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Abstract. For Schrödinger operators on an interval with either convex or symmetric
single-well potentials, and Robin or Neumann boundary conditions, the gap between
the two lowest eigenvalues is minimised when the potential is constant. We also
have results for the p-Laplacian.

1. Introduction

In studying the eigenvalues of a differential operator, one important quantity is the
gap between the first and second eigenvalues, called the fundamental gap. This is
of both physical and mathematical importance: in the context of the heat equation,
it gives the rate of collapse of any initial state to the ground state; computationally,
it can control the rate of convergence of a numerical scheme [12].

The fundamental gap for the classical Schrödinger operator −∆ + V has been ex-
tensively studied under Dirichlet boundary values. In one dimension, lower bounds of
this gap were found under various assumptions on V [3, 7] until Lavine [9] found the
sharp result: the gap for a convex potential is minimised by the gap for a constant
potential. The analogous result in higher dimensions, on a convex domain, was re-
solved several years later [1]. Smits considered the question of the lower bounds on
the fundamental gap under Robin boundary conditions [13], however there are very
few results known in this case. Laugesen recently studied the Robin eigenvalues,
and the gap, on rectangles [8]. The Robin problem is much more sensitive to the
boundary, and is thus more difficult. For example, the method used in [1] to prove
sharp lower bounds on the Dirichlet fundamental gap uses the property that the first
Dirichlet eigenfunction is log-concave: in recent work, we have shown that the first
Robin eigenfunction does not always enjoy that property [2].
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Thus, one important motivation here is to find methods to derive sharp lower bounds
on the gap that do not rely on the log-concavity of the first eigenfunction. In one
dimension, Lavine’s proof of the lower bound for the gap is such a method.

In this paper, we revisit Lavine’s method and establish sharp lower bounds of the
fundamental gap for the classical (linear) Schrödinger operator on a bounded interval
under Robin boundary conditions. We not only deal with the case where the Robin
parameter α is positive, but also for −1

2
≤ α ≤ 0, thus also including the Neumann

case. The same statements also hold for the Dirichlet case (sometimes referred to
as α = ∞). We also extend some results to the nonlinear Schrödinger operator
associated with the p-Laplace operator.

We can extend the methods to Robin boundary conditions largely because the bound-
ary conditions generally appear in forms such as [u1u

′
0−u′1u0]−1

1 and so they not only
vanish in the Neumann or Dirichlet cases, but also in the Robin case.

We now introduce our notation and assumptions used through this paper. Let I
denote the open interval (−1, 1) and V a potential function in C(Ī). The eigenvalue
problem for the classical Schrödinger operator − d2

dx2 + V on I is to find eigenpairs
(ui , λ

V
i ) solving

(1.1) − u′′ + V u = λV u on I

subject to either homogeneous Robin or Neumann boundary conditions

(1.2) u′(±1) = ∓αu(±1),

or homogeneous Dirichlet boundary condition

(1.3) u(±1) = 0.

The boundary conditions (1.2) are called Neumann if α = 0, and otherwise Robin
with Robin parameter α ∈ R. Dividing (1.2) by α > 0 and sending α → +∞, one
recovers the Dirichlet conditions (1.3).

For 1 < p < +∞, we also consider the Robin eigenvalue problem for the non-
linear Schrödinger operator −∆p + V |·|p−2· associated with the p-Laplace operator
∆pu := (|u′|p−2u′)

′. Here we seek to find eigenpairs (ui , λ
V
i ) solving

(1.4) − ∆pu + V |u|p−2u = λV |u|p−2u on I,

with Robin boundary conditions

(1.5) |u′|p−2u′ = ∓α|u|p−2u at x = ±1.

The Dirichlet boundary condition is again (1.3).

