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Abstract In this paper we present a detailed study of critical embeddings of weighted
Sobolev spaces into weighted Orlicz spaces of exponential type for weights of monomial
type. More precisely, we give an alternative proof of a recent result by N. Lam [NoDEA 24(4),
2017] showing the optimality of the constant in the Trudinger-Moser inequality. We prove
a Poincaré inequality for this class of weights. We show that the critical embedding is opti-
mal within the class of Orlicz target spaces. Moreover, we prove that it is not compact, and
derive a corresponding version of P.-L. Lions’ principle of concentrated compactness.
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1 Introduction

Embedding theorems are known to be very important in the theory of PDE’s. Let us recall
some classical ones. Assuming that Ω is an open subset of Rn, n ≥ 2, of finite Lebesgue
measure and W 1,p

0 (Ω), p ≥ 1, the Sobolev space obtained as the closure of C∞
0 (Ω) (the

space of infinitely differentiable functions compactly supported in Ω ) with respect to the
norm ‖∇u‖Lp(Ω) (the usual Lp-norm of the Euclidean length of the gradient of u) then the
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following embeddings are available

W 1,p
0 (Ω) ↪→ L

np
n−p (Ω) if p ∈ [1,n), (1.1)

W 1,p
0 (Ω) ↪→ L∞(Ω) if p > n. (1.2)

(The symbol X ↪→Y means that the space X is embedded into the space Y , that is, X ⊂Y and
‖u‖Y ≤ c‖u‖X for all u ∈ X with a positive constant c independent of u. As usual, symbols
‖u‖X , ‖u‖Y denote norms of the function u in the spaces X , Y , respectively.)

In the case when p = n, which is usually called critical, the situation is qualitatively
different from the previous ones. On the one hand, it is known that the space W 1,n

0 (Ω) is
embedded into Lq(Ω) for every q ∈ [1,∞), however it is not embedded into L∞(Ω). On
the other hand, one can immediately see that, for any q ∈ [1,∞), Lq(Ω) is not the optimal
target space within the class of Lebesgue spaces. This is in contrast to the subcritical embed-
ding (1.1), where L

np
n−p (Ω) is the optimal target space in this class. It is due to the pioneering

work by Trudinger [25] that
W 1,n

0 (Ω) ↪→ LΦ (Ω), (1.3)

where LΦ (Ω) is the Orlicz space with the Young function Φ(t) = exp(tn/(n−1))− 1 (note
that such an embedding has been announced earlier by Yudovich [26] without a proof and,
in a slightly weaker form, proved by Pokhozhaev [21]). One of the natural questions, is
whether the embedding (1.3) is optimal (in some sense). In fact, it can be proved (and it also
follows from a more general result which we prove here) that the embedding (1.3) is optimal
in the sense that there is no smaller Orlicz space LΦs(Ω) (that is LΦs(Ω)$ LΦ (Ω)) such that
W 1,n

0 (Ω) ↪→ LΦs(Ω) holds. It might be of interest that the optimality of (1.3) (unlike (1.1))
is not true within a larger class of target spaces. Namely, there exists a Lorentz space X(Ω)

such that W 1,n
0 (Ω) ↪→ X(Ω) and X(Ω) $ LΦ (Ω). More details about that can be found

in [8] or in the survey paper [19].
Other interesting questions concern the compactness of Sobolev embedings. This prop-

erty is usually used for proving the existence of an appropriate weak solution of a certain
PDE. It is known that similarly to embedding (1.1), embedding (1.3) is not compact. Indeed,
it was shown by Hempel, Morris and Trudinger in [11]. Nevertheless, P. L. Lions derived
the so called “principle of concentrated compactness” (see [15]) which serves as a powerful
tool, e.g., for proving the existence of a weak nontrivial solution to the Dirichlet problem
for the quasi-linear n-Laplace oparator with nonlinearities in the critical growth range. The
first step to obtain Lions’ principle is the following result by Moser [16]

sup
u

∫
Ω

exp
(
(α|u(x)|)n/(n−1)) dx

{
< ∞, if α ≤ ns1/n

n ,

= ∞, if α > ns1/n
n ,

(1.4)

where the supremum is taken over all u ∈W 1,n
0 (Ω) satisfying ‖∇u‖Ln(Ω) ≤ 1 (sn stands for

the volume of the unit ball in Rn).
Recently, Cabré and Ros-Oton [4] established the following weighted version of embed-

ding (1.3), that is, the embedding

W 1,D
0 (Ω ,µ) ↪→ LΦ (Ω ,µ), (1.5)

where Φ(t) = exp(tD/(D−1))−1, t ≥ 0, and the measure µ = mA is generated by the mono-
mial weight, that is,

dmA(x) = xA dx = |x1|A1 · · · |xn|An dx, (1.6)
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where
x = (x1, . . . ,xn) ∈ Rn, A = (A1, . . . ,An) with A1 ≥ 0, . . . ,An ≥ 0 (1.7)

and
D = n+A1 + · · ·+An.

Their proof is analogical to Trudinger’s one, which is based on the Taylor expansion of the
exponential function. Later, Lam [12] improved this result in [4] to Moser’s result (1.4) for
the measure µ = mA. He found a constant αD,A > 0 such that

Sα,µ(Ω) = sup
u

∫
Ω

exp
(
(α|u(x)|)D/(D−1)) dµ(x)

is finite for every α ≤αD,A, and Sα,µ(Ω)=∞ if α >αD,A. Note, in Sα,µ(Ω) the supremum is
taken over all functions u from to the unit ball of the weighted Sobolev space W 1,D

0 (Ω ,mA).
It is not difficult to see that embedding (1.5) for µ = mA follows from the fact that

Sα,µ(Ω) is finite for every α ≤ αD,A (cf. Corollary 2.9 and its proof in Section 3).

In this paper, we

(i) present (in the proof of Theorem 2.7) an alternative approach to Lam’s result that
Sα,mA(Ω)< ∞ if 0 < α ≤ αD,A;

(ii) establish (in Theorem 2.8) a Poincaré inequality for functions of the Sobolev space
W 1,D

0 (Ω ,mA);
(iii) deduce (in Corollary 2.9) from Theorem 2.7 embedding (1.5);
(iv) prove (in Theorem 2.10) that, for embedding (1.5), the target space LΦ (Ω ,mA) is op-

timal within the class of Orlicz spaces;
(v) establish (in Theorem 2.12) that embedding (1.5) is not compact;

(vi) show (in Theorem 2.10) that the Sobolev space W 1,D
0 (Ω ,mA) is compactly embedded

to any Orlicz space LΨ (Ω ,mA) larger than LΦ (Ω ,mA), that is, to any Orlicz space
LΨ (Ω ,mA) such that LΦ (Ω ,mA) is properly embedded to LΨ (Ω ,mA);

(vii) derive (in Theorem 2.13) a corresponding principle of concentrated compactness.

It is easy to see that if A1 = · · ·= An = 0 then dmA(x) = dx, p = D = n, q = n/(n−1) and
we obtain the unweighted case (1.3). We would like to emphasize that for proving (iv)–(vii)
it is reasonable to assume that 0∈Ω . Otherwise the measure (1.6) might be equivalent to the
Lebesgue measure, which results that W 1,D

0 (Ω ,mA) =W 1,D
0 (Ω) and LΦ (Ω ,mA) = LΦ (Ω).

