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Abstract. This paper explores kernel and local linear quantile estimation for a functional-

coefficient regression model with nonstationary time series as regressor. Our main results

are established by allowing for the heavy-tailed distributional assumption in the error term,

which enables the quantile approach applicable in econometrics and many other fields where

outliers and aberrant observations are at present. Our main results further indicate that the

linear term in kernel quantile estimator can not be eliminated from the asymptotic bias. This

feature is different from the previous researches on nonlinear regression with nonstationary time

series, where the conventional kernel estimator is shown to have the same limit distribution (to

the second order including bias) as the local linear nonparametric estimator. Simulation result

shows good performance for the proposed estimators as predicted by our asymptotic theory. An

empirical application for the monthly road casualties in Great Britain has also been considered.
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1 Introduction

Since the initial work by Koenker and Bassett (1978), quantile estimation in a regression model

has been successfully and widely used in finance and economics. Estimation of conditional

quantiles nowadays is a common practice in risk management, portfolio optimization, and asset

pricing. Asymptotic theory underlying quantile estimators for many commonly used models has

been well established for independent and identically distributed (iid) data as well as for weakly

dependent data. We refer to Koenker (2005), Cai, Gu and Li (2009) and articles therein for

current development. In comparison with the extensive researches on quantile estimation with

stationary data, little is known about the behaviors with nonstationary time series. The early
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contributions on quantile estimation with nonstationary time series include Xiao (2009a, 2009b),

Chen, Li and Zhang (2010) and Honda (2013). Xiao (2009a) considered quantile cointegrating

regression, while the others investigated the least absolute deviation estimation for nonlinear

regression with nonstationary time series. More currently, Li and Li (2015) considered local

composite quantile regression smoothing for Harries Recurrent Markov processes.

This paper considers quantile estimation in a more general model with nonstationary time

series. Explicitly, we focus on the varying coefficient regression model having the form:

yt = xTt β0(zt) + σ(xt, zt) εt, (1.1)

where yt, zt and εt are all scalars, xt is of dimension d, β0(·) is a d × 1 vector of unknown

smooth function and AT denotes the transpose of a vector or a matrix A. We will investigate

the quantile estimator of β0(·) under the conditions:

• xt is stationary and zt is an I(1) process.

There are extensive researches for the quantile estimator of β0(·) under the assumption that

both xt and zt are stationary processes. See, for instance, Honda (2004), Kim (2007), Cai and

Xu (2008), Cai, Gu and Li (2009) and references therein. Xiao (2009a) considered the situation

that xt is an I(1) process, β0(zt) ≡ β0 and σ(xt, zt) ≡ 1. The situation for both xt and zt being

non-stationary time series seems to be difficult and requires very different techniques. We will

leave the topic for future work.

Model (1.1) under the setting in this paper is becoming increasedly popular due to its

flexibility. The proposed model includes the nonlinear cointegrating regression model which

was currently developed by Wang and Phillips (2009a, 2009b, 2011, 2012, 2015), Wang (2014)

and Wang (2015). As in the regression model with stationary data, β0(·) can be estimated by

using standard kernel and local linear method. When Eεt = 0 and εt satisfies certain moment

conditions, the asymptotics for the local linear estimator of β0(·) has been considered in Cai, Li

and Park (2009). Also see Xiao (2009b), Gao and Phillips (2013) and Sun, Cai and Li (2013,

2015). Unlike the mean regression method in existing literature that relies only on the central

tendency of the data, the quantile approach in this paper allows to estimate the functional

dependence between variables for all portions of the conditional distribution of the response

variable, which extends the framework of estimating only the behavior of the central part of

a cloud of data points onto all parts of the conditional distribution. As a consequence, the

quantile approach provides a more complete view of relationships between variables of interest.

Furthermore, our asymptotic results allow for modeling data with heterogeneous conditional

distributions and makes no distributional assumption about the error term in the model. These
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features enable the quantile approach in this paper useful since outliers or aberrant observations

are common in nonstationary time series data from econometrics and many other applied areas,

and heavy-tailed distribution is an important feature of some nonstationary time series data

from finance.

This paper is organized as follows. In Section 2, we construct kernel quantile smoothing

estimators and local linear (LL) quantile estimators of β0(·) in the model (1.1), and investigate

asymptotic distributions of the proposed estimators. Simulation result showing good perfor-

mance for the proposed estimators as predicted by asymptotic theory is presented in Section

3. Section 4 provides an empirical application. Proofs of the main results are put in Section 5.

Some preliminary lemmas and proof of auxiliary results are collected in Appendix (Section 6).

Throughout the paper, we make use of the following notation: for x ∈ Rd, ||x|| =
∑d

j=1 |xj|.
We denote constants by C,C1, ..., which may be different at each appearance.

2 Quantile regression estimator

Let τ ∈ (0, 1) and z ∈ R be fixed. Throughout the paper, we assume that the τth conditional

quantile of εt given Ft = σ(xs, zs, s ≤ t) equals zero in model (1.1), namely,

A1. P (εt < 0 | Ft) = τ for all t ≥ 1.

As in standard kernel estimation where one usually assumes that E(εt | Ft) = 0, condition A1

is crucial for the construction of an unbiased quantile estimator in model (1.1). Let

Qyt(τ |xt, zt) = inf{y : F0(y|xt, zt) ≥ τ}

be the τth conditional quantile of yt given xt and zt, where F0(y|xt, zt) is the conditional

distribution function of yt given xt and zt. Due to Condition A1, Qyt(τ |xt, zt) = xTt β0(zt).

Supposing that β0(x) is locally approximated by a constant vector β ≡ β0(z) ∈ Rd for x in

a neighborhood of z, a kernel quantile estimator of β0(z) in model (1.1) can be obtained by

solving the problem

β̂n(z) = arg min
β∈Rd

n∑
t=1

ρτ (yt − xTt β)K
(zt − z

h

)
, (2.1)

where ρτ (t) = t[τ − I(t < 0)] is called the “check” (loss) function, I(A) is an indicator function

of set A, 0 < h ≡ hn → 0 is a bandwidth and K(x) is a positive kernel function. Similarly, if

β0(x) can be locally approximated by

β0(x) ≈ β0(z) + β′0(z)(x− z) ≡ α0 + α1(x− z)
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for x in a neighborhood of z, an estimator β̂L(z) of β0(z) is α̂0, where (α̂0, α̂1) is the minimizer

of

n∑
t=1

ρτ

{
yt − xTt [α0 + α1(zt − z)]

}
K
(zt − z

h

)
. (2.2)

β̂L(z) is called a local linear quantile estimator of β0(z).

