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Abstract. We use product systems of C∗-correspondences to introduce twisted C∗-algebras
of topological higher-rank graphs. We define the notion of a continuous T-valued 2-cocycle
on a topological higher-rank graph, and present examples of such cocycles on large classes
of topological higher-rank graphs. To every proper, source-free topological higher-rank graph
Λ, and continuous T-valued 2-cocycle c on Λ, we associate a product system X of C0(Λ0)-
correspondences built from finite paths in Λ. We define the twisted Cuntz–Krieger algebra
C∗(Λ, c) to be the Cuntz–Pimsner algebra O(X), and we define the twisted Toeplitz algebra
T C∗(Λ, c) to be the Nica–Toeplitz algebra NT (X). We also associate to Λ and c a product
system Y of C0(Λ∞)-correspondences built from infinite paths. We prove that there is an
embedding of T C∗(Λ, c) into NT (Y ), and an isomorphism between C∗(Λ, c) and O(Y ).

1. Introduction

The theory of graph C∗-algebras originated through the work of Enomoto and Watatani in
[9], and then was continued by Kumjian, Pask, Raeburn, and Renault in [17] on the C∗-algebras
of directed graphs. These C∗-algebras are generalisations of the Cuntz algebras introduced in
[7] and the Cuntz–Krieger algebras introduced in [8]. Since their introduction, directed graph
C∗-algebras have been a thriving area of research within the field of operator algebras, and
have been generalised in many different directions, including the C∗-algebras of higher-rank
graphs (or k-graphs) by Kumjian and Pask in [16], the C∗-algebras associated to P -graphs
by the second-named author, Sims, and Vittadello in [5], and the C∗-algebras associated to
topological graphs by Katsura in [14]. These classes of C∗-algebras significantly extend the
range of C∗-algebras that can be described using graphs; for instance, all Kirchberg algebras
can be modelled using topological graph C∗-algebras [15] or P -graph C∗-algebras [5].

The topological graph and k-graph C∗-algebra constructions were unified by Yeend in [31,
32, 33] with the introduction of topological k-graphs and their C∗-algebras. Yeend studied
a topological path space carrying an action of Λ, and used this data to build a topological
groupoid GΛ. A closed invariant subset ∂Λ of the unit space of GΛ also gives rise to the
boundary-path groupoid GΛ := GΛ|∂Λ. The groupoid C∗-algebras C∗(GΛ) and C∗(GΛ) are the
Toeplitz and Cuntz–Krieger algebras associated to Λ, respectively.

In [20], Kumjian, Pask, and Sims generalised k-graph C∗-algebras in a different direction
with the introduction of the twisted Cuntz–Krieger algebra C∗(Λ, c) associated to a row-finite
k-graph Λ with no sources and a T-valued categorical 2-cocycle c on Λ. The cohomology of
k-graphs and the notion of using cohomological data to twist a k-graph C∗-algebra began in
[18], and has been further investigated in [19, 28, 21]. The twisting process results in increased
structural complexity and has enabled the study of many interesting examples of C∗-algebras
using graph algebra techniques, including all noncommutative tori and Heegaard-type quantum
3-spheres (see [18, Section 7]).
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In this paper, we initiate the study of twisted C∗-algebras of topological k-graphs. We
work with topological k-graphs that are proper and source-free (the analogue of row-finite
and no sources for directed graphs), and continuous T-valued 2-cocycles on these graphs. For
each such topological k-graph Λ and cocycle on Λ, we construct two product systems of C∗-
correspondences: a product system X built from finite paths in Λ, and a product system Y
built from infinite paths. The innovation in our construction comes from the cocycle, which we
incorporate into the definition of the products in X and Y . Product systems built from finite
and infinite paths of higher-rank graphs are natural constructions, and our work follows the
earlier work by Yamashita in [30], and Carlsen, Larsen, Sims, and Vittadello in [6]. Indeed,
the product system studied in [6] is the “untwisted” version of X, and the product system
studied in [30] is the “untwisted” version of Y . See also [4] for a product system built from the
boundary paths in a finitely aligned k-graph.

Fowler introduced product systems of C∗-correspondences and their C∗-algebras in [12]. Ap-
plying Fowler’s theory to our product system X enables us to define our twisted C∗-algebras.
In particular, we define the twisted Cuntz–Krieger algebra C∗(Λ, c) to be the Cuntz–Pimsner
algebra O(X), and we define the twisted Toeplitz algebra T C∗(Λ, c) to be the Nica–Toeplitz al-
gebra NT (X). In our main result we study the relationship between these C∗-algebras and the
Cuntz–Pimsner and Nica–Toeplitz algebras of the product system Y built from infinite paths.
We prove that T C∗(Λ, c) embeds into NT (Y ), and that C∗(Λ, c) is isomorphic to O(Y ).

We begin by providing some background on C∗-correspondences, product systems, and topo-
logical graphs in Section 2. In Section 3 we recall Yeend’s notion of a topological k-graph, and
we prove some basic results about a class of topological k-graphs which we describe as proper
and source-free. In Section 3 we also introduce the notion of a continuous T-valued 2-cocycle on
a topological k-graph, and we provide several broad classes of examples, including a new class
of topological higher-rank graphs built from actions of Zl on topological k-graphs. In Section 4
we construct the product systems X and Y , define our C∗-algebras C∗(Λ, c) and T C∗(Λ, c), and
state our main theorem. In Section 5 we build a Nica-covariant representation ψ of X in the
Nica–Toeplitz algebra of Y . In Section 6 we prove our main theorem by using ψ to construct
an embedding of T C∗(Λ, c) into NT (Y ), and an isomorphism between C∗(Λ, c) and O(Y ).

Acknowledgements. The authors would like to thank Aidan Sims for many fruitful discussions.

2. Background

In this section we present the necessary background on C∗-correspondences, product sys-
tems of C∗-correspondences and their associated C∗-algebras, and topological graphs and their
associated C∗-correspondences.

2.1. C∗-correspondences, product systems, and their associated C∗-algebras. Let A
be a C∗-algebra. A C∗-correspondence over A, or an A-correspondence, is a right Hilbert A-
module X with a left action of A on X implemented by a homomorphism φ : A → L(X),
where L(X) is the algebra of adjointable operators on X. We frequently write a · x for φ(a)x.
We denote the A-valued inner product on X by 〈·, ·〉X and the induced norm on X by ‖·‖X .
We write K(X) for the generalised compact operators span{Θx,y : x, y ∈ X} ⊆ L(X), where
Θx,y(z) := x · 〈y, z〉X .

A representation of an A-correspondence X in a C∗-algebra B is a pair (ψ, π) consisting of
a linear map ψ : X → B and a homomorphism π : A→ B such that for all x, y ∈ X, a ∈ A we
have

ψ(x · a) = ψ(x)π(a), ψ(x)∗ψ(y) = π(〈x, y〉X), and ψ(a · x) = π(a)ψ(x).

We know from [13, Proposition 1.6] that (ψ, π) induces a homomorphism ψ(1) : K(X) → B,
characterised by ψ(1)(Θx,y) = ψ(x)ψ(y)∗ (see also [25, page 202]).
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For our background on product systems, we will only discuss product systems over Nk; for
the same definitions and results for product systems over subsemigroups of quasi-lattice ordered
groups, see [12], where this theory originated, or [29, Section 2].

Let A be a C∗-algebra. A product system over Nk is a semigroup X = tn∈NkXn such that

(i) each Xn is an A-correspondence;
(ii) the A-correspondence X0 is a copy of AAA;

(iii) for each nonzero m,n ∈ Nk, the map Xm ×Xn → Xm+n given by x⊗ y 7→ xy extends
to an isomorphism of A-correspondences Xm ⊗A Xn

∼= Xm+n; and
(iv) ax = a · x and xa = x · a, for each x ∈ X and a ∈ X0.

We denote by φXn the homomorphism A → L(Xn) implementing the left action of A on Xn,
and by 〈·, ·〉Xn the inner product on Xn.

For nonzero m,n ∈ Nk with m ≤ n, there is a homomorphism ιnm : L(Xm)→ L(Xn) charac-
terised by ιnm(S)(xy) = (Sx)y for all x ∈ Xm, y ∈ Xn−m. Since K(X0) can be identified with A,
we define ιn0 := φXn for all n ∈ Nk. For each m,n ∈ Nk we denote by m ∨ n the coordinatewise
maximum of m and n. A product system X is compactly aligned if, for all m,n ∈ Nk, and all
S ∈ K(Xm) and T ∈ K(Xn), we have ιm∨nm (S)ιm∨nn (T ) ∈ K(Xm∨n). Recall from [12, Proposi-
tion 5.8] that if the left action φXn has range in K(Xn), for all n ∈ Nk, then X is compactly
aligned.

A representation ψ of a product system X in a C∗-algebra B is a map from X to B such
that each (ψ|Xn , ψ|X0) is a representation of the C∗-correspondence Xn, and ψ(xy) = ψ(x)ψ(y)
for all x, y ∈ X. For each n ∈ Nk, we write ψn for ψ|Xn . We denote by ψ(n) the homomorphism
K(Xn) → B characterised by ψ(n)(Θx,y) = ψn(x)ψn(y)∗. A representation ψ of a compactly
aligned product system X is Nica covariant if, for all m,n ∈ Nk, and all S ∈ K(Xm), T ∈
K(Xn), we have

ψ(m)(S)ψ(n)(T ) = ψ(m∨n)(ιm∨nm (S)ιm∨nn (T )).

In [12, Theorem 6.3], Fowler introduced the Nica–Toeplitz algebra NT (X) (originally denoted
by Tcov(X)), which is the C∗-algebra generated by a universal Nica-covariant representation
iX : X → NT (X); that is, NT (X) is generated by the image of iX , and if ψ : X → B is
a Nica-covariant representation of X in a C∗-algebra B, then there exists a homomorphism
ψNT : NT (X) → B satisfying ψNT ◦ iX = ψ. For each n ∈ Nk, we write iX,n for iX |Xn . We
know that iX is isometric because the Fock representation is isometric (see [12]).

Suppose X is a product system of A-correspondences and each left action φXn is injective
and has range in K(Xn). A representation ζ of X is Cuntz–Pimsner covariant if

ζ0(a) = ζ(n)(φXn(a)) for all a ∈ A, n ∈ Nk.

The Cuntz–Pimsner algebra O(X) is the universal C∗-algebra generated by a Cuntz–Pimsner
representation of X. Under the assumptions on the left actions, we can apply [2, Lemma 2.2] to

see that O(X) is the quotient of NT (X) by the ideal generated by {iX,0(a)− i(n)
X (φXn(a)) : n ∈

Nk, a ∈ A}. We denote by qX the quotient map NT (X)→ O(X), and we write jX := qX ◦ iX
for the Cuntz–Pimsner-covariant representation generating O(X). If ζ is a Cuntz–Pimsner-
covariant representation of X, then we denote by ζO the homomorphism of O(X) induced from
the universal property; that is, ζO satisfies ζO ◦ jX = ζ.

We note here that under the assumptions on the left actions, the Cuntz–Pimsner algebra
O(X) coincides with the Cuntz–Nica–Pimsner algebra NO(X) from [29].

We finish this subsection by stating the following uniqueness theorem for representations of
the Nica–Toeplitz algebra of a product system. We will use this theorem in the proof of our
main theorem. This is an abridged version of [11, Theorem 3.2 (i)], and is a reformulation of
[12, Theorem 7.2] in the more general setting of nonessential C∗-correspondences. (See also
[22, 23] for uniqueness theorems in a more general setting.)
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Theorem 2.1. Let X be a compactly aligned product system over Nk with coefficient algebra A.
Suppose that ψ : X → B(H) is a Nica-covariant representation of X on a Hilbert space H. For

each n ∈ Nk, denote by Pψ
n the projection onto ψn(Xn)H. If, for any finite set K ⊆ Nk\{0},

the representation ϕψ,K of A on H given by

ϕψ,K : a 7→ ψ0(a)
∏
n∈K

(
1H − Pψ

n )

is faithful, then the induced homomorphism ψNT : NT (X)→ B(H) is faithful.

2.2. C∗-correspondences from topological graphs. Recall from Katsura’s [14] that a topo-
logical graph E = (E0, E1, r, s) consists of locally compact Hausdorff spaces E0 and E1, a con-
tinuous map r : E1 → E0, and a local homeomorphism s : E1 → E0. In [14], Katsura associates
to each topological graph E = (E0, E1, r, s) a C0(E0)-correspondence X(E), which is the com-
pletion of Cc(E

1) under the norm induced from the inner product 〈·, ·〉X(E) : E0 → C given
by

〈f, g〉X(E)(v) :=
∑

e∈s−1(v)

f(e)g(e), for all f, g ∈ Cc(E1), v ∈ E0.

On Cc(E
1), the left and right actions of C0(E0) are given by (g · f)(e) := g(r(e))f(e) and

(f · g)(e) := f(e)g(s(e)), respectively, for all f ∈ Cc(E
1), g ∈ C0(E0), e ∈ E1. Katsura

originally defines X(E) to be the set of functions {f ∈ C(E1) : 〈f, f〉X(E) ∈ C0(E0)}. We
freely use both descriptions of X(E) throughout this paper, and we call it the topological graph
correspondence of E.

Definition 2.2. Let E = (E0, E1, r, s) be a topological graph. A subset W of E1 is called
an s-section of E1 if there exists an open subset U of E1 containing W such that the map
s|U : U → s(U) is a homeomorphism.

Notation 2.3. For a topological graph E = (E0, E1, r, s), we denote by FE the set of functions
f ∈ Cc(E1) such that supp(f) is an s-section.

Lemma 2.4. Let E = (E0, E1, r, s) be a topological graph, and X(E) be the associated C0(E0)-
correspondence. Then spanFE is dense in X(E) with respect to the module norm ‖·‖X(E).

Proof. A standard argument using the Stone–Weierstrass theorem shows that for any open
subset U of E1, the subalgebra Cc(U) ∩ span(FE) is uniformly dense in Cc(U). Applying [14,
Lemma 1.26] now gives the result. �

It is straightforward to prove the following corollary of Lemma 2.4.