Then, if some of the numbers Ai, i ∈ {1, . . . ,n}, is positive, then D > n, which means, that
we have the embedding (1.2) and the assertions (iv)–(vii) are meaningless.

A well-known approach for proving that of Sα,mA(Ω)< ∞ if 0 < α ≤ αD,A is based on
symmetrization. It enables to convert the n-dimensional case to a one-dimensional one. In
particular, Lam [12] used a symmetrization based on results of Talenti and of Cabré and
Ros-Oton (see Lemma 5.9 (iii) below). Our approach is a little different and in a sense
easier to understand. We express a smooth and compactly supported function u (recall that
these functions form a dense subset of Sobolev space W 1,D

0 (Ω ,mA)) as a certain convolu-
tion operator of its gradient. To obtain the main inequality we use a suitable version of an
inequality of O’Neil [18] giving an upper estimate of a rearrangement of function u by an
integral operator of the same rearrangement of its gradient (note that these rearrangements
are noincreasing functions of one variable).

The paper is organized as follows. In Section 2 we introduce basic notation, recall im-
portant auxiliary results and formulate the main results. An alternative approach to Lam’s
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one giving the exact value of the Moser constant and the corresponding embedding theorems
are presented in Section 3. In Section 4 we show that the Moser constant is sharp (proof of
this part is analogical to that of Lam) and we derive optimality of the exponential embed-
ding as well as its non compactness. Finally, in Section 5 we derive an analogue of Lions’
principle of concentrated compactness for the weighted case µ = mA. The last Section 6 is
devoted to some concluding remarks.

2 Basic definitions and main results

We start this section with basic definitions and necessary preliminary results.

Measure space. By the symbol (X ,µ) we denote a measure space X with a nonnegative
σ -measure µ . If Ω is a µ-measurable subset of X , we denote by µ(Ω) the µ-measure of Ω ,
that is, µ(Ω) =

∫
Ω

dµ(x). If X =Rn with its n-dimensional Lebesgue measure dµ(x) = dx
and M ⊂ Rn is a Lebesgue measurable set in Rn, we use the notation |M|=

∫
Ω

dx.

Lebesgue space. If (X ,µ) is a measure space, we denote by Lp(Ω ,µ), p ∈ [1,∞], the
Lebesgue space, of all µ-measurable functions f on a µ-measurable set Ω in X , equipped
with the norm

‖ f‖p,Ω ,µ =

{(∫
Ω
| f (x)|p dµ(x)

)1/p if p < ∞,

µ-ess sup x∈Ω | f (x)| if p = ∞.

If X = Rn and µ is the n-dimensional Lebesgue measure, then we write ‖ · ‖p,Ω instead
of ‖ · ‖p,Ω ,µ . Moreover, we simply write ‖ · ‖p,µ (or ‖ · ‖p) when Ω = X (or Ω = Rn). For
p ∈ [1,∞] we define the Hölder conjugate number p′ ∈ [1,∞] by the equality 1

p +
1
p′ = 1.

Convergence in measure. Let Ω be a µ-measurable set in the measure space (X ,µ). We
say that the sequence of µ-measurable functions {uk}∞

k=1 converges in measure µ to a func-

tion u on Ω , write uk
µ−→ u on Ω , if, for any ε > 0,

lim
k→∞

µ
(
{x ∈Ω ; |uk(x)−u(x)| ≥ ε}

)
= 0. (2.1)

Lemma 2.1. Let Ω be a µ-measurable set in the measure space (X ,µ) such that µ(Ω)<∞.
Suppose that a sequence {uk}∞

k=1 converges to u in L1(Ω ,µ). Then uk
µ−→ u on Ω .

Proof. Recall the Markov inequality µ
(
{x∈ X ; f (x)≥ ε}

)
≤ 1

ε

∫
X f (x) dµ(x) (where ε > 0

and f ≥ 0). Applying this inequality to f (x) = |uk(x)−u(x)|, x ∈Ω , with a fixed ε > 0 we
obtain µ

(
{x ∈Ω ; |uk(x)−u(x)| ≥ ε}

)
≤ 1

ε

∫
Ω
|uk(x)−u(x)| dµ(x) and (2.1) follows.

Orlicz space. A function Φ is called a Young function if it is continuous, non-negative,
strictly increasing and convex on [0,∞) such that lim

t→0+
Φ(t)/t = lim

t→∞
t/Φ(t) = 0 (such a

function is usually called an N-function). Let Ω be a measurable set in (X ,µ). The Orlicz
space LΦ (Ω ,µ) with a Young function Φ is the set of all µ-measurable functions f on Ω

equipped with the Luxemburg norm

‖ f‖Φ ,Ω ,µ = inf
{

λ > 0;
∫

Ω
Φ
( | f (x)|

λ

)
dµ(x)≤ 1

}
. (2.2)
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Another norm, equivalent to (2.2), is called the Orlicz norm

‖| f |‖Φ ,Ω ,µ = sup
g

∫
Ω

f (x)g(x) dµ(x) (2.3)

with the supremum taken over all µ-measurable functions g such that

∫
Ω

Ψ
(
|g(x)|

)
dµ(x)≤ 1, (2.4)

where Ψ is the complementary Young function to Φ (for more details see e.g. [20, Sec-
tions 4.2 and 4.3]). We shall need the Young inequality (its detailed proof can be found e.g.
in [27, Paragraph 4 of Chapter 5]).

Proposition 2.2. Let Φ and Ψ be a pair of complementary Young functions. Then, for all
a,b≥ 0,

ab≤Φ(a)+Ψ(b).

Together with (2.3) and (2.4) this inequality immediately implies that

‖| f |‖Φ ,Ω ,µ ≤
∫

Ω

Φ
(
| f (x)|

)
dµ(x)+1. (2.5)

Finally, let us note that LΦ (Ω ,µ) (with any of the norms (2.2), (2.3)) is a Banach space.

Remark 2.3. Note that the Lebesgue space Lp(Ω ,µ), p ∈ (1,∞), coincides with the Orlicz
space LΦ (Ω ,µ) with Young function Φ(t) = t p, t ≥ 0.

Embeddings. Given two Banach spaces X and Y , we write X ↪→Y if X ⊂Y and the natural
embedding id : X → Y is continuous, that is, there is a positive constant C such that

‖ f‖Y ≤C‖ f‖X for all f ∈ X

(here ‖ f‖X and ‖ f‖Y denote norms of f in X and f in Y , respectively). We say that the
embedding is compact if the mapping id : X → Y compact, that is, the unit ball of X is a
relatively compact set in Y , we use the notation X ↪→↪→ Y .