This paper will investigate the asymptotic normalities of β̂n(z) and β̂L(z). To this end, let

ηj, j = 0,±1,±2, · · · be a sequence of i.i.d. random variables with Eη0 = 0, Eη20 = 1 and

|Eeitη0| ≤ t−δ for some δ > 0. Let ξj, j ≥ 1, be a linear process defined by

ξj =
∞∑
k=0

φk ηj−k,

where the coefficients φk, k ≥ 0, satisfy one of the following conditions:

LM. φk ∼ k−µ ρ(k), where 1/2 < µ < 1 and ρ(k) is a function slowly varying at ∞.

SM.
∑∞

k=0 |φk| <∞ and φ ≡
∑∞

k=0 φk 6= 0.

To establish the asymptotics of β̂(z) and β̂L(z), we need the following restrictions on xt, zt, εt,

β0(z), σ(x, z) and the kernel function K(x), where z is a given constant on R.

A2. (i) zt = γ zt−1 + ξt, where c ≥ 0 is a constant, γ = 1− c/n and z0 = oP (
√
n);

(ii) xt is a stationary random vector independent of ηs for all s ≤ t − m0 and some

m0 ≥ 0.

A3. Let ft(x) = F ′t(x), where Ft(x) = P (εt < x|Ft). Assume that ft(0) ≡ f(0) > 0, f ′t(0) ≡
f ′(0) and

(i) |ft(s)− ft(0)| ≤ C min{|s|λ, 1}; or

(ii) |ft(s)− ft(0)− f ′t(0)s| ≤ C min{|s|1+λ, 1}

for some 0 < λ ≤ 1 and for all s ∈ R.

A4. For x in a neighborhood of z,

(i) ||β0(x)− β0(z)|| ≤ C|x− z| ; or

(ii) ||β0(x)− β0(z)− β′0(z)(x− z)|| ≤ C|x− z|2; or

(iii) ||β0(x)− β0(z)− β′0(z)(x− z)− 1
2
β′′0 (z)(x− z)2|| ≤ C|x− z|2+λ, for some 0 < λ ≤ 1.
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A5. There exist k0 > 0 and 0 < λ ≤ 1 such that, for t in a neighborhood of z and all x ∈ Rd,

(i) |σ−1(x, z + t)− σ−1(x, z)| ≤ C(1 + ||x||k0) |t|λ; or

(ii) |σ−1(x, z+ t)−σ−1(x, z)−σ1(x, z)t| ≤ C(1 + ||x||k0) |t|1+λ, where |σ1(x, z)| ≤ C(1 +

||x||k0).

A6. (i) K(·) is a bounded kernel function with
∫∞
−∞K(x)dx = 1 and a compact support;

(ii)
∫∞
−∞ xK(x)dx = 0.

A7. Ex1x
T
1 > 0, E

[
σ−1(x1, z)x1x

T
1

]
> 0 and

E
{[
σ−1(x1, z) + ||x1||k0 + 1

]
(||x1||2 + 1)

}3

<∞

where k0 is given as in condition A5.

Remark 2.1 Condition A2 is quite general, which allows for nearly integrated long and short

memory regressors. The m0 in A2 (ii) can be chosen as large (but not depending on n) as

required and the independence between xt and ηs, s ≤ t, can be eliminated if xt has certain

structure. More details can be found in Remark 2.2. Due to the model (1.1), condition A3

on the distribution function of εt is natural. In many application, εt is independent of xt

and zt, implying Ft(x) = P (εt ≤ x). As a consequence, condition A3 is satisfied if only εt

is stationary, together with certain smoothing conditions on the distribution function of εt.

It should be mentioned that no moments are imposed on the distribution of εt, which makes

the quantile regression a big advantage. Conditions A4–A6 are minor smooth conditions on

the regression and kernel functions. In particular, if σ(x, z) = σ(x) as in most of practical

applications, A5 holds automatically with σ1(x, z) = 0. A6 can be extended to include the

normal kernel, but requiring more other restriction on xt and zt. We omit the details.

Remark 2.2 We do not impose extra restrictions on xt except stationarity and the indepen-

dence between xt and ηs, s ≤ t − m0 for some m0 ≥ 0. When xt has certain structure, m0

may be chosen to be zero. As an illustration, let (ηt, νt) be a sequence of iid random vectors.

If zt = zt−1 + ηt and xt =
∑∞

j=0 φjνt−j, where
∑∞

j=0 |φj| < ∞, rough calculations show that

it is possible to establish a result without A3 (i). However, due to its complexity, detailed

development requires new limit theorems, and hence leaves for future work.

We next state our main result. For the convenience of notation, write

Kj(x) = xjK(x), µj =

∫ ∞
−∞

Kj(x)dx, for j ≥ 0,
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c0 = τ(1− τ)
∫∞
−∞K

2(x)dx, d2n = Var
(∑n

j=1 ξj
)

and we further write

Λ = f(0)E
[
σ−1(x1, z)x1x

T
1

]
, Λ1 = f ′(0)E

{
σ−2(x1, z)x1

[
xT1 β

′
0(z)

]2}
,

Λ2 = f(0)E
[
σ1(x1, z)x1x

T
1

]
.

Note that Λ and Λ2 are d× d matrixes and Λ1 ia a d× 1 vector.

Theorem 2.1 Suppose that A1–A2 and A7 hold and h ≡ hn > 0 satisfying nh/dn →∞.

(a) If in addition part (i) in A3–A6 and nh3/dn → 0, then[ n∑
t=1

K
(zt − z

h

)]1/2[
β̂n(z)− β0(z)

]
→D c0Λ

−1N, (2.3)

where N is a d-dimensional normal vector with mean zero and covariance Ω = Ex1x
T
1 .

(b) If in addition A3(i), A4(ii), A5(i) and A6, result (2.3) holds whenever nh5/dn → 0.

(c) If in addition A3(ii), A4(iii), A5(ii), A6 and nh5+δ/dn → 0 for some δ > 0, then[ n∑
t=1

K
(zt − z

h

)]1/2[
β̂n(z)− β0(z)− µ2 h

2

2
Λ−1 α

]
→D c0Λ

−1N (2.4)

where α = Λ β′′0 (z)− Λ1 + 2Λ2β
′
0(z).

