)R01(v − u1 + hn/2) . . . R0k(v − uk + hn/2)Dk . . . D1.

The Yang-Baxter equation for the R-matrix (2.2) and Lemma 3.4 imply

A(k)R01(v − u1 − hn/2)−1 . . . R0k(v − uk − hn/2)−1

= R0k(v − uk − hn/2)−1 . . . R01(v − u1 − hn/2)−1A(k),

that is, A(k)X = XopA(k), and also

A(k)R0k(v − uk + hn/2) . . . R01(v − u1 + hn/2)

= R01(v − u1 + hn/2) . . . R0k(v − uk + hn/2)A(k). (3.13)

14



Combining (3.8), (3.9) and (3.13) we get A(k)Y = Y opA(k). Since A(k) is an idempotent,

we proceed as follows:

tr1,...,kA
(k)XY = tr1,...,kX

opA(k)Y = tr1,...,kX
op
(
A(k)

)2
Y

= tr1,...,kX
opA(k)A(k)Y = tr1,...,kA

(k)XY opA(k).

By the cyclic property of trace, this equals

tr1,...,kA
(k)XY opA(k) = tr1,...,kXY

op
(
A(k)

)2
= tr1,...,kXY

opA(k) = tr1,...,kXA
(k)Y,

and so tr1,...,kA
(k)XY = tr1,...,kXA

(k)Y. As a final step, we use the property

tr1,...,kXA
(k)Y = tr1,...,kX

t1...tk
(
A(k)Y

)t1...tk
.

Write

X t1...tk
(
A(k)Y

)t1...tk
=
(
R01(v − u1 − hn/2)−1

)t1 . . . (R0k(v − uk − hn/2)−1
)tk

× D1 . . . DkR0k(v − uk + hn/2)tk . . . R01(v − u1 + hn/2)t1
(
A(k)L+

1 (u1) . . . L+
k (uk)

)t1...tk
and apply the first crossing symmetry property in (2.6) to get

X t1...tk
(
A(k)Y

)t1...tk
= D1 . . . Dk

(
A(k)L+

1 (u1) . . . L+
k (uk)

)t1...tk
=
(
A(k)L+

1 (u1) . . . L+
k (uk)D1 . . . Dk

)t1...tk
.

This implies

tr1,...,kXA
(k)Y = tr1,...,k

(
A(k)L+

1 (u1) . . . L+
k (uk)D1 . . . Dk

)t1...tk
= tr1,...,kA

(k)L+
1 (u1) . . . L+

k (uk)D1 . . . Dk = φk(u),

thus completing the proof.

Consider the h-permutation operator P h
(k,k−1,...,1) which is associated with the k-cycle

(k, k − 1, . . . , 1) = sk−1 . . . s1 so that

P h
(k,k−1,...,1) = P h

k−1 k . . . P
h
12.

Introduce another family of elements of Ũ−n(R) as the coefficients of the power series in u

defined by

θk(u) = tr1,...,kP
h
(k,k−1,...,1)L

+
1 (u) . . . L+

k (u− (k − 1)h)D1 . . . Dk (3.14)

for all k > 1 and θ0(u) = n.
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Corollary 3.6. The coefficients of all series θk(u) belong to z(Ũ−n(R)).

Proof. Relation (2.21) implies that M = L+(u)De−h∂u is a q-Manin matrix with entries in

Ũ−n(R)[[u, ∂u]] as follows from [2, Lemma 5.1], with the notation (2.13). Hence, applying

the Newton identity for q-Manin matrices [2, Theorem 5.7], we can express the coefficients

of each series θk(u) as polynomials in the coefficients of the series φk(u). So the corollary

is a consequence of Proposition 3.5.

Let Ũ(R)ext denote the extension of Ũ(R) to an algebra over the field C((h)). For all

m > 0 introduce elements Θ
(r)
m of this algebra as the coefficients of the series

Θm(u) =
∞∑
r=0

Θ(r)
m ur ∈ Ũ(R)ext[[u]],

where we use the series (3.14) and set

Θm(u) = h−m
m∑
k=0

(−1)k
(
m

k

)
θk(u). (3.15)

Proposition 3.7. All the elements Θ
(r)
m with r,m > 0 pairwise commute.