Embedding properties of Banach function spaces. Lebesgue spaces Lp(Ω ,µ) as well as
Orlicz spaces LΦ (Ω ,µ) belong to the class of so called Banach function spaces. Theo-
rem 1.8 of [3, Chapter 1] claims that if X and Y are Banach function space over the same
measure space, then X ⊂ Y is equivalent to X ↪→ Y . In particular,

LΦ1(Ω ,µ)⊂ LΦ2(Ω ,µ) ⇐⇒ LΦ1(Ω ,µ) ↪→ LΦ2(Ω ,µ). (2.6)
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Sobolev space. Let Ω be a domain in a measure space (Rn,µ) with a nonnegative Borel
measure µ and let p ∈ [1,∞]. The Sobolev space W 1,p(Ω ,µ) is defined as the set

W 1,p(Ω ,µ) =
{

u ; u, ∂

∂xi
u ∈ Lp(Ω ,µ) if i = 1, . . . ,n

}
equipped with the norm

‖u‖= ‖u‖p,Ω ,µ +‖∇u‖p,Ω ,µ , (2.7)

where ∇u is the gradient of u and |∇u| is its Euclidean length, that is,

∇u =
(

∂u
∂x1

, . . . ,
∂u
∂xn

)
, |∇u|=

( n

∑
j=1

(∂u/∂x j)
2
)1/2

(to simplify the notation we are writing ‖∇u‖p,Ω ,µ instead of ‖|∇u|‖p,Ω ,µ ). We denote
by W 1,p

0 (Ω ,µ) the closure of C∞
0 (Ω) (the space of infinitely differentiable functions with

compact support) in W 1,p(Ω ,µ) with respect to the norm (2.7).

Remark 2.4. It is known that if p ∈ (1,∞) then the space W 1,p
0 (Ω ,µ) is a reflexive Banach

space. Moreover, if µ is the Lebesgue measure, then ‖∇u‖p;Ω and (2.7) are equivalent norms
on the space W 1,p

0 (Ω) (see Theorem 2.8 below for more general case).

Monomial weight. Let mA be a monomial measure defined by (1.6) and (1.7). Thus, if E
is a Lebesgue measurable set in Rn, then

mA(E) =
∫

E
xA dx. (2.8)

Ball in Rn. By the symbol B(x,R) we denote the n-dimensional ball centered at x ∈ Rn

with radius R > 0, that is

B(x,R) = {y ∈ Rn ; |x− y|< R}.

We use the notation B = B(0,1). It is easy to see that (cf. [12])

DmA(B) = PA(B),

where mA is defined in (2.8) and

PA(B) =
∫

∂B
xA dσ(x), (2.9)

where σ denotes the (n−1)-dimensional Hausdorff measure. Moreover (cf. [4, Lemma 4.1]),

mA(B) =
Γ
(A1+1

2

)
Γ
(A2+1

2

)
· · ·Γ

(An+1
2

)
Γ
(D

2 +1
) .

Remark 2.5. If A1 = · · · = An = 0, we use the symbols sn and ωn−1 for the volume of the
unit ball B and for the surface area of the unit sphere Sn−1 = {y ∈Rn ; |y|= 1}, respectively.
That is,

ωn−1 = nsn = nπ
n/2/Γ

( n
2 +1

)
. (2.10)



Trudinger-Moser inequality with monomial weight 7

Space of Radon measures. We shall need the following result (cf. [10, Corollary 7.18]).

Proposition 2.6. Let G be a bounded domain in Rn. Then C(G)′, the topological dual to
the space of all continuous functions C(G) on G, is isometrically isomorphic to the space of
Radon measures M (G).

Main results. We start with a result by Lam [12]. We present an alternative proof of
the Trudinger-Moser type inequality as well as proofs of corresponding embeddings in Sec-
tion 3.

Theorem 2.7. Assume that Ω is a domain in Rn such that mA(Ω) < ∞. Let u ∈C∞
0 (Ω) be

such that ∫
Ω

|∇u(x)|DxA dx≤ 1.

Let
0 < α ≤ αD,A = DPA(B)1/(D−1). (2.11)

Then there exists a constant c0 > 0 independent of u and Ω such that

1
mA(Ω)

∫
Ω

exp
(
α |u(x)|D′

)
xA dx≤ c0, (2.12)

Our first result is a Poncaré inequality. Our proof of this inequality is based on rear-
rangements and weighted Hardy-type inequalities.

Theorem 2.8. Assume that Ω is a domain in Rn such that mA(Ω) < ∞. Then there is a
constant c > 0 such that

‖u‖D,Ω ,mA ≤ c‖∇u‖D,Ω ,mA , (2.13)

for every u ∈W 1,D
0 (Ω ,mA). In particular the quantity ‖∇u‖D,Ω ,mA is an equivalent norm

to (2.7) in the Sobolev space W 1,D
0 (Ω ,mA).

The previous two theorems immediately imply the following embedding.

Corollary 2.9. Let Ω be a domain in Rn such that mA(Ω)< ∞. Then

W 1,D
0 (Ω ,mA) ↪→ LΦ (Ω ,mA), (2.14)

where Φ(t) = exp(tD′)−1, t ≥ 0.

The next theorem is about compact embeddings.

Theorem 2.10. Let Ω be a domain in Rn with mA(Ω)< ∞ and such that embedding (2.14)
takes place. Suppose that LΨ (Ω ,mA) is an Orlicz space satisfying

LΦ (Ω ,mA)$ LΨ (Ω ,mA).

Then
W 1,D

0 (Ω ,mA) ↪→↪→ LΨ (Ω ,mA). (2.15)

Remark 2.11. It follows immediately from Theorem 2.10 that if Ω is a domain in Rn with
mA(Ω)< ∞, then

W 1,D
0 (Ω ,mA) ↪→↪→ LD(Ω ,mA). (2.16)

In the next theorem we claim that embedding (2.14) is optimal. For a proof of the result
we employ a system of test functions used for proving sharpness of the constant αD,A. The
proof is given in Section 4.
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Theorem 2.12. Let Ω be a domain in Rn such that with mA(Ω) < ∞, and 0 ∈ Ω if Ai > 0
for some i ∈ {1, . . . ,n}. Then

(i) the space W 1,D
0 (Ω ,mA) is not embedded to any Orlicz space LΨ (Ω ,mA) such that

LΨ (Ω ,mA)$ LΦ (Ω ,mA),
(ii) embedding (2.14) is not compact.

Since, under the assumptions of Theorem 2.12, embedding (2.14) is not compact, it is
natural to ask why some weaker form of compactness can be true. The answer is positive,
we prove (in Section 5) an analogue of the concentrated compactness principle of P.-L. Li-
ons [15].

Theorem 2.13. Let Ω be a bounded domain in Rn such that 0 ∈ Ω if Ai > 0 for some
i ∈ {1, . . . ,n}. Let {uk}∞

k=1 ⊂W 1,D
0 (Ω ,mA) be such that

∫
Ω
|∇uk(x)|DxA dx ≤ 1. Moreover,

suppose that

uk ⇀ u in W 1,D
0 (Ω ,mA), uk→ u a.e. in Ω , and |∇uk(x)|DxA ∗

⇀ ν in M (Ω). (2.17)

Then one of the following possibilities takes place.