Remark 2.3 Theorem 2.1 indicates that better asymptotic results can be achieved if strong

smooth conditions on β0(x), σ(x, z) and K(x) are used, which is matching with the empirical

applications. Theorem 2.1 allows for the xt to be a sequence of deterministic constants. In

particular, when d = 1 and xt ≡ 1, (1.1) reduces to the nonlinear cointegrating regression model

considered in Wang and Phillips (2009a, 2009b, 2011, 2015) and Wang (2014, 2015), where

authors investigated the asymptotics of the conventional kernel estimator and the local linear

estimator for β0(z). In comparison with these existing papers, the quantile regression approach

in Theorem 2.1 allows for the heavy-tailed distributional assumption in the error term, which is

important in econometrics since outliers or aberrant observations are common in nonstationary

time series data.

Similar results exist for the local linear quantile estimator generated from (2.2).

Theorem 2.2 Suppose that A1–A2 and A6–A7 hold and h ≡ hn > 0 satisfying nh/dn →∞.

(a) If in addition part (i) in A3–A5 and nh3/dn → 0, then[ n∑
t=1

K
(zt − z

h

)]1/2[
β̂L(z)− β0(z)

]
→D c0Λ

−1N, (2.5)
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where N is a d-dimensional normal vector with mean zero and covariance Ω = Ex1x
T
1 .

(b) If in addition A3(i), A4(ii) and A5(i), result (2.5) holds whenever nh5/dn → 0.

(c) If in addition A3(i), A4(iii) and A5(i), nh5+δ/dn → 0 for some δ > 0, then[ n∑
t=1

K
(zt − z

h

)]1/2[
β̂L(z)− β0(z)− µ2 h

2

2
β′′0 (z)

]
→D c0Λ

−1N. (2.6)

Remark 2.4 It follows from (2.4) and (2.6) that, in comparison with the local linear quan-

tile estimator β̂L(z), the limit distribution of the kernel quantile estimator β̂n(z) has an extra

asymptotic bias term

1

2

[
− Λ1 + 2Λ2β

′
0(z)

]
Λ−1µ2h

2.

As a consequence, as in stationary situation, the local linear quantile estimator β̂L(z) of β0(z)

generated from (2.2) has its advantage in reducing bias. This feature is different from nonlinear

regression with nonstationary time series, where previous researches shown that the conventional

kernel estimator has the same limit distribution (to the second order including bias) as the local

linear nonparametric estimator.

3 Simulation Study

In this section, we investigate the finite sample performance of the proposed estimators β̂n(z)

and β̂L(z) of β0(z) through Monte Carlo simulation. The observed data are generated by the

following varying-coefficients model:

Yt = b1(Zt)Xt1 + b2(Zt)Xt2 + σ(Xt, Zt)εt, t = 1, 2, . . . , n, (3.1)

where b1(Zt) = sin(πZt), b2(Zt) = exp(−Z2
t ) + 1, σ(Xt, Zt) = 0.5[1 + 0.5 sin(πXt1Zt)], and Xt1

and Xt2 are independent and from U [0, 1]. For non-stationary time series Zt, let

Zt = Zt−1 + ξt with ξt = ρξt−1 + et

and et be a sequence of i.i.d. standard normal random variables. Thus β0(z) = (b1(z), b2(z))T .

For simplicity, we just take Z0 = 0 and ξ0 = 0. We choose the following four different distribu-

tions for the random error εt:

(1) standard normal distribution: εt ∼ N(0, 1);

(2) t distribution with degree 3: εt ∼ t(3);

(3) mixture normal distribution: εt ∼ 0.9N(0, 1) + 0.1N(0, 100);
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Table 1: Minimum AMSE’s of β̂n and β̂L and corresponding optimal bandwidths for different

random errors and sample sizes with ρ = 0.2

n Error
β̂n β̂L

hop AMSE AMSE hop

100 N(0, 1) 0.43 0.4190 0.3879 0.41

t(3) 0.41 0.4660 0.4011 0.40

0.9N(0, 1) + 0.1N(0, 100) 0.43 0.4715 0.4088 0.45

C(0, 1) 0.38 0.5624 0.4360 0.37

500 N(0, 1) 0.25 0.2549 0.2430 0.31

t(3) 0.19 0.2564 0.2511 0.20

0.9N(0, 1) + 0.1N(0, 100) 0.20 0.2672 0.2629 0.24

C(0, 1) 0.30 0.2952 0.2898 0.29

(4) standard Cauchy distribution: εt ∼ C(0, 1).

For the proposed estimators, we take τ = 0.5 and employ the kernel K(z) = 3
4
(1−z2)I(|z| ≤

1). The average mean squared error (AMSE) for the estimators β̂(·) of β0(·) based on the

estimators b̂i(·) of bi(·) along M = 200 Monte Carlo trials is defined as

AMSE(h) =
1

2Mngrid

ngrid∑
d=1

M∑
j=1

2∑
i=1

[
b̂ji (zd)− bi(zd)

]2
,

where {zd : d = 1, 2, . . . , ngrid} is a sequence of grid points of z. Here, we set {zd : d =

1, 2, . . . , ngrid} is a sequence from -1 to 1 with step 0.02. The minimal values of AMSE(h) along

the grid, and the corresponding optimal bandwidths hop minimizing the errors, are reported in

Tables 1 and 2 for different sample sizes and the four different random errors.

From Tables 1 and 2, it can be seen that the minimum AMSEs of the estimators decrease

as the sample size increases or the dependence of the observations increases, that is, the value

of ρ increases. More interestingly, we can appreciate how the local linear estimator β̂L(z)

outperforms the kernel estimator β̂n(z) of β0(·) in all the considered situations.

In Figs 1-2, we plot the curves of b1(z) and b2(z) and their estimators based on β̂n(z)

and β̂L(z) from z = 0 to 1. The Fig 1 shows that the plots get better as the sample size

increase. From Fig 2, it seems that the plots become worse as the dependence of the observations

increases. Fig 3 gives the plots of the AMSE vs the bandwidth h with ρ = 0.2 and n = 500.

