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ABSTRACT. The nonlinear semigroup generated by the subdifferential of a
convex lower semicontinuous function ϕ has a smoothing effect, discovered
by Haïm Brezis, which implies maximal regularity for the evolution equation.
We use this and Schaefer’s fixed point theorem to solve the evolution equation
perturbed by a Nemytskii-operator of sublinear growth. For this, we need
that the sublevel sets of ϕ are not only closed, but even compact. We apply
our results to the p-Laplacian and also to the Dirichlet-to-Neumann operator
with respect to p-harmonic functions.

1. INTRODUCTION

Let H be a real Hilbert space, ϕ : H → (−∞,+∞] a proper, convex, lower
semicontinuous function, A = ∂ϕ be the subdifferential of ϕ, and D(ϕ) :=
{u ∈ H | ϕ(u) < +∞} the effective domain of ϕ (see Section 2 for more details).
Then A is a maximal monotone (in general, multi-valued) operator on H, for
which the following remarkable well-posedness result holds.

Theorem 1.1 (Brezis [9]). Let u0 ∈ D(ϕ) and f ∈ L2(0, T; H). Then, there exists a
unique u ∈ H1

loc((0, T]; H) ∩ C([0, T]; H) such that

(1.1)

{
u̇(t) + Au(t) 3 f (t) a.e. on (0, T),

u(0) = u0.

If u ∈ D(ϕ) then u̇ ∈ L2(0, T; H).

Our aim in this article is to establish existence of solutions of a perturbed
version of (1.1) and to show that these solutions have the same regularity result
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as in Theorem 1.1. We fix T > 0, and denote by H the space L2(0, T; H) and
‖·‖H the norm ‖·‖L2(0,T;H). Then for f ∈ H and u0 ∈ H, we call here a function
u : [0, T] → H a (strong) solution of (1.1) if u ∈ H1

loc((0, T]; H) ∩ C([0, T]; H),
u(0) = u0 and for a.e. t ∈ (0, T), u(t) ∈ D(A) and f (t)− u̇(t) ∈ Au(t).

Now, let G : H → H be a continuous mapping satisfying the sublinear
growth condition

(1.2) ‖Gv(t)‖H ≤ L ‖v(t)‖H + b(t) a.e. on (0, T) and for all v ∈ H,

for some L, b ∈ L2(0, T) satisfying b(t) ≥ 0 for a.e. t ∈ (0, T). Here we let
Gv(t) := (G(v))(t) to use less heavy notation. Then we study the evolution
problem

(1.3)

{
u̇(t) + Au(t) 3 Gu(t) a.e. on (0, T),

u(0) = u0.

Note that Gu ∈ H. Thus, the inclusion in (1.3) means that Gu(t)− u̇(t) ∈ Au(t)
a.e. on (0, T).

For proving existence of solutions to (1.3), we will use a compactness argu-
ment in form of Schaefer’s fixed point theorem (see Theorem 2.1 in Section 2).
Recall that lower semicontinuity of ϕ is equivalent to saying that the sublevel
sets Ec := {u ∈ H | ϕ(u) ≤ c}, c ∈ R, are closed. We will assume more, namely,
compactness of the sublevel sets Ec. In fact, we need this assumption only for
the shifted function ϕω given by ϕω(u) = ϕ(u) + ω

2 ‖u‖2
H, u ∈ H, which is

important for applications. Then our main result says the following.

Theorem 1.2. Let ϕ : H → (−∞,+∞] be a proper function such that for some
ω ≥ 0, ϕω is convex and has compact sublevel sets. Let A = ∂ϕ and G : H → H be
a continuous mapping satisfying (1.2). Then for every u0 ∈ D(ϕ) and f ∈ H, there
exists u ∈ H1

loc((0, T]; H) ∩ C([0, T]; H) solving (1.3). In particular, if u0 ∈ D(ϕ),
then u ∈ H1(0, T; H).

We show in Example 3.3 that the solution is not unique in general. Further,
we have the following regularity result for the composition ϕ ◦ u and a uniform
estimate.

Remark 1.3. Suppose, the hypothesis of Theorem 1.2 hold. Then every solution
u of (1.3) satisfies

ϕ ◦ u ∈W1,1
loc ((0, T]) ∩ L1(0, T)

and

(1.4) ‖u(t)‖H ≤
(
‖u0‖2

H + ‖b‖2
L2(0,T)

) 1
2 e

2L+1+2ω
2 t for all t ∈ [0, T].