For p = 2 equations (1.4) and (1.5) reduce to the classical linear ones (1.1) and (1.2).
For given V ∈ L1(I), λ ∈ R, and α ∈ R, we call a function u ∈ C(Ī) a solution of
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equation (1.4) satisfying (1.5) provided u ∈ W 1,p(I) and satisfies∫
I

|u′|p−2u′ξ′ +
(
V − λ

)
|u|p−2u ξ dx + α

[
(|u|p−2u ξ)|x=1 + (|u|p−2u ξ)|x=−1

]
= 0

for every ξ ∈ C1(Ī). Since for every solution u of (1.4), λV − V |u|p−2u ∈ L1(I), one
has that |u′|p−2u′ ∈ W 1,1(I) and since W 1,1(I) is continuously embedded into C(Ī),
one finds that u′ ∈ C(Ī). Thus, every solution u of (1.4) has regularity u ∈ C1(Ī).

The Ljusternik-Schnirelmann theory [6, 10] ensures the existence of a sequence
(λVi , ui)i≥0 of eigenpairs (λVi , ui) for the nonlinear Schrödinger operator −∆p+V |·|p−2·
with Robin boundary conditions (1.5). For every i ∈ N,

(1.6) λVi := inf
W∈Γi

max
u∈W
R[u, V, p, α],

where R is the Rayleigh quotient

(1.7) R[u, V, p, α] =

∫
I

|u′|p + V |u|p dx + α [|u|p(1) + |u|p(−1)]∫
I

|u|p dx
.

In (1.6), the maximum is attained among all u ∈ W ⊆ Γi , where Γi is a specific
closed subset of W 1,p(I). To obtain eigenpairs (λVi , ui) for homogeneous Neumann
boundary conditions, one chooses α = 0, while for homogeneous Dirichlet boundary
conditions (1.3), one needs to replace the space W 1,p(I) by W 1,p

0 (I).

Our primary object of interest in this paper is the fundamental gap

Γp(V ) := λV1 − λV0.

We write Γp(0) for the fundamental gap of the zero potential V ≡ 0. A potential
V is called single-well if there is a point x0 ∈ I such that V is non-increasing along
(−1, x0) and non-decreasing along (x0, 1). A potential V on I is called symmetric if
V (−x) = V (x).

Our first result concerns the fundamental gap for such symmetric, single-well poten-
tials. The analogous theorem with Dirichlet boundary conditions, and p = 2, is due
to Ashbaugh and Benguria [3].

Theorem 1.1. For α ∈ R, consider the nonlinear eigenvalue problem (1.4) with
Robin boundary conditions (1.5). Then for every symmetric, single well potential V ,
the fundamental gap satisfies

Γp(V ) ≥ Γp(0)

with equality only when V is constant.

Our next theorem shows that the fundamental gap Γp(V ) with convex potential V is
minimised by a linear potential.
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Theorem 1.2. For α ∈ R, consider the nonlinear eigenvalue problem (1.4) with
Robin boundary conditions (1.5). Then for every convex potential V which is not
affine, there exists a linear potential Va = ax , such that

Γp(V ) > Γp(ax).

The last two theorems relate to the classical, p = 2, case only.

Theorem 1.3. Consider the linear eigenvalue problem (1.1) with Robin boundary
conditions (1.5) with α ≥ −1

2
, and let Va = ax be a linear potential, a ∈ R. Then

the fundamental gap is bounded below by the gap for a zero potential,

Γ2(ax) ≥ Γ2(0).

with equality only when a = 0.

Combining Theorem 1.2 with Theorem 1.3, we immediately have:

Theorem 1.4. Consider the linear eigenvalue problem (1.1) where V is a convex
potential, and with Robin boundary conditions (1.2) with α ≥ −1

2
. Then the funda-

mental gap satisfies
Γ2(V ) ≥ Γ2(0).

In the linear case p = 2 and under homogeneous Dirichlet and Neumann boundary
conditions, Theorems 1.2, 1.3 and 1.4 are due to Lavine [9].

The structure of this paper is as follows. In Section 2 we establish some necessary
technical results, particularly about the shape of the first two eigenfunctions. In
Section 3, we prove Theorem 1.1, for symmetric single-well potentials. In Section
4, we prove Theorem 1.2. In Section 5, we prove some further technical results to
support the argument in Section 6, where we prove Theorem 1.3: this proof is only
for the classical Schrödinger operator, with p = 2.