Proof. This follows from the corresponding well-known property of the coefficients of the

series (3.10); see e.g. [2, Proposition 6.5] for a proof, which is quite similar to the rational

case; cf. [14, Section 1.14]. The property extends to the coefficients of the series (3.14) due

to the Newton identity; see [2, Theorem 6.6].

Theorem 3.8. All coefficients of the series Θm(u) belong to the C [[h]]-module z(Ũ−n(R)).

Moreover, the family Θ
(r)
m with m = 1, . . . , n and r = 0, 1, . . . is algebraically independent.

Proof. We will need the usual permutation P given in (2.17) along with the h-permutation

operator P h defined in (3.6). Let M = L+(u)De−h∂u as before, and for each m > 1

consider the expression

Mm = h−m
(
1− (Mm)→

)(
Pm−1m − P h

m−1m(Mm−1)→
)

× · · · ×
(
P23 − P h

23(M2)→
)(
P12 − P h

12M1

)
, (3.16)

where the arrow in the superscript indicates that the corresponding factor appears on the

right: (
Pa a+1 − P h

a a+1

(
Ma

)→)
X := Pa a+1 X − P h

a a+1 XMa. (3.17)

We verify first that the expression (3.16), as a Laurent series in h, does not contain negative

powers of h. Indeed, write

Pa a+1 − P h
a a+1

(
Ma

)→
= Pa a+1

(
1− Pa a+1P

h
a a+1

(
L+
a (u)Dae

−h∂u
)→)
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and observe that

Pa a+1P
h
a a+1

∣∣
h=0

= 1.

Therefore, the expression in (3.17) vanishes at h = 0 for any element X of the C [[h]]-module

(EndCn)⊗m ⊗ Ũ−n(R). Hence each of the m factors in (3.16) is divisible by h.

As a next step, expand the product in (3.16) to get the expression

Mm = h−m
m∑
k=0

∑
16a1<···<ak6m

(−1)k Πa1,...,ak Ma1 . . .Mak ,

where

Πa1,...,ak = P(m,m−1,...,ak+1)P
h
ak ak+1P(ak,...,ak−1+1)P

h
ak−1 ak−1+1 . . . P(a2,...,a1+1)P

h
a1 a1+1P(a1,...,1).

Now consider the trace tr1,...,mMm. Let us verify that for the partial trace we have

tr{1,...,m}\{a1,...,ak}Πa1,...,ak = P h
ak−1 ak

P h
ak−2 ak−1

. . . P h
a1 a2

. (3.18)

For any permutation σ ∈ Sm we have PσP
h
ab = P h

σ(a)σ(b)Pσ. Moreover, traPab = traP
h
ab = 1

for any a 6= b. Therefore,

trar+1,...,ar+1−1 P(ar+1,...,ar+1) P
h
ar ar+1 = trar+1,...,ar+1−1 P

h
ar ar+1

P(ar+1,...,ar+1) = P h
ar ar+1

for r = 1, . . . , k with ak+1 := m. This implies (3.18). Hence we obtain

tr1,...,mMm = h−m
m∑
k=0

∑
16a1<···<ak6m

(−1)k tra1,...,ak P
h
ak−1 ak

P h
ak−2 ak−1

. . . P h
a1 a2

Ma1 . . .Mak

= h−m
m∑
k=0

(−1)k
(
m

k

)
tr1,...,k P

h
k−1 kP

h
k−2 k−1 . . . P

h
1 2M1 . . .Mk.

Since P h
k−1 kP

h
k−2 k−1 . . . P

h
1 2 = P h

(k,k−1,...,1) and

M1 . . .Mk = L+
1 (u) . . . L+

k (u− (k − 1)h)D1 . . . Dk e
−kh∂u ,

using (3.14) we can write

tr1,...,mMm = h−m
m∑
k=0

(−1)k
(
m

k

)
θk(u)e−kh∂u .

Regarding this expression as a power series in ∂u, we conclude that its constant term

coincides with Θm(u) as defined in (3.15). The first part of the theorem now follows from

Corollary 3.6.
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Note that the level c is irrelevant for the second part of the theorem. Extend the degree

function (2.24) to the algebra Ũ(R) by allowing it to take the infinite value. Elements of

finite degree will then form a subalgebra which we denote by Ũ(R)fin. Similarly, by using

(2.16) introduce the subalgebra Ũ(R)[[u]]fin of Ũ(R)[[u]] formed by elements of finite degree.