As application, we consider H = L2(Ω) and G a Nemytskii operator. The
operator A may be the p-Laplacian (1 ≤ p < +∞) with possibly lower order
terms and equipped with some boundary conditions (Dirichlet, Neumann, or
Robin, see [13]) or a p-version of the Dirichlet-to-Neumann operator consid-
ered recently in [15] and via the abstract theory of j-elliptic functions (see [3, 4]
and [12]).
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2. PRELIMINARIES

In this section, we define the precise setting used throughout this paper and
explain our main tools: Schaefer’s fixed point theorem and Brezis’ L2-maximal
regularity result for semiconvex functions.

We begin by recalling that a mapping T defined on a Banach space X is
called compact if T maps bounded sets into relatively compact sets.

Theorem 2.1 ([17], Schaefer’s fixed point theorem). Let X be a Banach space and
T : X → X be continuous and compact. Assume that the “Schaefer set”

S :=
{

u ∈ X
∣∣∣ there exists λ ∈ [0, 1] s.t. u = λT u

}
is bounded in X. Then T has a fixed point.

This result is a special case of Leray-Schauder’s degree theory, but Schae-
fer [17] gave a most elegant proof, which also is valid in locally convex spaces
(see also [2] and [14, § 9.2.2]).

Given a function ϕ : H → (−∞,+∞], we call the set D(ϕ) := {u ∈ H | ϕ(u) <
+∞} the effective domain of ϕ, and ϕ is said to be proper if D(ϕ) is non-empty.
Further, we say that ϕ is lower semicontinuous if for every c ∈ R, the sublevel set

Ec :=
{

u ∈ D(ϕ)
∣∣∣ ϕ(u) ≤ c

}
is closed in H, and ϕ is semiconvex if there exists an ω ∈ R such that the shifted
function ϕω : H → (−∞,+∞] defined by

ϕω(u) := ϕ(u) +
ω

2
‖u‖2

H, (u ∈ H),

is convex. Then, ϕω̂ is convex for all ŵ ≥ ω, and ϕω is lower semicontinuous if
and only if ϕ is lower semicontinuous.

Given a function ϕ : H → (−∞,+∞], its subdifferential A = ∂ϕ is defined by

∂ϕ =
{
(u, h) ∈ H × H

∣∣∣ lim inf
t↓0

ϕ(u + tv)− ϕ(u)
t

≥ (h, v)H ∀ v ∈ D(ϕ)
}

,

which, if ϕω is convex, reduces to

∂ϕ =
{
(u, h) ∈ H × H

∣∣∣ ϕω(u + v)− ϕω(u) ≥ (h + ωu, v)H ∀ v ∈ D(ϕ)
}

.

It is standard to identify a (possibly multi-valued) operator A on H with its
graph and for every u ∈ H, one sets Au := {v ∈ H | (u, v) ∈ A} and calls
D(A) := {u ∈ H | Au 6= ∅} the domain of A and Rg(A) :=

⋃
u∈D(A)Au the

range of A.

Now, suppose ϕ : H → (−∞,+∞] is proper, lower semicontinuous, and
semiconvex; more precisely, let us fix ω ∈ R such that ϕω is convex. Then
the subdifferential ∂ϕω of ϕω is a simple perturbation of ∂ϕ, namely ∂ϕω =
∂ϕ + ωI. For this reason, Brezis’ well-posedness result (Theorem 1.1) remains
true (cf. [10, Proposition 3.12]). In addition, it is not difficult to verify that each
solution of (1.1) satisfies (2.2) and the estimates (2.3)-(2.6) below. For later use,
we summarize these results in one theorem.
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Theorem 2.2 (Brezis’ L2-maximal regularity for semiconvex ϕ). Let u0 ∈ D(ϕ)
and f ∈ H. Then, there exists a unique u ∈ H1

loc((0, T]; H) ∩ C([0, T]; H) satisfying

(2.1)

{
u̇(t) + Au(t) 3 f (t) a.e. on (0, T),

u(0) = u0.

Moreover,

ϕ ◦ u ∈W1,1
loc ((0, T]) ∩ L1(0, T),(2.2)

‖u(t)‖H ≤
(
‖u0‖2

H +
∫ T

0
‖ f (s)‖2

H ds
) 1

2

e
1+2ω

2 t for every t ∈ (0, T],(2.3) ∫ T

0
ϕ(u(s))ds ≤ 1

2‖ f ‖2
H + 1+ω

2 ‖u‖
2
H + 1

2‖u0‖2
H,(2.4)

tϕ(u(t)) ≤
∫ T

0
ϕ(u(s))ds + 1

2‖
√
· f ‖2
H for every t ∈ (0, T],(2.5)

‖
√
·u̇‖2
H ≤ 2

∫ T

0
ϕ(u(t))dt + ‖

√
· f ‖2
H.(2.6)

Finally, if u0 ∈ D(ϕ), then u ∈ H1(0, T; H).