Corollary 2.5. Let E = (E0, E1, r, s) be a topological graph, and X(E) be the associated
C0(E0)-correspondence. Then K(X(E)) = span{Θf,g : f, g ∈ FE}.

3. Topological higher-rank graphs and continuous cocycles

In this section we provide some background on topological k-graphs, and prove a number of
basic results about proper, source-free topological k-graphs. We then describe the construction
of two different collections of C∗-correspondences from topological k-graphs. We conclude the
section by defining the notion of a continuous T-valued 2-cocycle on a topological k-graph, and
discussing several classes of examples.
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3.1. Proper and source-free topological higher-rank graphs. Yeend unified the notions
of topological graphs and k-graphs with the following definition, which is taken from [32,
Section 2].

Definition 3.1. Let k ∈ N\{0}. A topological higher-rank graph, or topological k-graph, is a
pair (Λ, d) consisting of a small category Λ = (Obj(Λ),Mor(Λ), r, s, ◦) and a functor d : Λ→ Nk,
called the degree map, which satisfy:

(i) Obj(Λ) and Mor(Λ) are both second-countable, locally compact Hausdorff spaces;
(ii) r, s : Mor(Λ)→ Obj(Λ) are continuous, and s is a local homeomorphism;

(iii) the composition map ◦ : Λ ×c Λ := {(λ, µ) ∈ Λ × Λ : s(λ) = r(µ)} → Λ is continuous
and open, where Λ×c Λ has the subspace topology inherited from the product topology
on Λ× Λ;

(iv) d is continuous, where Nk has the discrete topology; and
(v) the unique factorisation property : for all λ ∈ Λ and m,n ∈ Nk such that d(λ) = m+ n,

there exists a unique pair (µ, ν) ∈ Λ×c Λ such that λ = µν, d(µ) = m, and d(ν) = n.

As is customary in the theory of k-graphs, we refer to the morphisms of Λ as paths and the
objects of Λ as vertices. We call the domain and codomain maps of Λ the source and range
maps, respectively. We refer to Λ×c Λ as the set of composable paths in Λ. We usually simply
denote the topological k-graph (Λ, d) by Λ. We extend Definition 2.2 to the topological k-graph
setting by defining an s-section of Λ to be any subset W of an open subset U of Λ such that
the map s|U : U → s(U) is a homeomorphism.

Notation 3.2. Let Λ be a topological k-graph.

(i) For each n ∈ Nk, we define Λn := d−1(n). Since Nk has the discrete topology and d is
continuous, Λn is clopen for each n ∈ Nk.

(ii) For any subset U of Λ and vertex v ∈ Λ0, we define vU := r|−1
U (v) and Uv := s|−1

U (v).
(iii) For any two subsets U and V of Λ, we write UV := {µν : µ ∈ U, ν ∈ V, s(µ) = r(ν)}.
(iv) For m,n ∈ Nk, U ⊆ Λm, and V ⊆ Λn, we define

U ∨ V := UΛ(m∨n)−m ∩ V Λ(m∨n)−n ⊆ Λm∨n.

(v) For each λ ∈ Λ and m,n ∈ Nk with m ≤ n ≤ d(λ), the unique factorisation property
implies that there are unique paths α ∈ Λm, β ∈ Λn−m, and γ ∈ Λd(λ)−n such that
λ = αβγ. We write λ(0,m) for α, λ(m,n) for β, and λ(n, d(λ)) for γ.

Definition 3.3. A degree-preserving functor between topological k-graphs is called a k-graph
morphism. More precisely, if Λ1 and Λ2 are topological k-graphs, then a functor f : Λ1 → Λ2 is a
k-graph morphism if, for all (λ, µ) ∈ Λ1×cΛ1, we have f(r1(λ)) = r2(f(λ)), f(s1(λ)) = s2(f(λ)),
(f(λ), f(µ)) ∈ Λ2 ×c Λ2, f(λµ) = f(λ)f(µ), and d1(λ) = d2(f(λ)). An automorphism of a
topological k-graph Λ is a k-graph morphism g : Λ→ Λ that is open, continuous, and bijective.

The following definition is taken from [33, Section 6].

Definition 3.4. Let Λ be a topological k-graph. A vertex v ∈ Λ0 is a source if there is
i ∈ {1, . . . , k} such that vΛei = ∅. We say that Λ is source-free if none of its vertices are
sources. We say that Λ is proper if, for each m ∈ Nk, the range map r|Λm is a proper map, in
the sense that the preimage of any compact subset of Λ0 is a compact subset of Λm.

Remarks 3.5.

(i) It is straightforward to show that if Λ is a source-free topological k-graph, then for all
v ∈ Λ0 and m ∈ Nk, we have vΛm 6= ∅.

(ii) Properness for topological k-graphs is the analogue of row-finiteness for discrete k-
graphs. The notion of row-finiteness for topological k-graphs defined in [30, Defini-
tion 2.2] is equivalent to properness. Another equivalent characterisation of a topologi-
cal k-graph being proper is that for each m ∈ Nk and v ∈ Λ0, r|Λm is a closed map and
vΛm is a compact subset of Λm.
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The following definition is taken from [33, Definition 2.3].

Definition 3.6. Let Λ be a topological k-graph. We say that Λ is compactly aligned if for all
m,n ∈ Nk, and compact subsets U ⊆ Λm and V ⊆ Λn, the set U ∨ V is compact in Λm∨n.

Remark 3.7. Many of the results in [32, 33] pertain to topological k-graphs that are compactly
aligned, and we know from [33, Remark 6.5] that any proper topological k-graph is compactly
aligned.

In [32, 33], Yeend constructs two groupoids from a topological k-graph Λ: the path groupoid
GΛ, and the boundary-path groupoid GΛ. The unit space of the path groupoid is the path space
XΛ, which is defined in [33, Definition 3.1]. The unit space of the boundary-path groupoid is
the boundary-path space ∂Λ, which is defined in [33, Definition 4.2], and is a closed invariant
subspace of XΛ (by [33, Proposition 4.4 and Proposition 4.7]). It follows from [33, Lemma 6.6]
that when Λ is proper and source-free, the boundary-path space has a simpler characterisation,
which is analogous to the definition of the infinite-path space of a k-graph in [16, Definitions 2.1].
In this paper, we only work with topological k-graphs that are proper and source-free, and hence
it will suffice for our purposes to only provide a definition of the infinite-path space.

As in [16, Examples 1.7 (ii)], for k ∈ N\{0}, let Ωk be the small category with objects
Obj(Ωk) := Nk; morphisms Mor(Ωk) := {(m,n) ∈ Nk × Nk : m ≤ n}; range and source maps
given by r(m,n) := m and s(m,n) := n, respectively; and composition of morphisms given by
◦((m,n), (n, p)) := (m, p). Let d : Ωk → Nk be given by d(m,n) := n−m. Then the pair (Ωk, d)
is a k-graph.

Definition 3.8. Let Λ be a proper, source-free topological k-graph. The infinite-path space of
Λ is the set

Λ∞ := {x : Ωk → Λ : x is a k-graph morphism}.
Notation 3.9. Let Λ be a proper, source-free topological k-graph. We extend the range map
r to Λ∞ via r(x) := x(0). For each v ∈ Λ∞, we define vΛ∞ := {x ∈ Λ∞ : r(x) = v}. Given any
subset U of a proper, source-free topological k-graph Λ, we define the cylinder set

Z(U) := {x ∈ Λ∞ : x(0, n) ∈ U for some n ∈ Nk}.
Remark 3.10. As in [16, Section 2], it follows from the fact that Λ is source-free that for each
v ∈ Λ0, we have vΛ∞ 6= ∅. It also follows that for each λ ∈ Λ, we have Z({λ}) 6= ∅. Hence, for
each n ∈ Nk, we have Λn = {x(0, n) : x ∈ Λ∞}.

We now wish to give the infinite-path space a locally compact Hausdorff topology.

Proposition 3.11. Let Λ be a proper, source-free topological k-graph. The collection

{Z(U) : U is an open subset of Λn for some n ∈ Nk}
is a basis for a locally compact Hausdorff topology on Λ∞.

Proof. Since Λ∞ is the boundary-path space of Λ, we can apply [33, Proposition 3.8] to Λ∞,
and it follows that {Z(U)∩Z(F )c : U ⊆ Λ precompact open, and F ⊆ UΛ compact} is a basis
for a locally compact Hausdorff topology on Λ∞. We claim that this basis generates the
same topology as {Z(V ) : V ⊆ Λ open}. To see this, let V be an open subset of Λ and fix
x ∈ Z(V ). Let n ∈ Nk with x(0, n) ∈ V . Choose a precompact open subset U of V such that
x(0, n) ∈ U ⊆ U ⊆ V , and take F = ∅. Then we have x ∈ Z(U) ∩ Z(F )c ⊆ Z(V ). For the
other direction, fix a precompact open subset U of Λ and a compact subset F of UΛ, and let
x ∈ Z(U) ∩ Z(F )c. Let n ∈ Nk with x(0, n) ∈ U . Since F is compact and the degree map is
continuous, d(F ) is a finite subset of Nk. Let p ∈ Nk be the coordinatewise maximum of all of
the elements of d(F ) ∪ {n}, and define

V := (U ∩ Λn)Λp−n ∩
( ⋂
m∈d(F )

(Λm \ F )Λp−m
)
.
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Then V is open, and we have x ∈ Z(V ) ⊆ Z(U) ∩ Z(F )c. So the claim holds. Now, for each
n ∈ Nk and open subset U of Λ, Z(U ∩ Λn) is an open subset of Λ∞, and so the result follows
from the fact that Z(U) = ∪n∈NkZ(U ∩ Λn). �

Lemma 3.12. Let Λ be a proper, source-free topological k-graph. Fix n ∈ Nk, and let U be a
subset of Λn. If U is compact, then Z(U) is compact, and if U is precompact, then Z(U) is
precompact.

Proof. Since Λ∞ is the boundary-path space of Λ, we can apply [33, Proposition 3.15] to Λ∞.
Since Λ is compactly aligned, we have Z(U) compact for every compact U . If U is precompact,

then U is compact, and so Z(U) must be precompact because Z(U) is a closed subset of the
compact set Z(U). �

Lemma 3.13. Let Λ be a proper, source-free topological k-graph. For each x ∈ Λ∞ and n ∈ Nk,
there exists an open subset U of Λn such that U is a compact s-section and Z(U) is an open
subset of x.

Proof. Fix x ∈ Λ∞ and n ∈ Nk. Let V ⊆ Λn be an open s-section containing x(0, n). Since Λ is
a locally compact Hausdorff space, there is an open subset U of V such that U is precompact,
and x(0, n) ∈ U ⊆ U ⊆ V . Hence U is a compact s-section, and x ∈ Z(U). �

We now introduce several maps that will regularly be used throughout this paper.

Lemma 3.14. Let Λ be a proper, source-free topological k-graph. Fix m,n ∈ Nk with m ≤ n.
The map τm,n : Λn → Λn−m defined by τm,n(λ) := λ(m,n) is a local homeomorphism.

Proof. We will begin by showing that τm,n is continuous. Let U be an open subset of Λn−m.
Then we have τ−1

m,n(U) = ΛmU , which is an open subset of Λn because composition is an open
map. Hence τm,n is continuous.

Fix λ ∈ Λn. Let V be an open s-section such that λ ∈ V ⊆ Λn. Since Λ is a locally compact
Hausdorff space, there exists an open subset W of V such that λ ∈ W ⊆ W ⊆ V . We claim
that τm,n|W is a homeomorphism. To see that τm,n|W is injective, suppose that for µ, ν ∈ W , we
have τm,n|W (µ) = τm,n|W (ν). Then µ(m,n) = ν(m,n), and so s|W (µ) = s|W (ν). Hence we have
µ = ν, because W is an s-section. Thus τm,n|W is injective. Since τm,n|W : W → τm,n(W ) is a
continuous bijective map from a compact space to a Hausdorff space, it is a homeomorphism.
Therefore, τm,n is a local homeomorphism, because it restricts to a homeomorphism on the
open set W . �

Lemma 3.15. Let Λ be a proper, source-free topological k-graph. Fix m,n ∈ Nk with m ≤ n.
The maps ρm,n : Λn → Λm and ρm,∞ : Λ∞ → Λm, given by ρm,n(λ) := λ(0,m) and ρm,∞(x) :=
x(0,m), respectively, are both continuous and proper.

Proof. Let U be a subset of Λm. We first show that ρm,n is continuous and proper. We
have ρ−1

m,n(U) = UΛn−m = Ur|−1
Λn−m(s(U)). If U is open, then since r|Λn−m is continuous, and

composition and s are open maps, ρ−1
m,n(U) is an open subset of Λn. Hence ρm,n is continuous.

If U is compact, then since r|Λn−m is a proper map, and composition and s are continuous,
ρ−1
m,n(U) is a compact subset of Λn. Hence ρm,n is proper. We now show that ρm,∞ is continuous

and proper. We have ρ−1
m,∞(U) = Z(U). If U is open, then Z(U) is open, and hence ρm,∞ is

continuous. If U is compact, then Lemma 3.12 implies that Z(U) is compact, and hence ρm,∞
is proper. �

The following proposition introduces shift maps on the infinite-path space of a proper, source-
free topological k-graph. Shift maps on the path space of a topological k-graph were introduced
in [33, Lemma 3.3], and it is clear from this definition that if the domain of each shift map is
restricted to the infinite-path space, then the ranges of these maps will also be in the infinite-
path space.
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Proposition 3.16. Let Λ be a proper, source-free topological k-graph. For each p ∈ Nk, there
is a local homeomorphism T p : Λ∞ → Λ∞ such that T p(x)(m,n) = x(m + p, n + p), for all
(m,n) ∈ Mor(Ωk). If p ∈ Nk and U is an s-section contained in Λp, then T p|Z(U) is injective.

Proof. Fix p ∈ Nk, and x ∈ Λ∞. A straightforward argument shows that T p(x) : Ωk → Λ is a
k-graph morphism, and so T p(x) ∈ Λ∞.