2. Some preliminary results

We normalise all eigenfunctions so that
∫
I
|ui |p dx = 1 and ui > 0 on (−1,−1 + ε)

for some small ε > 0. If (u0, λ
V
0) is the first eigenpair then u0 minimises the Rayleigh

quotient (1.7). Since also |u0| is a minimiser of (1.7), we can choose u0 ≥ 0 on I.
But as we assume that the potential V is bounded from below on I, and since u0 is
a solution of (1.4), the strong maximum principle (see [11, Theorem 5.3.1]) implies
that u0 > 0 on I.

We begin with a Hellmann–Feynmann result for the variation of eigenvalues with
respect to a family of potentials.
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Lemma 2.1. Let {V t}t∈J be a family of potentials V t ∈ L1(I) varying differentiably
in the parameter t ∈ R. Then for every eigenpair (ui , λ

V
i ) of the nonlinear eigenvalue

problem (1.4) with Robin boundary conditions (1.5),

∂

∂t
λV

t

i =

∫
I

•

V t |ui |p dx

where
•

V t indicates the derivative ∂
∂t
V t with respect to t. In particular, for the

fundamental gap,

(2.1)
∂

∂t
Γp(V t) =

∫
I

•

V t (|u1|p − |u0|p) dx.

Proof. By using the Rayleigh quotient (1.7) and the fact that (ui , λ
V
i ) is an eigenpair

of (1.4) satisfying Robin boundary conditions (1.5),

∂

∂t
λV

t

i =
1∫

I
|ui |p dx

[∫
I

p|u′i |p−2u′i
•
u′i +

•

V t |ui |p + V tp|ui |p−2ui
•
ui dx

+ α
[
p|ui |p−2ui

•
ui(−1) + p|ui |p−2ui

•
ui(1)

]]

−
1(∫

I
|ui |p dx

)2

[∫
I

|u′i |p + V t |ui |p dx

+ α
[
|ui |p(−1) + |ui |p(1)

]] [∫
I

p|ui |p−2ui
•
ui dx

]
=

1∫
I
|ui |p dx

[
λV

t

i

∫
I

p|ui |p−2ui
•
ui dx +

∫
I

•

V t |ui |p dx
]

−
λV

t

i∫
I
|ui |p dx

∫
I

p|ui |p−2ui
•
ui dx

=
1∫

I
|ui |p dx

∫
I

•

V t |ui |p dx.

�

For a given λ ∈ R, let u be a solution of the nonlinear eigenvalue problem (1.4)-(1.5).
Let v be defined by

(2.2) v =
|u′|p−2u′

|u|p−2u
on I.

Then v is a solution of the Riccati equation

(2.3) v ′ = (V − λ)− (p − 1) |v |
p
p−1

on I, and by (1.5), satisfies the inhomogeneous Dirichlet boundary conditions

(2.4) v(±1) = ∓α.
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For every λ ∈ R, the function

fλ(x, v) := (V − λ)− (p − 1) |v |
p
p−1 for a.e. x ∈ Ī and all v ∈ R,

has a continuous partial derivative ∂
∂v
fλ(x, v) = −p|v |

2−p
p−1 v , uniformly for a.e. x ∈ I.

Thus Gronwall’s lemma implies that for every c ∈ R and x0 ∈ Ī, there can be at
most one bounded solution v on I of (2.3) satisfying the initial condition v(x0) = c .

The first eigenfunction is strictly positive and so the corresponding solution v0

of (2.3) is bounded on Ī and hence is unique. By (2.2), this means the first eigenpair
(u0, λ

V
0) is simple, in the sense that any two solutions of (1.4)-(1.5) for the same

eigenvalue are linearly dependent.

Concerning the simplicity of the other eigenpairs, a generalisation of Courant’s nodal
domain theorem for the p-Laplace operator with homogeneous Dirichlet boundary
conditions on a bounded smooth domain in Rd was obtained by Drábek and Robin-
son [5]. A nodal domain is defined as a maximal connected open subset {u(x) 6= 0}.
In one dimension, a Sturm-Liouville theory for nonlinear Schrödinger operators of the
form −∆p + V |·|p−2· on the bounded interval (0, b) satisfying u′(0) = 0 and Robin
boundary conditions at the right endpoint x = b was elaborated by several authors
(e.g. [4] or [14, Theorem 5 & subsequent Corollary]). The results and techniques of
the last two references imply that a nodal domain theorem for −∆p + V |·|p−2· with
Robin boundary condition holds. We omit the details.