The left picture is with εt ∼ N(0, 1) and the right one is with εt ∼ t(3). We see that for either

β̂n(z) or β̂L(z), the AMSEs varies little for h ∈ [0.1, 0.5], and the AMSEs of β̂L(z) are smaller

than those of β̂n(z).
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Table 2: Minimum AMSE’s of β̂n and β̂L and corresponding optimal bandwidths for different

random errors and sample sizes with ρ = 0.8

n Error
β̂n β̂L

hop AMSE AMSE hop

100 N(0, 1) 0.37 0.7302 0.6423 0.43

t(3) 0.39 0.9065 0.7719 0.39

0.9N(0, 1) + 0.1N(0, 100) 0.43 0.9552 0.7958 0.45

C(0, 1) 0.41 1.1733 0.9089 0.35

500 N(0, 1) 0.23 0.5349 0.5303 0.24

t(3) 0.26 0.5975 0.5864 0.25

0.9N(0, 1) + 0.1N(0, 100) 0.26 0.6590 0.6438 0.24

C(0, 1) 0.25 0.7339 0.7036 0.21

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

True

B_N

B_LL

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

True

B_N

B_LL

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

True

B_N

B_LL

−1 −0.5 0 0.5 1
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

 

 

True

B_N

B_LL

−1 −0.5 0 0.5 1
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

 

 

True

B_N

B_LL

−1 −0.5 0 0.5 1
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

 

 

True

B_N

B_LL

Fig 1. Plots of β̂n(z) and β̂L(z) with ρ = 0.2 and εt ∼ N(0, 1). From left to right, sample size n = 100, 300, 500.

From up to town, b1(z) and b2(z).
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Fig 2. Plots of β̂n(z) and β̂L(z) with n = 500 and εt ∼ N(0, 1). From left to right, ρ = 0.2, 0.5, 0.8. From up

to town, b1(z) and b2(z).
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Fig 4. Plots of rd, rvd, pp and the first difference of pp.

4 Empirical applications

In this section, we apply the proposed methods to analyze UKDriverDeaths data in R language.

UKDriverDeaths data gives the monthly road casualties in Great Britain from Jan. 1969 to

Dec. 1984. Compulsory wearing of seat belts was introduced in Jan. 1983. Therefore in

practise we just consider the data from Jan 1969 to Dec 1982, which means the data consists of

168 observations. We take rpd (ratio of the death number of passengers and the death number

of drivers) as response yt, rd (rate of the death number of drivers and the total number of

drivers), rvd (rate of the death number of van car drivers and the death number of drivers) and

pp (monthly petrol price) as covariates.

Firstly, it is necessary to test the stationary of covariates. Fig 4 shows the plots of rd, rvd,

pp and the first difference of pp. We also use Box-Pierce’s test to investigate the autocorrelation

of these three covariates. Table 3 gives the p-values of Box-Pierce’s test. Fig 4 and Table 3 both

indicate that rd, rvd and the first difference of pp are stationary, while pp is non-stationary.

Then we take rd as xt1, rvd as xt2 and pp as zt (t = 1, 2, · · · , 168).

Consider the following model

yt = xt1b1(zt) + xt2b2(zt) + σ(xt, zt)εt.

In practice, we set τ = 0.5 and the kernel function as Gauss kernel. Since the minimum of

11



Table 3: P-values of Box-Pierce’s test on rd, rvd, pp and ∆(pp) (the first difference of pp)

rd rvd pp ∆(pp)

p-value 0.2418 0.3831 0.0000 0.6559
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Fig 5. Curves of b̂(·)/100 with z from 0.08 to 0.14. The left one is the curve of b̂1(·)/100, and the right one is

the curve of b̂2(·)/100. The dashed line is β̂n(·) and the solid line is β̂L(·).

pp is 0.081 and the maximum of pp is 0.133, we take z from 0.08 to 0.14 with step 0.001. To

select bandwidth, for a fixed point z = z0 and a fixed bandwidth h, we first use the proposed

methods to estimate b̂h1(z0) and b̂h2(z0), and then compute

R2(h, z0) =
1

168

168∑
t=1

(ŷt − yt)2,

where ŷt is the estimated value of yt with b̂h1(z0) and b̂h2(z0). Define the optimal bandwidth hop

at z = z0 as the one minimizes R2(h, z0), and take the estimated values of varying coefficients

as b̂1(z0) = b̂hop1 (z0) and b̂2(z0) = b̂hop2 (z0).

Fig 5 shows the curves of b̂1(·)/100 and b̂2(·)/100 based on the kernel estimator β̂n(·) and

the local linear estimator β̂L(·). From Fig 5, we can see that (1) Both rd and rvd have positive

impact on rpd, while rd has bigger influence on rpd than rvd does. For example, at z = 0.08,

based on the β̂n(·), rpd increases about 1 as rd increases 1% and rpd increases about 0.4 as rvd

increases 1%; (2) b̂1(·)/100 increases as pp increases. The reason may be that when petrol price

is high, people are more willing to go out by car together. Every driver takes more passengers,

which makes the death number of passengers increases when car accident happens. It is also

12



seen that b̂2(·)/100 decreases as pp increases, but the differences are comparatively smaller; (3)

the curves of β̂L(·) are smoother that those of β̂n(·).

5 Proofs of Main Results

We start with some preliminaries. Except mentioned explicitly, the notation used in this section

is the same as in Section 2. Recall d2n = Var(
∑n

j=1 ξj). Wang, Lin and Gulati (2003) proved

that

d2n =

{
νr n

3−2µ ρ2(n), under LM,

φ2 n, under SM,
(5.1)

where νr = 1
(1−r)(3−2r)

∫∞
0
x−r(x + 1)−rdx. Denote by BH = {BH(t)}t≥0 a fractional Brownian

motion and write

Zt = W (t) + τ

∫ t

0

e−τ(t−s)W (s)ds,

where

W (t) =

{
B3/2−u(t), under LM,

B1/2(t), under SM.

Note that Zt is an Ornstein-Uhlenbeck process, having a continuous local time LZ(t, x). The

definition of a local time process can be found in Chapter 2 of Wang (2015).

We have the following lemma, which is crucial in the proof of our main results. Let m(s), s ∈
Rd, be a measurable real function of its components and ψτ (u) = τ − I(u < 0).

Lemma 5.1 Suppose that A2 and A6(i) hold, and E|m(x1)|2+δ < ∞ for some δ > 0. Then,

for any h = O(1) and nh/dn →∞, we have

sup
z∈R

n∑
t=1

E
{
|m(xt)|2+δK

(zt − z
h

)}
= O(nh/dn), (5.2)

sup
z∈R

E
∣∣∣ [nt]∑
k=1

[
m(xk)− Em(xk)

]
K
(zk − z

h

)∣∣∣2
= O(nh/dn)

{
1 + h, under LM,

1 + h log n, under SM,
(5.3)

uniformly for 0 ≤ t ≤ 1, and{ dn
nh

n∑
t=1

K
(zt − z

h

)
,
( dn
nh

)1/2 n∑
t=1

m(xt)K
(zt − z

h

)
ψτ (εt)

}
13



→D

{
LZ(1, 0), a0 L

1/2
Z (1, 0)N

}
, (5.4)

where N is a standard normal variate independent of LZ(1, 0) and

a20 = τ(1− τ)Em2(x1)

∫ ∞
−∞

K2(x)dx.