We need to show that T p is a local homeomorphism. By Lemma 3.13, we can choose an open
subset U of Λp such that U is a compact s-section and x ∈ Z(U). We claim that T p|Z(U) is a
homeomorphism onto T p(Z(U)). The injectivity of T p|Z(U) follows from the injectivity of s|U .
For continuity, let V be an open subset of T p(Z(U)) = Z(s(U)). Write V =

⋃
α∈I Z(Vα) with

each Vα a nonempty open subset of Λmα , for some mα ∈ Nk. A straightforward calculation
shows that (

T p|Z(U)

)−1
(V) =

⋃
α∈I

(Z(Λp Vα) ∩ Z(U)) .

Since composition is an open map, Λp Vα is an open subset of Λp+mα . Thus, for each α ∈ I,

Z(Λp Vα) ∩ Z(U) is an open subset of Z(U). Hence
(
T p|Z(U)

)−1
(V) is open in Z(U), and so

T p|Z(U) is continuous.
To see that T p|Z(U) is an open map, letW be an open subset of Z(U). WriteW =

⋃
β∈J Z(Wβ)

with each Wβ a nonempty open subset of Λnβ , for some nβ ∈ Nk. We use the maps τp,(p∨nβ)

from Lemma 3.14 to write

T p|Z(U)(W) =
⋃
β∈J

T p|Z(U) (Z(Wβ))

=
⋃
β∈J

T p|Z(U)

(
Z
(
(Wβ Λ(p∨nβ)−nβ) ∩ (UΛ(p∨nβ)−p)

))
=
⋃
β∈J

Z
(
τp,(p∨nβ)

(
(Wβ Λ(p∨nβ)−nβ) ∩ (UΛ(p∨nβ)−p)

))
.

Since composition and the τp,(p∨nβ) maps are open, it follows that T p|Z(U)(W) is an open subset
of T p(Z(U)), and hence T p|Z(U) is an open map. Therefore, T p is a local homeomorphism. �

Remark 3.17. Let Λ be a proper, source-free topological k-graph. The same argument used to
prove [16, Proposition 2.3] shows that for all x ∈ Λ∞ and λ ∈ Λr(x), there is a unique y ∈ Λ∞

such that x = T d(λ)(y) and λ = y(0, d(λ)), and we write y = λx.

3.2. C∗-correspondences from topological higher-rank graphs. To each proper, source-
free topological k-graph we associate two families of topological graphs; one using finite paths
in the graph, and the other using infinite paths.

Lemma 3.18. Let Λ be a proper, source-free topological k-graph, and n ∈ Nk. Then Λn :=
(Λ0,Λn, r|Λn , s|Λn) and Λ∞,n := (Λ∞,Λ∞, T 0, T n) are topological graphs, with associated topo-
logical graph correspondences Xn := X(Λn) and Yn := X(Λ∞,n). The homomorphisms imple-
menting the left actions, φXn : C0(Λ0) → L(Xn) and φYn : C0(Λ∞) → L(Yn), are both injective
and have range in the compact operators.

Proof. Since d is continuous, Λ0 and Λn are open subsets of Λ, and hence are locally compact
and Hausdorff. Standard arguments show that r|Λn and s|Λn are continuous, and that s|Λn is a
local homeomorphism. Thus each Λn is a topological graph.

We know from Proposition 3.11 that Λ∞ is a locally compact Hausdorff space. The map T 0

is just the identity map, and hence is continuous. We know from Proposition 3.16 that each
T n is a local homeomorphism. Thus each Λ∞,n is a topological graph.

For the claims about the left actions, we use [14, Proposition 1.24]. Since Λ is source-free,
we have (Λ0)sce = ∅, and hence φXn is injective. Since Λ is proper, we have (Λ0)fin = Λ0, and
hence the image of each φXn is K(Xn). Since the range map of each Λ∞,n is the identity, we
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obviously have (Λ∞)sce = ∅ and (Λ∞)fin = Λ∞, and hence each φYn is injective and has range
equal to K(Yn). �

3.3. Cocycles and examples. The following definition is inspired by the cohomology theory
for k-graphs developed in [20, 28].

Definition 3.19. Fix k ∈ N\{0} and let Λ be a topological k-graph. A continuous T-valued
2-cocycle on Λ is a continuous map c : Λ×c Λ→ T satisfying

(C1) c(λ, µ)c(λµ, ν) = c(λ, µν)c(µ, ν), whenever s(λ) = r(µ) and s(µ) = r(ν); and
(C2) c(λ, s(λ)) = c(r(λ), λ) = 1, for all λ ∈ Λ.

We call (C1) the 2-cocycle identity, and we say that c is normalised because it satisfies (C2).

Example 3.20. We begin our discussion on examples with a new class of topological higher-rank
graphs, which are a topological analogue of the (k + l)-graphs from [10] coming from actions
of Zl on k-graphs. Fix k, l ∈ N\{0}. Let Λ be a topological k-graph, and β an action of Zl by
automorphisms of Λ. For p ∈ Nk andm ∈ Nl, we write (p,m) for (p1, . . . , pk,m1, . . . ,ml) ∈ Nk+l.

We wish to define a topological (k + l)-graph Γ := Λ ×β Zl. We define Obj(Γ) := Λ0 × {0},
and Mor(Γ) := Λ×Nl, giving both the product topology. The range and source maps are given
by r(µ,m) := (rΛ(µ), 0) and s(µ,m) := (β−m(sΛ(µ)), 0), respectively; composition is given by
(µ,m)(ν, n) := (µβm(ν),m + n), for all µ, ν ∈ Λ such that sΛ(µ) = rΛ(βm(ν)); and the degree
map is given by d(µ,m) := (dΛ(µ),m). We claim that Γ is a topological (k + l)-graph.

The set of objects and morphisms of Γ are second-countable, locally compact Hausdorff
spaces, being the product of such spaces. It is straightforward to show that the range map is
continuous and the source map is open and continuous. The source map is locally injective
because for each (µ,m) ∈ Γ, s is injective on V × {m}, where V is an open sΛ-section in Λ
containing µ. Hence s is a local homeomorphism.

To see that composition is open, let U and V be open subsets of Λ, and m,n ∈ Nl. Then

◦
(

(Γ×c Γ) ∩
(
(U × {m})× (V × {n})

))
= ◦Λ

(
(Λ×c Λ) ∩ (U × βm(V ))

)
× {m+ n},

which is open, because ◦Λ is an open map. To see that composition is continuous, let U be an
open subset of Λ, and p ∈ Nl. Fix m ∈ Nl with m ≤ p. We know that id×β−m : Λ×cΛ→ Λ×Λ
is an open map, as is the map gm,p−m : Λ×Λ→ Γ×Γ given by gm,p−m(µ, ν) := ((µ,m), (ν, p−m)).
We have

◦−1(U × {p}) = (Γ×c Γ) ∩
( ⋃
m∈Nl,
m≤p

(
gm,p−m ◦ (id×β−m)

)(
◦−1

Λ (U)
))
,

which is open, because ◦Λ is continuous, and each gm,p−m ◦ (id×β−m) is an open map. Hence
composition is continuous. To see that the degree map is continuous, let p ∈ Nk and m ∈ Nl. We
have d−1(p,m) = d−1

Λ (p)×{m}, which is open because dΛ is continuous. Hence d is continuous.
Finally, the unique factorisation property follows from the arguments on the unique factorisation
property from [10] (as this property does not involve the topology of Γ). Thus Γ is a topological
(k + l)-graph.

We claim that if Λ is proper and source-free, then Γ is proper and source-free. Suppose that
Λ is source-free. Let v ∈ Λ0, and i ∈ {1, . . . , k+l}. If 1 ≤ i ≤ k, then (v, 0)Γei = vΛei×{0} 6= ∅.
If k+ 1 ≤ i ≤ k+ l, then (v, 0)Γei = {(v, ei−k)} 6= ∅. Hence Γ is source-free. Now suppose that
Λ is proper. Let W be a compact subset of Γ0, p ∈ Nk, and m ∈ Nl. Then there is a compact
subset K of Λ0 such that W = K × {0}. We have

r|−1
Γ(p,m)(W ) = rΛ|−1

Λp (K)× {m},
which is compact. Hence Γ is proper.

We can construct a number of continuous T-valued 2-cocycles on Γ. For each q ∈ N\{0}
and m ∈ Nq, we define |m| :=

∑q
i=1mi. Suppose that f : Λ → T is a continuous functor such
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that f ◦ βm = f for all m ∈ Zl. For an example of such a continuous functor, take f given by
f(µ) := ei|d(µ)|. We define cf on Γ×c Γ by

cf ((µ,m), (ν, n)) := f(ν)|m|.

We first check the cocycle identities. For (C1), let
(
(µ,m), (ν, n)

)
,
(
(ν, n), (λ, p)

)
∈ Γ×c Γ, we

have

cf
(
(µ,m), (ν, n)

)
cf
(
(µβm(ν),m+ n), (λ, p)

)
= f(ν)|m|f(λ)|m+n|

= f(νβn(λ))|m|f(λ)|n|

= cf
(
(µ,m), (νβn(λ), n+ p)

)
cf
(
(ν, n), (λ, p)

)
,

which is (C1). For each (µ,m) ∈ Γ, we use that f |Λ0 ≡ 1 to get

cf
(
(µ,m), (β−m(sΛ(µ)), 0)

)
= f(sΛ(µ))|m| = 1 = f(µ)0 = cf

(
(rΛ(µ), 0), (µ,m)

)
.

Hence (C2) is satisfied. The continuity of cf follows from the continuity of f , and hence cf is
a continuous T-valued 2-cocycle on Γ.

Now suppose that ω : Nl → T is a homomorphism. We define cω on Γ×c Γ by

cω((µ,m), (ν, n)) := ω(m)|d(ν)|.

For (C1), let
(
(µ,m), (ν, n)

)
,
(
(ν, n), (λ, p)

)
∈ Γ×c Γ. Then

cω
(
(µ,m), (ν, n)

)
cω
(
(µβm(ν),m+ n), (λ, p)

)
= ω(m)|d(ν)| ω(m+ n)|d(λ)|

= ω(m)(|d(ν)|+|d(λ)|) ω(n)|d(λ)|

= ω(m)|d(νβn(λ))| ω(n)|d(λ)|

= cω
(
(µ,m), (νβn(λ), n+ p)

)
cω
(
(ν, n), (λ, p)

)
,

and hence (C1) is satisfied. For each (µ,m) ∈ Γ, we have

cω
(
(µ,m), (β−m(sΛ(µ)), 0)

)
= ω(m)|d(β−m(sΛ(µ)))| = 1 = ω(0)|d(µ)| = cf

(
(rΛ(µ), 0), (µ,m)

)
.

Hence (C2) is satisfied. The continuity of cω follows from the continuity of the degree map,
and hence cω is a continuous T-valued 2-cocycle on Γ.

Finally, if we let σ be any T-valued 2-cocycle on Zl, then it is straightforward to check that
cσ defined on Γ×c Γ by cσ

(
(µ,m), (ν, n)

)
:= σ(m,n) is a continuous T-valued 2-cocycle on Γ.

Example 3.21. We recall the skew-product graphs from [33, Definition 8.1]. Let Λ be a topo-
logical k-graph, A a locally compact group, and f : Λ → A a continuous functor. Then we
can form a topological k-graph Λ ×f A, which has objects Λ0 × A and morphisms Λ × A,
both with the product topology; range and source maps given by r(µ, a) := (r(µ), a) and
s(µ, a) := (s(µ), af(µ)); composition given by (µ, a)(ν, af(µ)) := (µν, a), for all µ, ν ∈ Λ with
s(µ) = r(ν); and degree map given by d(µ, a) := d(µ). We claim that if Λ is proper and source-
free, then Λ ×f A is proper and source-free. For each (v, a) ∈ Λ0 × A, and i ∈ {1, . . . , k}, we
have (v, a)(Λ×f A)ei = vΛei ×{a}, which is nonempty because Λ is source-free. Hence Λ×f A
is source-free. Now suppose W is a compact subset of Λ0 × A, and m ∈ Nk. Then

W (Λ×f A)m = r|−1
(Λ×fA)m(W ) ⊆ r|−1

Λm(π1(W ))× π2(W ),

where π1 and π2 are the projections onto Λ and A, respectively. Since Λ is proper, we know
that r|−1

Λm(π1(W )) is compact. Now, W is closed because it is a compact subset of a Hausdorff
space, and so the continuity of r|(Λ×fA)m implies that W (Λ ×f A)m is a closed subset of the

compact set r|−1
Λm(π1(W ))× π2(W ). Hence W (Λ×f A)m is compact, and so Λ×f A is proper.

For any continuous T-valued 2-cocycle c on Λ, there is a continuous T-valued 2-cocycle c̃ on
Λ×f A given by c̃((µ, a), (ν, b)) := c(µ, ν), for all ((µ, a), (ν, b)) ∈ (Λ×f A)×c (Λ×f A).
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Example 3.22. Recall from [31, Proposition 3.2.1] that, given a topological k1-graph Λ1, and
a topological k2-graph Λ2, we can form the Cartesian product Λ1 × Λ2, which is a topological
(k1 + k2)-graph under the product topology, with the obvious definitions of range, source,
composition, and degree maps. We claim that if Λ1 and Λ2 are both proper and source-free,
then so is Λ1 × Λ2. Suppose that (u, v) ∈ Λ0

1 × Λ0
2, and i ∈ {1, . . . , k1 + k2}. If 1 ≤ i ≤ k1,

then (u, v)(Λ1 × Λ2)ei = uΛei
1 × {v} 6= ∅. If k1 + 1 ≤ i ≤ k1 + k2, then (u, v)(Λ1 × Λ2)ei =

{u} × vΛ
e(i−k1)

2 6= ∅. Hence Λ1 × Λ2 is source-free. To see that Λ1 × Λ2 is proper, let W be
a compact subset of Λ0

1 × Λ0
2, and let m = (m1,m2) ∈ Nk1+k2 , with each mi ∈ Nki . Since W

is a compact subset of a Hausdorff space, it is closed, and so the continuity of the range map
implies that (r1× r2)|−1

(Λ1×Λ2)m(W ) is closed. Hence (r1× r2)|−1
(Λ1×Λ2)m(W ) is compact, because it

is a closed subset of the compact set r1|−1
Λ
m1
1

(π1(W ))× r2|−1
Λ
m2
2

(π2(W )). Thus Λ1 × Λ2 is proper.

