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Abstract. We investigate a class of zero-sum linear-quadratic stochastic differential games on a

finite time horizon governed by multiscale state equations. The multiscale nature of the problem

can be leveraged to reformulate the associated generalised Riccati equation as a deterministic

singular perturbation problem. In doing so, we show that, for small enough ε, the existence

of solution to the associated generalised Riccati equation is guaranteed by the existence of a

solution to a decoupled pair of differential and algebraic Riccati equations with a reduced order

of dimensionality. Furthermore, we are able to formulate a pair of asymptotic estimates to

the value function of the game problem by constructing an approximate feedback strategy and

observing the limiting value function.
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1. Introduction

In the paper, we study a class of two-player stochastic differential games on a finite time interval

[0, T ]. The dynamical system is described by a slow process X1 and a fast process Xε
2 that satisfy

the following linear stochastic differential equations
dX1(t) = [A11X1(t) +A12X

ε
2(t) +B11u1(t) +B12u2(t)] dt+ σ1dW1(t),

dXε
1(t) = 1

ε [A21X(t) +A22X
ε
2(t) +B21u1(t) +B22u2(t)] dt+ σ2√

ε
dW2(t),

X1(0) = x1, Xε
2(0) = x2.

Here ε is a small positive parameter representing the ratio between the evolutionary speeds of the

slow and fast processes. The objective of the two-player game adheres to a zero-sum formulation.

That is, Player 1 attempts to maximise a quadratic objective function through a strategic decision

u1, whilst Player 2 attempts to minimise the same quadratic objective function through a strategic

decision u2. A classical approach to obtaining a feedback saddle point or equilibrium is to consider
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the associated generalised Riccati equation. Our interests centre on the solvability of the generalised

Riccati equation and obtaining asymptotic estimates for the value function of the game when ε is

small. Due to the degenerate nature of the differential term when ε is formally set to be 0, care needs

to be applied when studying the convergence problem. Problems with this asymptotic property

are often referred to as singular perturbation problems. Suitably, we refer to the game problem

described in this paper as a singularly perturbed zero-sum linear-quadratic stochastic differential

game, or Problem (SLQG) for short.

In 1965, the study of linear-quadratic differential games in the zero-sum framework was initiated

by Ho, Bryson and Baron [12] in the context of pursuit-evasion strategies. As opposed to what is

observed in optimal control theory, open-loop and feedback saddle points are not necessarily the

same nor do they imply the other exists. This important distinction was first brought to light by

Schmitendorf [22] and was later shown by Sun and Yong [26] to be equivalent as long as the saddle

points exist and the objective function possesses a certain convexity-concavity assumption. In 1979,

Bernhard [2] examined in great depth the case of feedback strategies in deterministic differential

games. In the stochastic framework, Sun and Yong [26] demonstrated that the existence of a

feedback saddle point is equivalent to the solvability of a generalised Riccati equation. Due to

the indefinite nature of the nonlinear terms, obtaining analytically checkable conditions for the

solvability of the generalised Riccati equation has proved to be a challenge in and among itself.

Yong [27] showed that the existence a solution to the generalised Riccati equation is equivalent to

the invertibility of a submatrix of a matrix exponential. On the other hand, McAsey and Mou

[17] derived a comparison theorem and an existence result based on the existence of upper and

lower solutions. Under the framework of non-anticipating strategies, Yu [29] stated commutative

and definiteness conditions that prove to be sufficient for the solvability of the generalised Riccati

equation. Other particular cases, such as the one dimensional case, and numerical examples are

discussed in the book by Yong [13].

In 1977, the concept of singular perturbation in zero-sum linear-quadratic differential games was

first considered by Gardner Jr. [8]. Under a finite time horizon and a deterministic setting, the

author constructs a composite pair of strategies from the saddle points of slow and fast sub-games

to obtain an approximate value function to the original game. In the infinite time horizon and non-

zero sum counterpart, a composite strategy approach was also adopted by Gardner Jr. and Cruz Jr.

[9] and Khalil and Kokotovic [15] to produce similar asymptotic estimates. The non-linear case has

been studied, via a dynamic programming approach, in the deterministic case by Gaitsgory [7] and

Subbotina [23, 24, 25] and in the stochastic case by Alvarez and Bardi [1]. In this case, a singularly

perturbed Hamilton-Jacobi-Bellman equation is formulated and analysed. Differential games are a
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natural extension of optimal control problems, which suitably can be refered to as a single player

game. That being said, applications of singular perturbation in optimal control theory are plentiful,

whether the motivation is to describe a multiscale optimal control problem or to reduce the order of

complexity. For an extensive survey of applications to areas such as aerospace engineering, biology

and chemistry, see [18, 19] and for stochastic filtering in finance, see [5, 6].

In this paper, we make two contributions, both of which flesh out a framework for zero-sum

linear-quadratic stochastic differential games with slow-fast state processes. First, we show that

for any finite time horizon, if ε is small enough then a sufficient condition for the solvability of the

generalised Riccati equation is the solvability of a decoupled pair of differential and algebraic Riccati

equations with a lower order of dimensionality. More precisely, we reduce the original problem of

order (n1 + n2)2 to a pair of problems of orders n2
1 and n2

2. Using this, the feedback saddle point

and value function of Problem (SLQG) can be shown to exist. Secondly, we produce an asymptotic

estimate to the value function of Problem (SLQG) of order O(ε) by constructing an approximate

feedback saddle point using feedback operators when ε is formally set to be zero. In addition, we

show that the value function of Problem (SLQG) converges to a limiting value function.

We approach Problem (SLQG) by characterising the feedback saddle point and value function

in terms of the solution to a generalised Riccati equation, see Sun and Yong [26]. To eliminate the

singular terms in the generalised Riccati equation, we suppose that the solution adopts a first-order

representation [3, 21]. As a result, we obtain a system of ODEs, which we refer to as the full system.

At this point, it can be observed that the full system represents a classical and deterministic singular

perturbation problem. To this end, we consider the reduced system of differential and algebraic

equations when ε is formally set to zero. The solvability of the reduced system is shown to be

guaranteed by the solvability of a decoupled pair of differential and algebraic Riccati equations of

a lower dimension – which we shall refer to as the reduced differential-algebraic Riccati equations.

By formulating and proving a version of the Tikhonov Theorem, we establish that for sufficiently

small ε, the solvability of the reduced differential-algebraic Riccati equations implies the existence

of a unique solution to the full system and that its limit exists. This the key result of this paper

and from this, we can deduce our main results outlined in the previous paragraph.

To the best of our knowledge, singular perturbations in linear-quadratic differential games on a

finite time horizon has not been considered in the stochastic framework. In the deterministic case,

Gardner Jr. [8] uses a composite control approach and assume the solution of the generalised Riccati

equation to exist and possess analytic properties, which we do not require. On the other hand, the

non-linear counterparts [1, 7, 23, 24, 25] require that the objective function be uniformly Lipscthiz

with respect to the state variables, which excludes the quadratic case. We remark that while we
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assume the coefficient matrices are constant, there is no mathematical difficulty in extending the

methods and results to bounded and deterministic time-dependent coefficients. Lastly, we assume

that the terminal objective function is zero, else otherwise the full system of ODEs will have

unbounded terminal conditions. Problems of this class have been studied by Glizer [10, 11].

The paper is organised as follow: In Section 2, we formulate the singularly perturbed zero-

sum linear-quadratic stochastic differential game and introduce the associated generalised Riccati

equation. In Section 3, we make the connection between the reduced system and the reduced

differential-algebraic Riccati equations. Section 4 sits at the heart of this paper, establishing the

existence, uniqueness and convergence of the solution of the generalised Riccati equation via a

version of the Tikhonov theorem. Section 5 is devoted to obtaining asymptotic estimates for the

value function of the game. In Section 6, we summarise our results for the one dimensional case.

Finally, in Section 7, we give the proof for the Tikhonov theorem used in this paper.

2. Mathematical formulation

2.1. Notation. Given a real and separable Hilbert space E, the inner product of its elements is

denoted by 〈·, ·〉E and the associated norm as | · |E . If G = E × F is the Cartesian product of the

Hilbert spaces E and F then G endowed with the inner product 〈·, ·〉G = 〈·, ·〉E + 〈·, ·〉F is also a

Hilbert space. For the most part, when there is no confusion, we will drop the subscript in the inner

product and norm. For matrices in the space Rn×n, we will write Sn as the space of symmetric

matrices, Sn+ as the space of non-negative (or positive semi-definite) symmetric matrices and Sn++

as the space of positive (definite) symmetric matrices. For a matrix M , we shall use the notation

M∗ to denote the transpose of M and M−∗ to denote the inverse of the transpose.

Let T > 0 be a finite time horizon and let W1 := (W1(t))0≤t≤T and W2 := (W2(t))0≤t≤T be two

independent m1 and m2-dimensional Brownian motions, respectively, defined on a complete filtered

probability space (Ω,F ,P), where (Ft) is the natural filtration of W1 and W2 augmented by the

P-null sets of F . We define the following spaces of processes with respect to the Hilbert space E:

• C([0, T ];E) is the space of continuous mappings F : [0, T ]→ E equipped with the norm

‖F‖C([0,T ];E) := sup
t∈[0,T ]

|F (t)|E .

• L2
F (Ω × [0, T ];E) is the space of equivalence classes of processes F ∈ L2(Ω × [0, T ];E)

admitting a predictable version and equipped with the norm

‖F‖L2
F (Ω×[0,T ];E) :=

(
E
∫ T

0

|F (t)|2Edt

)1/2

.
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For short, we will write AnT := L2
F (Ω× [0, T ];Rn).

• L2
F (Ω;C([0, T ];E)) is the space of predictable processes F : Ω× [0, T ]→ E with continuous

paths in E equipped with the norm

‖F‖L2
F (Ω;C([0,T ];E)) :=

(
E sup
t∈[0,T ]

|F (t)|2E

)1/2

.

For short, we will write HnT := L2
F (Ω;C([0, T ];Rn)).

2.2. Problem formulation. Let 0 < ε ≤ 1 denote the perturbation parameter. For arbitrary

x1 ∈ Rn1 and x2 ∈ Rn2 , the slow state X1 := (X1(t))0≤t≤T and fast state Xε
2 := (Xε

2(t))0≤t≤T take

values in Rn1 and Rn2 respectively, and evolve according to the following system of linear stochastic

differential equations
dX1(t) = [A11X1(t) +A12X

ε
2(t) +B11u1(t) +B12u2(t)] dt+ σ1dW1(t),

dXε
2(t) = 1

ε [A21X1(t) +A22X
ε
2(t) +B21u1(t) +B22u2(t)] dt+ σ2√

ε
dW2(t),

X1(0) = x1, Xε
2(0) = x2.

(2.1)

Here the coefficients Aij , Bij , σi, i, j = 1, 2, are constant matrices of appropriate dimensions. Player

1 (resp. Player 2) influences the state equation with respect to the strategy u1 := (u1(t))t∈[0,T ]

(resp. u2 := (u2(t))t∈[0,T ]) taking values in Rk1 (resp. Rk2). The objective of Player 1 (resp. Player

2) is to maximise (resp. minimise) the following quadratic objective functional with respect to an

admissible strategy u1 ∈ Ak1

T := L2
F (Ω× [0, T ];Rk1) (resp. u2 ∈ Ak2

T := L2
F (Ω× [0, T ];Rk2))

(2.2) Jε(x1, x2;u1, u2) =
1

2
E
∫ T

0

[
〈Q1X1(t), X1(t)〉+ 〈Q2X

ε
2(t), Xε

2(t)〉 − |u1(t)|2 + |u2(t)|2
]
dt.

where Q1 and Q2 are constant symmetric matrices of appropriate dimensions.