Remark 2.3 (Maximal L2-regularity). If u0 ∈ H such that ϕ(u0) is finite, then
Theorem 1.1 (respectively, Theorem 2.2) says that for every f ∈ L2(0, T; H), the
unique solution u of (1.1) has its time derivative u̇ ∈ L2(0, T; H) and hence by
the differential inclusion

(2.7) u̇(t) + Au(t) 3 f (t) a.e. on (0, T),

also Au ∈ L2(0, T; H). In other words, for f ∈ L2(0, T; H), u̇ and Au ∈
L2(0, T; H) admit the maximal possible regularity. For this reason, we call this
property maximal L2-regularity, as it is customary for generators of holomorphic
semigroups on Hilbert spaces (see [1] for a survey on this subject).

Given ω ∈ R, we say that the shifted function ϕω : H → (−∞,+∞] has
compact sublevel sets if

(2.8) Eω,c :=
{

u ∈ D(ϕ) |ϕω(u) ≤ c
}

is compact in H for every c ∈ R.

Remark 2.4. We emphasize that condition (2.8) does not imply that ϕ has com-
pact sublevel sets. This becomes more clear if one considers as ϕ the function
associated with the negative Neumann p-Laplacian −∆N

p on a bounded, open
subset Ω of Rd with a Lipschitz boundary ∂Ω. For max{1, 2d

d+2} < p < ∞,
(d ≥ 1), let V = W1,p(Ω), H = L2(Ω), and ϕ : H → (−∞,+∞] be given by

(2.9) ϕ(u) :=


1
p

∫
Ω
|∇u|pdx if u ∈ V,

+∞ if u ∈ H \V

for every u ∈ H. Then, for every c > 0, the sublevel set E0,c of ϕ contains the
sequence (un)n≥0 of constant functions un ≡ n, which does not admit any con-
vergent subsequence in H. On the other hand, for every ω > 0 and c > 0, the
sublevel set Eω,c is a bounded set in V and by Rellich-Kandrachov’s compact-
ness, V ↪→ H by a compact embedding. Thus, for every ω > 0 and c > 0, the
sublevel set Eω,c is compact in L2(Ω).
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3. AN EXAMPLE AND NON-UNIQUENESS

The main example of perturbations G allowed in Theorem 1.2 are Nemytskii
operators on H = L2(0, T; L2(Ω)). Let Ω ⊆ Rd be open and g : (0, T)×Ω×
R→ R be a Carathéodory function, that is,

• g(·, ·, v) : (0, T)×Ω→ R is measurable, for all v ∈ R,

• g(t, x, ·) : R→ R is continuous, for a.e. (t, x) ∈ (0, T)×Ω.

Assume furthermore that g has sublinear growth, that is, there exist L ≥ 0 and
b ∈ L2(0, T; L2(Ω)) such that

(3.1) |g(t, x, v)| ≤ L |v|+ b(t, x) for all v ∈ R, a.e. (t, x) ∈ (0, T)×Ω.

Proposition 3.1. LetH = L2(0, T; L2(Ω)). Then, the relation

(3.2) Gv(t, x) := g(t, x, v(t, x)) for a.e. (t, x) ∈ (0, T)×Ω, and every v ∈ H,

defines a continuous operator G : H → H of sublinear growth (1.2).

The proof of Proposition 3.1 is standard (cf [18, Proposition 26.7]) if one uses
that fn → f in H if and only if each subsequence of ( fn)n≥1 has a dominated
subsequence converging to f a.e. (which is well known from the completeness
proof of L2).

For illustrating the theory developed in this paper, we consider the following
standard example: the Dirichlet p-Laplacian perturbed by a lower order term.

Example 3.2. Let Ω be an open, bounded subset of Rd, (d ≥ 1), H = L2(Ω), and
for 2d

d+2 ≤ p < ∞, let V = W1,p
0 (Ω) be the closure of C1

c (Ω) equipped with re-
spect to the norm ‖u‖V := ‖∇u‖Lp(Ω;Rd). Then, one has that V is continuously
embedded into H (cf [11, Theorem 9.16]); we write for this V ↪→ H.