(i) If u = 0, ν = δx0 for some x0 ∈Ω , and

∫
Ω

exp
(
αD,A |uk(x)|D

′)
xA dx→ c+mA(Ω)

for some c≥ 0, then

exp
(
αD,A |uk(x)|D

′)
xA ∗

⇀ cδx0 +mA �Ω in M
(
Ω
)
.

(ii) If u = 0 and ν is not a Dirac mass concentrated at one point, then there exist constants
C > 0 and p > 1 such that, for all k ∈ N,

∫
Ω

exp
(

pαD,A |uk(x)|D
′)

xA dx≤C. (2.18)

(iii) If u 6= 0, then there exist constants C > 0 and p > 1 such that (2.18) holds for all k ∈N.

In each of cases (ii) and (iii)

lim
k→∞

∫
Ω

exp
(
αD,A |uk(x)|D

′)
xA dx =

∫
Ω

exp
(
αD,A |u(x)|D

′)
xA dx. (2.19)

3 Moser constant, continuous and compact embeddings

Before we prove the results we have to do some preliminary work.
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Upper estimate for the gradient We shall need the following important estimate relating
u with its gradient.

Lemma 3.1. Let u ∈C∞
0 (Rn). Then

PA(B) |u(x)| ≤
∫
Rn
|∇u(x− y)| |y|1−DyA dy, x ∈ Rn. (3.1)

Proof. To obtain the result we slightly modify the proof of formula (18) from [23, Chap-
ter V]. Since f ∈C∞

0 (Rn) we have

u(x) =
∫

∞

0
∇u(x− tξ ) ·ξ dt,

where ξ = (ξ1, . . . ,ξn) is an arbitrary unit vector in Rn. Integrating this equality over the
unit sphere ∂B we obtain(∫

∂B ξ A dσ(ξ )
)
u(x) =

∫
∂B

(∫ ∞

0
∇u(x− tξ ) ·ξ dt

)
ξ

A dσ(ξ ).

Thus, applying the Fubini theorem and the change of variables y = tξ ,(∫
∂B ξ A dσ(ξ )

)
|u(x)| ≤

∫
∂B

(∫ ∞

0
|∇u(x− tξ )| dt

)
ξ

A dσ(ξ )

=
∫

∞

0

(∫
∂B
|∇u(x− tξ )|ξ A dσ(ξ )

)
dt =

∫
∞

0

(∫
∂B(0,t)

|∇u(x− y)|yA dσ(y)
)

t1−D dt

=
∫
Rn
|∇u(x− y)| |y|1−DyA dy.

Rearrangement Let f be a measurable function on the measure space (X ,µ). We define
its nonincreasing rearrangement f ∗µ (on the interval (0,∞)) by

f ∗µ(t) = inf{s > 0; λ (s)≤ t}, where λ (s) = µ
(
{x ∈ X ; | f (x)|> s}

)
.

We also define the corresponding maximal operator

f ∗∗µ (t) =
1
t

∫ t

0
f ∗µ(s) ds, t > 0.

Remark 3.2. It is easy to see that, if Ψ is a continuous and increasing function, then∫
Ω

Ψ
(
|u(x)|

)
dµ(x) =

∫
µ(Ω)

0
Ψ
(
u∗(t)

)
dt.

It implies that ‖u‖Φ ,Ω ,µ = ‖u∗‖Φ ,(0,µ(Ω)) and, for p ∈ [1,∞), ‖u‖p,Ω ,µ = ‖u∗‖p,(0,µ(Ω)).

Rearrangements of I1 in the measure space (Rn,mA) Set

I1(x) = |x|1−D, x ∈ Rn. (3.2)

Let us derive (I1)
∗
mA

and (I1)
∗∗
mA

with respect to the measure mA from (2.8). Observe that

λ (s) = mA
(
{x ∈ Rn ; |x|1−D > s}

)
=
∫

B(0,s1/(1−D))
xA dx = s−D′

∫
B

yA dy = s−D′mA(B).

Thus,

(I1)
∗
mA

(t) =
(mA(B)

t

)1/D′

, (I1)
∗∗
mA

(t) = D
(mA(B)

t

)1/D′

, t > 0. (3.3)
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O’Neil inequality We make use of the following result of O’Neil [18].

Theorem 3.3. Let f and g be two µ-measurable functions on a measure space (X ,µ). Then

( f ∗g)∗∗µ (t)≤ t f ∗∗µ (t)g∗∗µ (t)+
∫

∞

t
f ∗µ(s)g∗µ(s) ds, t > 0, (3.4)

where the convolution f ∗g is considered with respect to the measure µ , that is

( f ∗g)(x) =
∫

X
f (x− y)g(y) dµ(y).

Proof. Set

T ( f ,g)(x) = ( f ∗g)(x) =
∫

X
f (x− y)g(y) dµ(y). (3.5)

Observe that T is a convolution operator in the sense of [18, Definition 1.1]. That means that
it satisfies the following properties:

T ( f1 + f2,g) = T ( f1,g)+T ( f2,g), T ( f ,g1 +g2) = T ( f ,g1)+T ( f ,g2),

‖T ( f ,g)‖∞,µ ≤ ‖ f‖1,µ ‖g‖∞,µ ,‖T ( f ,g)‖∞,µ ≤ ‖ f‖∞,µ ‖g‖1,µ ,‖T ( f ,g)‖1,µ ≤ ‖ f‖1,µ ‖g‖1,µ .

The first two identities are obvious. As concerns the third property,

‖T ( f ,g)‖∞,µ ≤
∫

X
| f (x− y)g(y)| dµ(y)≤ ‖g‖∞,µ

∫
X
| f (x− y)| dµ(y) = ‖ f‖1,µ ‖g‖∞,µ ,

the fourth one follows by the same argument. It remains to verify the last property. We have

‖T ( f ,g)‖1,µ ≤
∫

X
dµ(x)

∫
X
| f (x−y)g(y)| dµ(y) =

∫
X
|g(y)|

(∫
X
| f (x−y)| dµ(x)

)
dµ(y)

=
∫

X
|g(y)|

(∫
X
| f (x)| dµ(x)

)
dµ(y) = ‖ f‖1,µ ‖g‖1,µ .

Inequality (3.4) follows from [18, Theorem 1.7].