Let n = n1 + n2. Let us introduce the following compact notation:
Xε(t) =

X1(t)

Xε
2(t)

 , u(t) =

u1(t)

u2(t)

 , W (t) =

W1(t)

W2(t)

 , Q =

Q1 0

0 Q2

 ,

Aε =

 A11 A12

1
εA21

1
εA22

 , Bε =

 B11 B12

1
εB21

1
εB22

 , σε =

σ1 0

0 1√
ε
σ2

 , R =

−I 0

0 I

 .

As a result, we can rewrite the state equation (2.1) and the objective function (2.2) as
dXε(t) = [AεXε(t) +Bεu(t)] dt+ σεdW (t),

Xε(0) = x :=

x1

x2

 ,
(2.3)



6 SINGULAR PERTURBATION OF STOCHASTIC DIFFERENTIAL GAMES

and

(2.4) Jε(x;u) =
1

2
E
∫ T

0

[〈QXε(t), Xε(t)〉+ 〈Ru(t), u(t)〉] dt

respectively. For fixed 0 < ε ≤ 1, if (u1, u2) ∈ Ak1

T ×Ak2

T then the linear state equation (2.3) admits

a unique solution Xε ∈ HnT := L2
F (Ω;C([0, T ];Rn)). Consequently, the coupled state equations

(2.1) also admit a unique solution (X1, X
ε
2) ∈ Hn1

T × Hn2

T . Moreover, the objective functions (2.2)

and (2.4) are well-defined for pairs of admissible strategies (u1, u2) ∈ Ak1

T × Ak2

T . We will refer to

the game problem characterised by (2.1) and (2.2) or (2.3) and (2.4) as the singularly perturbed

zero-sum linear-quadratic stochastic differential game or Problem (SLQG) for short.

In this paper, the notion of a solution is defined in terms of the Nash equilibrium or, more

precisely in the context of zero-sum games, a saddle point. In this situation, neither player can

non-cooperatively improve their position by choosing an alternative strategy. Furthermore, we shall

confine the players to the class of feedback strategies. That is, players make decisions based on an

instantaneous and perfect knowledge of the current state: For fixed ε ∈ (0, 1]

(2.5) uεi(t) = φi(t,X1(t), Xε
2(t), ε), i = 1, 2, ∀t ∈ [0, T ],

where φi(t,X1, X2, ε) is some deterministic and measurable function that is Lipschitz continuous in

state variables (X1, X2), uniformly in t. Let us denote by AkiT,f as the set of strategies, which are

of the feedback form (2.5).

Definition 2.1. Fix 0 < ε ≤ 1. A pair of strategies (ûε1, û
ε
2) defined asûε1(t) = φ̂1(t, X̂ε

1(t), X̂ε
2(t), ε), t ∈ [0, T ],

ûε2(t) = φ̂2(t, X̂ε
1(t), X̂ε

2(t), ε), t ∈ [0, T ],

where X̂ε
1(t) := X1(t;x1, û

ε
1, û

ε
2) and X̂ε

2(t) := Xε
2(t;x2, û

ε
1, û

ε
2), is a feedback saddle point of Problem

(SLQG) if

(2.6) Jε(x1, x2;uε1, û
ε
2) ≤ Jε(x1, x2; ûε1, û

ε
2) ≤ Jε(x1, x2; ûε1, u

ε
2), ∀uε1 ∈ Ak1

T ,∀u
ε
2 ∈ Ak2

T .

It should be pointed out that the pair (ûε1, u
ε
2) in Jε(x1, x2; ûε1, u

ε
2) refers toûε1(t) = φ̂1(t,Xε

1(t), Xε
2(t), ε), t ∈ [0, T ],

uε2(t) = φ2(t,Xε
1(t), Xε

2(t), ε), t ∈ [0, T ],

where Xε
1(t) := X1(t;x1û

ε
1, u

ε
2) and Xε

2(t) := Xε
2(t;x2, û

ε
1, u

ε
2). In other words, when Player 2

changes his strategy from ûε2 to uε2, Player 1’s strategy ûε1 is impacted due to his or her dependence
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on the state variables. Similar can be said for the pair (uε1, û
ε
2) in Jε(x1, x2;uε1, û

ε
2). Next, we define

the value of Problem (SLQG).

Definition 2.2. The upper value V ε+(x1, x2) and lower value V ε−(x1, x2) are defined as

(2.7) V ε+(x1, x2) = inf
u2∈A

k2
T

sup
u1∈A

k1
T

Jε(x1, x2;u1, u2)

(2.8) V ε−(x1, x2) = sup
u1∈A

k1
T

inf
u2∈A

k2
T

Jε(x1, x2;u1, u2)

Clearly, V ε−(x1, x2) ≤ V ε+(x1, x2). If V ε−(x1, x2) = V ε+(x1, x2) := V ε(x1, x2) then we say that Prob-

lem (SLQG) admits a value.

A classical approach to feedback differential game problems is by characterising the saddle point

and value function in terms of the solution of a generalised Riccati equationṖ ε + (Aε)∗P ε + P εAε − P εBεR−1(Bε)∗P ε +Q = 0,

P ε(T ) = 0.
(2.9)

For convenience, we write the non-linear term as

−BεR−1(Bε)∗ =

(
∆1

∆
ε

∆∗

ε
∆2

ε2

)
,

where 
∆1 = B11B

∗
11 −B12B

∗
12,

∆ = B11B
∗
21 −B12B

∗
22,

∆2 = B21B
∗
21 −B22B

∗
22.

The following theorem demonstrates that the existence and uniqueness of a solution to the Riccati

equation implies the existence and uniqueness of a feedback saddle point and value.

Theorem 2.3. Fix 0 < ε ≤ 1. Suppose the generalised Riccati equation admits a unique solution

P ε ∈ C([0, T ];Sn). We write P ε as the first order representation(
P ε11 εP ε12

ε(P ε12)∗ εP ε22

)
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where P ε11 ∈ C([0, T ];Sn1), P ε12 ∈ C([0, T ];Rn1×n2) and P ε22 ∈ C([0, T ];Sn2). Then Problem (SLQG)

admits a unique feedback saddle point defined on the interval [0, T ]

ûε1(t) = φ̂1(t, X̂ε
1(t), X̂ε

2(t), ε)

:= [B∗11P
ε
11(t) +B∗21(P ε12(t))∗] X̂ε

1(t) + [εB∗11P
ε
12(t) +B∗21P

ε
22(t)] X̂ε

2(t),

ûε2(t) = φ̂2(t, X̂ε
1(t), X̂ε

2(t), ε)

:= − [B∗12P
ε
11(t) +B∗22(P ε12(t))∗] X̂ε

1(t)− [εB∗12P
ε
12(t) +B∗22P

ε
22(t)] X̂ε

2(t),

(2.10)

where (X̂ε
1, X̂

ε
2) is the solution to the state equation



dX̂ε
1(t) =

[
A11X̂

ε
1(t) +A12X̂

ε
2(t) +B11φ̂1(t, X̂ε

1(t), X̂ε
2(t), ε) +B12φ̂2(t, X̂ε

1(t), X̂ε
2(t), ε)

]
dt

+σ1dW1(t),

dX̂ε
2(t) = 1

ε

[
A21X̂

ε
1(t) +A22X̂

ε
2(t) +B21φ̂1(t, X̂ε

1(t), X̂ε
2(t), ε) +B22φ̂2(t, X̂ε

1(t), X̂ε
2(t), ε)

]
dt

+ σ2√
ε
dW2(t),

X̂ε
1(0) = x1, X̂ε

2(0) = x2.

(2.11)

and has the value

V ε(x1, x2) = Jε(x1, x2; û1, û2)

=
1

2
[〈P ε11(0)x1, x1〉+ 2ε 〈x1, P

ε
12(0)x2〉+ ε 〈P ε22(0)x2, x2〉]

+
1

2

∫ T

0

[〈P ε11(t)σ1, σ1〉+ 〈P ε22(t)σ2, σ2〉] dt.

(2.12)

Proof. Similar to the completion of squares argument in Theorem 6.1 of [28], we can apply Ito’s

lemma to 〈P ε(t)Xε(t), Xε(t)〉 to show that

Jε(x1, x2;u1, u2)

= −1

2
E
∫ T

0

[
|u1(t)− F̂ ε11(t)X1(t)− F̂ ε12(t)Xε

2(t)|2 − |u2(t)− F̂ ε21(t)X1(t)− F̂ ε22(t)Xε
2(t)|2

]
dt

+
1

2
〈P ε(0)x, x〉+

1

2

∫ T

0

〈P ε(t)σε, σε〉 dt

(2.13)

where (
F̂ ε11(t) F̂ ε12(t)

F̂ ε21(t) F̂ ε22(t)

)
=

(
B∗11P

ε
11(t) +B∗21(P ε12(t))∗ εB∗11P

ε
12(t) +B∗21P

ε
22(t)

− [B∗12P
ε
11(t) +B∗22(P ε12(t))∗] − [εB∗12P

ε
12(t) +B∗22P

ε
22(t)]

)
.
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This implies that

Jε(x1, x2; ûε1, û
ε
2) =

1

2
〈P ε(0)x, x〉+

1

2

∫ T

0

〈P ε(t)σε, σε〉 dt

and moreover,

Jε(x1, x2;u1, u2)− Jε(x1, x2; ûε1, û
ε
2)

= −1

2
E
∫ T

0

[
|u1(t)− F̂ ε11(t)X1(t)− F̂ ε12(t)Xε

2(t)|2 − |u2(t)− F̂ ε21(t)X1(t)− F̂ ε22(t)Xε
2(t)|2

]
dt.

From the above, we can see that

Jε(x1, x2; ûε1, u2)− Jε(x1, x2; ûε1, û
ε
2)

=
1

2
E
∫ T

0

|u2(t)− F̂ ε21(t)X1(t)− F̂ ε22(t)Xε
2(t)|2dt ≥ 0.

This implies that Jε(x1, x2; ûε1, u2) ≥ Jε(x1, x2; ûε1, û
ε
2) for all u2 ∈ Ak2

T . Similarly, we can show that

Jε(x1, x2;u1, û
ε
2) ≤ Jε(x1, x2; ûε1, û

ε
2) for all u1 ∈ Ak1

T . Hence (ûε1, û
ε
2) is a feedback saddle point.

This also implies that the value is given by V ε(x1, x2) = Jε(x1, x2; ûε1, û
ε
2).

To show uniqueness, suppose that there exists another feedback saddle point and optimal state

triple (ũε1, ũ
ε
2, X̃

ε) where ũε1(t) = φ̃1(t, X̃ε(t), ε), t ∈ [0, T ],

ũε2(t) = φ̃2(t, X̃ε(t), ε), t ∈ [0, T ],

where X̃ε(t) = (X̃ε
1(t), X̃ε

2(t)) = (X1(t;x1, ũ
ε
1, ũ

ε
2), Xε

2(t;x2, ũ
ε
1, ũ

ε
2)). To see that both feedback

saddle points admit the same value function, we can use the definition of a feedback saddle point

to see that

(2.14)

Jε(x1, x2; ũε1, ũ
ε
2) ≤ Jε(x1, x2; ũε1, û

ε
2) ≤ Jε(x1, x2; ûε1, û

ε
2) ≤ Jε(x1, x2; ûε1, ũ

ε
2) ≤ Jε(x1, x2; ũε1, ũ

ε
2).