Further, let f = β + f1 be the sum of a maximal monotone graph β of R

satisfying (0, 0) ∈ β and a Lipschitz-Carathéodory function f1 : Ω × R → R

satisfying f1(x, 0) = 0; that is, for a.e. x ∈ Ω, f1(x, ·) is Lipschitz continuous
(with constant ω > 0) uniformly for a.e. x ∈ Ω, and f1(·, u) is measurable on
Ω for every u ∈ R. Then, there is a proper, convex and lower semicontinuous
function j : R → (−∞,+∞] satisfying j(0) = 0 and ∂j = β in R (see [5,
Example 1., p53]). We set

F1(u) =
∫ u(x)

0
f1(·, s)ds,

ϕ2(u) :=


∫

Ω
j(u(x))dx if j(u) ∈ L1(Ω),

+∞ if otherwise, and
(3.3)

F(u) = ϕ2(u) +
∫

Ω
F1(u(x)) dx

for every u ∈ H. Further, let ϕ1 : H → (−∞,+∞] be given by

ϕ1(u) =


1
p

∫
Ω
|∇u|p dx +

∫
Ω

F1(u)dx if u ∈ V,

+∞ if u ∈ H \V
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for every u ∈ H. Then the domain D(ϕ1) of ϕ1 is V. The function ϕ1 is
lower semicontinuous on H, proper, ϕ1,ω is convex, and for every u ∈ V, ϕ1
is Gâteaux-differentiable with

Dv ϕ1(u) = lim
t→0+

ϕ1(u + tv)− ϕ1(u)
t

=
∫

Ω
|∇u|p−2∇u∇v + f1(x, u) vdx

for every v ∈ V. Since V is dense in H, the subdifferential operator ∂ϕ1 is a
single-valued operator on H with domain

D(∂ϕ1) =
{

u ∈ V
∣∣∣ ∃ h ∈ H s.t. Dν ϕ1(u) =

∫
Ω

hv dx ∀ v ∈ V
}

, and

∂ϕ1(u) = h = −∆pu + f1(x, u) in D′(Ω).

The operator ∂ϕ1 is the negative Dirichlet p-Laplacian −∆D
p on Ω with a Lipschitz

continuous lower order term f1. Next, we add the function ϕ2 given by (3.3) to
the ϕ1. For this, note that ϕ2 is proper (since for u0 ≡ 0, ϕ2(u0) = 0) with
int(D(ϕ2)) 6= ∅, convex (since j is convex), and lower semicontinuous on H.
Thus, the function ϕ : H → (−∞,+∞] given by

(3.4) ϕ(u) = ϕ1(u) + ϕ2(u) for every u ∈ H,

is convex, lower semicontinuous, and proper with domain D(ϕ) = {u ∈
V | j(u) ∈ L1(Ω)} and the operator A = ∂ϕ is given by

D(A) =
{

u ∈ D(ϕ)
∣∣∣ ∃ h ∈ H s.t. Dν ϕ(u) =

∫
Ω

hv dx ∀ v ∈ D(ϕ)
}

,

Au = h = −∆pu + β(u) + f1(x, u),

Here, we note that

D(A) = D(ϕ) =
{

u ∈ H
∣∣∣ j(u(x)) ∈ D(β) for a.e. x ∈ Ω

}
.

Due to Theorem 2.1, for every u0 ∈ D(ϕ) and f ∈ H, there is a unique solution
u ∈ H1

loc((0, T]; H) ∩ C([0, T]; H) of the parabolic boundary-value problem
∂tu(t)− ∆pu(t) + β(u(t)) + f1(·, u(t)) 3 f (t) on (0, T)×Ω,

u(t) = 0 on (0, T)× ∂Ω,
u(0) = u0 on Ω.

Here, we write ∂tu(t) instead of u̇(t) since we rewrote the abstract Cauchy
problem (1.1) as an explicit parabolic partial differential equation.

If max{1, 2d
d+2} < p < ∞, then for the Lipschitz constant ω of f1, ϕω is convex

and for every c > 0, the sublevel set Eω,c is compact in L2(Ω). Furthermore, let
g : (0, T)×Ω×R → R be a Carathédory function with sublinear growth and
u0 ∈ D(ϕ). Then, there is at least one solution u ∈ H1

loc((0, T]; H)∩C([0, T]; H)
of the parabolic boundary-value problem

∂tu(t, ·)− ∆pu(t, ·) + β(u(t, ·)) + f1(·, u(t, ·)) 3 g(t, ·, u(t, ·)) on (0, T)×Ω,
u(t, ·) = 0 on (0, T)× ∂Ω,
u(0, ·) = u0 on Ω.