If
∫∞
−∞K(x)dx = 0, then

n∑
k=1

m(xk)K
(zk − z

h

)
= OP

[
(nh/dn)1/2(1 + h log n)

]
. (5.5)

Proof. For results (5.2) and (5.3), we refer to Lemma 2.2 of Wang (2015). Result (5.5) follows

from (5.3) and Theorem 3.18 of Wang (2015). To prove (5.4), write

xnk =
( dn
nh

)1/2
m(xk)K

(zk − z
h

)
:= fn(ηk, ηk−1, ...;xk, xk−1, ..., x1).

Result (5.3), together with Theorem 2.21 of Wang (2015, page 39), implies that( 1√
n

[nt]∑
j=1

ηj,
1√
n

[nt]∑
j=1

η−j,

[nt]∑
j=1

x2nj

)

=
( 1√

n

[nt]∑
j=1

ηj,
1√
n

[nt]∑
j=1

η−j, Em
2(x1)

dn
nh

[nt]∑
j=1

K2
(zk − z

h

))
+ oP (1)

⇒
(
B1t, B2t, ã

2
0 Zt
)
, (5.6)

on DR3 [0,∞), where ã20 = Em2(x1)
∫∞
−∞K

2(x)dx, B = (B1t, B2t)t≥0 is a standard 2-dimensional

Brownian motion and Zt is a functional of B. On the other hand, by recalling Ft = σ(xj, zj, j ≤
t), it is readily seen that {(ηt+1, ψτ (εt)),Ft}t≥1 forms a sequence of martingale difference with

|ψτ (εt)| ≤ τ + 1 and

E(ψ2
τ (εt)|Ft) = τ(1− τ).

Result (5.4) now follows from an application of Theorem 3.14 in Wang (2015, page 106). We

omit the details. �

Lemma 5.2 Suppose that A2 and A6(i) hold, and E||x1||2+δ < ∞ for some δ > 0. Then, for

any h = O(1) and nh/dn →∞, we have{ dn
nh

n∑
t=1

K
(zt − z

h

)
,
( dn
nh

)1/2 n∑
t=1

xtK
(zt − z

h

)
ψτ (εt)

}
→D

{
LZ(1, 0), c0 L

1/2
Z (1, 0)N

}
, (5.7)

where N is a d-dimensional normal vector independent of LZ(1, 0) with mean zero and covari-

ance Ω = Ex1x
T
1 .
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Proof. For any α ∈ Rd, we have E(α′x1)
2 = α′Ex1x

T
1 α. The result follows from (5.4) with

m(xt) = α′xt and the Cramér-Wold theorem. �

The following lemma is called the Quadratic approximation lemma, which can be found in

Fan and Gijbel (1996).

Lemma 5.3 Let Vn(θ) be a sequence of random convex function defined on a convex open

subset Θ of Rd. Let F be no random positive matrix and Un a sequence of random vectors that

is stochastically bounded. Write

Vn(θ) = −θTUn +
1

2
θTFθ + fn(θ).

If for each θ ∈ Θ, fn(θ) = oP (1), then

θ̂n = F−1Un + oP (1), (5.8)

where θ̂n (assumed to exist) minimizes Vn(θ).

We are now ready to prove our main results.

Proof of Theorem 2.1. We only prove (2.4). Others are similar except simpler. Let

vn = (nh/dn)1/2, θ(z) = vn [β − β0(z)], θ̂n(z) = vn [β̂n(z)− β0(z)]

and ε∗t = σ(xt, zt)εt + xTt
[
β0(zt)− β0(z)

]
. Recalling (1.1), we have

ρτ
[
yt − xTt β̂n(z)

]
K
(zt − z

h

)
= ρτ

[
ε∗t − v−1n xTt θ̂n(z)

]
K
(zt − z

h

)
,

Hence (2.1) is equivalent to

θ̂n(z) = arg min
θ

n∑
t=1

[
ρτ
(
ε∗t − v−1n xTt θ

)
− ρτ (ε∗t )

]
K
(zt − z

h

)
:= arg min

θ
Vn(θ).

Note that, for u 6= 0,

ρτ (u− v)− ρτ (u) = −vψτ (u) +

∫ v

0

[
I(u ≤ z)− I(u ≤ 0)

]
dz, (5.9)

where ψτ (u) = τ − I(u < 0). Since ψτ [σ(xt, zt)εt] = ψτ (εt), we may write

Vn(θ) =
n∑
t=1

[
ρτ
(
ε∗t − v−1n xTt θ

)
− ρτ (ε∗t )

]
K
(zt − z

h

)
=− θT

( dn
nh

)1/2 n∑
t=1

xtK
(zt − z

h

)
ψτ (ε

∗
t ) +

n∑
t=1

ξt(θ)
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:= − θTVn1 + Vn2, (5.10)

where ξt(θ) = K( zt−z
h

)
∫ v−1

n xTt θ

0

[
I(ε∗t ≤ u)− I(ε∗t ≤ 0)

]
du.