Proof of Theorem 2.7. For the sake of simplicity we put

µ = mA, f = |∇u|

and write u∗, f ∗ and f ∗∗ instead of u∗µ , f ∗µ and f ∗∗µ , respectively.
By (3.1), (3.4) and (3.3) we obtain, for α ∈ (0,αD,A],

α
1/D′u∗(τ)≤

(
DPA(B)1/(D−1))(D−1)/Du∗(τ)≤ D1/D′PA(B)−1/D′(I1 ∗ f )∗(τ)

≤ Dτ
−D−1

D

∫
τ

0
f ∗(s) ds+

∫
µ(Ω)

τ

f ∗(s)s−
D−1

D ds, τ > 0. (3.6)

Using the change of variables τ = µ(Ω)e−t we obtain

1
µ(Ω)

∫
Ω

exp
(
α |u(x)|D′

)
xA dx =

1
µ(Ω)

∫
µ(Ω)

0
exp
(
α u∗(τ)D′) dτ

=
∫

∞

0
exp
(
α u∗

(
µ(Ω)e−t)D′)e−t dt.
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Consequently, by (3.6), where we made the change of variables s = µ(Ω)e−y at the integrals
on the right hand side

1
µ(Ω)

∫
Ω

exp
(
α |u(x)|D′

)
xA dx

=
∫

∞

0
exp
((

D
(
µ(Ω)e−t)−D−1

D

∫
µ(Ω)e−t

0
f ∗(s) ds+

∫
µ(Ω)

µ(Ω)e−t
f ∗(s)s−

D−1
D ds

)D′
)

e−t dt

≤
∫

∞

0
exp
((

D µ(Ω)
1
D et D−1

D

∫
∞

t
f ∗(µ(Ω)e−y)e−y dy

+µ(Ω)
1
D

∫ t

0
f ∗(µ(Ω)e−y)ey D−1

D e−y dy
)D′

− t
)

dt

Thus,
1

µ(Ω)

∫
Ω

exp
(
α |u(x)|D′

)
xA dx =

∫
∞

0
exp(−F(t)) dt, (3.7)

where

F(t) := t−
(

D µ(Ω)
1
D et D−1

D

∫
∞

t
f ∗(µ(Ω)e−y)e−y dy

+µ(Ω)
1
D

∫ t

0
f ∗(µ(Ω)e−y)ey D−1

D e−y dy
)D′

. (3.8)

We write the integral on the right-hand side of (3.7) as∫
∞

0
exp(−F(t)) dt =

∫
∞

−∞

∣∣Eλ

∣∣e−λ dλ , (3.9)

where

Eλ := {t ≥ 0; F(t)≤ λ}, (3.10)

and we prove that

there is λ0 such that λ < λ0 =⇒ Eλ = /0, (3.11)

there are A1,A2 > 0 independent of u such that |Eλ | ≤ A1|λ |+A2 for all λ ≥ λ0. (3.12)

To verify (3.11) we first observe that

F is a continuous increasing function on [0,∞). (3.13)

The continuity is clear. As concerns its monotonicity, we have

F(t) = t− (µ(Ω)
1
D F0(t))D′ ,

where

F0(t) = Det n−1
D

∫
∞

t
f ∗(µ(Ω)e−y)e−y dy+

∫ t

0
f ∗(µ(Ω)e−y)e−y 1

D dy,
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and

F ′0(t) =
d
dt

(
Det D−1

D

∫
∞

t
f ∗(µ(Ω)e−y)e−y dy+

∫ t

0
f ∗(µ(Ω)e−y)e−y 1

D dy
)

=−Det n−1
D f ∗(µ(Ω)e−t)e−t +(D−1)et D−1

D

∫
∞

t
f ∗(µ(Ω)e−y)e−y dy

+ et D−1
D f ∗(µ(Ω)e−t)e−t

= (D−1)e−t 1
D

(
et
∫

∞

t
f ∗(µ(Ω)e−y)e−y dy− f ∗(µ(Ω)e−t)

)
≤ 0,

since

et
∫

∞

t
f ∗(µ(Ω)e−y)e−y dy≤ et f ∗(µ(Ω)e−t)

∫
∞

t
e−y dy = f ∗(µ(Ω)e−t).

Consequently, the first derivative of F ,

F ′(t) = 1−D′µ(Ω)
1
D (µ(Ω)

1
D F0(t))D′−1F ′0(t),

is positive on (0,∞) and so, the function F is (strictly) increasing on (0,∞).
For t ≥ 0, we obtain, by the Hölder inequality with 1

D + 1
D′ = 1,

D µ(Ω)
1
D et D−1

D

∫
∞

t
f ∗(µ(Ω)e−y)e−y dy

≤ Det D−1
D

(∫ ∞

t
e−y dy

)1/D′(∫ ∞

t

(
f ∗(µ(Ω)e−y)D

µ(Ω)e−y dy
)1/D

. (3.14)

Observe that

1≥
∫

Ω

|∇u(x)|DxA dx =
∫

∞

0

(
f ∗(µ(Ω)e−y)D

µ(Ω)e−y dy. (3.15)

By (3.8), (3.13), (3.14), the obvious fact that
∫

∞

0 e−y dy = 1 and (3.15), we have, for every
t ≥ 0,

F(t)≥ F(0) =−
(

D µ(Ω)
1
D

∫
∞

0
f ∗(µ(Ω)e−y)e−y dy

)D′

≥−DD′ = λ0,

which implies (3.11).
We prove (3.12). Let 0 ≤ t1 < t2 < ∞. By the Hölder inequality with 1

D + 1
D′ = 1 we

obtain∫ t2

t1
f ∗(µ

(
Ω)e−y)(

µ(Ω)e−y) 1
D dy

≤
(∫ t2

t1

(
f ∗(µ(Ω)e−y)D

µ(Ω)e−y dy
)1/D (

t2− t1
)1/D′

. (3.16)

Since
∫

∞

t e−y dy = e−t , t > 0, estimate (3.14) imply that, for every t > 0,

D µ(Ω)
1
D et D−1

D

∫
∞

t
f ∗(µ(Ω)e−y)e−y dy

≤ Det D−1
D

(∫ ∞

t
e−y dy

)1/D′(∫ ∞

t

(
f ∗(µ(Ω)e−y)D

µ(Ω)e−y dy
)1/D

≤ D
(∫ ∞

t

(
f ∗(µ(Ω)e−y)D

µ(Ω)e−y dy
)1/D

. (3.17)



Trudinger-Moser inequality with monomial weight 13

For t > 0 set

g(t) =
(∫ ∞

t

(
f ∗(µ(Ω)e−y)D

µ(Ω)e−y dy
)1/D

. (3.18)

Then (3.15) implies that

0≤ g(t)≤ 1 and 0≤
(∫ t

0

(
f ∗(µ(Ω)e−y)D

µ(Ω)e−y dy
)1/D

≤ 1, t > 0. (3.19)

Let λ > 0, t1, t2 ∈ Eλ , t1 < t2. Then, using (3.8), (3.17), (3.16), (3.18) and (3.19), we obtain

t2−λ ≤
(

D µ(Ω)
1
D et D−1

D

∫
∞

t2
f ∗(µ(Ω)e−y)e−y dy+µ(Ω)

1
D

∫ t2

0
f ∗(µ(Ω)e−y)e−y dy

)D′

≤
(

Dg(t2)+µ(Ω)
1
D

(∫ t1

0
· · · dy+

∫ t2

t1
· · · dy

))D′

≤
(

Dg(t2)+ t1/D′

1 +(t2− t1)1/D′ g(t1)
)D′

. (3.20)

Thus,

t2−λ ≤
(

Dg(t2)+ t1/D′

1 +(t2− t1)1/D′ g(t1)
)D′

. (3.21)

Assume that λ ≥ DD′ , t1 = λ (obviously λ ∈ Eλ ) and t2 = (θ +1)λ with θ > 0. Then,

by (3.21) and (3.19), λ θ ≤ λ

(
2+θ 1/D′ g(λ )

)D′

. Thus, θ 1/D′ ≤ 2 + θ 1/D′ g(λ ). Since

limt→∞ g(t) = 0, we deduce from the last inequality, that if λ ≥ λ1, where λ1 ≥ DD′ is
such that g(λ1) < 1, then θ is bounded, and consequently (3.12) follows for all λ ≥ λ1. If
λ ∈ [λ0,λ1) we use the inclusion Eλ ⊂ Eλ1 , which implies |Eλ | ≤ |Eλ1 | ≤ A1 +A2λ1, and
(3.12) is verified (with the constant (A1 +A2λ1) instead of A1) for all λ ≥ λ0.