We claim that if c1 and c2 are continuous T-valued 2-cocycles on Λ1 and Λ2, respectively,
then c1× c2 given by (c1× c2)((λ1, µ1), (λ2, µ2)) := c1(λ1, λ2)c2(µ1, µ2) is a continuous T-valued
2-cocycle on Λ1 × Λ2. It is straightforward to see that c1 × c2 is continuous. For (C1), let
((λ1, µ1), (λ2, µ2)), ((λ2, µ2), (λ3, µ3)) ∈ (Λ1 × Λ2)×c (Λ1 × Λ2). We have

(c1 × c2)((λ1, µ1), (λ2, µ2)) (c1 × c2)((λ1λ2, µ1µ2), (λ3, µ3))

= c1(λ1, λ2)c2(µ1, µ2)c1(λ1λ2, λ3)c2(µ1µ2, µ3)

= c1(λ1, λ2λ3)c1(λ2, λ3)c2(µ1, µ2µ3)c2(µ2, µ3)

= (c1 × c2)((λ1, µ1), (λ2λ3, µ2µ3)) (c1 × c2)((λ2, µ2), (λ3, µ3)),

and hence (C1) is satisfied. For each (λ, µ) ∈ Λ1 × Λ2, we have

(c1 × c2)((λ, µ), (s1(λ), s2(µ))) = c1(λ, s1(λ))c2(µ, s2(µ)) = 1,

and
(c1 × c2)((r1(λ), r2(µ)), (λ, µ)) = c1(r1(λ), λ)c2(r2(µ), µ) = 1.

Hence (C2) is satisfied, and so c1 × c2 is a continuous T-valued 2-cocycle on Λ1 × Λ2.

4. Product systems and twisted C∗-algebras associated to topological
higher-rank graphs

In this section we define the twisted Cuntz–Krieger algebra C∗(Λ, c) and the twisted Toeplitz
algebra T C∗(Λ, c) associated to a proper, source-free topological k-graph Λ and a continuous
T-valued 2-cocycle c. We also state our main theorem. We start by associating two compactly
aligned product systems to Λ and c.

4.1. The product systems. We now introduce the product system built from finite paths in
Λ. When c is trivial, Proposition 4.1 is exactly [6, Proposition 5.9], but for nontrivial cocycles,
we do have to work a little harder to get the result. However, the proofs of Proposition 4.1
and Proposition 4.2 follow similar arguments, so we will only provide the details of the proof
of Proposition 4.2.

Proposition 4.1. Suppose that Λ is a proper, source-free topological k-graph, and c is a contin-
uous T-valued 2-cocycle on Λ. For each n ∈ Nk, let Xn be the C0(Λ0)-correspondence associated
to the topological graph Λn = (Λ0,Λn, r|Λn , s|Λn), as in Lemma 3.18. For f ∈ Xm and g ∈ Xn,
define fg : Λm+n → C by

(fg)(λ) := c(λ(0,m), λ(m,m+ n))f(λ(0,m))g(λ(m,m+ n)).

Then fg ∈ Xm+n, and under this multiplication, the family

X :=
⊔
n∈Nk

Xn

of C0(Λ0)-correspondences is a product system over Nk.
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We now introduce the product system built from infinite paths.

Proposition 4.2. Suppose that Λ is a proper, source-free topological k-graph, and c is a contin-
uous T-valued 2-cocycle on Λ. For each n ∈ Nk, let Yn be the C0(Λ∞)-correspondence associated
to the topological graph Λ∞,n = (Λ∞,Λ∞, T 0, T n), as in Lemma 3.18. For f ∈ Ym and g ∈ Yn,
define fg : Λ∞ → C by

(fg)(x) := c(x(0,m), x(m,m+ n))f(x)g(Tm(x)).

Then fg ∈ Ym+n, and under this multiplication, the family

Y :=
⊔
n∈Nk

Yn

of C0(Λ∞)-correspondences is a product system over Nk.

Proof. Let m,n ∈ Nk. We show that f ⊗ g 7→ fg extends to an isomorphism of Ym ⊗C0(Λ∞) Yn
onto Ym+n. Standard arguments show that for each f ∈ Ym and g ∈ Yn we have fg continuous.
We claim that for each f ∈ Ym and g ∈ Yn, we have 〈fg, fg〉Ym+n ∈ C0(Λ∞). Let f1, f2 ∈ Ym
and g1, g2 ∈ Yn. Then

〈f1g1, f2g2〉Ym+n(x)

=
∑
y∈Λ∞,

Tm+n(y)=x

c
(
y(0,m), y(m,m+ n)

)
f1(y)g1(Tm(y))c

(
y(0,m), y(m,m+ n)

)
f2(y)g2(Tm(y))

=
∑
y∈Λ∞,

Tm+n(y)=x

∣∣c(y(0,m), y(m,m+ n)
)∣∣2 f1(y)g1(Tm(y))f2(y)g2(Tm(y))

=
∑

ν∈Λnr(x)

( ∑
µ∈Λmr(ν)

f1(µνx)f2(µνx)
)
g1(νx)g2(νx)

=
∑

ν∈Λnr(x)

( ∑
y∈Λ∞,

Tm(y)=νx

f1(y)f2(y)
)
g1(νx)g2(νx)

=
∑

ν∈Λnr(x)

〈f1, f2〉Ym(νx)g1(νx)g2(νx)

=
∑

ν∈Λnr(x)

g1(νx)(〈f1, f2〉Ym · g2)(νx)

=
∑
y∈Λ∞,
Tn(y)=x

g1(y)(〈f1, f2〉Ym · g2)(y)

= 〈g1, 〈f1, f2〉Ym · g2〉Yn(x).

So we have

(4.1) 〈f1g1, f2g2〉Ym+n = 〈g1, 〈f1, f2〉Ym · g2〉Yn ,
and we see that f ∈ Ym, g ∈ Yn =⇒ fg ∈ Ym+n by taking f = f1 = f2 ∈ Ym, g = g1 = g2 ∈ Yn
in Equation (4.1). It also follows from Equation (4.1) that f ⊗ g 7→ fg extends to an isometric
linear operator from Ym ⊗C0(Λ∞) Yn to Ym+n. To show that this map is surjective, we aim
to apply [14, Lemma 1.26]. For each f ∈ Ym and g ∈ Yn, we define f ∗ g : Λ∞ → C by
(f ∗ g)(x) := f(x)g(Tm(x)). Then f ∗ g ∈ Cc(Λ∞) for each f, g ∈ Cc(Λ∞). We define

A := span{f ∗ g : f ∈ Cc(Λ∞) ⊆ Ym, g ∈ Cc(Λ∞) ⊆ Yn},
and

B := span{fg : f ∈ Cc(Λ∞) ⊆ Ym, g ∈ Cc(Λ∞) ⊆ Yn}.
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Fix an open subset U ⊆ Λ∞. The set B is obviously closed under addition (but due to
the presence of the cocycle, is not obviously closed under multiplication), and we claim that
B∩Cc(U) is uniformly dense in Cc(U). To see this, first note that the set A is easily seen to be
a subalgebra of C0(Λ∞), and that a standard argument using the Stone–Weierstrass theorem
shows that A ∩ Cc(U) is uniformly dense in Cc(U). Now let F ∈ Cc(U) and ε > 0. The map

G : x 7→ c(x(0,m), x(m,m+ n))F (x) is continuous, and has the same support of F , so is an
element of Cc(U). We can then find f1, . . . , fp ∈ Cc(Λ∞) ⊆ Ym and g1, . . . , gp ∈ Cc(Λ∞) ⊆ Yn
such that

∑p
i=1 fi ∗ gi ∈ A ∩ Cc(U) and ‖G−

∑p
i=1 fi ∗ gi‖∞ < ε. It follows that

∥∥F − p∑
i=1

figi
∥∥
∞ =

∥∥G− p∑
i=1

fi ∗ gi
∥∥
∞ < ε,

and hence the claim holds. We can now apply [14, Lemma 1.26] to see that f ⊗ g 7→ fg is
surjective. Hence it is an isomorphism. The other identities required to make Y a product
system follow from standard calculations. �

Proposition 4.3. Suppose that Λ is a proper, source-free topological k-graph, and c is a con-
tinuous T-valued 2-cocycle on Λ. The product systems X and Y are compactly aligned.

Proof. We saw in Lemma 3.18 that the left actions φXn and φYn are all by compacts, and so
the result follows from [12, Proposition 5.8]. �

4.2. The twisted C∗-algebras.

Definition 4.4. Suppose that Λ is a proper, source-free topological k-graph, and c is a con-
tinuous T-valued 2-cocycle on Λ. We define the twisted Cuntz–Krieger algebra C∗(Λ, c) to be
the Cuntz–Pimsner algebra O(X). We define the twisted Toeplitz algebra T C∗(Λ, c) to be the
Nica–Toeplitz algebra NT (X).

Remarks 4.5.

(i) When the twist is trivial, C∗(Λ, c) and T C∗(Λ, c) are precisely the C∗-algebras studied
in [6, Section 5.3] (for Λ proper and source-free). We can then apply [6, Theorem 5.20]
to see that we obtain the groupoid C∗-algebras of topological k-graphs defined in [32].

(ii) Recall from [20, Definition 5.2] the definition of the twisted C∗-algebra of a row-finite k-
graph Λ with no sources, and a T-valued categorical 2-cocycle c on Λ. This C∗-algebra is
also denoted by C∗(Λ, c), but for this remark we call it C∗KPS(Λ, c). It is a straightforward
exercise (using the gauge-invariant uniqueness theorem for injectivity) to prove that
there is an isomorphism of C∗KPS(Λ, c) onto C∗(Λ, c) that sends each generating partial
isometry sλ to jX,d(λ)(δλ), where δλ : Λd(λ) → C is the usual point-mass function. So our
twisted Cuntz–Krieger algebras generalise the twisted C∗-algebras of [20] in the discrete
setting.

We now state our main theorem, which describes the relationship between the twisted Cuntz–
Krieger and Toeplitz algebras, and the C∗-algebras associated to the product system Y from
Proposition 4.2. We will prove this theorem in Section 5 and Section 6.

Theorem 4.6. Suppose that Λ is a proper, source-free topological k-graph, and c is a contin-
uous T-valued 2-cocycle on Λ. Let X and Y be the product systems from Proposition 4.1 and
Proposition 4.2, respectively. Then there is a Nica-covariant representation ψ : X → NT (Y )
such that

(a) the induced homomorphism ψNT : T C∗(Λ, c)→ NT (Y ) is injective; and
(b) the map ζ := qY ◦ ψ : X → O(Y ) is a Cuntz–Pimsner-covariant representation of X,

and the induced homomorphism ζO : C∗(Λ, c)→ O(Y ) is an isomorphism.
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Remarks 4.7.

(i) Theorem 4.6 substantially generalises [2, Proposition 8.6], which applies in the untwisted
setting, and to finite 1-coaligned (discrete) k-graphs with no sources or sinks. (See also
[1, Theorem 7.1] in the finite directed graph setting.)

(ii) We do not expect the map ψNT from part (a) in Theorem 4.6 to be surjective, and we
can use the results of [3] and [2] on KMS states to see this. First observe that if c is the
trivial cocycle, and Λ is a discrete k-graph, then T C∗(Λ, c) is the C∗-algebra appearing
in [26, Corollary 7.5]. Now take Λ to be a finite 1-coaligned (discrete) k-graph with
no sources or sinks, and c to be the trivial cocycle. Then we see from the proof of [2,
Proposition 8.11] that a KMS state of T C∗(Λ, c) is the restriction of many distinct KMS
states on NT (Y ). Hence the KMS simplex of NT (Y ) is bigger than the KMS simplex
of T C∗(Λ, c), and so the two algebras are not isomorphic.

5. A Nica-covariant representation of X in NT (Y )

In this section we build a Nica-covariant representation ψ of the product system X in the
Nica–Toeplitz algebra of the product system Y .

Proposition 5.1. Suppose that Λ is a proper, source-free topological k-graph, and c is a con-
tinuous T-valued 2-cocycle on Λ. Suppose that X and Y are the product systems from Propo-
sition 4.1 and Proposition 4.2, respectively.

(a) For each m,n ∈ Nk with m ≥ n, there is a map αn,m : Xm → Yn given by αn,m(f)(x) :=
f(x(0,m)), for all f ∈ Xm and x ∈ Λ∞. We denote each αn,n by αn.

(b) The map ψ : X → NT (Y ) given by ψn := iY,n ◦ αn is a Nica-covariant representation
of X, where ψ|Xn := ψn.

Remark 5.2. For all m,n, p ∈ Nk with m ≥ n, p and each f ∈ Xm, we have

αn,m(f)(x) = f(x(0,m)) = αp,m(f)(x),

for all x ∈ Λ∞. However, αn,m(f) 6= αp,m(f), because αn,m(f) ∈ Yn, whereas αp,m(f) ∈ Yp.

Proof of Proposition 5.1 (a). Fix m,n ∈ Nk with m ≥ n, and f ∈ Cc(Λ
m). Recall from

Lemma 3.15 that ρm,∞ : Λ∞ → Λm is the continuous proper map given by ρm,∞(x) := x(0,m).
We have αn,m(f) = f ◦ ρm,∞, and hence αn,m(f) is continuous. We have supp(αn,m(f)) ⊆
ρ−1
m,∞(supp(f)), which is a compact subset of Λ∞. Hence αn,m(f) ∈ Cc(Λ∞). We have

‖f‖2
Xm = ‖〈f, f〉Xm‖ = sup{〈f, f〉Xm(v) : v ∈ Λ0} = sup

{ ∑
λ∈Λmv

|f(λ)|2 : v ∈ Λ0
}
,

and

‖αn,m(f)‖2
Yn = sup

{ ∑
y∈Λ∞,
Tn(y)=x

|f(y(0,m))|2 : x ∈ Λ∞
}

= sup
{ ∑
µ∈Λnr(x)

|f(µx(0,m− n))|2 : x ∈ Λ∞
}
.