Lemma 2.2 (Nodal domain theorem for Robin boundary conditions). Let V ∈ C(Ī)

and α ∈ R. Then each eigenvalue λVi of the Schrödinger operator −∆p + V |·|p−2·
with Robin boundary conditions (1.5) is simple, satisfies

λV0 < λV1 < λV2 < · · · → ∞.

Moreover, the corresponding eigenvector ui has exactly i + 1 nodal domains in I.

With the help of the preceding lemma, we obtain the following monotonicity property.

Lemma 2.3. For α ∈ R, let (u0, λ
V
0) and (u1, λ

V
1) be the first and second eigenpair

of the Schrödinger operator −∆p + V |·|p−2· with Robin boundary conditions (1.5).
Then the ratio u1/u0 is monotonically decreasing in x .

Proof. By the nodal domain theorem (Lemma 2.2), u1 admits exactly one zero x0 in
I, and by construction, u1 is positive near x = −1. Thus

φ := log
u1

u0

is well-defined on [−1, x0). We claim that φ′ < 0 on [−1, x0). We compute

φ′ =
u′1
u1

−
u′0
u0

= |v1|p
?

v1 − |v0|p
?

v0,
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where vi is defined by (2.2) for u = ui and p? = −(p − 2)/(p − 1). As s 7→ s|s|p? is
increasing, φ′ < 0 on [−1, x0) if v1 < v0 on [−1, x0).

By (2.4), v0(−1) = α = v1(−1) and since λV0 < λV1, the Riccati equation (2.3)
implies that

v ′1(−1) = (V − λV1)− (p − 1)|α|
p
p−1 < (V − λV0)− (p − 1)|α|

p
p−1 = v ′0(−1).

Hence v1 < v0 in a neighbourhood of −1.

Since vi ∈ C(Ī), there exists a largest y0 ∈ (−1, x0] such that v1 < v0 on (−1, y0).

If y0 < x0, then v1(y0) = v0(y0). The Riccati equation (2.3), this time evaluated at
y0, implies that v ′1(ξ0) < v ′0(ξ0) and hence v1 > v0 on (y0− ε, y0), contradicting that
v1 < v0 on (−1, y0). Therefore y0 = x0, v1 < v0, and φ′ < 0 on [−1, x0).

Similarly, one can show that log(−u1/u0) is increasing on (x0, 1]. It follows that the
ratio u1/u0 is monotonically decreasing on the whole interval Ī. �

Lemma 2.4. Let (u0, λ
V
0) and (u1, λ

V
1) be the first and second eigenpair of the

Schrödinger operator −∆p + V |·|p−2· with Robin boundary conditions (1.5). Then
|u1|p−|u0|p has at least one and at most two zeroes in I. To be precise, there exists
ξ−, ξ+ ∈ Ī at least one of which is an interior point of I, such that ξ− < ξ+, and

|u1|p − |u0|p < 0 on (ξ−, ξ+) and

|u1|p − |u0|p > 0 on I \ [ξ−, ξ+].
(2.5)

Proof. The normalised eigenfunctions satisfy
∫
I
|u0|p dx =

∫
I
|u1|p dx = 1, and so

ψ := |u1|p − |u0|p

has mean value −
∫
I
ψ dx = 0. At the zero x0 of u1, ψ(x0) = −|u0|p(x0) < 0, and

so there must be a y0 ∈ I such that ψ(y0) > 0. Since ψ changes sign in I, it has
at least one zero ξ0. On the other hand, ξ is a zero of ψ if and only if the ratio
u1

u0
(ξ) = ±1. By Lemma 2.3, u1/u0 is monotonically decreasing, so there exists at

most two points −1 ≤ ξ− < ξ+ ≤ 1 satisfying u1

u0
(ξ−) = 1 and u1

u0
(ξ+) = −1. One of

these is ξ0. Therefore, ψ has at least one zero in I and at most two zeroes in Ī. �

3. Fundamental gap estimates for symmetric single-well potentials

In this section, we prove Theorem 1.1 using Lemma 2.1–Lemma 2.4.