Hence

(2.15) Jε(x1, x2; ũε1, ũ
ε
2) = Jε(x1, x2; ûε1, û

ε
2) = V ε(x1, x2) =

1

2
〈P ε(0)x, x〉+

1

2

∫ T

0

〈P ε(t)σε, σε〉 dt.

Let us denote m(t, x′, ε) = φ̃2(t, x′, ε) − φ̂2(t, x′, ε) for (t, x′, ε) ∈ [0, T ] × Rn × (0, 1]. From (2.13),

(2.14) and (2.15), we have that

(2.16) E
∫ T

0

|m(t,Xtemp,ε(t), ε)|2dt = 0
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where Xtemp,ε(t) := X(t;x, ûε1, ũ
ε
2). This implies that

(2.17) m(t,Xtemp,ε(t), ε) = φ̃2(t,Xtemp,ε(t), ε)− φ̂2(t,Xtemp,ε(t), ε) = 0, λ⊕ P− a.s.,

where λ is the Lebesgue measure. Moreover, this shows that Xtemp,ε is a solution to the SDE

(2.11). However due to uniqueness of this SDE, we have that Xtemp,ε = X̂ε. Thus

(2.18) φ̃2(t, X̂ε(t), ε) = φ̂2(t, X̂ε(t), ε), λ⊕ P− a.s.

for every ε ∈ (0, 1]. In the same way, by considering the difference φ̃1(t, x′, ε) − φ̂1(t, x′, ε) for

(t, x′, ε) ∈ [0, T ]× Rn × (0, 1], we can show that

(2.19) φ̃1(t, X̂ε(t), ε) = φ̂1(t, X̂ε(t), ε), λ⊕ P− a.s.

for every ε ∈ (0, 1]. This implies that X̃ε is also a solution to (2.11). By the uniqueness of the

solution to (2.11), we have that X̃ε = X̂ε. Hence, the triples (ûε1, û
ε
2, X̂

ε) and (ũε1, ũ
ε
2, X̃

ε) are

identical and we arrive at a contradiction. �

3. Singular perturbation of the Riccati equation

The purpose of this section is to analyse a version of the generalised Riccati equation when ε

is formally set to be 0, called the reduced system. The main result of this section is to show that

reduced system is equivalent to a decoupled pair of differential and algebraic Riccati equations of a

lower dimensionality.

Fix 0 < ε ≤ 1. By the following first-order form

(3.1) P ε(t) =

(
P ε11(t) εP ε12(t)

ε(P ε12(t))∗ εP ε22(t)

)
, t ∈ [0, T ],

we can reformulate the generalised Riccati equation (2.9) in terms of a so-called full system of ODEs

dP ε11

dt
+ f(P ε11, P

ε
12, P

ε
22, ε) = 0, P ε11(T ) = 0,(3.2a)

ε
dP ε12

dt
+ g1(P ε11, P

ε
12, P

ε
22, ε) = 0, P ε12(T ) = 0,(3.2b)

ε
dP ε22

dt
+ g2(P ε11, P

ε
12, P

ε
22, ε) = 0, P ε22(T ) = 0,(3.2c)

where the functions f, g1 and g2 are defined as

f(P11, P12, P22, ε) = A∗11P11 +A∗21P
∗
12 + P11A11 + P12A21

+ P11∆1P11 + P12∆∗P11 + P11∆P ∗12 + P12∆2P
∗
12 +Q1,

(3.3)
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g1(P11, P12, P22, ε) = εA∗11P12 +A∗21P22 + P11A12 + P12A22 + εP11∆1P12

+ εP12∆∗P12 + P11∆P22 + P12∆2P22,
(3.4)

g2(P11, P12, P22, ε) = εA∗12P12 +A∗22P22 + εP ∗12A12 + P22A22 + ε2P ∗12∆1P12

+ εP ∗12∆P22 + εP22∆∗P12 + P22∆2P22 +Q2.
(3.5)

It is clear that we have the following lemma.

Lemma 3.1. For fixed 0 < ε ≤ 1, the full system admits a solution (P ε11, P
ε
12, P

ε
22) ∈ C([0, T ];Sn1)×

C([0, T ];Rn1×n2) × C([0, T ];Sn2) if and only if the generalised Riccati equation (2.9) admits a so-

lution P ε ∈ C([0, T ];Sn).

A well-known approach to obtaining the existence, uniqueness and convergence of the solution

to the full system is to apply a version of the Tikhonov theorem, see for example Theorem 9.1 of

[14]. In order to do so, we need to consider the system of differential and algebraic equations that

arise when ε is formally set to be 0 in the full system. We call this the reduced system and it can

be represented as the following
dP 11

dt
+ f(P 11, P 12, P 22, 0) = 0, P 11(T ) = 0,(3.6a)

g1(P 11, P 12, P 22, 0) = 0,(3.6b)

g2(P 11, P 12, P 22, 0) = 0.(3.6c)

We make the following technical assumption.

Assumption 3.2. The matrix operator ∆2 = B21B
∗
21 −B22B

∗
22 is invertible.

Under Assumption 3.2, let us introduce a decoupled pair of differential and algebraic Riccati

equations, which we shall refer to as reduced differential-algebraic Riccati equations
dP 11

dt
+ Ã∗P 11 + P 11Ã+ P 11MP 11 +N = 0, P 11(T ) = 0,(3.7a)

A∗22P 22 + P 22A22 + P 22∆2P 22 +Q2 = 0,(3.7b)

where 

Ã = A11 −∆∆−1
2

[
∆2 −A22Λ−1A∗22

]
∆−1

2 A21 −A12Λ−1A∗22∆−1
2 A21,

M = ∆1 +A12Λ−1A∗12 −∆∆−1
2 A22Λ−1A∗12 −A12Λ−1A∗22∆−1

2 ∆∗

−∆∆−1
2

[
∆2 −A22Λ−1A∗22

]
∆−1

2 ∆∗,

N = Q1 −A∗21∆−1
2

[
∆2 −A22Λ−1A∗22

]
∆−1

2 A21.

Here Λ := A∗22∆−1
2 A22 −Q2. We shall see in Theorem 3.6, that under Assumption 3.2 and 3.3-(b),

Λ is indeed invertible. We shall refer to (3.7a) as the reduced differential Riccati equation and (3.7b)
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as the reduced algebraic Riccati equation. We notice that solutions of (3.7a) and (3.7b) take values

in Sn1 and Sn2 , respectively. This is comparatively less than the solutions of the generalised Riccati

equation, which take values in the space Sn1+n2 .

The main assumption of this paper is the existence and uniqueness of a solution to the reduced

differential-algebraic Riccati equations (3.7a)-(3.7b).

Assumption 3.3.

(a) The reduced differential Riccati equation (3.7a) admits a unique solution P
+

11 ∈ C([0, T ];Sn1).

Let p0 be a positive constant such that |P+

11(t)| ≤ p0 for all t ∈ [0, T ].

(b) The reduced algebraic Riccati equation (3.7b) admits a stabilising solution P
+

22 ∈ Sn2 . That

is, the eigenvalues of A22 + ∆2P
+

22 have strictly negative real parts.

Note that we do not assume that the reduced algebraic Riccati equation admits a unique solution.

However, we require that P
+

22 is an isolated root. This is shown in Proposition 7.9.2 of [16]. We

restate this result below.

Proposition 3.4. Suppose that Assumption 3.3-(b) holds. Then P
+

22 is a unique solution of (3.7b)

in the set of solutions P 22 such that the eigenvalues of A22 + ∆P 22 have non-positive real parts.

Remark 3.5. Like the original generalised Riccati equation (2.9), the reduced differential Riccati

equation (3.7a) is also of the generalised type. Sufficient conditions for the existence of a solution

to generalised Riccati equation have been formulated to certain extents in [13, 17, 27, 29]. However,

analytically checkable sufficient conditions are rather limited. For example, in [29], the author pro-

pose commutative and definiteness conditions, whilst in [13], the author analyses certain examples

including the one dimensional case. We will elaborate on the one dimensional case in Section 6.

We should also point out that under certain assumptions, the generalised Riccati equation is of the

classical type seen in optimal control theory and admits a unique positive/negative definite solution,

see Chapter 6 of [28]. Likewise, under certain assumptions, the algebraic Riccati equation (3.7b)

admits a unique stablising positive/negative definite solution as seen in optimal control theory, see

[16].

The following Theorem demonstrates that the reduced system (3.6) can be characterised in terms

of the decoupled pair of reduced differential-algebraic Riccati equations (3.7a)-(3.7b).

Theorem 3.6. Suppose that Assumptions 3.2 and 3.3 hold. Let (P
+

11, P
+

22) ∈ C([0, T ];Sn1)×Sn2 be

the solution to the reduced differential-algebraic Riccati equations (3.6) defined in Assumption 3.3.

Then (P
+

11, P 12, P
+

22) ∈ C([0, T ];Sn1)× C([0, T ];Rn1×n2)× Sn2 is a solution to the reduced system
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(3.6) where

(3.8) P 12(t) = −
(
A∗21P

+

22 + P
+

11(t)A12 + P
+

11(t)∆P
+

22

)(
A22 + ∆2P

+

22

)−1

, t ∈ [0, T ].

Proof. Since the algebraic equations (3.6c) and (3.7b) are equivalent, it is clear from Proposition

3.4 that P
+

22 is the unique stabilising solution of (3.6c). From Assumption 3.3-(b), we have that

A22 + ∆2P
+

22 is invertible. Thus, we can rewrite (3.6b) as

(3.9) P 12 = −
(
A∗21P

+

22 + P 11A12 + P 11∆P
+

22

)(
A22 + ∆2P

+

22

)−1

.

In addition, by Assumption 3.2, the matrix ∆2 is invertible and thus, from (3.7b) we have that

Λ = A∗22∆−1
2 A22 −Q2 = (A22 + ∆2P 22)∗∆−1

2 (A22 + ∆2P 22)

is invertible. More precisely,

(3.10) Λ−1 = (A22 + ∆2P 22)−1∆2(A22 + ∆2P 22)−∗.