In general, the solutions u to the Cauchy problem (1.3) are not unique. We
give an example.
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Example 3.3 (Non-uniqueness). Let g(u) =
√
|u|, u ∈ R, and Ω be an open

and bounded subset of Rd, d ≥ 1, with a Lipschitz boundary ∂Ω. Then, there
are L, b > 0 such that ĝ satisfies

|g(u)| ≤ L |u|+ b for every u ∈ R.

Thus, for H = L2(Ω) and H = L2((0, T)×Ω), the associated Nemytskii oper-
ator G : H → H defined by (3.2) satisfies the sublinear growth condition (1.2).

Further, for max{1, 2d
d+2} < p < +∞, let ϕ : L2(Ω) → (−∞,+∞] be the

energy function (2.9) associated with the negative Neumann p-Laplacian −∆N
p

on Ω. Then, by Theorem 1.2, for every u0 ∈ L2(Ω) and every T > 0, there is a
solution u ∈ H1

loc((0, T]; L2(Ω)) ∩ C([0, T]; L2(Ω)) of

(3.5)


∂tu(t, ·)− ∆N

p u(t, ·) =
√
|u|(t, ·) in (0, T)×Ω,

|∇u(t, ·)|p−2Dνu(t, ·) = 0 on (0, T)× ∂Ω,
u(0) = u0 on Ω.

Here, |∇u|p−2Dνu denotes the (weak) co-normal derivative of u on ∂Ω (cf [13]).
Now, for the initial value u0 ≡ 0 on Ω, the constant zero function u ≡ 0 is

certainly a solution of (3.5). For constructing a non-trivial solution of (3.5) with
initial value u0 ≡ 0, let w ∈ C1[0, T] be a non-trivial solution of the following
classical ordinary differential equation

(3.6) w′ =
√
|w| on (0, T), w(0) = 0,

For instance, one non-trivial solution is w(t) = t2/4. Since for every constant
c ∈ R, −∆N

p (c1Ω) = 0, the function u(t) := w(t) is another non-trivial solution
of (3.5) with initial value u0 ≡ 0.

4. PROOF OF THE MAIN RESULT

We now give the proof of Theorem 1.2. After possibly replacing ϕ by a trans-
lation, we may always assume without loss of generality that 0 ∈ D(∂ϕω)
and ϕω attains a minimum at 0 with ϕω(0) = 0 (for further details see [5, p.
159] or the appendix of this paper). By the convexity of ϕω, this implies that
(0, 0) ∈ ωIH + A, that is,

(4.1) (h + ωu, u)H ≥ 0 for all (u, h) ∈ A.

For the proof of Theorem 1.2, we need some auxiliary results. The first con-
cerns continuity and is standard (see Bénilan [8, (6.5), p87] or Barbu [5, (4.2),
p128]).

Lemma 4.1. Let f1, f2 ∈ H, u1, u2 ∈ H1(0, T; H) such that

u̇1 + Au1 3 f1 on (0, T),

u̇2 + Au2 3 f2 on (0, T).

Then,

(4.2) ‖u1(t)− u2(t)‖H ≤ eωt‖u1(0)− u2(0)‖H +
∫ t

0
eω(t−s)‖ f1(s)− f2(s)‖H ds

for every t ∈ [0, T].
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Next, we establish the compactness of the solution operator P associated with
evolution problem (1.1). We recall that the closure D(ϕ) in H of the effective
domain of a semiconvex function ϕ is a convex subset of H.

Lemma 4.2. Let P : D(ϕ)×H → H be the mapping defined by

P(u0, f ) = “solution u of (1.1)” for every u0 ∈ D(ϕ) and f ∈ H.

Then, P is continuous and compact.

Proof. (a) By Lemma 4.1, the map P is continuous from D(ϕ)×H toH.

(b) We show that P is compact. Let (u(0)
n )n≥1 ⊆ D(ϕ) and ( fn)n≥1 ⊆ H such

that ‖u(0)
n ‖H + ‖ fn‖H ≤ c and un = P(u(0)

n , fn) for every n ≥ 1. Then, by (2.3),
(2.4) and by (2.6), for every δ ∈ (0, T), there is a cδ > 0 such that

sup
n≥1
‖un‖H1(δ,T;H) ≤ cδ.