Proof of Theorem 1.1. Let V be a symmetric single-well potential. Define {V t}t∈R+

by V t(x) := tV (x). For this family of potentials,
•

V t = V and so (2.1) results in

∂

∂t
Γp(V t) =

∫
I

V (|u1|p − |u0|p) dx



8

where (u0, λ
V
0) and (u1, λ

V
1) are the first and second eigenpairs of the Schrödinger

operator −∆p + V |·|p−2· with Robin boundary conditions (1.5).

As V is symmetric on Ī, the eigenfunctions u0 and u1 are symmetric and antisymmet-
ric respectively. Hence |u1|p − |u0|p is symmetric, and the two zeroes of |u1|p − |u0|p

found in Lemma 2.4 are likewise symmetric, with ξ− = −ξ+.

Since V is symmetric and single-well, V is non-increasing on (−1, 0) and non-
decreasing on (0, 1). Thus, using (2.5), we have

∂

∂t
Γp(V t) =

∫ 1

−1

V (|u1|p − |u0|p) dx

=

∫ ξ−

−1

V (|u1|p − |u0|p) dx +

∫ ξ+

ξ−

V (|u1|p − |u0|p) dx

+

∫ 1

ξ+

V (|u1|p − |u0|p) dx

≥ V (ξ−)

∫ ξ−

−1

(|u1|p − |u0|p) dx + V (ξ±)

∫ ξ+

ξ−

(|u1|p − |u0|p) dx

+ V (ξ+)

∫ 1

ξ+

(|u1|p − |u0|p) dx

= V (ξ±)

∫
I

(|u1|p − |u0|p) dx = 0

with equality only when V is constant. Summarising, we have shown that
∂

∂t
Γp(V t) ≥ 0

with equality only when V is constant. Integrating with respect to t over (0, 1)

proves the theorem. �

4. Comparison of the fundamental gap between convex and linear potentials

Using a similar strategy to that used in the previous section, we can show that the
fundamental gap among convex potentials is minimised by a linear one.

Proof of Theorem 1.2. Let V be a convex potential on I which is not affine. Let ξ−
and ξ+ ∈ Ī be such that (2.5) holds, for the corresponding eigenfunctions u0, u1.

Let LV (x) = ax + b be the line that intersects the graph of V at ξ− and ξ+ ∈ Ī. By
the convexity of V ,

V − LV ≥ 0 on (−1, ξ−), V − LV ≤ 0 on (ξ−, ξ+), V − LV ≥ 0 on (ξ+, 1).
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Consequently, using (2.5),

(V − LV )(|u1|p − |u0|p) ≥ 0 on Ī.

In particular, since V is not affine, there exists a set of positive measure on which
the last inequality is strictly positive and hence∫

I

(V − LV )(|u1|p − |u0|p) dx > 0.

For the family {V t}t∈[0,1] given by V t = tV + (1− t)LV ,
•

V t = V − LV and so (2.1)
shows that

∂

∂t
Γp(V t) =

∫
I

(
V − LV

)
(|u1|p − |u0|p) dx > 0.

Integrating this inequality with respect to t over (0, 1) gives

Γp(V ) > Γp(LV ) = Γp(ax),

where ax is the purely linear part of LV . We can drop the constant term b be-
cause adding a constant to the potential shifts all eigenvalues by that constant, and
therefore has no effect on the gap. �

5. Further technicalities

In this section we derive some technical results, mostly for linear potentials, which
are necessary for proving Theorem 1.4.

Lemma 5.1. Suppose that
∫
x(u2

1 − u2
0) = 0. Then u2

1 − u2
0 has exactly two interior

zeroes, and

(5.1) u1(1)2 − u0(1)2 > 0 and u1(−1)2 − u0(−1)2 > 0.

Proof. From Lemma 2.4, at least one of these is positive, and u2
1 − u2

0 has either
one or two interior zeroes. Suppose that ξ0 is the sole zero of u2

1 − u2
0 , so that

(x − ξ0)(u2
1 − u2

0) is nonzero and has the same sign for all x 6= ξ0. Then

0 6=
∫

(x − ξ0)(u2
1 − u2

0) dx =

∫
x(u2

1 − u2
0) dx − ξ0

∫
u2

1 − u2
0 dx = 0,

where in the last step we use that
∫
u2

1 dx =
∫
u2

0 dx . The contradiction implies that
u2

1 − u2
0 has two zeros. �

Now we compare the first eigenfunctions in the cases that V is linear and V is zero.