Applying (3.9) and (3.10), the differential equation (3.6a) can be written as

dP 11

dt
+ (A11 + I1)∗P 11 + P 11(A11 + I1) + P 11(∆1 + I2)P 11 + (Q1 + I3) = 0

where



I1 = −∆∆−1
2 (A22 + ∆2P

+

22)Λ−1P
+

22A21 − (A12 + ∆P
+

22)Λ−1(A22 + ∆2P
+

22)∗∆−1
2 A21

+(A12 + ∆P
+

22)Λ−1P
+

22A21

I2 = −∆∆−1
2 (A22 + ∆2P

+

22)Λ−1(A∗12 + P
+

22∆∗)− (A12 + ∆P
+

22)Λ−1(A22 + ∆2P
+

22)∗∆−1
2 ∆∗

+(A12 + ∆P
+

22)Λ−1(A∗12 + P
+

22∆∗)

I3 = −A∗21∆−1
2 (A22 + ∆2P

+

22)Λ−1P
+

22A21 −A∗21P
+

22Λ−1(A22 + ∆2P
+

22)∗∆−1
2 A21

+A∗21P
+

22Λ−1P
+

22A21
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The rest of the proof involves simplifying the above expressions and removing the dependence on

P
+

22. Using (3.10), we see that

I1 = −∆∆−1
2 (A22 + ∆2P

+

22)Λ−1P
+

22A21 − (A12 + ∆P
+

22)Λ−1(A22 + ∆2P
+

22)∗∆−1
2 A21

+ (A12 + ∆P
+

22)Λ−1P
+

22A21

= −∆∆−1
2 A22Λ−1P

+

22A21 −∆P
+

22Λ−1(A22 + ∆2P
+

22)∗∆−1
2 A21 −A12Λ−1A∗22∆−1

2 A21

= −∆∆−1
2

[
A22Λ−1P

+

22∆2 + ∆2P
+

22Λ−1(A22 + ∆2P
+

22)∗
]

∆−1
2 A21 −A12Λ−1A∗22∆−1

2 A21

= −∆∆−1
2

[
A22Λ−1(A22 + ∆2P

+

22)∗ + ∆2P
+

22Λ−1(A22 + ∆2P
+

22)∗ −A22Λ−1A∗22

]
∆−1

2 A21

−A12Λ−1A∗22∆−1
2 A21

= −∆∆−1
2

[
∆2 −A22Λ−1A∗22

]
∆−1

2 A21 −A12Λ−1A∗22∆−1
2 A21.

Similarly,

I2 = (A12 + ∆P
+

22)Λ−1(A∗12 + P
+

22∆∗)−∆∆−1
2 (A22 + ∆2P

+

22)Λ−1(A∗12 + P
+

22∆∗)

− (A12 + ∆P
+

22)Λ−1(A22 + ∆2P
+

22)∗∆−1
2 ∆∗

= A12Λ−1A∗12 −∆P
+

22Λ−1P
+

22∆∗ −∆∆−1
2 A22Λ−1P

+

22∆∗ −∆P
+

22Λ−1A∗22∆−1
2 ∆∗

−∆∆−1
2 A22Λ−1A∗12 −A12Λ−1A∗22∆−1

2 ∆∗

= A12Λ−1A∗12 −∆∆−1
2 A22Λ−1A∗12 −A12Λ−1A∗22∆−1

2 ∆∗

−∆∆−1
2

[
∆2P

+

22Λ−1P
+

22∆2 +A22Λ−1P
+

22∆2 + ∆2P
+

22Λ−1A∗22

]
∆−1

2 ∆∗

= A12Λ−1A∗12 −∆∆−1
2 A22Λ−1A∗12 −A12Λ−1A∗22∆−1

2 ∆∗

−∆∆−1
2

[
(A22 + ∆2P

+

22)Λ−1(A22 + ∆2P
+

22)∗ −A22Λ−1A∗22

]
∆−1

2 ∆∗

= A12Λ−1A∗12 −∆∆−1
2 A22Λ−1A∗12 −A12Λ−1A∗22∆−1

2 ∆∗ −∆∆−1
2

[
∆2 −A22Λ−1A∗22

]
∆−1

2 ∆∗.
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Lastly,

I3 = −A∗21∆−1
2 (A22 + ∆2P

+

22)Λ−1P
+

22A21 −A∗21P
+

22Λ−1(A22 + ∆2P
+

22)∗∆−1
2 A21

+A∗21P
+

22Λ−1P
+

22A21

= −A∗21∆−1
2 A22Λ−1P

+

22A21 −A∗21P
+

22Λ−1A∗22∆−1
2 A21 −A∗21P

+

22Λ−1P
+

22A21

= −A∗21∆−1
2

[
A22Λ−1P

+

22∆2 + ∆2P
+

22Λ−1A∗22 + ∆2P
+

22Λ−1P
+

22∆2

]
∆−1

2 A21

= −A∗21∆−1
2

[
(A22 + ∆2P

+

22)Λ−1(A22 + ∆2P
+

22)∗ −A22Λ−1A∗22

]
∆−1

2 A21

= −A∗21∆−1
2

[
∆2 −A22Λ−1A∗22

]
∆−1

2 A21.

Observe that the differential equation (3.6a) is equivalent to the reduced differential Riccati equation

(3.7a). Thus, the unique solution P
+

11(·) to (3.7a) is also the unique solution to (3.6a). Finally,

from (3.9), we deduce that the unique solution of (3.6b) is indeed given by

P 12(t) = −
(
A∗21P

+

22 + P
+

11(t)A12 + P
+

11(t)∆P
+

22

)(
A22 + ∆2P

+

22

)−1

, t ∈ [0, T ].

�

4. The Tikhonov Theorem and well-posedness of the generalised Riccati equation

The focus of this section is to establish existence, uniqueness and convergence results for the so-

lution P ε to the generalised Riccati equation (2.9). From Theorem 3.6, we saw that (P 11, P 12, P 22)

is a solution to the reduced system. It may be tempting to conclude that the solution of the reduced

system is the limit of the solution of the full system, however, not all conditions of the full system

are satisfied. Take for example, the terminal condition P ε22(T ) = 0. It is very rare that the equality

limε→0 P
ε
22(T ) = 0 = P 22(T ) holds. This discrepancy arises because of the degenerate nature of the

differential terms and is a featuring characteristic in singular perturbation problems. As we shall

see in Theorem 4.4, the reduced system is enough to characterise the limiting solution of the full

system over a subinterval [0, S], S < T but not over the entire interval [0, T ]. Heuristically, this is

because the reduced system (3.6) only captures the fast component of the limit.

To describe the slow component of the limit, we apply a change of time variable τ = (T − t)/ε
and consider the so-called boundary-layer system

dP̂12

dτ
= g1(0, P̂12 + h(0), P̂22 + P 22, 0), P̂12(0) = −h(0),(4.1a)

dP̂22

dτ
= g2(0, P̂12 + h(0), P̂22 + P 22, 0), P̂22(0) = −P 22.(4.1b)
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Here the function h : Sn1 → Rn1×n2 is defined as

(4.2) h(P11) := −(A∗21P 22 + P11A12 + P11∆P 22)(A22 + ∆2P 22)−1.

Recall from Proposition 3.4 and Theorem 3.6, that h(0) and P 22 are an isolated root of

g1(0, P 12, P 22, 0) = 0 and g2(0, P 12, P 22, 0) = 0,

respectively. It is clear from this that (P̂12, P̂22) = (0, 0) is an equilibrium of the boundary-layer

system. We would like to show this equilibrium is exponentially stable.

Let us introduce some notation. Denote S = A22 + ∆2P 22. We strengthen the stability assump-

tion on S.

Assumption 4.1. The matrix 1
2 (S∗ + S) is negative definite. That is, there exists a positive

constant γ such that 1
2 (S∗ + S) ≤ −γI

Indeed, under Assumption 4.1, the eigenvalues of the matrix S have negative real parts and the

stability requirement in Assumption 3.3 is satisfied. Define the region

Rδ =

{
P22 ∈ Sn2 :

1

2
[(S + ∆2P22)∗ + (S + ∆2P22)] ≤ δI

}
where 0 < δ < γ. It is clear that 0 ∈ Rδ and for all P22 ∈ Rδ,

(4.3)
1

2
[(S∗ + S) + (S + ∆2P22)∗ + (S + ∆2P22)] ≤ −(γ − δ)I < 0.

Denote Bδ,q2 as the largest closed ball of radius q2 contained within Rδ. To ensure the solution

converges, we assume that the initial value −P 22 lies in the interior of this ball.

Assumption 4.2. For some δ ∈ (0, γ), −P 22 is in the interior of closed ball Bδ,q2 .

Let Φ : Sn1 → Rn1×n2 be the mapping defined as

(4.4) Φ(P11) = A∗21 + P11∆ + h(P11)∆2

and let q1 be a positive constant such that q1 > e
|∆2|q2
γ−δ

(
|h(0)|+ |Φ(0)|q2

δ

)
+ |h(0)|. We denote Bq1

as the closed ball in Rn1×n2 of radius q1.

Lemma 4.3. Suppose that Assumptions 3.2, 3.3, 4.1 and 4.2 hold. Then there exists a unique

solution (P̂12(τ), P̂22(τ)) to the boundary-layer system (4.1) contained in Bq1 ×Bδ,q2 , for all τ ≥ 0,

which converges to (0, 0). Moreover, the equilibrium (0, 0) is exponentially stable with an estimated

region of attraction RA = {(P12, P22) : P22 ∈ Bδ,q2}. To be precise, there exists positive constants

k1, k2, which may depend on q2, γ, δ, such that for all initial values (P̂12(0), P̂22(0)) ∈ RA,

(4.5) |P̂12(τ)| ≤ k1e
−γτ |P̂12(0)|+ k2e

−(γ−δ)τ , ∀τ ≥ 0,
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and

(4.6) |P̂22(τ)| ≤ e−(γ−δ)τ |P̂22(0)|, ∀τ ≥ 0.

Proof. Evaluating the boundary-layer system (4.1), we have that
dP̂12

dτ
= P̂12S + Φ(0)P̂22 + P̂12∆2P̂22,(4.7a)

dP̂22

dτ
= S∗P̂22 + P̂22S + P̂22∆2P̂22.(4.7b)

Starting with (4.7b), differentiating the squared norm of P̂22, we have that

d

dτ
|P̂22|2 = 2

〈
dP̂22

dτ
, P̂22

〉
= 2〈S∗P̂22 + P̂22S + P̂22∆2P̂22, P̂22〉

= 〈S∗P̂22 + P̂22S, P̂22〉+ 〈(S + ∆2P̂22)∗P̂22 + P̂22(S + ∆2P̂22), P̂22〉.

Thus, for P̂22 ∈ Bδ,q2 ,

(4.8)
d

dτ
|P̂22(τ)|2 ≤ −2(γ − δ)|P̂22(τ)|2

which implies that P̂22(τ) is exponentially stable

(4.9) |P̂22(τ)| ≤ e−(γ−δ)τ |P̂22(0)|, ∀τ ≥ 0.

Since P̂22(0) = −P 22 is contained in the interior of the closed ball Bδ,q2 , the inequality (4.9) implies

that the continuous solutions P̂22(τ) of (4.2) are also contained in Bδ,q2 . Thus, the solution P̂22(τ)

exists for all τ ≥ 0.

Similarly for (4.7a), by the Cauchy-Schwartz inequality, we have that

d

dτ
|P̂12|2 = 2〈P̂12S, P̂12〉+ 2〈P̂12∆2P̂22, P̂12〉+ 2〈P̂12,Φ(0)P̂22〉

≤ −2γ|P̂12|2 + 2|∆2||P̂22||P̂12|2 + 2|Φ(0)||P̂22||P̂12|.

So for all P̂22 ∈ Bδ,q2 , we can apply (4.9) to obtain

d

dτ
|P̂12|2 ≤

(
2|∆2|e−(γ−δ)τ |P̂22(0)| − 2γ

)
|P̂12|2 + 2|Φ(0)|e−(γ−δ)τ |P̂22(0)||P̂12|

≤
(

2q2|∆2|e−(γ−δ)τ − 2γ
)
|P̂12|2 + 2|Φ(0)|q2e

−(γ−δ)τ |P̂12|.

Using the chain rule, we can show that d
dτ |P̂12|2 = 2|P̂12| ddτ |P̂12|. This implies that

d

dτ
|P̂12| ≤

(
q2|∆2|e−(γ−δ)τ − γ

)
|P̂12|+ |Φ(0)|q2e

−(γ−δ)τ .
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By a change of variations approach, we can show the above gives

|P̂12(τ)| ≤ e
q2|∆2|
γ−δ −γτ |P̂12(0)|+ |Φ(0)|q2

δ
e
q2|∆2|
γ−δ −(γ−δ)τ

= k1e
−γτ |P̂12(0)|+ k2e

−(γ−δ)τ

where k1 = e
|∆2|q2
γ−δ and k2 = |Φ(0)|q2

δ e
|∆2|q2
γ−δ . Hence, for all τ ≥ 0, the continuous solutions P̂12(τ)

of (4.1) are contained in the closed ball Bq1 of radius q1. This implies the solution P̂12(τ) exists

for all τ ≥ 0. The uniqueness of the solution to the boundary-layer system (4.1) follows from the

locally Lipschitz property of the functions g1 and g2. �

The following theorem is the main result of this paper.