Observe that the series Θm(u) belongs to Ũ(R)[[u]]fin. Take the highest degree component

of this series (that is, the associated element of the graded algebra gr Ũ(R)[[u]]fin) and

identify it with an element of the algebra Y+(gln)[[h, u]] via an extension of the map

(2.25). This element coincides with the series

Θm(u) = h−m
m∑
k=0

(−1)k
(
m

k

)
trT+(u) · · ·T+(u− (k − 1)h). (3.19)

Write

Θm(u) =
∞∑
r=0

Θ
(r)

m ur.

By [12, Proposition 4.7], the coefficients Θ
(r)

m with m = 1, . . . , n and r = 0, 1, . . . are

algebraically independent elements of the h-adically completed dual Yangian Y+(gln). Note

that the coefficient of any power ua on the right hand side of (3.19) coincides with the

highest degree component of the coefficient of ua on the right hand side of (3.15). Hence,

the corresponding coefficients Θ
(r)
m are also algebraically independent.

Theorem 3.9. The center at the critical level z(Ũ−n(R)) is a commutative algebra. It is

topologically generated by the family Θ
(r)
m with m = 1, . . . , n and r = 0, 1 . . . .

Proof. By Proposition 3.7 and Theorem 3.8, the coefficients Θ
(r)
m generate a commutative

subalgebra of z(Ũ−n(R)). Let X be an arbitrary element of z(Ũ−n(R)). We will prove by

induction that for each k > 0 there exists a polynomial

Q ∈ C [Θ(r)
m ][h], m = 1, . . . , n and r = 0, 1, . . .

such that X − Q ∈ hk Ũ−n(R). The induction base is clear. Suppose that the property

holds for some k > 0 so that

X −Q = hkXk + hk+1Xk+1 + . . . with Xs ∈ V0, (3.20)

where we write Ũ−n(R) = V0[[h]] for some complex vector space V0. By Lemma 3.3 the

operator L(u) can be written as

L(u) =
n∑

i,j=1

eij ⊗ lij(u) with lij(u) = δij + h
∑
r∈Z

l̃
(r)
ij u

r ∈
(
End Ũ−n(R)

)
h
((u)).
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Since X −Q belongs to z(Ũ−n(R)), we have

l̃
(r)
ij (X −Q) = 0 for all i, j = 1, . . . , n and r ∈ Z .

Thus, (3.20) implies

l̃
(r)
ij Xk ≡ 0 mod h, hence Xk ∈ z(Ũ−n(R)) mod h. (3.21)

Consider the symbol (the highest degree component) of Xk in the graded algebra

gr U−n(R). Its image under the isomorphism of Proposition 2.4 is an elementXk ∈ Y+(gln).

We will also regard it as an element of the quantum vertex algebra Vcri = Y+(gln)[[h]] at

the critical level c = −n, associated with the double Yangian; see [12, Theorem 4.1] for a

precise definition of the quantum vertex algebra structure. As shown in [12, Section 4.4],

the center of this quantum vertex algebra coincides with the subspace of invariants

z(Vcri) = {U ∈ Vcri | t (r)
ij U = 0 for r > 1 and all i, j}. (3.22)

Here the operators t
(r)
ij are found as the coefficients of the series

tij(u) = δij + h
∞∑
r=1

t
(r)
ij u

−r ∈
(
EndVcri

)
h
((u)),

which are the entries of the matrix operator T (u)

T (u) =
n∑

i,j=1

eij ⊗ tij(u)

uniquely determined by the relations

T0(u)T+
1 (v1) . . . T+

m(vm)1 = R rat
01 (u− v1 − hn/2)−1 . . . R rat

0m(u− vm − hn/2)−1

× T+
1 (v1) . . . T+

m(vm)R rat
0m(u− vm + hn/2) . . . R rat

01 (u− v1 + hn/2)1 (3.23)

with the notation as in Lemma 3.3. Similar to the proof of Theorem 3.8, extend the degree

function defined in (2.16) and (2.24) by setting deg vi = −1 for all i. As pointed out in

Section 2, the rational R-matrix R rat(u) coincides with the highest degree component of

the trigonometric R-matrix R(u). Write the expression L = L0(u)L+
1 (v1) . . . L+

m(vm)1 as a

series in the monomials uavb11 . . . vbmm with coefficients in Ũ−n(R). The symbol (the highest

degree component) of L is an element of the graded algebra gr Ũ−n(R)((u))[[v1, . . . , vm, h]].