To finish the proof of (2.12) we use (3.7), (3.9), (3.11) and (3.12) to get

1
µ(Ω)

∫
Ω

exp
(
α |u(x)|D′

)
xA dx =

∫
∞

λ0

∣∣Eλ

∣∣e−λ dλ ≤
∫

∞

λ0

(A1 +A2|λ |)e−λ dλ = c0 < ∞.

Now, we outline our proof of Poincaré inequality (2.13).

Proof of Theorem 2.8. It is enough to prove inequality (2.13) for u ∈C∞
0 (Ω). Using rear-

rangements, we easily see that our task is to prove that there exists a constant c > 0 such
that, for all u ∈C∞

0 (Ω),

∫ mA(Ω)

0
u∗(t)D dt ≤ c

∫ mA(Ω)

0
f ∗(t)D dt, (3.22)

where u∗ and f ∗ have the same meaning as in the proof of Theorem 2.7. We rewrite (3.6) to
the form

u∗(t)≤ c1

(
t−

D−1
D

∫ t

0
f ∗(s) ds+

∫ mA(Ω)

t
f ∗(s)s−

D−1
D ds

)
, t > 0,
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where c1 > 0 is a constant independent of u. To prove (3.22) it is sufficient to show that the
following Hardy-type inequalities∫ mA(Ω)

0

(
t−

D−1
D

∫ t

0
f ∗(s) ds

)D
dt ≤ c2

∫ mA(Ω)

0
f ∗(t)D dt,∫ mA(Ω)

0

(∫ mA(Ω)

t
f ∗(s)s−

D−1
D ds

)D
≤ c3

∫ mA(Ω)

0
f ∗(t)D dt

(with constants c2 > 0, c3 > 0 independent of f ) hold. These inequalities follow from the
Muckenhoupt conditions (see [17]):

sup
0<R<mA(Ω)

(∫ mA(Ω)

R
t1−D dt

)1/D(∫ R

0
dt
)1/D′

< ∞

and

sup
0<R<mA(Ω)

(∫ R

0
dt
)1/D(∫ mA(Ω)

R
t−1 dt

)1/D′

< ∞,

respectively. Verifying these conditions is an easy exercise, it is left to the reader.

Proof of Corollary 2.9. From (2.12) we obtain that, for all u ∈W 1,D
0 (Ω ,mA) such that

‖∇u‖D,Ω ,mA ≤ 1,
∫

Ω

(
exp(αD,A |u(x)|D

′
)−1

)
xA dx≤ (c0−1)/mA(Ω), that is,∫

Ω

Φ
(
α |u(x)|

)
xA dx≤ c1,

where α = α
1/D′

D,A and c1 = (c0 − 1)/mA(Ω). Consider LΦ (Ω ,mA) with the Orlicz norm
‖| · |‖Φ ,Ω ,mA (see (2.3)). Then, using (2.5), we obtain

‖|α u|‖Φ ,Ω ,mA ≤
∫

Ω

Φ
(
α |u(x)|

)
xA dx+1≤ c1 +1,

that is, ‖|u|‖Φ ,Ω ,mA ≤ (c1 +1)/α , and the embedding (2.14) follows.

To express embeddings between Orlicz spaces we have to recall other properties of these
spaces.

Definition 3.4. Let Φ1, Φ2 be Young functions. If there exist two positive constants c and
T such that

Φ1(t)≤Φ2(ct) for all t ≥ T ,

we say that Φ2 dominates Φ1 near ∞ and write

Φ1 �Φ2.

If Φ1 �Φ2 and Φ2 �Φ1 we say that Φ1 and Φ2 are equivalent and write Φ1 ≈Φ2.

Remark 3.5. It is easy to see that every Young function Φ is equivalent to the function

Φk(t) = Φ(kt), (3.23)

where k is an arbitrary positive number.
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Theorem 3.6. Let Φ1 and Φ2 be Young functions and let µ(Ω)< ∞. Then

LΦ1(Ω ,µ) ↪→ LΦ2(Ω ,µ) (3.24)

if and only if Φ2 � Φ1. In particular, if Φ is a Young function and Φk, k > 0, is defined
by (3.23), then

LΦk(Ω ,µ) = LΦ (Ω ,µ).

Proof. The proof can be done by the same way as for the case, where µ is the Lebesgue
measure on Rn (see [1, Theorem 8.12]), so we omit it here.

Definition 3.7. Let Φ1, Φ2 be Young functions. We say that Φ2 increases strictly more
rapidly than Φ1 near ∞, write Φ1 ≺≺Φ2, if

lim
t→∞

Φ2(ct)
Φ1(t)

= ∞ for every c > 0.

Remark 3.8. It is not difficult to show that if Φ1 and Φ2 are Young functions and µ(Ω)< ∞,
then

LΦ1(Ω ,µ) ↪→6= LΦ2(Ω ,µ)

if and only if Φ2 ≺≺Φ1 (cf. [20, Remark 4.5.12]).
Before proving Theorem 2.10 we need some auxiliary results.

Lemma 3.9. Let Ω be a domain in Rn such that mA(Ω)< ∞. Then

W 1,D
0 (Ω ,mA) ↪→↪→ L1(Ω ,mA).

Proof. It is sufficient to show that the set

K = {u ∈W 1,D
0 (Ω ,mA) ; ‖∇u‖D,Ω ,mA ≤ 1}

is precompact in L1(Ω ,mA), that is, for each ε > 0, the set K contains a finite ε-net. Let us
fix ε > 0. For η > 0 set

Ω
η = Ω ∩{x ∈ Rn ; |x|< 1/η , |x1|> η , . . . , |xn|> η}, Ωη = Ω \Ω

η .

By the Hölder inequality and (??) we have

‖uχΩη
‖1,Ω ,mA =

∫
Ωη

|u(x)|xA dx≤ ‖u‖D,Ω ,mA

(∫
Ωη

xA dx
)D′

≤ c
(∫

Ωη

xA dx
)D′

.

Moreover, observe that Ωη ⊂
(⋃n

i=1{x ∈ Ω ; |xi| ≤ η}
)
\B(0,1/η), and so, using the as-

sumption that mA(Ω) < ∞,
∫

Ωη
xA dx→ 0 when η → 0+. Thus, there exists η0 > 0 such

that, for all η ∈ (0,η0] and all u ∈ K,

‖uχΩη
‖1,Ω ,mA < ε/3.