Theorem 4.4. Suppose that Assumptions 3.2, 3.3, 4.1 and 4.2 hold. Let T > 0 be any finite time

horizon. Then there exists a positive constant ε∗ such that, for all 0 < ε < ε∗, the full system (3.2)

admits a unique solution (P ε11, P
ε
12, P

ε
22) ∈ C([0, T ];Sn1)× C([0, T ];Rn×m)× Sn2 , which satisfy the

estimates

P ε11(t)− P 11(t) = O(ε),

P ε12(t)− P 12(t)− P̂12

(
T − t
ε

)
= O(ε),

P ε22(t)− P 22 − P̂22

(
T − t
ε

)
= O(ε),

(4.10)

uniformly in t ∈ [0, T ]. Here (P 11, P 12, P 22) is the solution to the reduced system (3.6) defined in

Theorem 3.6 and (P̂12(τ), P̂22(τ)) is the solution of the boundary-layer system (4.1).

The proof proceeds in a similar manner to the proof of the Tikhonov theorem in [14]. The main

difference is that in [14], the authors apply results from Lyapunov theory and in doing so, require

a stronger assumptions on the terminal values of the full system. More specifically, it is possible

0 is in a smaller neighbourhood of −P 22 than was specified in Assumption 4.2. In this paper, we

use a direct approach to show that Assumption 4.2 is indeed sufficient. Section 7 of this paper is

dedicated to the proof.

The following corollary describes the existence, uniqueness and convergence of the solution of

the generalised Riccati equation (2.9).

Theorem 4.5. Suppose that Assumptions 3.2, 3.3, 4.1 and 4.2 hold. Let T > 0 be any finite time

horizon and ε∗ be the small positive parameter defined in Theorem 4.4. If 0 < ε < ε∗ then the
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Riccati equation (2.9) admits a unique solution

P ε(t) =

(
P ε11(t) εP ε12(t)

ε(P ε12(t))∗ εP ε22(t)

)
, t ∈ [0, T ],

in the space C([0, T ];Sn), where (P ε11(t), P ε12(t), P ε22(t)) are the unique solutions of the full system

(3.2) described in Theorem 4.4. Moreover, P ε possesses the asymptotic property

P ε(t)−

(
P 11(t) 0

0 0

)
= O(ε), ∀t ∈ [0, T ],

where P 11(·) is the unique solution of the reduced differential Riccati equation (3.7a).

Proof. For 0 < ε < ε∗, the existence of a solution to generalised Riccati equation (2.9) follows

from Theorem 4.4 and the first-order form (3.1). The uniqueness follows from the locally Lipschitz

property of the non-linear terms. We are left to prove the convergence result. For all i = 1, 2,

t ∈ [0, T ] and 0 < ε < ε∗, Lemma 4.3 implies that εP̂i2
(
T−t
ε

)
= O(ε). Hence by Theorem 4.4, for

all i = 1, 2, t ∈ [0, T ] and 0 < ε < ε∗, we have

εP εi2(t) = O(ε).

This completes the proof. �

The following corollary to Theorem 4.4 gives a useful estimate for the next section.

Corollary 4.6. Suppose that Assumptions 3.2, 3.3, 4.1 and 4.2 hold. Let T > 0 be any finite time

horizon and ε∗ be the small positive parameter defined in Theorem 4.4. Then for any positive integer

j, there exists a positive constant K(T, j), which depends on T and j, such that for all 0 < ε < ε∗

and i = 1, 2

(4.11)

∫ T

0

|P εi2(t)− P i2(t)|jdt ≤ εK(T, j).

Proof. Fix T > 0 and let t ∈ [0, T ]. For all i = 1, 2, Lemma 4.3 and Theorem 4.4 imply that

|P εi2(t)− P i2(t)| ≤ εK1(T ) +
∣∣∣P̂i2(T − t

ε

) ∣∣∣
≤ εK1(T ) +K2e

− (γ−δ)(T−t)
ε

for some positive constants K1(T ), which depends on T , and K2. Hence, for all positive integers j

|P εi2(t)− P i2(t)|j ≤ 2j−1
(
εjK1(T )j +Kj

2e
− j(γ−δ)(T−t)ε

)
.

The result follows from integrating the above expression. �
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5. Approximating saddle point and estimation of the value function

In this section, we propose an approximate feedback saddle point to Problem (SLQG) based

on the reduced system and demonstrate that the objective function associated with this pair of

strategies convergences to the value function with a rate of order O(ε). We preface that we denote

K as a positive constant and are not necessarily the same in each instance. In situations where K

may depend on another relevant constant, say T , then we will denote this as K(T ).

From Theorem 2.3, the feedback saddle point of Problem (SLQG) is given byûε1(t) = φ̂1(t, X̂ε
1(t), X̂ε

2(t), ε) = F̂ ε11(t)X̂ε
1(t) + F̂ ε12(t)X̂ε

2(t), t ∈ [0, T ],

ûε2(t) = φ̂2(t, X̂ε
1(t), X̂ε

2(t), ε) = F̂ ε21(t)X̂ε
1(t) + F̂ ε22(t)X̂ε

2(t), t ∈ [0, T ],
(5.1)

where (
F̂ ε11(t) F̂ ε12(t)

F̂ ε21(t) F̂ ε22(t)

)
=

(
B∗11P

ε
11(t) +B∗21(P ε12(t))∗ εB∗11P

ε
12(t) +B∗21P

ε
22(t)

− [B∗12P
ε
11(t) +B∗22(P ε12(t))∗] − [εB∗12P

ε
12(t) +B∗22P

ε
22(t)]

)

are feedback operators and X̂ε
1 and X̂ε

2 are the solution of the state equations
dX̂ε

1(t) =
[
(A11 + ∆1P

ε
11 + ∆(P ε12)∗) X̂ε

1(t) + (A12 + ε∆1P
ε
12 + ∆P ε22) X̂ε

2(t)
]
dt

+σ1dW1(t),

X̂ε
1(0) = x1,

(5.2)

and 
dX̂ε

2(t) = 1
ε

[
(A21 + ∆∗P ε11 + ∆2(P ε12)∗) X̂ε

1(t) + (A22 + ε∆∗P ε12 + ∆2P
ε
22) X̂ε

2(t)
]
dt

+ 1√
ε
σ2dW2(t),

X̂ε
2(0) = x2.

(5.3)

We construct an approximate feedback saddle point uε(·) = (uε1(·), uε2(·)) by formally setting ε = 0

in the feedback operator of (5.1)uε1(t) := φ̂1(t,X
ε

1(t), X
ε

2(t), 0) = F 11(t)X
ε

1(t) + F 12X
ε

2(t), t ∈ [0, T ],

uε2(t) := φ̂2(t,X
ε

1(t), X
ε

2(t), 0) = F 21(t)X
ε

1(t) + F 22X
ε

2(t), t ∈ [0, T ],
(5.4)

where (
F 11(t) F 12

F 21(t) F 22

)
=

(
B∗11P 11(t) +B∗21(P 12(t))∗ B∗21P 22

−
[
B∗12P 11(t) +B∗22(P 12(t))∗

]
−B∗22P 22

)



SINGULAR PERTURBATION OF STOCHASTIC DIFFERENTIAL GAMES 21

and X
ε

1 and X
ε

2 are the solution of the following state equationsdX
ε

1(t) =
[(
A11 + ∆1P 11(t) + ∆P 12(t)∗

)
X
ε

1(t) + (A12 + ∆P 22)X
ε

2(t)
]
dt+ σ1dW1(t),

X
ε

1(0) = x1,
(5.5)

and

dX
ε

2(t) = 1
ε

[(
A21 + ∆∗P 11(t) + ∆2P 12(t)∗

)
X
ε

1(t) +
(
A22 + ∆2P 22

)
X
ε

2(t)
]
dt+ 1√

ε
σ2dW2(t),

X
ε

2(0) = x2.

(5.6)

In the following Lemma, we show that the feedback operators of (ûε1, û
ε
2) and (uε1, u

ε
2) converge in

L2.

Lemma 5.1. Suppose that Assumptions 3.2, 3.3, 4.1 and 4.2 hold. Let T > 0 be any finite time

horizon and ε∗ be the small positive parameter defined in Theorem 4.4. Then there exists a positive

constant K(T ), which depends on T , such that for all i, j = 1, 2 and 0 < ε < ε∗

(5.7)

∫ T

0

|F̂ εij(t)− F ij(t)|2dt ≤ εK(T ).

Proof. The result follows from Theorem 4.5 and Corollary 4.6. �

Lemma 5.2. Suppose that Assumptions 3.2, 3.3, 4.1 and 4.2 hold. Then for any finite T > 0

(5.8) sup
ε∈(0,1]

sup
t∈[0,T ]

E
[
|Xε

1(t)|2 + |Xε

2(t)|2
]
<∞.

Proof. Fix ε ∈ (0, 1]. From the slow state process (5.5), for all t ∈ [0, T ],

|Xε

1(t)| ≤ |x1|+
∫ t

0

[
|A11 + ∆1P 11(s) + ∆(P 12(s))∗| |Xε

1(s)|+ |A12 + ∆P 22| |X
ε

2(s)|
]
ds

+ |σ1||W1(t)|.

By Theorem 3.6, the processes P 11(t) and P 12(t) are uniformly bounded over the interval t ∈ [0, T ].

Thus, we have that

|Xε

1(t)| ≤ |x1|+K(T )

∫ t

0

[
|Xε

1(s)|+ |Xε

2(s)|
]
ds+ |σ1||W1(t)|.

Squaring the above inequality, and applying Ito’s Isometry, we can bound the following expectation

(5.9) E
[
|Xε

1(t)|2
]
≤ 3|x1|2 + 3|σ1|2nt+K(T )

∫ t

0

E
[
|Xε

1(s)|2 + |Xε

2(s)|2
]
ds.
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Now we turn to the fast state process (5.6). Fix t ∈ [0, T ]. Applying Ito’s lemma to the mapping

s 7→ e(A22+∆2P 22) t−sε X
ε

2(s), we have that

d
(
e(A22+∆2P 22) t−sε X

ε

2(s)
)

= −1

ε
(A22 + ∆2P 22)e(A22+∆2P 22) t−sε X

ε

2(s)ds+ e(A22+∆2P 22) t−sε dX
ε

2(s)

=
1

ε
e(A22+∆2P 22) t−sε

[(
A21 + ∆∗P 11(s) + ∆2(P 12(s))∗

)
X
ε

1(s)
]
ds+

1√
ε
e(A22+∆2P 22) t−sε σ2dW2(s).