Also writing this symbol as a series in the monomials uavb11 . . . vbmm , observe that if a 6 0

then the coefficient of such a monomial in the symbol coincides with the symbol of the

coefficient of the same monomial in the expansion of L. This implies that the image of the
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component of the symbol of L corresponding to nonpositive powers of u under an extension

of the map (2.25) coincides with the right-hand side in (3.23). Together with (3.21) this

shows that for r > 1 and all i, j ∈ {1, . . . , n}

t
(r)
ij Xk ≡ 0 mod h, hence Xk ∈ z(Vcri) mod h.

It was proved in [12, Theorem 4.8] that the elements Θ
(r)

m topologically generate z(Vcri).

Therefore, Xk ≡ S mod h for some polynomial

S ∈ C [Θ
(r)

m ], m = 1, . . . , n and r = 0, 1, . . . .

Note that deg Θ
(r)

m = deg Θ
(r)

m

∣∣
h=0

and so

degS = degS
∣∣
h=0

= degXk. (3.24)

Replace the variables Θ
(r)

m in S with the respective elements Θ
(r)
m to get a polynomial

S ∈ C [Θ(r)
m ].

Let us consider the difference Xk − S and take its symbol (the highest degree component)

in the graded algebra gr Ũ(R)fin. It belongs to h gr Ũ(R)fin. Therefore, we can conclude

that

Xk − S ∈ X(1)
k + hŨ−n(R)

for some X
(1)
k ∈ V0 whose degree is lower than that of the symbol. Hence, we can write

(3.20) in the form

X −Q− hkS = hkX
(1)
k + hk+1X

(1)
k+1 + . . . with X(1)

s ∈ V0. (3.25)

Recall that deg l
(−r)
ij = r, so the elements of V0 have nonnegative degrees; see (2.24). Due

to (3.24) we have degS = degXk, so that degXk > degX
(1)
k > 0.

Now we can repeat the same argument as above, but working with (3.25) instead of

(3.20) so that the role of Xk is played by X
(1)
k . An obvious induction on the degree of

the element degXk allows us to conclude that there exists a polynomial P ∈ C [Θ
(r)
m ][h]

satisfying X − P ∈ hk+1 Ũ−n(R) thus completing the induction step and the proof.

Now consider the quantum vertex algebra Ũc(R) at a noncritical level c 6= −n. Define

the quantum determinant of the matrix L+(u) by

qdetL+(u) =
∑
σ∈Sn

(
−e−h/2

)l(σ)
l+σ(1)1(u) . . . l+σ(n)n(u− (n− 1)h), (3.26)

where l(σ) equals the number of inversions in the sequence (σ(1), . . . , σ(n)). Write

qdetL+(u) = 1− h(d0 + d1u+ d2u
2 + . . . ).
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Proposition 3.10. The center z(Ũc(R)) at a noncritical level c 6= −n is a commutative

algebra. It is topologically generated by the family d0, d1, . . . of algebraically independent

elements.

Proof. The property that the coefficients d0, d1, . . . are pairwise commuting elements of

z(Ũc(R)) can be verified by repeating the arguments of the proof of [8, Lemma 4.3] with

the use of Corollary 2.2 (the assumption that the level is critical is unnecessary for the

lemma to hold true; see also [12, Proposition 2.8]). In fact, these arguments demonstrate

that the coefficients belong to the center of the algebra Ũc(R) and so, in particular, they

commute pairwise.

Note that the series qdetL+(u) belongs to the algebra Ũ(R)[[u]]fin introduced in the

proof of Theorem 3.8. The symbol of qdetL+(u) (the highest degree component) belongs to

the graded algebra gr Ũ(R)[[u]]fin. Identify the symbol with an element of the Y+(gln)[[u, h]]

via an extension of the map (2.25). This element equals

qdetT+(u) =
∑
σ∈Sn

sgnσ · t+σ(1)1(u) . . . t+σ(n)n(u− (n− 1)h) ∈ Y+(gln)[[u, h]]. (3.27)

Now we will use some results concerning the quantum vertex algebra Vc := Y+(gln)[[h]] at

the level c 6= −n; see [12, Theorem 4.1]. It was proved in [12, Proposition 4.5] that the

center z(Vc) is topologically generated by the algebraically independent family of coefficients

d0, d1, . . . of the quantum determinant

qdetT+(u) = 1− h(d0 + d1u+ d2u
2 + . . . ).