Since H1(δ, T; H) ↪→ C1/2([δ, T]; H), the sequence (un)n≥1 is equicontinuous on
[δ, T] for each 0 < δ < T. Choose a countable dense subset D := {tm|m ∈ N}
of (0, T]. Let m ≥ 1. Then by (2.5),

sup
n≥1

ϕ(un(tm)) is finite

and since by (2.3), (un(tm))n≥1 is bounded in H, there is a c′ > 0 such that
(un(tm))n≥1 is in the sublevel set Eω,c′ . Thus and by the assumption (2.8),
(un(tm))n≥1 has a convergent subsequence in H. By Cantor’s diagonalization
argument, we find a subsequence (unk)k≥1 of (un)n≥1 such that

lim
k→+∞

unk(tm) exists in H for all m ∈N.

It follows from the equicontinuity of (unk)k≥1 that unk converges in C([δ, T]; H)
for all δ ∈ (0, T]. In particular, (unk(t))k≥1 converges in H for every t ∈ (0, T)
and by (2.3), (unk)k≥1 is uniformly bounded in L∞(0, T; H). Thus, it follows
from Lebesgue’s dominated convergence theorem that unk = P(u(0)

nk , fnk) con-
verges inH. �

Remark 4.3. In the previous proof, we have actually shown that P is compact
from D(ϕ)×H into the Fréchet space C((0, T]; H).

With these preliminaries, we can now give the proof of our main result.
Here, we got inspired from the linear case (cf [2]).

Proof of Theorem 1.2. First, let u0 ∈ D(ϕ).

For v ∈ H, one has Gv ∈ H and so, by Brezis’ maximal L2-regularity result
(Theorem 2.2), there is a unique solution u ∈ H1

loc((0, T]; H) ∩ C([0, T]; H) of
the evolution problem{

u̇(t) + Au(t) 3 Gv(t) a.e. on (0, T),
u(0) = u0.

Let T v := P(u0, Gv). Then by the continuity and linear growth of G and since
P(u0, ·) : H → H is continuous and compact (Lemma 4.2), the mapping T :
H → H is continuous and compact.



MAXIMAL L2-REGULARITY IN NONLINEAR GRADIENT SYSTEMS 9

a) We consider the Schaefer set

S :=
{

u ∈ H
∣∣∣ there exists λ ∈ [0, 1] s.t. u = λT u

}
.

We show that S is bounded in H. Let u ∈ S . We may assume that λ ∈ (0, 1],
otherwise, u ≡ 0. Then, u ∈ H1

loc((0, T]; H) ∩ C([0, T]; H) and
u̇
λ
+ A

(u
λ

)
3 Gu on (0, T),

u(0) = u0.

It follows from (4.1) that(
− u̇

λ
(t) + Gu(t) + ω

u
λ
(t),

u
λ

)
H
≥ 0 for a.e. t ∈ (0, T).

Thus and by (1.2),

d
dt

1
2‖u(t)‖

2
H = (u̇(t), u(t))H

= (u̇(t)− λGu(t)−ωλu(t), u(t))H

+ (λGu(t) + ωλu(t), u(t))H

≤ (λGu(t) + ωλu(t), u(t))H

≤ λ
(
‖Gu(t)‖H ‖u(t)‖H + ω ‖u(t)‖2

H
)

≤ λ
(

L ‖u(t)‖2
H + b(t) ‖u(t)‖H + ω ‖u(t)‖2

H
)

≤ (2L + 1 + 2ω) 1
2‖u(t)‖

2
H + 1

2 b2(t)

for a.e. t ∈ (0, T). It follows from Gronwall’s lemma that (1.4) holds for every
t ∈ [0, T]. Thus, S is bounded in H. Now, Schaefer’s fixed point theorem
implies that there exists u ∈ H such that u = T u; that is, u ∈ H1

loc((0, T]; H) ∩
C([0, T]; H) is a solution of the evolution problem (1.3).

b) Let u0 ∈ D(ϕ). Then, by the first part of this proof, there is a solution
solution u ∈ H1

loc((0, T]; H) ∩ C([0, T]; H) of the evolution problem (1.3). How-
ever, by Brezis’ maximal regularity result applied to f = Gu ∈ H, it follows
that u ∈ H1(0, T; H). This completes the proof of this theorem. �

5. APPLICATION TO j-ELLIPTIC FUNCTIONS

In the previous examples (cf Examples 3.2 and Example 3.3), V is a Banach
space injected in H. Recently, in [12], Chill, Hauer and Kennedy extended re-
sults of [3], [4] by Arendt and Ter Elst to a nonlinear framework of j-elliptic
functions ϕ : V → (−∞,+∞] generating a quasi maximal monotone operator
∂j ϕ on H, where j : V → H is just a linear operator which is not necessarily in-
jective. This enabled the authors of [12] to show that several coupled parabolic-
elliptic systems can be realized as a gradient system in a Hilbert space H and
to extend the linear variational theory of the Dirichlet-to-Neumann operator
to the nonlinear p-Laplace operator (see also [6, 7] for further applications and
extensions of this theory).