Thus, by another application of Ito’s lemma to the mapping s 7→ |e(A22+∆2P 22) t−sε X
ε

2(s)|2

d|e(A22+∆2P 22) t−sε X
ε

2(s)|2

= d
〈
e(A22+∆2P 22) t−sε X

ε

2(s), e(A22+∆2P 22) t−sε X
ε

2(s)
〉

= 2
〈
e(A22+∆2P 22) t−sε X

ε

2(s), d
(
e(A22+∆2P 22) t−sε X

ε

2(s)
)〉

+
〈
d
(
e(A22+∆2P 22) t−sε X

ε

2(s)
)
, d
(
e(A22+∆2P 22) t−sε X

ε

2(s)
)〉

=
1

ε
|e(A22+∆2P 22) t−sε σ2|2ds+

2√
ε

〈
e(A22+∆2P 22) t−sε X

ε

2(s), e(A22+∆2P 22) t−sε σ2dW2(s)
〉

+
2

ε

〈
e(A22+∆2P 22) t−sε X

ε

2(s), e(A22+∆2P 22) t−sε
(
A21 + ∆∗P 11(s) + ∆2(P 12(s))∗

)
X
ε

1(s)
〉
ds.

Integrating from 0 to t and taking the expectation, we have that

E
[
|Xε

2(t)|2
]

= |e(A22+∆2P 22) tεx2|2 +
1

ε

∫ t

0

|e(A22+∆2P 22) t−sε σ2|2ds

+
2

ε
E
∫ t

0

〈
e(A22+∆2P 22) t−sε X

ε

2(s), e(A22+∆2P 22) t−sε
(
A21 + ∆∗P 11(s) + ∆2(P 12(s))∗

)
X
ε

1(s)
〉
ds

+
2√
ε
E
∫ t

0

〈
e(A22+∆2P 22) t−sε X

ε

2(s), e(A22+∆2P 22) t−sε σ2dW2(s)
〉
.

Recall from Theorem 3.6 that P 11(t) and P 12(t) are uniformly bounded on the interval t ∈ [0, T ].

Thus, for fixed ε ∈ (0, 1], X
ε

2 is the solution of a linear stochastic differential equation with drift and

diffusion terms satisfying Lipscthiz and linear growth conditions. As result, X
ε

2 is square integrable

for fixed ε ∈ (0, 1] (see for example Theorem 5.2.1 of [20]) and subsequently,

(5.10)
2√
ε
E
∫ t

0

〈
e(A22+∆2P 22) t−sε X

ε

2(s), e(A22+∆2P 22) t−sε σ2dW2(s)
〉

= 0.

From Assumption 3.3, A22 + ∆2P 22 has eigenvalues with negative real parts. Thus there exists

positive constants M and γ such that

(5.11) |e(A22+∆2P 22) tε | ≤Me−
γt
ε , ∀t ∈ [0, T ].
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Using (5.10), (5.11), the uniform boundedness of P 11 and P 12, and the Cauchy-Schwartz inequality,

we have that

E
[
|Xε

2(t)|2
]

≤M2e−
2γt
ε |x2|2 +

M2|σ2|2

ε

∫ t

0

e−
2γ(t−s)

ε ds+
K(T )

ε

∫ t

0

e−
2γ(t−s)

ε E
[
|Xε

1(s)|2 + |Xε

2(s)|2
]
ds

= M2e−
2γt
ε |x2|2 +

M2|σ2|2

2γ
(1− e−

2γt
ε ) +

K(T )

ε

∫ t

0

e−
2γ(t−s)

ε E
[
|Xε

1(s)|2 + |Xε

2(s)|2
]
ds

≤M2|x2|2 +
M2|σ2|2

2γ
+
K(T )

ε

∫ t

0

e−
2γ(t−s)

ε E
[
|Xε

1(s)|2 + |Xε

2(s)|2
]
ds

Summing the above expression with (5.9), we have that

E
[
|Xε

1(t)|2 + |Xε

2(t)|2
]

≤ 4|x1|2 + 4|σ1|2nT +M2|x2|2 +
M2|σ2|2

2γ
+K(T )

∫ t

0

(
1 +

1

ε
e−

2γ(t−s)
ε

)
E
[
|Xε

1(s)|2 + |Xε

2(s)|2
]
ds.

(5.12)

Hence, by applying Gronwall’s inequality (see Theorem 15 of [4]), we have that for all t ∈ [0, T ]

E
[
|Xε

1(t)|2 + |Xε

2(t)|2
]

≤
(

4|x1|2 + 4|σ1|2nT +M2|x2|2 +
M2|σ2|2

2γ

)
exp

[
K(T )

(
t+

1

2γ

(
1− e−

2γt
ε

))]
.

Thus, for fixed ε ∈ (0, 1]

sup
t∈[0,T ]

E
[
|Xε

1(t)|2 + |Xε

2(t)|2
]
≤
(

4|x1|2 + 4|σ1|2nT +M2|x2|2 +
M2|σ2|2

2γ

)
exp

[
K(T )

(
T +

1

2γ

)]
:= K ′(T ).

Since K ′(T ) is independent of ε, we obtain

sup
ε∈(0,1]

sup
t∈[0,T ]

E
[
|Xε

1(t)|2 + |Xε

2(t)|2
]
≤ K ′(T ).

�

The following theorem demonstrates that the objective function at the approximate feedback

saddle point (5.4) is near the value of Problem (SLQG) with order O(ε).

Theorem 5.3. Suppose that Assumptions 3.2, 3.3, 4.1 and 4.2 hold. Let T > 0 be any finite time

horizon and ε∗ be the small positive parameter defined in Theorem 4.4. Then for all 0 < ε < ε∗

(5.13) Jε(x1, x2; ûε1, û
ε
2)− Jε(x1, x2;uε1, u

ε
2) = O(ε).
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Proof. Similar to the proof in Theorem 2.3, we apply Ito’s lemma to 〈P ε(t)Xε(t), Xε(t)〉 where Xε

is defined in (2.3) and by a completion of squares, we have that

Jε(x1, x2;u1, u2)

= −1

2
E
∫ T

0

[
|u1(t)− F̂ ε11(t)X1(t)− F̂ ε12(t)Xε

2(t)|2 + |u2(t)− F̂ ε21(t)X1(t)− F̂ ε22(t)Xε
2(t)|2

]
dt

+
1

2
〈P ε(0)x, x〉+

1

2

∫ T

0

〈P ε(t)σε, σε〉 dt.

Thus, applying the approximate feedback saddle point (5.4), we obtain

|Jε(x1, x2;uε1, u
ε
2)− Jε(x1, x2; ûε1, û

ε
2)|

≤ E
∫ T

0

[∣∣∣(F 11(t)− F̂ ε11(t))X
ε

1(t)
∣∣∣2 +

∣∣∣(F 12(t)− F̂ ε12(t))X
ε

2(t)
∣∣∣2] dt

+ E
∫ T

0

[∣∣∣(F 21(t)− F̂ ε21(t))X
ε

1(t)
∣∣∣2 +

∣∣∣(F 22 − F̂ ε22(t))X
ε

2(t)
∣∣∣2] dt.

The result then follows from an application of Lemma 5.1 and Lemma 5.2. �

The follow theorem gives an expression for the limiting value function of Problem (SLQG).

Theorem 5.4. Suppose that Assumptions 3.2, 3.3, 4.1 and 4.2 hold. Let T > 0 be any finite time

horizon and ε∗ be the small positive parameter defined in Theorem 4.4. Define

V (x1, x2) =
1

2

〈
P 11(0)x1, x1

〉
+

1

2

∫ T

0

〈P 11(t)σ1, σ1〉dt+
T

2
〈P 22σ2, σ2〉.

Then for all 0 < ε < ε∗,

(5.14) Jε(x1, x2; ûε1, û
ε
2)− V (x1, x2) = O(ε).

Proof. From Theorem 2.3,

Jε(x1, x2; ûε1, û
ε
2)− V (x1, x2) =

1

2
〈P ε11(0)x1, x1〉+

ε

2
[2 〈x1, P

ε
12(0)x2〉+ 〈P ε22(0)x2, x2〉]

+
1

2

∫ T

0

[
〈P ε11(t)σ1, σ1〉+ 〈P ε22(t)σ2, σ2〉

]
dt

− 1

2

〈
P 11(0)x, x

〉
− 1

2

∫ T

0

〈P 11(t)σ1, σ1〉dt−
T

2
〈P 22σ2, σ2〉.

From Theorem 4.4, we can simplify the above as

|Jε(x1, x2; ûε1, û
ε
2)− V (x1, x2)| ≤ εK(x1, x2, T ) +

1

2

∫ T

0

∣∣∣ 〈(P 22(t)− P 22)σ2, σ2

〉 ∣∣∣dt
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where K(x1, x2, T ) is a constant which depends on the parameters x1, x2, T . By the Cauchy-

Schwartz inequality, we have that

|Jε(x1, x2; ûε1, û
ε
2)− V (x1, x2)| ≤ εK(x1, x2, T ) +

|σ2|2

2

∫ T

0

|P 22(t)− P 22|dt.

Finally, an application of Corollary 4.6 gives the desired result. �

Remark 5.5. It should be pointed out that two other common formulations of differential games are

the deterministic case and also the stochastic case with multiplicative but no additive noise, see for

example [2, 17, 29]. In both these cases, the value of the differential game is given as 1
2 〈P

ε(0)x, x〉
and subsequently, the limit of the value is 1

2 〈P 11(0)x1, x1〉, which is devoid of the fast component

of the differential game. As we see in the above result, when additive noise is present, the fast

component P 22 of the differential game makes a contribution to the limiting value.

6. One dimensional example

In this section, we highlight our results for Problem (SLQG) when ki = mi = ni = 1 for i = 1, 2.

The main observation in this case is that the solvability of the reduced differential and algebraic

Riccati equations (3.7a)-(3.7b)
dP 11

dt
+ 2ÃP 11 +MP

2

11 +N = 0, P 11(T ) = 0,(6.1a)

∆2P
2

22 + 2A22P 22 +Q2 = 0,(6.1b)

where 
Ã = A11 + ∆Q2A21−A12A21A22

A2
22−∆2Q2

,

M = ∆1 +
∆2A

2
12−2∆A12A22+∆2Q2

A2
22−∆2Q2

,

N = Q1 +
Q2A

2
21

A2
22−∆2Q2

,

has been well studied. Proposition 6.6.1 of [13] states that reduced differential Riccati equation

(6.1a) admits an unique solution P 11 ∈ C([0, T ];R) if and only if either condition hold:

(6.2) Ã2 −MN ≥ 0, or Ã−
√
|Ã2 −MN | ≤ 0.

For the reduced algebraic equation (6.1b), it is sufficient to assume that

(6.3) ∆2Q2 < 0.

In this case, it is straightforward to check that there exists an unique stabilising solution

P 22 =
−A22 −

√
A2

22 −∆2Q2

∆2
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and an unstable solution

P
u

22 =
−A22 +

√
A2

22 −∆2Q2

∆2
.

Under (6.2) and (6.3), the requirements of Assumptions 3.2, 3.3 and 4.1 are satisfied. To see that

Assumption 4.2 is satisfied, let us begin by setting γ := −S. Then

Rδ =

(−∞, δ−S∆2
], if ∆2 > 0,

[ δ−S∆2
,∞), if ∆2 < 0.

We can lengthen the interval by heuristically considering the limit δ → γ of Rδ as

lim
δ→γ
Rδ =

(−∞, −2S
∆2

), if ∆2 > 0,

(−2S
∆2

,∞), if ∆2 < 0.

Note here that the stable equilibrium 0 of the boundary-layer problem is contained in Rδ and the

unstable equilibrium P
u

22−P 22 = −2S
∆2

of the boundary-layer problem is the boundary of limδ→γ Rδ.
This implies that limδ→γ Rδ is the exact region of attraction for the boundary-layer problem and

furthermore, contains the values P 22 and −P 22. Hence there exists some δ ∈ (0, γ) such that P 22

and −P 22 are contained Rδ – satisfying Assumption 4.2.