Let An = dn
nh

∑n
t=1K

(
zt−z
h

)
. In Appendix, for each θ ∈ Rd, we will prove

Vn2 =
1

2
θT Λ θ An + op(1). (5.11)

Recalling that An →D LZ(1, 0) by (5.4) and P (LZ(1, 0) = 0) = 0, it follows from (5.10) and

(5.11) that

A−1n Vn(θ) =− A−1n θTVn1 +
1

2
θT Λ θ + fn(θ),

where Vn1A
−1
n is stochastically bounded and fn(θ) = oP (1) for each θ ∈ Θ. Now, by noting

arg min
θ
Vn(θ) = arg min

θ
A−1n Vn(θ)

and using Lemma 5.3, we have

θ̂n(z) = A−1n Λ−1 Vn1 + oP (1). (5.12)

Hence (2.4) will follow if we prove

Vn1 =
( dn
nh

)1/2 n∑
t=1

xtK
(zt − z

h

)
ψτ (εt)

+
h2

2

[
Λ β′′0 (z)− Λ1 + 2Λ2β

′
0(z)

] ( dn
nh

)1/2 n∑
t=1

K2

(zt − z
h

)
+ oP (1). (5.13)

Indeed, by noting
∫∞
−∞

[
K2(x)− µ2K(x)

]
dx = 0, (5.4) and (5.5) imply that

∣∣∣A−1n dn
nh

n∑
t=1

K2

(zt − z
h

)
− µ2

∣∣∣ =

∑n
t=1

[
K2

(
zt−z
h

)
− µ2K

(
zt−z
h

)]
∑n

t=1K
(
zt−z
h

)
= OP

[
(
dn
nh

)1/2(1 + h log n)
]
. (5.14)

This, together with (5.12) and (5.13), yields that

θ̂n(z) = Λ−1A−1n

( dn
nh

)1/2 n∑
t=1

xtK
(zt − z

h

)
ψτ (εt) +

(nh
dn

)1/2µ2 h
2

2
Λ−1 α + oP (1).

Now, by recalling θ̂n(z) =
(
nh
dn

)1/2
[β̂n(z)− β0(z)], result (2.4) follows from Lemma 5.2 and the

continuous mapping theorem .
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The proof of (5.13) will be given in Appendix. The proof of Theorem 2.1 is complete. �

Proof of Theorem 2.2. The proof is similar to that of Theorem 2.1 and we only prove (2.6). Let

vn = (nh/dn)1/2, xtz =
{
xTt , x

T
t (zt − z)/h

}T
,

π0(z) = vn[α0 − β0(z)], π1(z) = vnh[α1 − β′0(z)], π(z) = {π0(z)T , π1(z)T}T ,

π̂0(z) = vn[β̂L(z)− β0(z)], π̂1(z) = vnh[β̂′L(z)− β′0(z)], π̂n(z) = {π̂0(z)T , π̂1(z)T}T ,

and ε̃t = σ(xt, zt)εt + xTt [β0(zt)− β0(z)− β′0(z)(zt − z)]. It is easy to see that

ρτ
(
yt − xTt [β̂L(z) + β̂′L(z)(zt − z)]

)
= ρτ

(
ε̃t − v−1n xTtzπ̂n(z)

)
.

Then the minimizer of (2.2) is equivalent to

π̂n(z) = arg min
π

n∑
t=1

[
ρτ
(
ε̃t − v−1n xTtzπ

)
− ρτ (ε̃t)

]
K
(zt − z

h

)
:= arg min

π
Hn(π).

From (5.9) we write

Hn(π) =− πT
( dn
nh

)1/2 n∑
t=1

xtzK
(zt − z

h

)
ψτ (ε̃t) +

n∑
t=1

ξ̃t(π)

:=− πTHn1 +Hn2,

where ξ̃t(π) = K( zt−z
h

)
∫ v−1

n xTtzπ

0

[
I(ε̃t ≤ u)− I(ε̃t ≤ 0)

]
du.

Write An = dn
nh

∑n
t=1K

(
zt−z
h

)
and Bn = dn

nh

∑n
t=1K2

(
zt−z
h

)
. In Appendix, we will prove

Hn2 =
1

2
πT diag{AnΛ, BnΛ} π + oP (1), (5.15)

Since diag{AnΛ, BnΛ} is a quasi-diagonal matrix, by simple calculation of block matrix and

following the same argument in the proof of (5.12), we have

π̂0(z) = A−1n Λ−1Hn11 + oP (1), (5.16)

where Hn11 =
(
dn
nh

)1/2 ∑n
t=1 xtK

(
zt−z
h

)
ψτ (ε̃t). In Appendix we will prove

Hn11 =
( dn
nh

)1/2 n∑
t=1

xtK
(zt − z

h

)
ψτ (εt) +

h2

2
Λ β′′0 (z)

( dn
nh

)1/2 n∑
t=1

K2

(zt − z
h

)
+ oP (1). (5.17)

Combining with (5.14), (5.16) and (5.17), it yields that

π̂0(z) = Λ−1A−1n

( dn
nh

)1/2 n∑
t=1

xtK
(zt − z

h

)
ψτ (εt) +

(nh
dn

)1/2µ2 h
2

2
β′′0 (z) + oP (1).

Recalling that π̂0(z) =
(
nh
dn

)1/2
[β̂L(z) − β0(z)], then result (2.6) follows from Lemma 5.2 and

the continuous mapping theorem. Thus, Theorem 2.2 is proved. �
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6 Appendix

Proof of (5.11). Set Yt = σ−1(xt, zt)K( zt−z
h

). It follows from A3 that

0 ≤ ξt(θ) ≤ v−1n |xTt θ|K
(zt − z

h

)
(6.1)

and

E
[
ξt(θ)|Ft

]
=Yt

∫ v−1
n |xTt θ|

0

∫ r

0

ft

{
σ−1(xt, zt)

(
s− xTt

[
β0(zt)− β0(z)

])}
ds dr (6.2)

≤C v−2n Yt (xTt θ)
2 . (6.3)

From (6.2), we further have

E
[
ξt(θ)|Ft

]
=
f(0)

2

dn
nh

σ−1(xt, z) (xTt θ)
2K
(zt − z

h

)
+Rt1 +Rt2 (6.4)

where

Rt1 =Yt

∫ v−1
n |xTt θ|

0

∫ r

0

[
ft
{
σ−1(xt, zt)(s− xTt

[
β0(zt)− β0(z)

]
)
}
− f(0)

]
ds dr,

Rt2 =
1

2
f(0)v−2n [σ−1(xt, zt)− σ−1(xt, z)](xTt θ)2K

(zt − z
h

)
.

Using A3(i) and A5(i) it can be obtained that

|Rt1| ≤ CYt

∫ v−1
n |xTt θ|

0

∫ r

0

∣∣∣σ−1(xt, zt)(s− xTt [β0(zt)− β0(z)
]
)
∣∣∣λds dr

≤ Cv−(2+λ)n σ−(1+λ)(xt, zt) |xTt θ|2+λK
(zt − z

h

)
+Cv−2n σ−(1+λ)(xt, zt) (xTt θ)

2 |xTt
[
β(zt)− β(z)

]
|λK

(zt − z
h

)
,

|Rt2| ≤ C|h|δ v−2n (1 + ||xt||k0)(xTt θ)2K
(zt − z

h

)
.