The aim of this section is to illustrate that the main Theorem 1.2 of Section 3
can also be applied to the framework of j-elliptic functions.
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Let us briefly recall some basic notions and facts about j-elliptic functions
from [12]. Let V be a real locally convex topological vector space and j : V → H
be a linear operator which is merely weak-to-weak continuous (and, in general,
not injective). Given a function ϕ : V → (−∞,+∞], then the j-subdifferential is
the operator

∂j ϕ :=

{
(u, f ) ∈ H × H

∣∣∣∣∣
∃û ∈ D(ϕ) s.t. j(û) = u and for every v̂ ∈ V,

lim inf
t↘0

ϕ(û + tv̂)− ϕ(û)
t

≥ ( f , j(v̂))H

}
.

The function ϕ is called j-semiconvex if there exists ω ∈ R such that the “shifted”
function ϕω : V → (−∞,+∞] given by

ϕ(û) +
ω

2
‖j(û)‖2

H for every û ∈ V,

is convex. If V = H and j = IH, then j-semiconvex functions ϕ are the
semiconvex ones (see Section 1). The function ϕ is called j-elliptic if there ex-
ists ω ≥ 0 such that ϕω is convex and for every c ∈ R, the sublevel sets
{û ∈ V | ϕω(u) ≤ c} are relatively weakly compact. Finally, we say that the
function ϕ is lower semicontinuous if the sublevel sets {ϕ ≤ c} are closed in the
topology of V for every c ∈ R. It was highlighted in [12, Lemma 2.2] that
(a) If ϕ is j-semiconvex, then there is an ω ∈ R such that

∂j ϕ =

{
(u, f ) ∈ H × H

∣∣∣∣∣ ∃û ∈ D(ϕ) s.t. j(û) = u and for every v̂ ∈ V
ϕω(û + v̂)− ϕω(û) ≥ ( f + ωj(û), j(v̂))H

}
.

(b) If ϕ is Gâteaux differentiable with directional derivative Dv̂ ϕ, (v̂ ∈ V), then

∂j ϕ =

{
(u, f ) ∈ H × H

∣∣∣∣∣ ∃û ∈ D(ϕ) s.t. j(û) = u and for every v̂ ∈ V
Dv̂ ϕ(û) = ( f , j(v̂))H

}
.

The main result in [12] is that the j-subdifferential ∂j ϕ of a j-elliptic function
ϕ is already a classical subdifferential. More precisely, the following holds.

Theorem 5.1 ([12, Corollary 2.7]). Let ϕ : V → (−∞,+∞] be proper, lower semi-
continuous, and j-elliptic. Then there is a proper, lower semicontinuous, semiconvex
function ϕH : H → (−∞,+∞] such that ∂j ϕ = ∂ϕH. The function ϕH is unique up
to an additive constant.

Thus the operator A = ∂j ϕ has the properties of maximal regularity we used
before. The following result gives a description of ϕH in the convex case and
will be important for our intentions in this paper.

Theorem 5.2 ([12, Theorem 2.9]). Assume that ϕ : V → (−∞,+∞] is convex,
proper, lower semicontinuous and j-elliptic, and let ϕH : H → (−∞,+∞] be the
function from Corollary 5.1. Then, there is a constant c ∈ R such that

ϕH(u) = c + inf
û∈j−1({u})

ϕ(û) for every u ∈ H

with effective domain D(ϕH) = j(D(ϕ)).

For our perturbation result, we need the compactness of the sublevel sets of
ϕH. With the help of Theorem 5.2 we can establish a criterion in terms of the
given ϕ for this property.
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Lemma 5.3. Let ϕ : V → (−∞,+∞] be proper, lower semicontinuous j-semiconvex,
and j-elliptic. Assume that

(5.1)

{
j : V → H maps weakly relatively compact sets of V
into relatively norm-compact sets of H.

Then there is an ω ≥ 0 such that for every c ∈ R, the sublevel set

Eω,c =
{

u ∈ H
∣∣∣ ϕH

ω (u) ≤ c
}

is compact in H.

Remark 5.4. If V is a normed space, then by the Eberlein-Šmulian Theorem
hypothesis (5.1) is equivalent to j maps weakly convergent sequences in V to norm
convergent sequences in H. This in turn is equivalent to j being compact if V is
reflexive.