For each x ∈ Λ∞, we have∑
µ∈Λnr(x)

|f(µx(0,m− n))|2 ≤
∑

λ∈Λmx(m−n)

|f(λ)|2,

and it follows that ‖αn,m(f)‖Yn ≤ ‖f‖Xm . Hence αn,m is bounded, and extends to the desired
map Xm → Yn. �

To prove Proposition 5.1 (b), we need a number of results, including some technical calcula-
tions (see Lemma 5.5). We start with some properties of the αn maps.
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Lemma 5.3. Suppose that Λ is a proper, source-free topological k-graph, and c is a continu-
ous T-valued 2-cocycle on Λ. Let X and Y be the product systems from Proposition 4.1 and
Proposition 4.2, respectively. For each m,n ∈ Nk, we have

(i) αm(g · f) = α0(g) · αm(f), for all f ∈ Xm, g ∈ C0(Λ0);
(ii) αm(f · g) = αm(f) · α0(g), for all f ∈ Xm, g ∈ C0(Λ0);

(iii) 〈αm(f), αm(g)〉Ym = α0(〈f, g〉Xm), for all f, g ∈ Xm;
(iv) αm+n(fg) = αm(f)αn(g), for all f ∈ Xm, g ∈ Xn; and
(v) αn is injective, for each n ∈ Nk.

Proof. For (iv), fix x ∈ Λ∞. Then

αm+n(fg)(x) = (fg)(x(0,m+ n))

= c(x(0,m), x(m,m+ n))f(x(0,m))g(x(m,m+ n))

= c(x(0,m), x(m,m+ n))αm(f)(x)αn(g)(Tm(x))

= (αm(f)αn(g))(x),

and so (iv) holds. Properties (i)–(iii) follow from similarly straightforward calculations. For
(v), suppose that αn(f1) = αn(f2) for some f1, f2 ∈ Xn. Then for all x ∈ Λ∞, we have
f1(x(0, n)) = f2(x(0, n)), and it follows by Remark 3.10 that f1 = f2. �

Each αn induces a homomorphism between the algebras K(Xn) and K(Yn) of generalised
compact operators.

Lemma 5.4. For each n ∈ Nk, there is a homomorphism αKn : K(Xn) → K(Yn) satisfying
αKn (Θf,g) = Θαn(f),αn(g) for all f, g ∈ Xn.

Proof. Recall from Notation 2.3 that FΛn denotes the set of functions f ∈ Cc(Λ
n) such that

supp(f) is an s|Λn-section, and FΛ∞,n denotes the set of functions h ∈ Cc(Λ∞) such that supp(h)
is a T n-section. We know from Corollary 2.5 that K(Xn) = span{Θf1,f2 : f1, f2 ∈ FΛn}, and
K(Yn) = span{Θh1,h2 : h1, h2 ∈ FΛ∞,n}.

We claim that the map
∑m

i=1 Θfi,gi 7→
∑m

i=1 Θαn(fi),αn(gi), for fi, gi ∈ FΛn , is norm decreasing.
We have∥∥∥ m∑

i=1

Θαn(fi),αn(gi)

∥∥∥ = sup
{∣∣∣( m∑

i=1

Θαn(fi),αn(gi)

)
(h)(x)

∣∣∣ : h ∈ FΛ∞,n , ‖h‖Yn ≤ 1, x ∈ Λ∞
}
,

and ∥∥∥ m∑
i=1

Θfi,gi

∥∥∥ = sup
{∣∣∣( m∑

i=1

Θfi,gi

)
(l)(µ)

∣∣∣ : l ∈ FΛn , ‖l‖Xn ≤ 1, µ ∈ Λn
}
.

Fix h ∈ FΛ∞,n with ‖h‖Yn ≤ 1, and x ∈ Λ∞. Let G := {i : 1 ≤ i ≤ m, s|−1
supp(gi)

(x(n)) 6= ∅}. For

all i ∈ G, let µi be the unique path in s|−1
supp(gi)

(x(n)) ⊆ Λn, and let xi := µiT
n(x). Then∣∣∣( m∑

i=1

Θαn(fi),αn(gi)

)
(h)(x)

∣∣∣ =
∣∣∣ m∑
i=1

(
fi(x(0, n))

∑
y∈Λ∞,

Tn(y)=Tn(x)

gi(y(0, n))h(y)
)∣∣∣

=
∣∣∣∑
i∈G

fi(x(0, n))gi(µi)h(xi)
∣∣∣

= |fj(x(0, n))gj(µj)h(xj)|,

if j is the unique element of G such that T n|−1
supp(h)(T

n(x)) = {µjT n(x)}, and is zero if there

is no such j ∈ G. We only have to deal with the former case, but in this case we choose
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µ := x(0, n) and l ∈ FΛn with ‖l‖Xn ≤ 1 and l(µj) = 1. We then have∣∣∣( m∑
i=1

Θfi,gi

)
(l)(µ)

∣∣∣ =
∣∣∣ m∑
i=1

(
fi(µ)

∑
λ∈Λns(µ)

gi(λ)l(λ)
)∣∣∣

= |fj(µ)gj(µj)l(µj)|

= |fj(x(0, n))gj(µj)|

≥ |fj(x(0, n))gj(µj)h(xj)|

=
∣∣∣( m∑

i=1

Θαn(fi),αn(gi)

)
(h)(x)

∣∣∣.
Therefore, we have ∥∥∥ m∑

i=1

Θαn(fi),αn(gi)

∥∥∥ ≤ ∥∥∥ m∑
i=1

Θfi,gi

∥∥∥,
and the claim is proved. It follows that αKn (

∑m
i=1 Θfi,gi) :=

∑m
i=1 Θαn(fi),αn(gi) extends to a linear

map αKn : K(Xn) → K(Yn) satisfying αKn (Θf,g) = Θαn(f),αn(g) for all f, g ∈ Xn. We now check
that αKn is a homomorphism, using the identities in Lemma 5.3:

αKn (Θf1,f2Θg1,g2) = αKn (Θ(f1·〈f2,g1〉Xn ),g2)

= Θ(αn(f1)·α0(〈f2,g1〉Xn )),αn(g2)

= Θ(αn(f1)·〈αn(f2),αn(g1)〉Yn ),αn(g2)

= Θαn(f1),αn(f2)Θαn(g1),αn(g2)

= αKn (Θf1,f2)αKn (Θg1,g2),

for all f1, f2, g1, g2 ∈ Xn. �

The key to proving that ψ is Nica covariant is the following technical lemma.

Lemma 5.5. Suppose that Λ is a proper, source-free topological k-graph, and c is a continuous
T-valued 2-cocycle on Λ. Suppose that X and Y are the product systems from Proposition 4.1
and Proposition 4.2, respectively. Let m,n ∈ Nk. For i ∈ {1, 2}, let fi ∈ FΛm and gi ∈ FΛn.
Define C := supp(f2) ∨ supp(g1), which is a compact subset of Λm∨n. For each p ∈ {m,n},
let {V p

i : 1 ≤ i ≤ rp} be a finite open cover of τp,m∨n(C) ⊆ Λ(m∨n)−p such that each V p
i is a

precompact s-section.

(a) Let βp1 , . . . , β
p
rp be a partition of unity subordinate to {V p

i ∩ τp,m∨n(C) : 1 ≤ i ≤ rp},
and fix functions γpi : Λ(m∨n)−p → [0, 1] such that each γpi |τp,m∨n(C) =

√
βpi and each γpi

vanishes off V p
i . For i ∈ {1, . . . , rm} and j ∈ {1, . . . , rn}, define aij, bj ∈ Cc(Λm∨n) ⊆

Xm∨n by aij := f1

(
γmi · 〈f2γ

m
i , g1γ

n
j 〉Xm∨n

)
, and bj := g2γ

n
j . Then

(5.1) ιm∨nm (Θf1,f2)ιm∨nn (Θg1,g2) =
rm∑
i=1

rn∑
j=1

Θaij ,bj .

(b) Let ηp1, . . . , η
p
rp be a partition of unity subordinate to {Z(V p

i )∩Z(τp,m∨n(C)) : 1 ≤ i ≤ rp},
and fix functions ξpi : Λ∞ → [0, 1] such that each ξpi |Z(τp,m∨n(C)) =

√
ηpi and each ξpi

vanishes off Z(V p
i ). For i ∈ {1, . . . , rm} and j ∈ {1, . . . , rn}, define cij, dj ∈ Cc(Λ∞) ⊆

Ym∨n by cij := αm(f1)
(
ξmi · 〈αm(f2)ξmi , αn(g1)ξnj 〉Ym∨n

)
, and dj := αn(g2)ξnj . Then

(5.2) ιm∨nm (Θαm(f1),αm(f2))ι
m∨n
n (Θαn(g1),αn(g2)) =

rm∑
i=1

rn∑
j=1

Θcij ,dj .



PRODUCT-SYSTEM MODELS FOR TWISTED C∗-ALGEBRAS OF TOPOLOGICAL k-GRAPHS 17

Equation (5.1) appears for the “untwisted” version of X in [6, Lemma 5.14], and the proofs
of Equation (5.1) and Equation (5.2) follow in a similar way. We therefore only give a detailed
proof of Lemma 5.5 (b). We start with some notation (see [6, Notation 5.10]) and a preparatory
lemma (see [6, Lemma 5.12]).

Notation 5.6. Let m ∈ Nk and f ∈ FΛm . Then for each v ∈ Λ0, the set osupp(f) ∩ Λmv is
either empty or consists of a single path. In the latter case, we will denote this path by λf,v.

Lemma 5.7. Suppose that Λ is a proper, source-free topological k-graph, c is a continuous
T-valued 2-cocycle on Λ, and Y is the product system from Proposition 4.2. Let m,n ∈ Nk, and
f, g ∈ FΛm. Then for each h ∈ Ym∨n and z ∈ Λ∞, we have

ιm∨nm (Θαm(f),αm(g))(h)(z)

= c(z(0,m), z(m,m ∨ n))c(λg,z(m), z(m,m ∨ n))f(z(0,m))g(λg,z(m))h(λg,z(m)T
m(z)),

if supp(g) ∩ Λmz(m) 6= ∅; otherwise, ιm∨nm (Θαm(f),αm(g))(h)(z) = 0.

Proof. For h1 ∈ Ym, h2 ∈ Y(m∨n)−m, and z ∈ Λ∞, we have

ιm∨nm (Θαm(f),αm(g))(h1h2)(z)

= c(z(0,m), z(m,m ∨ n))f(z(0,m))
( ∑

y∈Λ∞,
Tm(y)=Tm(z)

g(y(0,m))h1(y)
)
h2(Tm(z)).

If supp(g)∩Λmz(m) 6= ∅, then one term that will appear in the sum is g(λg,z(m))h1(λg,z(m)T
m(z)),

which corresponds to taking y = λg,z(m)T
m(z). All other terms in this sum will be zero, since

supp(g) is an s-section. Hence we can continue the calculation to get

ιm∨nm (Θαm(f),αm(g))(h1h2)(z)

= c(z(0,m), z(m,m ∨ n))f(z(0,m))g(λg,z(m))h1(λg,z(m)T
m(z))h2(Tm(z))

= c(z(0,m), z(m,m ∨ n))f(z(0,m))g(λg,z(m))c(λg,z(m), z(m,m ∨ n))(h1h2)(λg,z(m)T
m(z)).

On the other hand, if supp(g) ∩ Λmz(m) = ∅, then ιm∨nm (Θαm(f),αm(g))(h1h2)(z) = 0. Since
Ym∨n = span{h1h2 : h1 ∈ Ym, h2 ∈ Y(m∨n)−m}, the result follows. �

Proof of Lemma 5.5 (b). Fix h ∈ Ym∨n and z ∈ Λ∞. The right-hand side of Equation (5.2) is
given by( rm∑

i=1

rn∑
j=1

Θcij ,dj

)
(h)(z) =

rm∑
i=1

rn∑
j=1

cij(z)〈dj, h〉Ym∨n(Tm∨n(z))

=
rn∑
j=1

(
c(z(0,m), z(m,m ∨ n))f1(z(0,m))〈dj, h〉Ym∨n(Tm∨n(z))

( rm∑
i=1

ξmi · 〈αm(f2)ξmi , αn(g1)ξnj 〉Ym∨n
)

(Tm(z))

)
.(5.3)

Consider the expression
(∑rm

i=1 ξ
m
i · 〈αm(f2)ξmi , αn(g1)ξnj 〉Ym∨n

)
(Tm(z)) from above. We have( rm∑

i=1

ξmi · 〈αm(f2)ξmi , αn(g1)ξnj 〉Ym∨n
)

(Tm(z))

=
rm∑
i=1

(
ξmi (Tm(z))

∑
y∈Λ∞,

Tm∨n(y)=Tm∨n(z)

(αm(f2)ξmi )(y)(αn(g1)ξnj )(y)
)
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=
rm∑
i=1

(
ξmi (Tm(z))

∑
y∈Λ∞,

Tm∨n(y)=Tm∨n(z)

c(y(0,m), y(m,m ∨ n))f2(y(0,m))ξmi (Tm(y))(αn(g1)ξnj )(y)
)
.

Since each ξmi is supported on Z(V m
i ), we have z(m,m ∨ n) ∈ V m

i . If y ∈ Λ∞ with Tm(y) ∈
osupp(ξmi ) and Tm∨n(y) = Tm∨n(z), then since V m

i is an s-section, we have y(m,m ∨ n) =
z(m,m∨ n), and so Tm(y) = Tm(z). Now, if osupp(f2)∩Λmz(m) 6= ∅, then one term that will
appear in the second sum of the final line of the above calculation is

c(λf2,z(m), z(m,m ∨ n))f2(λf2,z(m))ξmi (Tm(z))(αn(g1)ξnj )(λf2,z(m)T
m(z)),

which corresponds to taking y = λf2,z(m)T
m(z). All other terms in this sum will be zero, since

supp(f2) and V m
i are s-sections. Hence we can continue the calculation to get( rm∑

i=1

ξmi ·〈αm(f2)ξmi , αn(g1)ξnj 〉Ym∨n
)

(Tm(z))

=
rm∑
i=1

(ξmi (Tm(z)))2c(λf2,z(m), z(m,m ∨ n))f2(λf2,z(m))(αn(g1)ξnj )(λf2,z(m)T
m(z))

= c(λf2,z(m), z(m,m ∨ n))f2(λf2,z(m))(αn(g1)ξnj )(λf2,z(m)T
m(z)).(5.4)

On the other hand, if osupp(f2) ∩ Λmz(m) = ∅, then we have( rm∑
i=1

ξmi · 〈αm(f2)ξmi , αn(g1)ξnj 〉Ym∨n
)

(Tm(z)) = 0.