Fix η ∈ (0,η0] and observe that, by W 1,D
0 (Ω ,mA) ↪→ L1(Ω ,mA) (cf. Corollary 2.9) and

by ‖u‖1,Ω η ≤ η−(A1+···+An)‖uχΩη
‖1,Ω ,mA , the set K is a bounded set in the Sobolev space

W 1,D(Ω η). Since the embedding W 1,D(Ω η) into L1(Ω η) is compact (see e.g. [6, Theo-
rem 5.4.16]) we can find a finite subset K0 = {u1, . . . ,uN} ⊂ K such that

‖uk−u j‖1,Ω η < ε/(3max
x∈Ω

xA) for all k, j ∈ {1, . . . ,N}.
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Finally, we obtain, for all uk,u j ∈ K0, k, j ∈ {1, . . . ,N},

‖uk−u j‖1,Ω ,mA ≤ ‖ukχΩη
‖1,Ω ,mA +‖u jχΩη

‖1,Ω ,mA +‖(uk−u j)χΩ η ‖1,Ω ,mA

≤ 2ε/3+max
x∈Ω

xA ‖uk−u j‖1,Ω η < ε

and the proof is completed.

Lemma 3.10. Let Ω be a domain in Rn such that mA(Ω)< ∞. Suppose that Φ and Ψ are
Young functions such that Ψ ≺≺ Φ . If the sequence {uk}∞

k=1 is bounded in LΦ (Ω ,mA) and
uk

mA−→ u on Ω , then uk→ u in LΨ (Ω ,mA).

Proof. The proof is analogous to [1, Proof of Theorem 8.24], and so we omit it here.

Proof of Theorem 2.10. By Corollary 2.9 and Remark 3.8 we have

W 1,D
0 (Ω ,mA) ↪→ LΦ (Ω ,mA) ↪→ LΨ (Ω ,mA).

Let K be a bounded set in W 1,D
0 (Ω ,mA). By Lemma 3.9 there is a sequence {uk}∞

k=1 ⊂K
and a function u ∈ L1(Ω ,mA) such that uk → u in L1(Ω ,mA). Lemma 2.1 implies that
uk

mA−→ u on Ω . Applying Lemma 3.10 we obtain uk→ u in LΨ (Ω ,mA).

4 Optimality of the Moser constant and of the embedding

The next result can be found (including a proof) in [12, Section 3].

Lemma 4.1. Let n ∈ N, n≥ 2. Then, for any α > αD,A,

sup
u

1
mA(B)

∫
B

exp
(
α |u(x)|D′

)
xA dx = ∞. (4.1)

where the supremum is taken over all functions u ∈C∞
0 (B) satisfying∫

B
|∇u(x)|DxA dx≤ 1.

Proof. Observe that if a function f is radial, that is f (x) = F(|x|), then

|∇ f (x)|=
∣∣F ′(|x|)∣∣ and

∫
B(0,R)

f (x)xA dx =
(∫

∂B
xA dσ(x)

)∫ R

0
F(t) tD−1 dt. (4.2)

For each r ∈ (0,1) consider the function

ur(x) =
{ (∫

∂B xA dσ(x)
)−1/D(

log(1/r)
)1/D′ for 0≤ |x|< r((∫

∂B xA dσ(x)
)

log(1/r)
)−1/D

log(1/|x|) for r ≤ |x| ≤ 1
, x ∈ B. (4.3)

Then

|∇ur(x)|=
{ 0 for 0≤ |x|< r((∫

∂B xA dσ(x)
)

log(1/r)
)−1/D

(1/|x|) for r ≤ |x| ≤ 1
, x ∈ B.
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Thus,∫
B
|∇ur(x)|DxA dx =

((∫
∂B xA dσ(x)

)
log(1/r)

)−1(∫
∂B xA dσ(x)

)∫ 1

r
t−1 dt = 1.

If condition (4.1) does not hold, there is a constant c0 > 0 such that

c0≥
1

mA(B)

∫
B

exp
(
α |ur(x)|D

′)
xA dx≥ rD exp

(
α
(∫

∂B xA dσ(x)
)−1/(D−1) log(1/r)

)
. (4.4)

Consequently,

α ≤ D log(1/r)+ logc0(∫
∂B xA dσ(x)

)−1/(D−1) log(1/r)
,

and, letting r→ 0+, we obtain that α ≤D
(∫

∂B xA dσ(x)
)1/(D−1)

= D(PA(B))1/(D−1) = αD,A
(cf. (2.11)).

Remark 4.2. Alternatively, put rk = exp
(
− (
∫

∂B xA dσ(x))D′/D kD′
)
, k ∈ N. Then we can

rewrite (4.3) to the form

urk(x) =
{ k if 0≤ |x| ≤ rk,(∫

∂B xA dσ(x)k
)−D′/D log(1/|x|) if rk < |x| ≤ 1.

Then ‖∇urk‖D,B,mA = 1 and, by (4.4), c0 ≥ rD
k exp

(
α kD′

)
= exp

(
(α −αD,A)kD′

)
. Conse-

quently, since k ∈ N might be an arbitrary number, α ≤ αD,A.

To prove Theorem 2.12 we use test functions from the proof of Lemma 4.1 and the
following analogue to [11, Lemma 1].

Lemma 4.3. Let Φ1, Φ2 be Young functions such that Φ1≺≺Φ2 and let µ(Ω)<∞. Suppose
that there exists a normed linear space W such that W ↪→ LΦ2(Ω ,µ). Then the functional

J(u) =
∫

Ω

Φ1
(
|u(x)|

)
dµ(x) (4.5)

is bounded on bounded subsets of W.

Proof. The proof can be carried similarly to [11, proof of Lemma 1], however, for reader’s
convenience we present it here.

Since W ↪→ LΦ2(Ω ,µ), there is a constant K > 0 so that ‖u‖Φ2,Ω ,µ ≤ K‖u‖W for all
u ∈W . Assumption Φ1 ≺ Φ2 implies that there is a nondecreasing function N : [0,∞)→
[0,∞) such that

Φ1(t)≤Φ2

( t
Kλ

)
for all t ≥ N(λ ).

Hence, for any u ∈W and λ = ‖u‖W ,

∫
Ω

Φ1
(
|u(x)|

)
dµ(x)≤

∫
Ω

Φ1
(
N(λ )

)
dµ(x)+

∫
Ω

Φ2

( |u(x)|
Kλ

)
dµ(x)≤ µ(Ω)Φ1

(
N(λ )

)
+1,

and the assertion is verified.
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Proof of Theorem 2.12. We restrict ourselves only to the weighted case, that is, Ai > 0 for
some i ∈ {1, . . . ,n}.
Statement (i). Since 0 ∈ Ω , B(0,R) ⊂ Ω for some R > 0. We can assume that R = 1,
that is, B ⊂ Ω (otherwise we use a scaling argument) and consider functions ur, r ∈ (0,1),
from (4.3) extended by zero outside B. From the proof of Lemma 4.1 we have, with a fixed
K > αD,A, that

‖∇ur‖D,Ω ,mA = 1 and lim
r→0+

∫
B

exp
(
K |ur(x)|D

′)
xA dx = ∞. (4.6)

Namely, it follows from the estimate

1
mA(B)

∫
B

exp
(
K |ur(x)|D

′)
xA dx≥ rD exp

( KD
αD,A

log(r−1)
)
= rDr−KD/αD,A .