Lemma 5.2. For a ≥ 0, let (uax0 , λ
ax
0 ) be the first eigenpair of the Schrödinger

operator −∆ + ax with Robin boundary conditions (1.2). Then for a > 0, the ratio
uax0 /u

0
0 is monotone decreasing along Ī.
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Proof. Let x1 = (λax0 − λ0
0)/a, for a > 0. We claim that x1 ∈ I.

For later convenience, we work with any eigenpair (uax , λax). We can use Lemma
2.1 to write

(5.2) λax − λ0 =

∫ a

t=0

d

dr
λrx dr =

∫ a

t=0

∫
I

x (urx)2 dx dr.

However, on I, − (urx)2
< x (urx)2

< (urx)2, and so

−1 = −
∫
I

(urx)2 dx <
∫
I

x (urx)2 dx <
∫
I

(urx)2 dx = 1.

Using this estimate for the integrand of (5.2) leads to

(5.3) − a < λax − λ0 < a,

and therefore x1 ∈ (−1, 1).

We now write the first eigenfunctions for linear potentials as uax0 = ūa and u0
0 = ū.

For any x ∈ (−1, x1],(
ūa
ū

)′
(x) =

1

|ū|2 (ūa
′ū − ūaū′) (x)

=
1

ū2

∫ x

−1

(ūa
′ū − ūaū′)′ dy where we use the boundary values at −1

=
1

ū2

∫ x

−1

ūa
′′ū + ūa

′ū′ − ūa′ū′ − ūaū′′ dy

=
1

ū2

∫ x

−1

(ay − λax0 + λ0
0)ūaū dy

< 0,

where we have used that ay < ax < ax1 = λax0 − λ0
0. Similarly, for x ∈ (x1, 1),(

ūa
ū

)′
(x) = −

1

ū2

∫ 1

x

(ūa
′ū − ūaū′)′ dx = −

1

ū2

∫ 1

x

(ay − λax0 + λ0
0)ūaū dx < 0.

�

Lemma 5.3. For a ≥ 0, let (uax0 , λ
ax
0 ) be the first eigenpair of the Schrödinger

operator −∆ + ax with Robin boundary conditions (1.2). Then for a > 0,

|uax0 |2(1)− |uax0 |2(−1) < 0.

Proof. Again we write uax0 = ūa and u0
0 = ū. From Lemma 5.2, ūa/ū is decreasing,

so that for x > 0,
ūa(−x)

ū(−x)
>
ūa(x)

ū(x)

however ū is even, so
ūa

2(−x) > ūa
2(x);
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then the result follows directly with x = 1. �

Lemma 5.4. For a > 0, let λax1 be the second eigenvalue of the Schrödinger operator
−∆ + ax for Robin boundary conditions (1.2) with parameter α. Then

(5.4) α2 + λax1 + a > 0.

Proof. From (5.3), we have λax1 + a ≥ λ0
1. Then

α2 + λax1 + a ≥ α2 + λ0
1.

We estimate λ0
1: we have a zero potential and everything may be done explicitly.

If α ≥ 0 then (5.4) follows directly from the positivity of the Rayleigh quotient.

When α < 0, λ0 is negative, since otherwise the general solution to −u′′ = λu is
given by u(x) = c1 cos

√
λx + c2 sin

√
λx ; however the boundary condition requires

that
√
λ tan

√
λ = α, which cannot be satisfied if α < 0.

In the case that −1 < α < 0, λ1 is positive: to be precise, λ1 = µ2, where µ solves
−α tanµ = µ, and u1 = sinµx . If α = −1, then λ1 = 0, with a linear eigenfunction.
If α < −1, then λ1 is negative, however the claim still holds, since then λ1 = −µ2

where µ solves µ = −α tanhµ, and hence

α2 + λ1 = α2 − µ2 =

(
µ

tanhµ

)2

(1− tanhµ2) > 0.