Proof of Lemma 5.3. By hypothesis, there is an ω ≥ 0 such that ϕω is convex,
lower semicontinuous, and for every c ∈ R, the sublevel sets {û ∈ V | ϕω(u) ≤
c} are weakly relatively compact and closed. By Corollary 5.1, there is a lower
semicontinuous, proper function ϕH : H → (−∞,+∞] such that ϕH

ω is convex
and ∂ϕH

ω = ∂j ϕω. Applying Theorem 5.2 to ϕω and ϕH
ω , we have that

(5.2) ϕH
ω (u) = d + inf

û∈j−1({u})
ϕω(û) for every u ∈ H

and some constant d ∈ R. For c ∈ R, let (un)n≥1 be an arbitrary sequence in
Eω,c. By (5.2), for every n ∈N, there is a ûn ∈ j−1({un}) such that

d + ϕω(ûn) ≤ c + 1.

By hypothesis, all sublevel sets of ϕω are weakly relatively compact in V. Thus,
by our hypothesis, the image under j is relatively compact in H. Consequently,
there are a subsequence (unl )l≥1 of (un)n≥1 and a u ∈ H such that unl =
j(ûnl )→ u in H as l → +∞. Since ϕH

ω (unl ) ≤ c and since ϕH is lower semicon-
tinuous, it follows that ϕH(u) ≤ c. This shows that Eω,c is compact. �

Now, applying Lemma 5.3 to Theorem 1.2, we can state the following exis-
tence theorem.

Theorem 5.5. Let ϕ : V → (−∞,+∞] be proper, lower semicontinuous j-semiconvex,
and j-elliptic. Assume that the mapping j satisfies (5.1) and let G : H → H be
a continuous mapping of sublinear growth (1.2). Then, for A = ∂j ϕ the nonlin-
ear evolution problem (1.3) admits for every u0 ∈ j(D(ϕ)) and f ∈ H at least
one solution u ∈ H1

loc((0, T]; H) ∩ C([0, T]; H). In particular, ϕ ◦ u belongs to
W1,1

loc ((0, T]) ∩ L1(0, T) and inequality (1.4) holds. If u0 ∈ j(D(ϕ)), then prob-
lem (1.3) has a solution u ∈ H1(0, T; H).

We complete this section by considering the following evolution problem in-
volving the Dirichlet-to-Neumann operator associated with the p-Laplacian (cf [15,
12]).

Example 5.6. Let Ω be a bounded domain with a Lipschitz continuous bound-
ary ∂Ω. Then, for 2d

d+1 < p < +∞, the trace operator Tr : W1,p(Ω)→ L2(∂Ω) is
a completely continuous operator (cf [16, Théorème 6.2] for the case p < d, the
other cases p = d and p > d can be deduced from [16, Conséquence 6.2 & 6.3]).
Now, we take
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V = W1,p(Ω), H = L2(∂Ω), and j = Tr.
Then, j is a linear bounded mapping satisfying hypothesis (5.1). In fact, j is
a prototype of a non-injective mapping. Furthermore, let ϕ : V → R be the
function given by

ϕ(û) = 1
p

∫
Ω
|∇û|p dx for every û ∈ V.

Then, ϕ is continuously differentiable on V and convex. Thus, the Tr-subdiffer-
ential operator ∂Tr ϕ is given by

∂Trϕ =

{
(u, f ) ∈ H × H

∣∣∣∣∣ ∃û ∈ V s.t. Tr(û) = u and for every v̂ ∈ V∫
Ω|∇û|p−2∇û∇v̂ dx = ( f , j(v̂))H

}
.

Moreover, by inequality [15, (20)], for any ω > 0, the shifted function ϕω has
bounded sublevel sets in V. Since V is reflexive, every sublevel set of ϕω is
weakly compact in V. In addition, by [15, Lemma 2.1], j(D(ϕ)) is dense in H.

Now, let g : (0, T)×Ω×R → R be a Carathédory function with sublinear
growth. Then by Theorem 5.5, for every u0 ∈ L2(∂Ω), there is at least one
solution u ∈ H1

loc((0, T]; L2(∂Ω)) ∩ C([0, T]; L2(∂Ω)) of the elliptic-parabolic
boundary-value problem

−∆pû(t, ·) = 0 on (0, T)×Ω,
∂tu(t, ·) + |∇u(t, ·)|p−2 ∂

∂ν u(t, ·) = g(t, ·, u(t, ·)) on (0, T)× ∂Ω,
u(t, ·) = û(t, ·) on (0, T)× ∂Ω,

u(0, ·) = u0 on ∂Ω.
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