Note that conditions A5 (i), A7 and h→ 0 imply that

σ−1(xt, zt)K
(zt − z

h

)
≤ C

[
σ−1(xt, z) + |h|δ(1 + ||xt||k0)

]
K
(zt − z

h

)
,

[
β0(zt)− β0(z)

]
K
(zt − z

h

)
≤ ChK

(zt − z
h

)
,

uniformly for 1 ≤ t ≤ n. A simple application of (5.2) yields
∑n

t=1(Rt1 + Rt2) = oP (1) due to

h→ 0. This, together with (5.3) and (6.4), implies that

n∑
t=1

E(ξt(θ)|Ft) =
f(0)

2

dn
nh

n∑
t=1

σ−1(xt, z) (xTt θ)
2K
(zt − z

h

)
+ oP (1)
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=
f(0)

2
E
[
σ−1(x1, z) (xT1 θ)

2
] dn
nh

n∑
t=1

K
(zt − z

h

)
+ oP (1)

=
1

2
θT Λ θ

dn
nh

n∑
t=1

K
(zt − z

h

)
+ oP (1).

Hence (5.11) will follow if we prove

∆n :=
n∑
t=1

[
ξt(θ)− E(ξt(θ)|Ft)

]
= oP (1). (6.5)

In fact, by noting that {ξt(θ)−E(ξt(θ)|Ft)}i≥1 forms a martingale difference sequence, it follows

from (6.1), (6.3) and (5.2) that

E∆2
n ≤ 2

n∑
t=1

Eξ2t (θ) ≤ C v−1n

n∑
t=1

E
[
|xTt θ|E(ξt(θ)|Ft)

]
≤ C

( dn
nh

)3/2 n∑
t=1

E
{
|xTt θ|3 σ−1(xt, zt)K

(zt − z
h

)}
= o(1),

due to nh/dn →∞, which yields (6.5). �

Proof of (5.13). The idea is similar to the proof of (5.11), but requiring more detailed

calculations. We only provide a outline.

Let ηt = xtK
(
zt−z
h

)[
ψτ (ε

∗
t )− ψτ (εt)

]
. Then

Vn1 =
( dn
nh

)1/2 n∑
t=1

xtK
(zt − z

h

)
ψτ (εt) +

( dn
nh

)1/2 n∑
t=1

ηt. (6.6)

Write λt = −σ−1(xt, zt)xTt [β0(zt)− β0(z)]. By noting that, for some δ > 0,

|Ft(x)− Ft(0)− f(0)x− 1

2
f ′(0)x2| ≤

∫ |x|
0

|ft(s)− ft(0)− f ′t(0) s|ds ≤ C min{|x|2+δ, 1},∣∣∣∣β0(zt)− β0(z)− β′0(z)(zt − z)− 1

2
β′′0 (z)(zt − z)2

∣∣∣∣K(zt − z
h

)
≤ C|h|2+δK

(zt − z
h

)
.

Hence we have

E(ηt|Ft) = xtK
(zt − z

h

) [
Ft(0)− Ft(λt)

]
= −xtK

(zt − z
h

) [
f(0)λt +

1

2
f ′(0)λ2t

]
+ xtK

(zt − z
h

)
O(|λt|2+δ)

= f(0)σ−1(xt, zt)xtx
T
t

[
hβ′0(z)K1

(zt − z
h

)
+
h2

2
β′′0 (z)K2

(zt − z
h

)]
− h2

2
f ′(0)σ−2(xt, zt)xt

[
xTt β

′
0(z)

]2
K2

(zt − z
h

)
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+ xt

[(
σ−1(xt, z) + ||xt||k0 + 1

) (
||xt||+ 1

)]3
K
(zt − z

h

)
O(h2+δ),

where Ki(x) = xiK(x), i = 1, 2. As a consequence, it follows from Lemma 5.1 that

( dn
nh

)1/2 n∑
t=1

E(ηt|Ft) = h f(0)
( dn
nh

)1/2 n∑
t=1

σ−1(xt, zt)xtx
T
t β
′
0(z)K1

(zt − z
h

)
+
h2 f(0)

2

( dn
nh

)1/2 n∑
t=1

σ−1(xt, zt)xtx
T
t β
′′
0 (z)K2

(zt − z
h

)
− h2 f ′(0)

2

( dn
nh

)1/2 n∑
t=1

σ−2(xt, zt)xt[x
T
t β
′
0(z)]2K2

(zt − z
h

)
+ OP

[(nh
dn

)1/2
h2+δ

]
:= R1n +R2n +R3n +OP

[(nh
dn

)1/2
h2+δ

]
. (6.7)

By recalling A5(i) and using Lemma 5.1 again, we have

R2n =
h2 f(0)

2

( dn
nh

)1/2 n∑
t=1

σ−1(xt, z)xtx
T
t β
′′
0 (z)K2

(zt − z
h

)
+O(h2+δ)

( dn
nh

)1/2 n∑
t=1

xt

[(
||xt||k0 + 1

) (
||xt||+ 1

)]
K2

(zt − z
h

)
=

h2

2
Λ β′′0 (z)

( dn
nh

)1/2 n∑
t=1

K2

(zt − z
h

)
+OP

[(nh
dn

)1/2
h2+δ + h2(1 + h log n)

]
,

and similarly,

R3n = −h
2

2
Λ1

( dn
nh

)1/2 n∑
t=1

K2

(zt − z
h

)
+OP

[(nh
dn

)1/2
h2+δ + h2(1 + h log n)

]
,

As for R1n, it follows from A5(ii) first and then using similar arguments as in the proofs above

that

R1n = h f(0)
( dn
nh

)1/2 n∑
t=1

σ−1(xt, z)xtx
T
t β
′
0(z)K1

(zt − z
h

)
+h2 f(0)

( dn
nh

)1/2 n∑
t=1

σ1(xt, z)xtx
T
t β
′
0(z)K2

(zt − z
h

)
+OP

[(nh
dn

)1/2
h2+δ

]
= hΛ β′0(z)

( dn
nh

)1/2 n∑
t=1

K1

(zt − z
h

)
+ h2 Λ2β

′
0(z)

( dn
nh

)1/2 n∑
t=1

K2

(zt − z
h

)
+OP

[(nh
dn

)1/2
h2+δ + h(1 + h log n)

]
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= h2 Λ2β
′
0(z)

( dn
nh

)1/2 n∑
t=1

K2

(zt − z
h

)
+OP

[(nh
dn

)1/2
h2+δ + h(1 + h log n)

]
,

where we have used (5.5) with m(x) = 1, due to
∫∞
−∞K1(x)dx = 0.