The conclusion follows. �

Lemma 5.5. Let (u, λ) be an eigenpair of the Schrödinger operator −∆ + ax . Then

(5.5)
[
(u′)2 + (λ− ax)u2

]1

−1
= −a

and

(5.6)
[
(u′)2 + (λ− ax + 1)u2 − 2xuu′

]1

−1
= 4λ

∫ 1

−1

xu2 − 5a

∫ 1

−1

x2u2 dx.

Proof. We calculate[
u′2 + (λ− ax)u2

]1

−1
=

∫ 1

−1

d

dx

[
u′2 + (λ− ax)u2

]
dx

=

∫ 1

−1

2uu′′ + (λ− ax)2uu′ − au2 dx

= −a
∫ 1

−1

u2 dx = −a.
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Next,[
x2
(
u′2 + (λ− ax)u2

)
− 2xuu′ + u2

]1

−1

=

∫ 1

−1

d

dx

[
x2
(
u′2 + (λ− ax)u2

)
− 2xuu′ + u2

]
dx

=

∫ 1

−1

u2
[
4x(λ− ax)− ax2

]
dx

= 4λ

∫ 1

−1

xu2 dx − 5a

∫ 1

−1

x2u2 dx.

�

6. Proof of Theorem 1.3

We begin by estimating the boundary terms of eigenfunctions with linear potentials.

Lemma 6.1. Let u0 and u1 be the first two eigenfunctions of the Schrödinger operator
−∆ + ax with a > 0, and Robin boundary conditions (1.2) with α ≥ −1. Then

u1(1)2 − u0(1)2 − u1(−1)2 + u0(−1)2 > 0.

Proof. We apply (5.5) to u1 and u0 in turn:

(6.1) u1(1)2
(
α2 + λ1 − a

)
− u1(−1)2

(
α2 + λ1 + a

)
= −a

(6.2) u0(1)2
(
α2 + λ0 − a

)
− u0(−1)2

(
α2 + λ0 + a

)
= −a.

Adding 2au1(1)2 to both sides of (6.1) allows it to be rearranged as(
α2 + λ1 + a

) (
u1(1)2 − u1(−1)2

)
= −a + 2au1(1)2

> −a + 2au0(1)2

where in the last line we have used that u1(1)2 − u2
0(1) > 0, as in (5.1). Similarly

we can use (6.2) to find

−a + 2au0(1)2 =
(
α2 + λ0 + a

) (
u0(1)2 − u0(−1)2

)
>
(
α2 + λ1 + a

) (
u0(1)2 − u0(−1)2

)
where we have used that u0(1)2 − u0(−1)2 < 0, by Lemma 5.3, and λ0 < λ1.

Combining both these calculations we have(
α2 + λ1 + a

) (
u1(1)2 − u1(−1)2

)
>
(
α2 + λ1 + a

) (
u0(1)2 − u0(−1)2

)
,

and since (α2 + λ1 + a) > 0 by Lemma 5.4, the result follows. �
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In order to prove Theorem 1.3, we need to show that the gap for linear potentials
ax achieves its minimum for some finite a; later, we’ll show that in fact this occurs
at a = 0.

Lemma 6.2. Let Γ2(ax) be the fundamental gap for the Schrödinger operator −∆ +

ax , with Robin boundary conditions (1.2). Then Γ2(ax)→∞ as |a| → ∞.

Proof. We only consider the case a > 0 since the case a < 0 proceeds similarly.
Let (ui , λ

a
i ) be an eigenpair for the given operator. We rescale the domain using

s = (x + 1)a−1/3, so that wi(s) := ui(−1 + a−1/3s) solves{
−w ′′i + swi = λ̂ai wi on (0, 2a1/3)

w ′i (0)− αa−1/3wi(0) = 0, w ′i (2a1/3) + αa−1/3wi(2a1/3) = 0,

where

(6.3) λ̂ai = a1/3 + a−2/3λai .