We now substitute Equation (5.4) into Equation (5.3) to see that if osupp(f2) ∩ Λmz(m) 6= ∅,
then we have( rm∑

i=1

rn∑
j=1

Θcij ,dj

)
(h)(z) =

rn∑
j=1

(
c(z(0,m), z(m,m ∨ n))f1(z(0,m))〈dj, h〉Ym∨n(Tm∨n(z))

c(λf2,z(m), z(m,m ∨ n))f2(λf2,z(m))(αn(g1)ξnj )(λf2,z(m)T
m(z))

)
.(5.5)

We define

w := λf2,z(m)T
m(z) ∈ Λ∞, β := w(n,m ∨ n) ∈ Λ(m∨n)−n, and δ := z(m,m ∨ n) ∈ Λ(m∨n)−m.

Calculating (αn(g1)ξnj )(λf2,z(m)T
m(z)) and factoring out terms that do not depend on j in

Equation (5.5), we see that

(5.6)
( rm∑
i=1

rn∑
j=1

Θcij ,dj

)
(h)(z) = Ξ1

( rn∑
j=1

ξnj (T n(w))〈dj, h〉Ym∨n(Tm∨n(z))
)
,

where

Ξ1 := c(z(0,m), δ)c(λf2,z(m), δ)c(w(0, n), β)f1(z(0,m))f2(λf2,z(m))g1(w(0, n)).

Since Tm∨n(z) = Tm∨n(w), we have
rn∑
j=1

ξnj (T n(w))〈dj, h〉Ym∨n(Tm∨n(z))

=
rn∑
j=1

(
ξnj (T n(w))

∑
y∈Λ∞,

Tm∨n(y)=Tm∨n(w)

c(y(0, n), y(n,m ∨ n))g2(y(0, n))ξnj (T n(y))h(y)
)
.

Since each ξnj is supported on Z(V n
j ), we have w(n,m ∨ n) ∈ V n

j . If y ∈ Λ∞ with T n(y) ∈
osupp(ξnj ) and Tm∨n(y) = Tm∨n(w), then since V n

j is an s-section, we have y(n,m ∨ n) =
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w(n,m ∨ n) = β, and so T n(y) = T n(w). Now, if osupp(g2) ∩ Λnr(β) 6= ∅, then one term that
will appear in the second sum of the right-hand side of the above equation is

c(λg2,r(β), β)g2(λg2,r(β))ξnj (T n(w))h(λg2,r(β)T
n(w)),

which corresponds to taking y = λg2,r(β)T
n(w). All other terms in this sum will be zero, since

supp(g2) and V n
j are s-sections. Hence we can continue the calculation to get

rn∑
j=1

ξnj (T n(w))〈dj, h〉Ym∨n(Tm∨n(z)) =
rn∑
j=1

(ξnj (T n(w)))2c(λg2,r(β), β)g2(λg2,r(β))h(λg2,r(β)T
n(w))

= c(λg2,r(β), β)g2(λg2,r(β))h(λg2,r(β)T
n(w)).(5.7)

On the other hand, if osupp(g2) ∩ Λnr(β) = ∅, then we have

rn∑
j=1

ξnj (T n(w))〈dj, h〉Ym∨n(Tm∨n(z)) = 0.

We can now use Equation (5.6) and Equation (5.7) to conclude that, when osupp(f2) ∩
Λmz(m) 6= ∅ and osupp(g2) ∩ Λnr(β) 6= ∅, we have

(5.8)
( rm∑
i=1

rn∑
j=1

Θcij ,dj

)
(h)(z) = Ξ2 h(λg2,r(β)T

n(w)),

where

Ξ2 := Ξ1 c(λg2,r(β), β)g2(λg2,r(β)).

For the left-hand side of Equation (5.2), we first apply Lemma 5.7 with f = f1, g = f2 to see

that ιm∨nm (Θαm(f1),αm(f2))
(
ιm∨nn (Θαn(g1),αn(g2))(h)

)
(z) = 0 when osupp(f2)∩Λmz(m) = ∅, and is

otherwise given by

ιm∨nm (Θαm(f1),αm(f2))
(
ιm∨nn (Θαn(g1),αn(g2))(h)

)
(z) = Ξ3 ι

m∨n
n (Θαn(g1),αn(g2))(h)(λf2,z(m)T

m(z)),

where

Ξ3 := c(z(0,m), δ)c(λf2,z(m), δ)f1(z(0,m))f2(λf2,z(m)).

We now apply Lemma 5.7 with f = g1 and g = g2. Recall that w = λf2,z(m)T
m(z) and

β = w(n,m∨n). If osupp(g2)∩Λnr(β) = ∅, then ιm∨nn (Θαn(g1),αn(g2))(h)(w) = 0. If osupp(g2)∩
Λnr(β) 6= ∅, then we have

ιm∨nn (Θαn(g1),αn(g2))(h)(w) = Ξ4 h(λg2,r(β)T
n(w)),

where

Ξ4 := c(w(0, n), β)c(λg2,r(β), β)g1(w(0,m))g2(λg2,r(β)).

Hence we have

(5.9) ιm∨nm (Θαm(f1),αm(f2))
(
ιm∨nn (Θαn(g1),αn(g2))(h)

)
(z) = Ξ3 Ξ4 h(λg2,r(β)T

n(w)).

By comparing Equation (5.8) with Equation (5.9), we see that Ξ3 Ξ4 = Ξ2, and hence both
sides of Equation (5.2) agree. �

Lemma 5.8. Suppose that Λ is a proper, source-free topological k-graph, and c is a continuous
T-valued 2-cocycle on Λ. Suppose that X and Y are the product systems from Proposition 4.1
and Proposition 4.2, respectively. Let m,n ∈ Nk. For i ∈ {1, 2}, let fi ∈ FΛm and gi ∈ FΛn.
Then we have

αKm∨n
(
ιm∨nm (Θf1,f2)ιm∨nn (Θg1,g2)

)
= ιm∨nm (Θαm(f1),αm(f2))ι

m∨n
n (Θαn(g1),αn(g2)).
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Proof. Fix such functions f1, f2, g1, and g2, and define C := supp(f2)∨supp(g1). For p ∈ {m,n}
and i ∈ {1, . . . , rp}, let V p

i , βpi , and γpi be as in Lemma 5.5 (a). Then we have

ιm∨nm (Θf1,f2)ιm∨nn (Θg1,g2) =
rm∑
i=1

rn∑
j=1

Θaij ,bj .

Using (ii), (iii), and (iv) of Lemma 5.3, we get, for each i ∈ {1, . . . , rm} and j ∈ {1, . . . , rn},
αm∨n(aij) = αm(f1)α(m∨n)−m

(
γmi · 〈f2γ

m
i , g1γ

n
j 〉Xm∨n

)
= αm(f1)

(
α(m∨n)−m(γmi ) · α0

(
〈f2γ

m
i , g1γ

n
j 〉Xm∨n

))
= αm(f1)

(
α(m∨n)−m(γmi ) · 〈αm∨n(f2γ

m
i ), αm∨n(g1γ

n
j )〉Ym∨n

)
= αm(f1)

(
α(m∨n)−m(γmi ) · 〈αm(f2)α(m∨n)−m(γmi ), αn(g1)α(m∨n)−n(γnj )〉Ym∨n

)
,(5.10)

and

(5.11) αm∨n(bj) = αn(g2)α(m∨n)−n(γnj ).

We claim that for each p ∈ {m,n} and i ∈ {1, . . . , rp}, the functions

ηpi := α(m∨n)−p(β
p
i )|Z(τp,m∨n(C))

and ξpi := α(m∨n)−p(γ
p
i ) satisfy the assumptions of Lemma 5.5 (b). For each x ∈ Z(τp,m∨n(C)) \

Z(V p
i ), we have ηpi (x) = βpi (x(0, (m ∨ n) − p)) = 0. For all x ∈ Z(τp,m∨n(C)), we have(∑rp
i=1 η

p
i

)
(x) =

(∑rp
i=1 β

p
i

)
(x(0, (m ∨ n) − p)) = 1. It follows that ηp1, . . . , η

p
rp is a partition

of unity subordinate to {Z(V p
i ) ∩ Z(τp,m∨n(C)) : 1 ≤ i ≤ rp}. The functions ξpj : Λ∞ → [0, 1]

satisfy

ξpi |Z(τp,m∨n(C)) = α(m∨n)−p(γ
p
i )|Z(τp,m∨n(C))

=
(
α(m∨n)−p(γ

p
i |τp,m∨n(C))

)
|Z(τp,m∨n(C))

=
(
α(m∨n)−p

(√
βpi
))
|Z(τp,m∨n(C))

=
√
α(m∨n)−p(β

p
i )|Z(τp,m∨n(C))

=
√
ηpi ,

and vanish off Z(V p
i ) because γpi vanishes off V p

i . So the claim holds. We see from Equa-
tion (5.10) and Equation (5.11) that the cij and dj from Lemma 5.5 (b) are given by cij =
αm∨n(aij) and dj = αm∨n(bj). We can then apply Lemma 5.5 to get

αKm∨n
(
ιm∨nm (Θf1,f2)ιm∨nn (Θg1,g2)

)
= αKm∨n

( rm∑
i=1

rn∑
j=1

Θaij ,bj

)
=

rm∑
i=1

rn∑
j=1

Θαm∨n(aij),αm∨n(bj)

=
rm∑
i=1

rn∑
j=1

Θcij ,dj

= ιm∨nm (Θαm(f1),αm(f2))ι
m∨n
n (Θαn(g1),αn(g2)). �

Proof of Proposition 5.1 (b). We first claim that ψ : X → NT (Y ) given by ψn := iY,n ◦ αn is a
representation of X.The map ψ0 is obviously a homomorphism of C0(Λ0), and for each n ∈ Nk,
it is easy to see that the map ψn is linear. To see that each (ψn, ψ0) is a representation of Xn,
fix g ∈ C0(Λ0) and f ∈ Xn. Lemma 5.3 (i) gives

ψn(g · f) = iY,n(αn(g · f)) = iY,n(α0(g) · αn(f)) = iY,0(α0(g))iY,n(αn(f)) = ψ0(g)ψn(f),
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and Lemma 5.3 (ii) gives

ψn(f · g) = iY,n(αn(f · g)) = iY,n(αn(f) · α0(g)) = iY,n(αn(f))iY,0(α0(g)) = ψn(f)ψ0(g).

Now fix f1, f2 ∈ Xn. Lemma 5.3 (iii) gives

ψn(f1)∗ψn(f2) = iY,n(αn(f1))∗iY,n(αn(f2))

= iY,0(〈αn(f1), αn(f2)〉Yn)

= iY,0(α0(〈f1, f2〉Xn))

= ψ0(〈f1, f2〉Xn).

Hence each (ψn, ψ0) is a representation of Xn. For each m,n ∈ Nk, f ∈ Xm, and g ∈ Xn we
use Lemma 5.3 (iv) and that iY is a representation to get

ψm+n(fg) = iY,m+n(αm+n(fg)) = iY,m+n(αm(f)αn(g)) = iY,m(αm(f))iY,n(αn(g)) = ψm(f)ψn(g).

Hence ψ : X → NT (Y ) is a representation.
To see that ψ is Nica covariant, first note that for each n ∈ Nk and f, g ∈ Xn, we have

ψ(n)(Θf,g) = ψn(f)ψn(g)∗ = iY,n(αn(f))iY,n(αn(g))∗ = i
(n)
Y (Θαn(f),αn(g)) = i

(n)
Y (αKn (Θf,g)).

It follows that ψ(n) = i
(n)
Y ◦ αKn . For each m,n ∈ Nk, f1, f2 ∈ FΛm , and g1, g2 ∈ FΛn , we now use

the Nica covariance of iY , and Lemma 5.8, to get

ψ(m)(Θf1,f2)ψ(n)(Θg1,g2) = i
(m)
Y (αKm(Θf1,f2))i

(n)
Y (αKn (Θg1,g2))

= i
(m)
Y (Θαm(f1),αm(f2))i

(n)
Y (Θαn(g1),αn(g2))

= i
(m∨n)
Y

(
ιm∨nm (Θαm(f1),αm(f2))ι

m∨n
n (Θαn(g1),αn(g2))

)
= i

(m∨n)
Y

(
αKm∨n

(
ιm∨nm (Θf1,f2)ιm∨nn (Θg1,g2)

))
= ψ(m∨n)(ιm∨nm (Θf1,f2)ιm∨nn (Θg1,g2)).(5.12)

Now, let S ∈ K(Xm) and T ∈ K(Xn), and fix ε > 0. If T = 0, then

ψ(m)(S)ψ(n)(T ) = 0 = ψ(m∨n)(ιm∨nm (S)ιm∨nn (T )).

So assume that T 6= 0. We use Corollary 2.5 to choose a nonzero a ∈ span{Θf,g : f, g ∈ FΛm}
such that ‖S − a‖ < ε/(4‖T‖), and b ∈ span{Θf,g : f, g ∈ FΛn} such that ‖T − b‖ < ε/(4‖a‖).
Then

‖ψ(m)(S)ψ(n)(T )− ψ(m∨n)(ιm∨nm (S)ιm∨nn (T ))‖

=
∥∥∥ψ(m)(S)ψ(n)(T )− ψ(m)(a)ψ(n)(T ) + ψ(m)(a)ψ(n)(T )− ψ(m)(a)ψ(n)(b)

+ ψ(m)(a)ψ(n)(b)− ψ(m∨n)(ιm∨nm (a)ιm∨nn (b))

+ ψ(m∨n)
(
ιm∨nm (a)ιm∨nn (b)− ιm∨nm (a)ιm∨nn (T ) + ιm∨nm (a)ιm∨nn (T )− ιm∨nm (S)ιm∨nn (T )

)∥∥∥
≤ ‖ψ(m)(S)ψ(n)(T )− ψ(m)(a)ψ(n)(T )‖+ ‖ψ(m)(a)ψ(n)(T )− ψ(m)(a)ψ(n)(b)‖

+ ‖ψ(m)(a)ψ(n)(b)− ψ(m∨n)(ιm∨nm (a)ιm∨nn (b))‖
+ ‖ιm∨nm (a)ιm∨nn (b)− ιm∨nm (a)ιm∨nn (T )‖+ ‖ιm∨nm (a)ιm∨nn (T )− ιm∨nm (S)ιm∨nn (T )‖

≤ 2‖T‖ ‖S − a‖+ 2‖a‖ ‖T − b‖+ ‖ψ(m)(a)ψ(n)(b)− ψ(m∨n)(ιm∨nm (a)ιm∨nn (b))‖
< ε+ ‖ψ(m)(a)ψ(n)(b)− ψ(m∨n)(ιm∨nm (a)ιm∨nn (b))‖.