Taking these estimates into (6.7), we obtain

( dn
nh

)1/2 n∑
t=1

E(ηt|Ft) =
h2

2

[
Λ β′′0 (z)− Λ1 + 2Λ2β

′
0(z)

] ( dn
nh

)1/2 n∑
t=1

K2

(zt − z
h

)
+OP

[(nh
dn

)1/2
h2+δ + h(1 + h log n)

]
.

On the other hand, as the proof in (5.11), we have (dn/nh)1/2
∑n

t=1[ηt−E(ηt|Ft)] = oP (1). We

therefore obtain

Vn1 =
( dn
nh

)1/2 n∑
t=1

xtK
(zt − z

h

)
ψτ (εt)

+
h2

2

[
Λ β′′0 (z)− Λ1 + 2Λ2β

′
0(z)

] ( dn
nh

)1/2 n∑
t=1

K2

(zt − z
h

)
+ oP (1),

due to nh5+δ/dn → 0 (yields h2 log n→ 0). This completes the proof of (5.13).�

Proof of (5.15). Let Yt = σ−1(xt, zt)K( zt−z
h

) and β̃ = β0(zt)− β0(z)− β′0(z)(zt− z). We have

n∑
t=1

E(ξ̃t(π)|Ft) =
n∑
t=1

Yt

∫ v−1
n |xTtzπ|

0

∫ r

0

ft
[
σ−1(xt, zt)(s− xTt β̃)

]
ds dr

=
f(0)

2

dn
nh

n∑
t=1

σ−1(xt, z) (xTtzπ)2K
(zt − z

h

)
+
f(0)

2

dn
nh

n∑
t=1

[σ−1(xt, zt)− σ−1(xt, z)](xTtzπ)2K
(zt − z

h

)
+

n∑
t=1

Yt

∫ v−1
n |xTtzπ|

0

∫ r

0

{
ft
[
σ−1(xt, zt)(s− xTt β∗)

]
− f(0)

}
ds dr.

Applying similar arguments as in proof of (5.11), it follows that

dn
nh

n∑
t=1

[σ−1(xt, zt)− σ−1(xt, z)](xTtzπ)2K
(zt − z

h

)
= oP (1),

n∑
t=1

Yt

∫ v−1
n |xTtzπ|

0

∫ r

0

{
ft
[
σ−1(xt, zt)(s− xTt β̃)

]
− f(0)

}
ds dr = oP (1),

n∑
t=1

ξ̃t(π) =
n∑
t=1

E(ξ̃t(π)|Ft) +
n∑
t=1

{
ξ̃t(π)− E(ξ̃t(π)|Ft)

}
=

n∑
t=1

E(ξ̃t(π)|Ft) + oP (1).
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Hence

Hn2 =
f(0)

2

dn
nh

n∑
t=1

σ−1(xt, z) (xTtzπ)2K
(zt − z

h

)
+ oP (1). (6.8)

Recall π = (πT0 , π
T
1 )T . Applying (5.3) we have

dn
nh

n∑
t=1

σ−1(xt, z) (xTtzπ)2K
(zt − z

h

)
=
dn
nh

n∑
t=1

σ−1(xt, z)
{

(xTt π0)
2 + (xTt π1)

2
(zt − z

h

)2
+ 2(xTt π0)(x

T
t π1)

(zt − z
h

)}
K
(zt − z

h

)
=πT0 E[σ−1(xt, z)xtx

T
t ]π0 ·

dn
nh

n∑
t=1

K
(zt − z

h

)
+ πT1 E[σ−1(xt, z)xtx

T
t ]π1 ·

dn
nh

n∑
t=1

K2

(zt − z
h

)
+ 2πT0 E[σ−1(xt, z)xtx

T
t ]π1 ·

dn
nh

n∑
t=1

K1

(zt − z
h

)
+ oP (1),

= f−1(0)πT diag {AnΛ, BnΛ} π + oP (1), (6.9)

where An = dn
nh

∑n
t=1K

(
zt−z
h

)
, Bn = dn

nh

∑n
t=1K2

(
zt−z
h

)
and we have used the fact:

dn
nh

n∑
t=1

K1

(zt − z
h

)
= OP

[
(nh/dn)1/2(1 + h log n)

]
due to

∫∞
−∞K1(x)dx = 0 and Lemma 5.1. Taking this estimate into (6.8), we obtain (5.15). �

Proof of (5.17). Let η̃t = xtK
(
zt−z
h

)[
ψτ (ε̃t)− ψτ (εt)

]
. Then

Hn11 =
( dn
nh

)1/2 n∑
t=1

xtK
(zt − z

h

)
ψτ (εt) +

( dn
nh

)1/2 n∑
t=1

η̃t.

Write λ̃t = −σ−1(xt, zt)xTt [β0(zt)− β0(z)− β′0(z)(zt − z)]. For some δ > 0, from A3(i), A4(iii)

and A5(i) we have

E(η̃t|Ft) = xtK
(zt − z

h

) [
Ft(0)− Ft(λ̃t)

]
= −xtK

(zt − z
h

)
f(0)λ̃t + xtK

(zt − z
h

)
O(|λ̃t|1+δ)

=
h2 f(0)

2
σ−1(xt, zt)xtx

T
t β
′′
0 (z)K2

(zt − z
h

)
+ xt

[(
σ−1(xt, z) + ||xt||k0 + 1

) (
||xt||+ 1

)]2
K
(zt − z

h

)
O(h2+δ).
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Following from Lemma 5.1, it shows that

( dn
nh

)1/2 n∑
t=1

E(η̃t|Ft) =
h2 f(0)

2

( dn
nh

)1/2 n∑
t=1

σ−1(xt, zt)xtx
T
t β
′′
0 (z)K2

(zt − z
h

)
+OP

[(nh
dn

)1/2
h2+δ

]
=

h2

2
Λ β′′0 (z)

( dn
nh

)1/2 n∑
t=1

K2

(zt − z
h

)
+OP

[(nh
dn

)1/2
h2+δ + h2(1 + h log n)

]
. (6.10)

Furthermore, as the proof in (5.11), we have (dn/nh)1/2
∑n

t=1[η̃t − E(η̃t|Ft)] = oP (1), which

yields (5.17) by nh5+δ/dn → 0 (implying h3 log n→ 0). �
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