As a → ∞, the eigenpair (wi , λ̂
a
i ) approaches the pair (vi , µi): in the case that

α ∈ R, vi is the L2(0,+∞)-solution to

−v ′′i + svi = µivi on (0,∞)(6.4)

with µi = µNi > 0 and Neumann boundary condition v ′i (0) = 0; or if α = ∞, vi is
the solution to (6.4) with µi = µDi > 0 and Dirichlet boundary condition vi(0) = 0.

In both cases the function vi and the eigenvalues µNi and µDi are explicitly known: in
the first case, vi(s) = Ai(s−µNi ), where Ai is the Airy function, the bounded solution
to the ODE y ′′(x) = xy(x), and the shift µNi is such that Ai′(−µNi ) = 0. For i = 0,
µN0 is such that v0 > 0 on (0,∞), and for i = 1, µN1 is such that v1 changes sign once
on (0,∞). The second case is similar with vi(s) = Ai(s −µDi ), where Ai(−µDi ) = 0.

In either case, λ̂ai → µi as a→ +∞ and so, by (6.3),

λai = a2/3µi − a +O(a2/3) as a→ +∞.

Applying this expansion of λai to the fundamental gap Γ2(ax) yields

Γ2(ax) = a2/3(µ2 − µ1) +O(a2/3) as a→ +∞.

As µ2 − µ1 > 0, we find Γ2(ax)→∞ as a→∞. �

Proof of Theorem 1.3. Due to Lemma 6.2, the gap for linear potentials Γ(ax) achieves
a minimum at some a ∈ R. Define a family of potentials V t := tax . Using (2.1),

d

dt
(λV

t

1 − λV
t

0 ) = a

∫
x(u2

1 − u2
0) dx,

where here and in the remainder of this section u0 and u1 are eigenfunctions for the
problem (1.1)–(1.2) with linear potential V t = tax .
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Suppose, in order to obtain a contradiction, that the critical point of the gap occurs
at some a > 0. This implies that

(6.5)
∫
x(u2

1 − u2
0) dx = 0.

Next, under Robin or Neumann boundary conditions, identity (5.5) becomes

(λ− a + α2)u(1)2 − (λ+ a + α2)u(−1)2 = −a;(6.6)

and identity (5.6) becomes

u(1)2
[
α2 + λ− a + 1 + 2α

]
− u(−1)2

[
α2 + λ+ a + 1 + 2α

]
= 4λ

∫ 1

−1

xu2 dx − 5a

∫ 1

−1

x2u2 dx,

subtracting (6.6) from this results in

u(1)2 [1 + 2α]− u(−1)2 [1 + 2α]− a = 4λ

∫ 1

−1

xu2 dx − 5a

∫ 1

−1

x2u2 dx.

Applying this to both u0 and u1, and subtracting, we find

[1 + 2α]
[
u1(1)2 − u0(1)2 − u1(−1)2 + u0(−1)2

]
(6.7)

= 4(λ1 − λ0)

∫ 1

−1

x(u2
1 − u2

0) dx − 5a

∫ 1

−1

x2(u2
1 − u2

0) dx.

The assumption α ≥ −1
2
, and Lemma 6.1, imply that the left hand side is non-

negative. However, we claim that the right hand side is strictly negative.

The first term of the right hand side is zero, by our assumption (6.5). The final term
of (6.7) can be estimated by the same trick we used in Theorem 1.2: let cx + b be
the line that intersects x2 at ξ− and ξ+, which are the points where u2

1 − u2
0 changes

sign, as in (2.5). Then (x2 − cx − b)(u2
1 − u2

0) is strictly positive for all x 6= ξ±.
Furthermore,

∫
u2

1 =
∫
u2

0 and our assumption (6.5) is that
∫
x(u2

1 − u2
0) = 0, hence

− 5a

∫ 1

−1

x2(u2
1 − u2

0) dx = −5a

∫ 1

−1

(x2 − cx − b)(u2
1 − u2

0) dx < 0.

With these two observations, (6.7) becomes

[1 + 2α]
[
u1(1)2 − u0(1)2 − u1(−1)2 + u0(−1)2

]
< 0,

as claimed. The contradiction implies our original assumption (6.5) must be false,
and thus the minimum of the gap is not attained for any potential ax with a 6= 0.
Thus the zero potential, with a = 0, minimises the gap over all linear potentials. �
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