It follows from Equation (5.12) and the linearity of the maps involved that

‖ψ(m)(a)ψ(n)(b)− ψ(m∨n)(ιm∨nm (a)ιm∨nn (b))‖ = 0.
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Hence we have

‖ψ(m)(S)ψ(n)(T )− ψ(m∨n)(ιm∨nm (S)ιm∨nn (T ))‖ < ε,

and the Nica covariance of ψ follows. �

6. The proof of our main theorem

We begin this section with the proof of Theorem 4.6 (a), which states that the homomorphism
ψNT : T C∗(Λ, c) → NT (Y ) induced from the Nica-covariant representation ψ : X → NT (Y )
given in Proposition 5.1 (b) is injective.

Proof of Theorem 4.6 (a). Recall that ψNT satisfies ψNT ◦ iX = ψ. To show that ψNT is
injective, we aim to apply Theorem 2.1. We consider the Nica-covariant representation Ψ from
the proof of [11, Theorem 3.2] (see Theorem 2.1) applied to the product system Y ; that is,

Ψ :=
(
FY− Ind

L(FY )
C0(Λ∞) π

)
◦ l,

where l is the Fock representation of Y on the Fock space FY :=
⊕

n∈Nk Yn, π is a faithful

nondegenerate representation of C0(Λ∞) on some Hilbert space H, and FY− Ind
L(FY )
C0(Λ∞) π is the

induced representation of L(FY ) on FY ⊗C0(Λ∞) H. In the proof of [11, Theorem 3.2], it is
shown that for each finite K ⊆ Nk\{0} the representation ϕΨ,K of C0(Λ∞) on FY ⊗C0(Λ∞) H
given by

ϕΨ,K(f) := Ψ0(f)
∏
n∈K

(
1FY ⊗C0(Λ∞)H − P

Ψ
n )

is faithful. Fix a finite subset K ⊆ Nk\{0}, and consider the representation

ω := ΨNT ◦ ψ : X → B(FY ⊗C0(Λ∞) H).

We have

ωn = ΨNT ◦ ψn = ΨNT ◦ iY,n ◦ αn = Ψn ◦ αn,
for each n ∈ Nk. So each ωn(Xn)(FY ⊗C0(Λ∞) H) is a subspace of Ψn(Yn)(FY ⊗C0(Λ∞) H), and
it follows that

(6.1)
∏
n∈K

(
1FY ⊗C0(Λ∞)H − P

ω
n ) ≥

∏
n∈K

(
1FY ⊗C0(Λ∞)H − P

Ψ
n ).

For each nonzero f ∈ C0(Λ0), we know from Lemma 5.3 (v) that α0(f) 6= 0, and hence

ω0(f)
∏
n∈K

(
1FY ⊗C0(Λ∞)H − P

Ψ
n ) = Ψ0(α0(f))

∏
n∈K

(
1FY ⊗C0(Λ∞)H − P

Ψ
n ) = ϕΨ,K(α0(f)) 6= 0.

It follows from Equation (6.1) that

ω0(f)
∏
n∈K

(
1FY ⊗C0(Λ∞)H − P

ω
n ) 6= 0.

Hence

ϕω,K : f 7→ ω0(f)
∏
n∈K

(
1FY ⊗C0(Λ∞)H − P

ω
n )

is a faithful representation of C0(Λ0), and we can apply Theorem 2.1 to see that

ωNT : T C∗(Λ, c)→ B(FY ⊗C0(Λ∞) H)

is injective. Now,

ΨNT ◦ ψNT ◦ iX = ΨNT ◦ ψ = ω = ωNT ◦ iX ,
and hence ωNT = ΨNT ◦ ψNT . Since ωNT is injective, ψNT must also be injective. �
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We need the following lemma for the proof of Theorem 4.6 (b). In this result, we identify
C0(Z(U)) with its image under the natural embedding in C0(Λ∞). For the statement and proof
of this result, recall from Lemma 3.14 that each τm,n is a local homeomorphism, and from
Lemma 3.15 that each of the maps ρm,n and ρm,∞ is continuous and proper.

Lemma 6.1. Suppose that Λ is a proper, source-free topological k-graph. Fix n ∈ Nk, and let
U be an open subset of Λn such that U is a compact s-section. Define

AU := {f ◦ ρm,∞ : m ∈ Nk, m ≥ n, f ∈ Cc(Λm) with osupp(f) ⊆ UV for V ⊆ Λm−n

a precompact open s-section such that r(V ) ⊆ s(U)}.

Then spanAU is uniformly dense in C0(Z(U)).

Proof. We will use the Stone–Weierstrass theorem. We first need to show that spanAU is a
subalgebra of C0(Z(U)). Let m, p ∈ Nk with m, p ≥ n; f ∈ Cc(Λ

m) with osupp(f) ⊆ UVm
for Vm ⊆ Λm−n a precompact open s-section such that r(Vm) ⊆ s(U); and g ∈ Cc(Λ

p) with
osupp(g) ⊆ UVp for Vp ⊆ Λp−n a precompact open s-section such that r(Vp) ⊆ s(U). Then we
have

osupp(f ◦ ρm,∞) = ρ−1
m,∞(osupp(f)) ⊆ ρ−1

m,∞(UVm) = Z(UVm) ⊆ Z(U).

Also, since ρm,∞ is a continuous proper map and supp(f ◦ ρm,∞) ⊆ ρ−1
m,∞(supp(f)), we have

f ◦ ρm,∞ ∈ Cc(Λ∞). Hence spanAU ⊆ C0(Z(U)).
We now claim that (f ◦ ρm,∞)(g ◦ ρp,∞) ∈ spanAU . Since composition is a continuous map

and U , Vm, and Vp are compact, U Vm and U Vp are closed subsets of Λm and Λp, respectively.
Hence supp(f) ⊆ U Vm and supp g ⊆ U Vp. The set C := supp(f)∨ supp(g) is a compact subset
of Λm∨p and is contained in U Vm ∨ U Vp. We therefore have

r(τn,m∨p(C)) ⊆ r(τn,m∨p(U Vm ∨ U Vp)) ⊆ r(Vm) ∩ r(Vp) ⊆ s(U),

and so τn,m∨p(C) is a compact subset of r|−1
Λ(m∨p)−n(s(U)). Hence we can cover τn,m∨p(C) with

finitely many precompact open s-sections V1, . . . , Vl ⊆ Λ(m∨p)−n such that r(Vi) ⊆ s(U) for
each i ∈ {1, . . . , l}. As in [24, Remark 2.9], let ξ1, . . . , ξl be a partition of unity subordinate to
{Vi ∩ τn,m∨p(C) : 1 ≤ i ≤ l}. Define h : Λm∨p → C by h(λ) := f(λ(0,m))g(λ(0, p)). We have
h = (f ◦ ρm,m∨p)(g ◦ ρp,m∨p), and hence h is continuous. Furthermore, we have

supp(h) ⊆ supp(f ◦ ρm,m∨p) ⊆ ρ−1
m,m∨p(supp(f)),

and so supp(h) is compact because ρm,m∨p is a continuous proper map. For each i ∈ {1, . . . , l},
define hi : Λm∨p → C by

hi(λ) :=

{
h(λ)(ξi ◦ τn,m∨p)(λ) if λ ∈ C,
0 otherwise.

Then supp(hi) ⊆ supp(h), and so hi ∈ Cc(Λm∨p) for each i ∈ {1, . . . , l}. We also have

osupp(hi) = osupp(h) ∩ osupp(ξi ◦ τn,m∨p|C)

= osupp(f ◦ ρm,m∨p) ∩ osupp(g ◦ ρp,m∨p) ∩ (τn,m∨p|C)−1(osupp(ξi))

= ρ−1
m,m∨p(osupp(f)) ∩ ρ−1

p,m∨p(osupp(g)) ∩ τ−1
n,m∨p(osupp(ξi)) ∩ C

⊆ ρ−1
m,m∨p(UVm) ∩ ρ−1

p,m∨p(UVp) ∩ τ−1
n,m∨p(Vi)

= UVmΛ(m∨p)−m ∩ UVpΛ
(m∨p)−p ∩ ΛnVi

⊆ UVi,

and so hi ∈ AU for each i ∈ {1, . . . , l}.
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Furthermore, for each x ∈ Λ∞ we have( l∑
i=1

hi ◦ ρm∨p,∞
)

(x) =
l∑

i=1

hi(x(0,m ∨ p))

=
l∑

i=1

h(x(0,m ∨ p))ξi(x(n,m ∨ p))

= f(x(0,m))g(x(0, p))
l∑

i=1

ξi(x(n,m ∨ p))

=

{
f(x(0,m))g(x(0, p)) if x ∈ Z(C),

0 otherwise

= (f ◦ ρm,∞)(g ◦ ρp,∞)(x).

Hence (f ◦ ρm,∞)(g ◦ ρp,∞) =
∑l

i=1 hi ◦ ρm∨p,∞ ∈ spanAU , and the claim is proved.
It is clear that spanAU is closed under complex conjugation. To see that spanAU strongly

separates the points of Z(U), let x, y ∈ Z(U) with x 6= y. Choose m ∈ Nk with m ≥ n and
x(0,m) 6= y(0,m). If x(0, n) = y(0, n), then we must have x(n,m) 6= y(n,m). If x(0, n) 6=
y(0, n), then x(n) 6= y(n) because s|U is injective, and so x(n,m) 6= y(n,m). Since Λm−n is
a locally compact Hausdorff space, there exist disjoint precompact open s-sections Vx and Vy
contained in Λm−n such that r(Vx) ⊆ s(U), r(Vy) ⊆ s(U), x(n,m) ∈ Vx, and y(n,m) ∈ Vy.
By Urysohn’s lemma, there exist fx, fy ∈ Cc(Λm) such that 0 ≤ fx, fy ≤ 1, osupp(fx) ⊆ UVx,
osupp(fy) ⊆ UVy, and fx(x(0,m)) = fy(y(0,m)) = 1. Since Vx ∩ Vy = ∅, we have y(n,m) /∈ Vx,
and hence y(0,m) /∈ UVx. Hence fx(y(0,m)) = 0 6= 1 = fx(x(0,m)). The Stone–Weierstrass
theorem now implies that spanAU = C0(Z(U)). �

We need one final lemma before we can prove Theorem 4.6 (b).

Lemma 6.2. Suppose that Λ is a proper, source-free topological k-graph. Fix n ∈ Nk, and let
U ⊆ Λn be a precompact open s-section. Then for all f ∈ Cc(Z(U)), we have ‖f‖∞ = ‖f‖Yn.

Proof. Since U ⊆ Λn is an s-section, Proposition 3.16 implies that T n|Z(U) is injective. There-
fore, we have

‖f‖2
Yn = ‖〈f, f〉Yn‖ = sup

{∣∣∣ ∑
y∈Λ∞,
Tn(y)=x

|f(y)|2
∣∣∣ : x ∈ Λ∞

}
= sup{|f(y)|2 : y ∈ Z(U)} = ‖f‖2

∞.

�

We can now finish the proof of our main result.

Proof of Theorem 4.6 (b). Consider the representation ζ := qY ◦ ψ : X → O(Y ). To see that ζ
is Cuntz–Pimsner covariant, we first claim that for each n ∈ Nk we have

(6.2) ψ(n) ◦ φXn − ψ0 = (i
(n)
Y ◦ φYn − iY,0) ◦ α0.

Fix n ∈ Nk and g ∈ Cc(Λ0). Since r|Λn is proper, N := r|−1
Λn(supp(g)) is a compact subset of

Λn. We can therefore cover N with finitely many open s-sections U1, . . . , Ul ⊆ Λn. Choose
a partition of unity ω̃1, . . . , ω̃l subordinate to {Ui ∩ N : 1 ≤ i ≤ l}. We use the Tietze
extension theorem to extend each ω̃i to a function ωi ∈ Cc(Λn). Note that, whilst ω1, . . . , ωl is

not a partition of unity on Λn, we do have
(∑l

i=1 ωi
)
|N ≡ 1, and osupp(ωi|N) ⊆ Ui for each

i ∈ {1, . . . , l}. For each i ∈ {1, . . . , l}, we define gi :=
√
g · ωi. Then each gi is an element of
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Cc(Λ
n) ⊆ Xn. Now, for each f ∈ Yn and λ ∈ Λn, we have( l∑

i=1

Θgi,gi

)
(f)(λ) =

l∑
i=1

√
g(r(λ))

√
ωi(λ)

( ∑
µ∈Λns(λ)

√
g(r(µ))

√
ωi(µ)f(µ)

)
.

Now, for this expression to be nonzero, we must have λ, µ ∈ Ui ∩ N . Since Ui is an s-section,
the only nonzero term that could appear in the right-hand sum is the one obtained by taking
µ = λ. It follows that( l∑

i=1

Θgi,gi

)
(f)(λ) =

l∑
i=1

g(r(λ))ωi(λ)f(λ) = g(r(λ))f(λ) = φXn(g)(f)(λ).

Hence we have

(6.3) φXn(g) =
l∑

i=1

Θgi,gi .

For each h ∈ Yn and x ∈ Λ∞, we have( l∑
i=1

Θαn(gi),αn(gi)

)
(h)(x) =

l∑
i=1

αn(gi)(x)

( ∑
y∈Λ∞,

Tn(y)=Tn(x)

αn(gi)(y)h(y)

)

=
l∑

i=1

gi(x(0, n))

( ∑
y∈Λ∞,

Tn(y)=Tn(x)

gi(y(0, n)h(y)

)
.