Thus, by Theorem 4.5, for any T > 0, there exists ε∗ ∈ (0, 1] such that for all ε ∈ (0, ε∗) the

generalised Riccati equationṖ ε + (Aε)∗P ε + P εAε − P εBεR−1(Bε)∗P ε +Q = 0,

P ε(T ) = 0.

admits a unique solution P ε ∈ C([0, T ];S2). Consequently, the existence and uniqueness of a feed-

back saddle point and value follow from Theorem 2.3, which also possess the asymptotic properties

from Section 5.

7. Proof of Theorem 4.4

For convenience, we begin by applying the change of variable Zε1(t) = P ε12(t) − h(P ε11(t)) and

Zε2(t) = P ε22(t)− P 22 to the full system (3.2) and reformulating it as a initial value problem

dP ε11

dt
= f(P ε11, Z

ε
1 + h(P ε11), Zε2 + P 22, ε), P ε11(0) = 0,(7.1a)

ε
dZε1
dt

= g1(P ε11, Z
ε
1 + h(P ε11), Zε2 + P 22, ε)

− ε ∂h

∂P11
(P ε11)f(P ε11, Z

ε
1 + h(P ε11), Zε2 + P 22, ε), Zε1(0) = −h(0),

(7.1b)

ε
dZε2
dt

= g2(P ε11, Z
ε
1 + h(P ε11), Zε2 + P 22, ε), Zε2(0) = −P 22.(7.1c)
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Here we have used a slight abuse of notation in the time variable t to change a terminal value

problem to an initial value problem. i.e. t = T − t. Recall, from Assumption 3.3 and Theorem 3.6

that P 11(t) is the unique solution of

dP 11

dt
= f(P 11, h(P 11), P 22, 0), P 11(0) = 0.

Let p0 be a positive constant such that |P 11(t)| ≤ p0 for all t ∈ [0, T ] and define the closed ball

Bp := {P11 ∈ Sn1 | |P11(t)| ≤ p, ∀t ∈ [0, T ]} where p is arbitrarily chosen such that p > p0. In

order to show the trajectory Zε1(t) does not blow up on the interval [0, T ], we will require that P ε11

is contained in the closed ball Bp. However, this compactness result has yet to be proven. To work

around this, we consider the smooth function ψ : Sn1 → [0, 1] defined such that ψ(P11) = 1 when

|P11| ≤ 1
2 (p0 + p) and ψ(P11) = 0 when |P11| ≥ p. By heuristically replacing P11 with P11ψ(P11) in

the full system (7.1), we obtain the following modified full system

dP ε11

dt
= f̃(P ε11, Z

ε
1, Z

ε
2, ε), P ε11(0) = 0,(7.2a)

ε
dZε1
dt

= g̃1(P ε11, Z
ε
1, Z

ε
2, ε), Zε1(0) = −h(0),(7.2b)

ε
dZε2
dt

= g̃2(P ε11, Z
ε
1, Z

ε
2, ε), Zε2(0) = −P 22,(7.2c)

where the functions f̃ , g̃1 and g̃2 are defined as

f̃(P11, Z1, Z2, ε) = f(P11ψ(P11), Z1 + h(P11ψ(P11)), Z2 + P 22, ε)

g̃1(P11, Z1, Z2, ε) = g1(P11ψ(P11), Z1 + h(P11ψ(P11)), Z2 + P 22, ε)

− ε ∂h

∂P11
(P11ψ(P11))f(P11ψ(P11), Z1 + h(P11ψ(P11)), Z2 + P 22, ε)

g̃2(P11, Z1, Z2, ε) = g2(P11ψ(P11), Z1 + h(P11ψ(P11)), Z2 + P 22, ε).

It is clear that when |P11| ≤ 1
2 (p0 + p), the modified full system (7.2) is identical to the original

full system (7.1). Moreover, as P 11(t) satisfies |P 11(t)| < 1
2 (p0 + p) for all t ∈ [0, T ], it is also the

solution of
dP 11

dt
= f̃(P 11, 0, 0, 0), P 11(0) = 0.

It is apparent that the function ψ is chosen to ensure that |P11ψ(P11)| is bounded by p for all

P11 ∈ Sn1 . Thus, if we find a solution to the modified full system (7.2) with |P ε11(t)| ≤ 1
2 (p0 + p)

for all t ∈ [0, T ], then it is also a solution to the original full system (7.1). Moreover, by the locally

Lipschitz property of f, g1 and g2 and the boundedness of ∂h/∂P11 on Bp, the solution to (7.2) is

also the unique solution to the original full system (7.1).

The remainder of the proof can be outlined in four parts: For sufficiently small ε,
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I. The continuous solutions (Zε1, Z
ε
2) are contained within the compact region B2q1 × Bδ,q2 ,

for all t ∈ [0, T ], uniformly in P11 ∈ Sn1 . In other words, (Zε1, Z
ε
2) is well-defined on [0, T ].

Here, we note that q1 can be chosen to be arbitrarily large.

II. The solution P ε11(t) is well-defined and continuous on [0, T ], and converges to P 11(t), for all

t ∈ [0, T ], at a rate of O(ε). Moreover, |P ε11(t)| ≤ 1
2 (p0 +p) holds for all t ∈ [0, T ]. Note that

once this part is proven, the original and modified full systems will have the same solutions.

III. For all t ∈ [0, T ], the solutions (Zε1(t), Zε2(t)) converge to the solution (P̂12(t/ε), P̂22(t/ε)) of

the boundary-layer problem (4.1) at a rate O(ε).

IV. Using the Lipschitz property of h, we can replace h(P ε11) with h(P 11) to complete the proof.

Part I: Existence and uniqueness of Zε1, Z
ε
2

In this part, we will show the existence and uniqueness of Zε1 and Zε2 in (7.2). That is, the

solution to

dZε1
dt

=
1

ε
g̃1(P ε11, Z

ε
1, Z

ε
2, ε), Zε1(0) = −h(0),

dZε2
dt

=
1

ε
g̃2(P ε11, Z

ε
1, Z

ε
2, ε), Zε2(0) = −P 22.

(7.3)

Adding and subtracting g̃i(P
ε
11, Z

ε
1, Z

ε
2, 0), we have that

dZε1
dt

=
1

ε
g̃1(P ε11, Z

ε
1, Z

ε
2, 0) +

1

ε
[g̃1(P ε11, Z

ε
1, Z

ε
2, ε)− g̃1(P ε11, Z

ε
1, Z

ε
2, 0)] , Zε1(0) = −h(0),

dZε2
dt

=
1

ε
g̃2(P ε11, Z

ε
1, Z

ε
2, 0) +

1

ε
[g̃2(P ε11, Z

ε
1, Z

ε
2, ε)− g̃2(P ε11, Z

ε
1, Z

ε
2, 0)] , Zε2(0) = −P 22.

For all (Zε1, Z
ε
2) ∈ B2q1 × Bδ,q2 , the functions g̃i are Lipschitz with respect to ε. That is, exists

positive constants M1,M2, which may depend on p, q1, q2, δ and T , such that

|g̃1(P ε11, Z
ε
1, Z

ε
2, ε)− g̃1(P ε11, Z

ε
1, Z

ε
2, 0)| ≤ εM1,

|g̃2(P ε11, Z
ε
1, Z

ε
2, ε)− g̃2(P ε11, Z

ε
1, Z

ε
2, 0)| ≤ εM2.

Then we have that

d|Zε1|2

dt
≤ 2

ε
〈Zε1, Zε1S + Φ(P ε11ψ(P ε11))Zε2 + Zε1∆2Z

ε
2〉+ 2M1|Zε1|,

d|Zε2|2

dt
≤ 2

ε
〈Zε2, S∗Zε2 + Zε2S + Zε2∆2Z

ε
2〉+ 2M2|Zε2|,

where Φ : Sn1 → Rn1×n2 is the mapping defined as

(7.4) Φ(P11) = A∗21 + P11∆ + h(P11)∆2.
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Note that the function Φ(P11ψ(P11)) is uniformly bounded with respect to P11 ∈ Sn1 , say by cp.

For all (Zε1, Z
ε
2) ∈ B2q1 ×Bδ,q2 , we can apply the Cauchy-Schwartz inequality to obtain

d|Zε1|2

dt
≤ −2

ε
(γ − |∆2||Zε2|) |Zε1|2 +

2cp
ε
|Zε1||Zε2|+ 2M1|Zε1|,

d|Zε2|2

dt
≤ −2(γ − δ)

ε
|Zε2|2 + 2M2|Zε2|.

Applying the chain rule, we obtain

(7.5)
d|Zε1|
dt
≤ −1

ε
(γ − |∆2||Zε2|) |Zε1|+

cp
ε
|Zε2|+M1,

(7.6)
d|Zε2|
dt
≤ − (γ − δ)

ε
|Zε2|+M2.

Hence (7.6) implies that

(7.7) |Zε2(t)| ≤ e−
(γ−δ)t
ε |Zε2(0)|+ εM2

γ − δ

(
1− e−

(γ−δ)t
ε

)
, ∀t ∈ [0, T ]

and simplifies to

(7.8) |Zε2(t)| ≤ e−
(γ−δ)t
ε |Zε2(0)|+ εM2

γ − δ
, ∀t ∈ [0, T ].

By Assumption 4.2, Zε2(0) = −P 22 is in the interior of the ball Bδ,q2 (i.e. |P 22| < q2). Hence, for

sufficiently small ε, the continuous solution Zε2(t) is contained in the interior of the closed ball Bδ,q2

for all t ∈ [0, T ]. On the other hand, substituting (7.7) into (7.5) gives

d|Zε1|
dt
≤ −1

ε

[
γ − |∆2|q2e

− (γ−δ)t
ε − εM2|∆2|

γ − δ

]
|Zε1|+

cp
ε
e−

(γ−δ)t
ε q2 +M1 +

M2cp
γ − δ

(
1− e−

(γ−δ)t
ε

)
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Hence

|Zε1(t)| ≤ exp

(
−γt
ε

+
M2|∆2|t
γ − δ

+
|∆2|q2

γ − δ

(
1− e−

(γ−δ)t
ε

))
|Zε1(0)|

+

∫ t

0

exp

(
−γ(t− s)

ε
+
M2|∆2|(t− s)

γ − δ
+
|∆2|q2

γ − δ

(
e−

(γ−δ)s
ε − e−

(γ−δ)t
ε

))
[
cp
ε
e−

(γ−δ)s
ε q2 +M1 +

M2cp
γ − δ

(
1− e−

(γ−δ)s
ε

)]
ds

≤ e
|∆2|q2
γ−δ e

(
M2|∆2|
γ−δ −

γ
ε

)
t|Zε1(0)|

+ e
|∆2|q2
γ−δ e

(
M2|∆2|
γ−δ −

γ
ε

)
t
∫ t

0

e
γs
ε

[
cp
ε
e−

(γ−δ)s
ε q2 +M1 +

M2cp
γ − δ

]
ds

= e
|∆2|q2
γ−δ e

(
M2|∆2|
γ−δ −

γ
ε

)
t|Zε1(0)|

+ e
|∆2|q2
γ−δ e

(
M2|∆2|
γ−δ −

γ
ε

)
t
∫ t

0

[
cpq2

ε
e−

δs
ε + e

γs
ε

(
M1 +

M2cp
γ − δ

)]
ds.