This implies that the coefficients d0, d1, . . . are algebraically independent. Finally, the

property that the family d0, d1, . . . topologically generates the center z(Ũc(R)) is verified

by the same argument as in the proof of Theorem 3.9.

A A direct proof of Proposition 2.1

We start by describing solutions of (2.8), regarding it as an equation for g(u) ∈ C((u))[[h]]

(we suppress the dependence on n and h in the notation of these series). Write

g(u) =
∑
l>0

gl(u)hl, gl(u) ∈ C((u)). (A.1)

Using the Taylor expansion formula

g(u+ nh) =
∑
l>0

( l∑
k=0

nk

k!
g

(k)
l−k(u)

)
hl,
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from (2.8) we get(
(1− eu)− eu(1− eu)

∑
l>0

nl

l!
hl

)
·
∑
l>0

( l∑
k=0

nk

k!
g

(k)
l−k(u)

)
hl

=

(
1 + eu

∑
l>0

eunl − (n− 1)l − 1

l!
hl

)
·
∑
l>0

gl(u)hl. (A.2)

By equating the coefficients of the same powers of h on both sides of (A.2), we get a

system of differential equations in gk(u) with k > 0. For the constant term the equation

holds identically, while considering the coefficients of h in (A.2) we get g′0(u) = 0 so that

g0(u) = c0 for c0 ∈ C . Taking the coefficients of hl in (A.2), for an arbitrary l > 1 we get

g′l−1(u) =
eu

(1− eu)2

l−2∑
k=0

l−k−1∑
m=0

pk,m(eu)g
(m)
k (u)−

l−2∑
k=0

nl−k−1

(l − k)!
g

(l−k)
k (u) (A.3)

for some polynomials pk,m(z) ∈ C [z] of degree not exceeding 1 such that

pk,m(1) = 0 when k +m = l − 1,

and pk,0(z) are constants. The right hand side of (A.3) is understood as being equal to

zero for l = 1.

Fix r > 1 and suppose that series g0(u), . . . , gr−1(u) ∈ C((u)) satisfy (A.3) for l =

1, . . . , r. We will prove by induction on r that a solution gr(u) ∈ C((u)) of (A.3) with

l = r+ 1 exists and, up to an additive constant, it has the form of a linear combination of

the series
p(eu)

(1− eu)t

for some polynomials p(z) ∈ C [z] and positive integers t such that t−deg p > 1 and t 6 r.

Indeed, by the induction hypothesis, all derivatives g
(m)
k (u) with m > 1 and k = 0, . . . , r−1

can be expressed as linear combinations of series of the form

euq(eu)

(1− eu)t+m

for some polynomials q(z) ∈ C [z] and positive integers t such that t + m− deg q > 2 and

t 6 k. This implies that the right hand side in (A.3) for l = r + 1 can be written as a

linear combination of series of the form

euq(eu)

(1− eu)t

for some polynomials q(z) ∈ C [z] and positive integers t such that t − deg q > 2 and

t 6 r + 1 so that gr(u) ∈ C((u)) does exist and takes the required form.
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Thus, by taking c0 = 1 in the above argument, we may conclude that equation (2.8)

has a solution g(u) ∈ 1 + (h/u)C [[h/u, u]]. As shown in the proof of Proposition 2.1 in

Section 2, by multiplying g(u) by an appropriate element of C [[h]] we get a solution of

both (2.7) and (2.8). To show that any such solution is determined uniquely, expand g(u)

as in (A.1). We find from (2.7) that

g0(u) = 1 and
l∑

k=0

gk(u)gl−k(−u) = 0 for all l > 1. (A.4)

Returning to the induction argument in the first part of the above proof, assume that the

coefficients g0(u), . . . , gr−1(u) ∈ C((u)) are uniquely determined for some r > 1. Relation

(A.3) with l = r + 1 now determines gr(u) uniquely, up to an additive constant. However,

its value is fixed by the second condition in (A.4) for l = r.
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