Now, for this expression to be nonzero, we must have x(0, n), y(0, n) ∈ Ui ∩ N . Since T n is
injective on Ui ∩N , the only term that could appear in the right-hand sum is the one obtained
by taking y = x. It follows that( l∑

i=1

Θαn(gi),αn(gi)

)
(h)(x) =

l∑
i=1

(gi(x(0, n)))2h(x)

= g(r(x(0, n)))h(x)

= α0(g)(T 0(x))h(x)

= φYn(α0(g))(h)(x).

Hence we have

(6.4) φYn(α0(g)) =
l∑

i=1

Θαn(gi),αn(gi) = αKn

( l∑
i=1

Θgi,gi

)
.

We see from Equation (6.3) and Equation (6.4) that αKn ◦ φXn = φYn ◦ α0. Hence we have

ψ(n) ◦ φXn − ψ0 = i
(n)
Y ◦ α

K
n ◦ φXn − iY,0 ◦ α0 = i

(n)
Y ◦ φYn ◦ α0 − iY,0 ◦ α0 = (i

(n)
Y ◦ φYn − iY,0) ◦ α0,

and the claim holds. We now use Equation (6.2) and the Cuntz–Pimsner covariance of jY to
get

ζ(n) ◦ φXn − ζ0 = (qY ◦ ψ(n)) ◦ φXn − qY ◦ ψ0

= qY ◦ (ψ(n) ◦ φXn − ψ0)

= qY ◦
(
(i

(n)
Y ◦ φYn − iY,0) ◦ α0

)
= (j

(n)
Y ◦ φYn − jY,0) ◦ α0

≡ 0.
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Hence ζ is Cuntz–Pimsner covariant, and so it induces a homomorphism ζO : C∗(Λ, c)→ O(Y )
satisfying ζO ◦ jX = ζ. We now show that ζO is an isomorphism. To see that ζO is surjective,
fix g ∈ Cc(Λ∞) and n ∈ Nk. We aim to show that jY,n(g) ∈ range(ζO).

Choose m ∈ Nk with m ≥ n. Let A and U be open s-sections of Λ such that U is compact,
and U ⊆ A ⊆ Λn. Let B and V be open s-sections of Λ such that V is compact, V ⊆ B ⊆ Λm−n,
and r(V ) ⊆ s(U). For each v ∈ r(V ), let λU,v denote the unique element of U with source v.
Note that if λ ∈ A and µ ∈ s(λ)V , then λU,r(µ) = λ, because U is contained in the s-section A.
Let f ∈ Cc(Λm) with osupp(f) ⊆ UV . Recall from Proposition 5.1 the definitions of the maps
αn,m and αn := αn,n. We claim that

jY,n(αn,m(f)) ∈ range(ζO).(6.5)

The map V → C given by µ 7→ f(λU,r(µ)µ) is continuous, and has compact support because
its support is contained in τn,m(supp(f)). Since V is open, we can extend this function to

f̃ ∈ Cc(Λm−n) given by

f̃(µ) =

{
f(λU,r(µ)µ) if µ ∈ V,
0 if µ 6∈ V.

Since U is a compact subset of Λn, we can cover it with finitely many precompact open s-sections

W1, . . . ,Wl ⊆ Λn. Choose a partition of unity ξ̃1, . . . , ξ̃l subordinate to {Wi∩U : 1 ≤ i ≤ l}. Use

the Tietze extension theorem to extend each ξ̃i to a function ξi in Cc(Λ
n) with osupp(ξi) ⊆ A.

Note that, whilst ξ1, . . . , ξl is not a partition of unity on Λn, we do have
(∑l

i=1 ξi
)
|U ≡ 1, and

osupp(ξi|U) ⊆ Wi for each i ∈ {1, . . . , l}. For each x ∈ Λ∞, we have( l∑
i=1

αn(ξi) · α0,m−n(f̃)
)

(x) =
l∑

i=1

αn(ξi)(x)α0,m−n(f̃)(T n(x))

=
l∑

i=1

ξi(x(0, n))f̃(x(n,m))

=

{
f̃(x(n,m)) if x ∈ Z(U),

0 otherwise

= f(x(0,m))

= αn,m(f)(x).

Hence we have

(6.6) αn,m(f) =
l∑

i=1

αn(ξi) · α0,m−n(f̃).

Since V is a compact subset of Λm−n, we can cover it with finitely many precompact open
s-sections Z1, . . . , Zp ⊆ Λm−n. Choose a partition of unity η̃1, . . . , η̃p subordinate to {Zj ∩ V :
1 ≤ j ≤ p}. Use the Tietze extension theorem to extend each η̃i to a function ηi ∈ Cc(Λm−n)
with osupp(ηi) ⊆ B. Note that, whilst η1, . . . , ηp is not a partition of unity on Λm−n, we do
have

(∑p
j=1 ηj

)
|V ≡ 1, and osupp(ηj|V ) ⊆ Zj for each j ∈ {1, . . . , p}. For each g ∈ Ym−n and

x ∈ Λ∞, we have( p∑
j=1

Θαm−n(f̃),αm−n(ηj)

)
(g)(x) =

p∑
j=1

αm−n(f̃)(x)〈αm−n(ηj), g〉Ym−n(Tm−n(x))

= αm−n(f̃)(x)

p∑
j=1

∑
y∈Λ∞,

Tm−n(y)=Tm−n(x)

αm−n(ηj)(y)g(y).
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Now, we know that αm−n(f̃) is supported in Z(V ), and each αm−n(ηj) is supported in Z(B).
Since B is an s-section, Proposition 3.16 implies that Tm−n|Z(B) is injective. Thus, if x ∈
Z(V ) ⊆ Z(B), then we have {y ∈ Z(B) : Tm−n(y) = Tm−n(x)} = {x}, and so we can continue
the above calculation to get( p∑

j=1

Θαm−n(f̃),αm−n(ηj)

)
(g)(x) = αm−n(f̃)(x)

( p∑
j=1

αm−n(ηj)(x)g(x)
)

= αm−n(f̃)(x)g(x)

= φYm−n(α0,m−n(f̃))(g)(x).

Hence we have

(6.7) φYm−n(α0,m−n(f̃)) =

p∑
j=1

Θαm−n(f̃),αm−n(ηj)
.

We use Equation (6.6) to get

iY,n(αn,m(f))

= iY,n

( l∑
i=1

αn(ξi) · α0,m−n(f̃)
)

=
l∑

i=1

iY,n(αn(ξi))iY,0(α0,m−n(f̃))

=
l∑

i=1

(
iY,n(αn(ξi))iY,0(α0,m−n(f̃)) + iY,n(αn(ξi))

( p∑
j=1

iY,m−n(αm−n(f̃))iY,m−n(αm−n(ηj))
∗
)

− iY,n(αn(ξi))
( p∑
j=1

iY,m−n(αm−n(f̃))iY,m−n(αm−n(ηj))
∗
))

=
l∑

i=1

(
iY,n(αn(ξi))

( p∑
j=1

iY,m−n(αm−n(f̃))iY,m−n(αm−n(f̃))∗
)

− iY,n(αn(ξi))
( p∑
j=1

(iY,m−n(αm−n(f̃))iY,m−n(αm−n(ηj))
∗)− iY,0(α0,m−n(f̃))

))

=
l∑

i=1

(
iY,n(αn(ξi))

( p∑
j=1

iY,m−n(αm−n(f̃))iY,m−n(αm−n(ηj))
∗
)

− iY,n(αn(ξi))
(
i
(m−n)
Y

( p∑
j=1

Θαm−n(f̃),αm−n(ηj)

)
− iY,0(α0,m−n(f̃))

))
.

We now use Equation (6.7) to write the above expression for iY,n(αn,m(f)) as

iY,n(αn,m(f)) =
l∑

i=1

(
iY,n(αn(ξi))

( p∑
j=1

iY,m−n(αm−n(f̃))iY,m−n(αm−n(ηj))
∗
)

(6.8)

− iY,n(αn(ξi))
(
i
(m−n)
Y

(
φYm−n(α0,m−n(f̃))

)
− iY,0(α0,m−n(f̃))

))
.

Since

qY
(
i
(m−n)
Y

(
φYm−n(α0,m−n(f̃))

)
− iY,0(α0,m−n(f̃))

)
= 0,
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we can apply the quotient map qY to Equation (6.8) to see that

jY,n(αn,m(f)) =
l∑

i=1

(
jY,n(αn(ξi))

( p∑
j=1

jY,m−n(αm−n(f̃))jY,m−n(αm−n(ηj))
∗
))

=
l∑

i=1

(
ζO(jX,n(ξi))

( p∑
j=1

ζO(jX,m−n(f̃))ζO(jX,m−n(ηj))
∗
))

∈ range(ζO),

which proves that (6.5) holds.
Recall that g ∈ Cc(Λ

∞), and that we are aiming to show that jY,n(g) ∈ range(ζO). Fix
ε > 0. We will find a ∈ C∗(Λ, c) such that ‖jY,n(g) − ζO(a)‖ < ε. By Lemma 3.13, we can
choose finitely many open subsets U1, . . . , Ul of Λn such that for each i ∈ {1, . . . , l}, Ui is a
compact s-section, and {Z(Ui) : 1 ≤ i ≤ l} is an open cover of supp(g). As in [24, Remark 2.9],
choose a partition of unity g1, . . . , gl subordinate to {Z(Ui) ∩ supp(g) : 1 ≤ i ≤ l}. For each
i ∈ {1, . . . , l}, define hi : Λ∞ → C by

hi(x) :=

{
g(x)gi(x) if x ∈ supp(g),

0 if x /∈ supp(g).

Then g =
∑l

i=1 hi. Since we have hi ∈ Cc(Z(Ui)) for each i ∈ {1, . . . , l}, we can apply
Lemma 6.1 to approximate hi by a sum of pi elements of AUi ; that is, for each i ∈ {1, . . . , l}
and each j ∈ {1, . . . , pi}, there exist mi,j ∈ Nk with mi,j ≥ n, a precompact open s-section
Vi,j ⊆ Λmi,j−n satisfying r(Vi,j) ⊆ s(Ui), and fi,j ∈ Cc(Λ

mi,j) with osupp(fi,j) ⊆ UiVi,j, such
that

(6.9)
∥∥∥hi − pi∑

j=1

fi,j ◦ ρmi,j ,∞
∥∥∥
∞
<
ε

l
.

Since hi−
∑pi

j=1 fi,j ◦ρmi,j ,∞ ∈ Cc(Z(Ui)) for each i ∈ {1, . . . , l}, Lemma 6.2 and Equation (6.9)
together imply that

(6.10)
∥∥∥hi − pi∑

j=1

αn,mi,j(fi,j)
∥∥∥
Yn

=
∥∥∥hi − pi∑

j=1

fi,j ◦ ρmi,j ,∞
∥∥∥
Yn

=
∥∥∥hi − pi∑

j=1

fi,j ◦ ρmi,j ,∞
∥∥∥
∞
<
ε

l
.

Since we have established that (6.5) is true, we know that for each i ∈ {1, . . . , l}, we have
pi∑
j=1

jY,n(αn,mi,j(fi,j)) ∈ range(ζO),

and hence we can choose ai ∈ C∗(Λ, c) with ζO(ai) =
∑pi

j=1 jY,n(αn,mi,j(fi,j)). Let a :=
∑l

i=1 ai ∈
C∗(Λ, c). Then we have ζO(a) =

∑l
i=1 jY,n

(∑pi
j=1 αn,mi,j(fi,j)

)
, and hence Equation (6.10)

implies that

‖jY,n(g)− ζO(a)‖ =
∥∥∥jY,n( l∑

i=1

hi

)
−

l∑
i=1

jY,n

( pi∑
j=1

αn,mi,j(fi,j)
)∥∥∥

=
∥∥∥ l∑
i=1

jY,n

(
hi −

pi∑
j=1

αn,mi,j(fi,j)
)∥∥∥

≤
l∑

i=1

∥∥∥hi − pi∑
j=1

αn,mi,j(fi,j)
∥∥∥
Yn

< ε.



PRODUCT-SYSTEM MODELS FOR TWISTED C∗-ALGEBRAS OF TOPOLOGICAL k-GRAPHS 29

Therefore, ζO is surjective.
To see that ζO is injective, we will apply [6, Corollary 4.14]. Part (i) of [6, Corollary 4.14]

holds because the gauge action γ on O(Y ) satisfies γz(ζ
O(jX(f))) = znζO(jX(f)) for all n ∈ Nk,

f ∈ Xn, and z ∈ Tk. For part (ii) of [6, Corollary 4.14], we first observe that jY is isometric by
[29, Theorem 4.1]. Then for each f, g ∈ C0(Λ0), we have

ζO(jX,0(f)) = ζO(jX,0(g)) =⇒ jY,0(α0(f)) = jY,0(α0(g)) =⇒ α0(f) = α0(g),

and so Lemma 5.3 (v) implies that f = g. Hence ζO|jX(C0(Λ0)) is injective, and [6, Corol-
lary 4.14 (ii)] holds. Therefore, [6, Corollary 4.14] implies that ζO is injective. �

Remark 6.3. In [20, Section 6], Kumjian, Pask, and Sims use a T-valued 2-cocycle c on a
row-finite k-graph Λ with no sources to construct a continuous T-valued 2-cocycle σc on the
path groupoid GΛ. They then prove that the twisted groupoid C∗-algebra C∗(GΛ, σc) (built
using Renault’s construction in [27]) is isomorphic to the twisted k-graph C∗-algebra C∗(Λ, c)
(denoted by C∗KPS(Λ, c) in Remarks 4.5 (ii)). It is not clear that the construction of σc in [20]
will give rise to a continuous T-valued 2-cocycle σc on Yeend’s boundary-path groupoid GΛ,
for Λ a proper, source-free topological k-graph. It would be interesting to see if one could
modify the construction in [20] to cater for topological k-graphs, and then prove that there is
an isomorphism between the twisted Cuntz–Krieger algebra C∗(Λ, c) defined in Definition 4.4,
and the twisted groupoid C∗-algebra C∗(GΛ, σc).
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