Evaluating the integral gives

(7.9) |Zε1(t)| ≤ e
|∆2|q2
γ−δ e

(
M2|∆2|
γ−δ −

γ
ε

)
t
[
|Zε1(0)|+ cpq2

δ

]
+ εe

|∆2|q2
γ−δ e

(
M2|∆2|
γ−δ −

(γ−δ)
ε

)
t
[
M1 +

M2cp
γ − δ

]
.

Set q1 > e
|∆2|q2
γ−δ

(
|h(0)|+ cpq2

δ

)
+ |h(0)| and choose ε be sufficiently small such that

εe
|∆2|q2
γ−δ

[
M1 +

M2cp
γ − δ

]
< q1 and

M2|∆2|
γ − δ

− (γ − δ)
ε

< 0.

As a result

(7.10) |Zε1(t)| ≤ e
|∆2|q2
γ−δ

[
|h(0)|+ cpq2

δ

]
+ εe

|∆2|q2
γ−δ

[
M1 +

M2cp
γ − δ

]
< 2q1.

Hence, for sufficiently small ε, the continuous solution Zε1(t) is contained in interior of the closed

ball of radius 2q1 for all t ∈ [0, T ].

In this part, we have shown that, for sufficiently small ε, if (Zε1(t), Zε2(t)) ∈ B2q1 × Bδ,q2 for all

t ∈ [0, T ] then (Zε1(t), Zε2(t)) must lie in the interior of the closed set B2q1 × Bδ,q2 for all t ∈ [0, T ].

As a result, for sufficiently small ε, (Zε1(t), Zε2(t)) is indeed contained in the closed set B2q1 ×Bδ,q2
for all t ∈ [0, T ]. For otherwise, because of the continuity of (Zε1, Z

ε
2), there would exist t ∈ (0, T ]

such that say |Zε1(t)| = 2q1. However, as we have just established, this implies that |Zε1(t)| < 2q1,

which is a contradiction.

Part II: Existence, uniqueness and convergence of P ε11
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In this part, we denote Ni as positive constants, which may depend on the parameters p, q1, q2, δ

and T . Consider the slow component of the modified full system (7.2) given by

(7.11)
dP ε11

dt
= f̃(P ε11, Z

ε
1, Z

ε
2, ε), P ε11(0) = 0.

Recall that by Assumption 3.3, the function P 11(t), t ∈ [0, T ] is a solution to the reduced equation

(7.12)
dP 11

dt
= f̃(P 11, 0, 0, 0), P 11(0) = 0.

Since, for all (P11, Z
ε
1(t), Zε2(t)) ∈ Sn1 × B2q1 × Bδ,q2 , the function f̃ is Lipschitz continuous with

respect to its parameters, we have that

|f̃(P ε11, Z
ε
1, Z

ε
2, ε)− f̃(P 11, 0, 0, 0)| ≤ εN1 +N2|Zε1|+N3|Zε2|+N4|P ε11 − P 11|.

Let yε(t) = P ε11(t)− P 11(t). Then

yε(t) =

∫ t

0

[
f̃(P ε11(s), Zε1(s), Zε2(s), ε)− f̃(P 11(s), 0, 0, 0)

]
ds.

Taking the norm

|yε(t)| ≤
∫ t

0

|f̃(P ε11(s), Zε1(s), Zε2(s), ε)− f̃(P 11(s), 0, 0, 0)|ds

≤
∫ t

0

[εN1 +N2|Zε1(s)|+N3|Zε2(s)|+N4|yε(s)|] ds.

From (7.8) and (7.9)

|yε(t)| ≤
∫ t

0

[
εN5 +N6e

− (γ−δ)s
ε +N4|yε(s)|

]
ds

= εN5t+
εN6

γ − δ

(
1− e−

(γ−δ)t
ε

)
+N4

∫ t

0

|yε(s)|ds

≤ εN5T +
εN6

γ − δ
+N4

∫ t

0

|yε(s)|ds.

Finally, Gronwall’s inequality gives

(7.13) |P ε11(t)− P 11(t)| ≤ εN7(1 + T )eN4T

Hence, for sufficiently small ε, we obtain |P ε11(t)| < 1
2 (p0 + p) for all t ∈ [0, T ]. This implies that

the continuous solution P ε11(t) exists for all t ∈ [0, T ], and satisfies the above estimate.

Part III: Convergence of Zε1, Z
ε
2
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In this part, Li denotes a positive constant, which may depend on the parameters p, q1, q2, δ and

T . Let us work on the time scale τ = t/ε. Denote the difference vεi (τ) = Zεi (ετ)− P̂i2(τ) for i = 1, 2.

Differentiating vε2(τ) with respect to τ gives

dvε2
dτ

= g̃2(P ε11, Z
ε
1, Z

ε
2, ε)− g̃2(0, P̂12, P̂22, 0)

= g̃2(P ε11, Z
ε
1, v

ε
2, 0) + Γ1 + Γ2

= S∗vε2 + vε2S + vε2∆2v
ε
2 + Γ1 + Γ2

where

Γ1 = g̃2(P ε11, Z
ε
1, Z

ε
2, 0)− g̃2(0, P̂12, P̂22, 0)− g̃2(P ε11, Z

ε
1, v

ε
2, 0),

Γ2 = g̃2(P ε11, Z
ε
1, Z

ε
2, ε)− g̃2(P ε11, Z

ε
1, Z

ε
2, 0).

Note that the function g̃2(P11, Z1, Z2, 0) is independent of the variables P11 and Z1. By the Mean

Value Theorem, we have that

Γ1 =

[
∂g̃2

∂Z2
(P ε11, Z

ε
1,m1v

ε
2 + P̂22, 0)− ∂g̃2

∂Z2
(P ε11, Z

ε
1,m2v

ε
2, 0)

]
vε2

where 0 < m1,m2 < 1. Since ∂g̃2/∂Z2 is Lipschitz in Z2, we have that

|Γ1| ≤ L2|vε2|2 + L3|vε2||P̂22|.

Since g̃2 is Lipschitz with respect to ε, we have that |Γ2| ≤ εL1. Hence when vε2 ∈ Bδ,q2 and

|vε2| ≤
γ−δ
L2

d|vε2|2

dτ
≤ −2(γ − δ)|vε2|2 + 2εL1|vε2|+ 2L2|vε2|3 + 2L3|vε2|2|P̂22|

≤ −(γ − δ)|vε2|2 + 2εL1|vε2|+ 2L3q2|vε2|2e−(γ−δ)τ

= −
(

(γ − δ)− 2L3q2e
−(γ−δ)τ

)
|vε2|2 + 2εL1|vε2|.

By the chain rule,

d|vε2|
dτ
≤ −

(
1

2
(γ − δ)− L3q2e

−(γ−δ)τ
)
|vε2|+ εL1.

Hence

|vε2(τ)| ≤ εL1

∫ τ

0

exp

[
−
∫ τ

s

(
1

2
(γ − δ)− L3q2e

−(γ−δ)r
)
dr

]
ds

≤ εL1e
L3q2
γ−δ

∫ τ

0

e−
1
2 (γ−δ)(τ−s)ds

=
2εL1

γ − δ
e
L3q2
γ−δ

(
1− e− 1

2 (γ−δ)τ
)
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which simplifies to

(7.14) |vε2(τ)| ≤ 2εL1

γ − δ
e
L3q2
γ−δ .

Changing the time variable back to t = ετ , we have that

(7.15) |Zε2(t)− P̂22(t/ε)| ≤ 2εL1

γ − δ
e
L3q2
γ−δ , ∀t ∈ [0, T ].

Hence, when ε is chosen is small enough such that

(7.16)
2εL1

γ − δ
e
L3q2
γ−δ ≤ min

{
q2,

γ − δ
L2

}
,

the estimate (7.15) holds.

We can repeat a similar line of reasoning for vε1(τ). Differentiating vε1(τ) gives

dvε1
dτ

= g̃1(P ε11, Z
ε
1, Z

ε
2, ε)− g̃1(0, P̂12, P̂22, 0)

= g̃1(P ε11, v
ε
1, v

ε
2, 0) + Γ3 + Γ4 + Γ5

= vε1S + Φ(P ε11ψ(P ε11))vε2 + vε1∆2v
ε
2 + Γ3 + Γ4 + Γ5

where

Γ3 = g̃1(P ε11, Z
ε
1, Z

ε
2, 0)− g̃1(P ε11, P̂12, P̂22, 0)− g̃1(P ε11, v

ε
1, v

ε
2, 0),

Γ4 = g̃1(P ε11, P̂12, P̂22, 0)− g̃1(0, P̂12, P̂22, 0),

Γ5 = g̃1(P ε11, Z
ε
1, Z

ε
2, ε)− g̃1(P ε11, Z

ε
1, Z

ε
2, 0).

Here recall that g̃1(P11, Z1, Z2, 0) = Z1S+ Φ(P11ψ(P11))Z2 +Z1∆Z2. Using this, we can show that

|Γ3| ≤ |∆|
(
|vε1||P̂22|+ |vε2||P̂12|

)
and since P ε11(t) is defined on t ∈ [0, T ],

|Γ4| ≤ |Φ(P ε11ψ(P ε11))− Φ(0)||P̂22| ≤ L4|P ε11(ετ)||P̂22| ≤ ετL5|P̂22|.

Lastly, g̃1 is Lipschitz with respect to ε, which implies that |Γ5| ≤ εL6. Putting this together we

can deduce that

d|vε1|2

dτ
≤ −2γ|vε1|2 + 2cp|vε2||vε1|+ 2|∆||vε2||vε1|2

+ 2|∆|
(
|vε1||P̂22|+ |vε2||P̂12|

)
|vε1|+ 2ετL5|P̂22||vε1|+ εL6|vε1|

≤ 2
(
|∆||vε2|+ |∆||P̂22| − γ

)
|vε1|2 + 2(cp + |∆||P̂12|)|vε2||vε1|+ 2ετL5|P̂22||vε1|+ 2εL6|vε1|.



34 SINGULAR PERTURBATION OF STOCHASTIC DIFFERENTIAL GAMES

By the chain rule, we have that

d|vε1|
dτ
≤
(
|∆||vε2|+ |∆||P̂22| − γ

)
|vε1|+ (cp + |∆||P̂12|)|vε2|+ ετL5|P̂22|+ εL6.

From Lemma 4.3 and (7.14), we have that

d|vε1|
dτ
≤
(
εL7 + |∆|e−(γ−δ)τq2 − γ

)
|vε1|+ εL8 + ετL5e

−(γ−δ)τq2

≤
(
εL7 + |∆|e−(γ−δ)τq2 − γ

)
|vε1|+ εL9.

Here we used the fact that τe−(γ−δ)τ ≤ (γ − δ)−1. Hence, when the condition (7.16) is satisfied,

|vε1(τ)| ≤ εL9

∫ τ

0

exp

[
−
∫ τ

s

(
γ − εL7 − |∆|q2e

−(γ−δ)r
)
dr

]
ds

≤ 2εL9

γ
e
|∆|q2
γ−δ .

(7.17)

Part IV: Final estimates

Using the Lipschitz property of h and the inequalities (7.13) and (7.17), we have that

|P ε12(t)− h(P 11(t))− P̂12(t/ε)| = |vε1(t/ε) + h(P 11(t))− h(P ε11(t))|

≤ 2εL9

γ
e
|∆|q2
γ−δ + L10|P

ε

11(t)− P 11(t)|

≤ εL11

where L10 and L11 are positive constants that may depend on the parameters p, q1, q2, δ and T . �
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