Putting

Φ1(t) = exp(KtD′)−1,

we find that the functional J

J(u) =
∫

Ω

Φ1
(
|u(x)|

)
xA dx

(cf. (4.5)) is unbounded on the unit ball in the space W = W 1,D
0 (Ω ,mA). Since, by Re-

mark 3.5, Φ1≈Φ we have, due to Theorem 3.6, LΦ1(Ω ,mA)=LΦ (Ω ,mA). From Lemma 4.3
we see that, if the space W 1,D

0 (Ω ,mA) were embedded to some Orlicz space LΨ (Ω ,mA) such
that LΨ (Ω ,mA) $ LΦ (Ω ,mA), that is, Φ ≺≺Ψ , then J should be bounded on the unit ball
in W , and it would lead to contradiction.
Statement (ii). The proof is analogous to that of [7, proof of Theorem 3.1], we are present-
ing it here for the reader’s convenience.

Putting vr = K1/D′ur, we obtain from (4.6) that

‖∇vr‖D,Ω ,mA = K1/D′ and lim
r→0+

∫
B

(
exp
(
|vr(x)|D

′)−1
)
xA dx = ∞.

It implies that the functional

F(w) =
∫

B

(
exp
(
|w(x)|D′

)
−1
)
xA dx

is unbounded on the bounded set

B = {w ∈W 1,D
0 (Ω ,xA) ; ‖∇w‖D,Ω ,mA ≤ K1/D′}

of the Sobolev space W 1,D
0 (Ω ,mA). Thus, we can find a sequence of function {w j}∞

j=1 such
that

F(w j)> j, j ∈ N. (4.7)

Assume, that embedding (2.14) is compact. Then there exist a subsequence {w jk}k ⊂ {w j} j
and a function w ∈ LΦ (Ω ,mA) such that

‖w jk −w‖Φ ,Ω ,mA → 0 as k→ ∞. (4.8)
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Hence, the function w belongs to EΦ (Ω ,mA) (the closure in LΦ (Ω ,mA) of the set of all mea-
surable functions bounded on Ω ). Since EΦ (Ω ,mA) is a linear space (cf. [1, Lemma 8.15]),
2w ∈ EΦ (Ω ,mA) and

F(2w)< ∞.

Furthermore, (4.8) implies

F
(
2(w jk −w)

)
→ 0 as k→ ∞

(cf. [1, paragraph 8.13]). Then, by convexity of Φ , we obtain

F(w jk) = F
(2(w jk −w)+2w

2

)
≤ 1

2

(
F(2(w jk −w))+F(2w)

)
< ∞,

which contradicts (4.7).

5 Proof of Theorem 2.13 on the concentrated compactness

Throughout this section let us assume that

(a) Ω is a bounded domain in Rn,
(b) 0 ∈Ω if Ai > 0 for some i ∈ {1, . . . ,n}.

First observe that given a sequence {uk}∞
k=1 in W 1,D

0 (Ω ,mA),
∫

Ω
|∇uk(x)|DxA dx≤ 1, we

can select a subsequence which satisfies conditions (2.17)

– Given a sequence {uk}∞
k=1 in W 1,D

0 (Ω ,mA),
∫

Ω
|∇uk(x)|DxA dx≤ 1, it has a weakly con-

vergent subsequence in W 1,D
0 (Ω ,mA). It means (if the subsequence is denoted again

{uk}∞
k=1) that there exists u ∈W 1,D

0 (Ω ,mA) such that

uk ⇀ u in W 1,D
0 (Ω ,mA). (5.1)

– Since the space W 1,D
0 (Ω ,mA) is compactly embedded into LD(Ω ,mA) (see (2.16)) we

can select a subsequence of {uk}∞
k=1, again denoted as {uk}∞

k=1, satisfying

uk→ u a.e. in Ω . (5.2)

– Finally, by the duality C
(
Ω
)
, M

(
Ω
)

(see Proposition 2.6), we can select another subse-
quence (denoted again {uk}∞

k=1) such that the sequence |∇uk(x)|DxA is weakly∗-convergent
to a Radon measure ν in M

(
Ω
)
, that is,

|∇uk(x)|DxA ∗
⇀ ν in M (Ω). (5.3)

To prove the Theorem 2.13 we need some preliminary work.

Lemma 5.1. Let {uk}∞
k=1 ⊂W 1,D

0 (Ω ,mA) be such that
∫

Ω
|∇uk(x)|DxA dx ≤ 1 and let con-

ditions (5.1)–(5.3) be satisfied. Assume that F,N ⊂ Ω be two disjoint compact sets and
ν(N)> 0. Then there exist constants δ > 0 and C > 0 such that, for all k ∈ N,∫

F
exp
(
(1+δ )αD,A |uk(x)|D

′)
xA dx≤C. (5.4)
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Proof. By (5.3), taking the test function ϕ ≡ 1, we obtain

ν
(

Ω
)
≤ 1. (5.5)

Set
η = dist(F,N). (5.6)

Since F , N are compact and disjoint, η > 0. Consider the set

Fη =
{

x ∈ Rn ; dist(x,F)< η
}

and take a function ψη ∈C∞
0 (Rn) such that

0≤ ψη ≤ 1, ψη = 1 on Fη/4, ψη = 0 on Rn \Fη/2.

Hence, using (5.3), (5.5) and the assumption ν(N)> 0 we have∫
F
|∇uk(x)|DxA dx≤

∫
Fη

2
∩Ω

ψη(x)|∇uk(x)|DxA dx k→∞−→
∫

Fη

2
∩Ω

ψη(x) dν(x)

≤ ν
(

Ω
)
−ν(N)≤ 1−ν(N) =

1
(1+δ )D

on putting δ = 1/(1−ν(N))1/D > 0. Thus,∫
F
|(1+δ )∇uk(x)|DxA dx≤ 1, k ∈ N,

and, applying Theorem 2.7 with (1+δ )uk in place of uk and F in place of Ω , we obtain (5.4).

We need some auxiliary results. Recall that (cf. [2, Definition 5.2.2]) a bounded set
F ⊂ L1(G) (G being a domain in Rn such that |G| < ∞) is called equi-integrable, if given
ε > 0 there is δ > 0 such that, for every set E ⊂ G, |G|< δ , then sup f∈F

∫
E | f (x)| dx < ε .

Lemma 5.2 ([2, Lemma 5.2.5]). Let G be a domain in Rn such that |G|< ∞. Suppose that a
sequence { fk}∞

k=1 is bounded in L1(G). Then the sequence { fk}∞
k=1 is equi-integrable if and

only if

lim
b→∞

sup
k∈N

∫
{x∈G ; | fk(x)|>b}

| f (x)| dx = 0.

We need a suitable version of the Vitali convergence theorem.

Lemma 5.3 ([2, Lemma 5.2.6]). Let G be a domain in Rn such that |G|< ∞. Suppose that
a sequence { fk}∞

k=1 is equi-integrable in L1(G) converges a.e. to some f ∈ L1(G). Then

lim
k→∞

∫
G

fk(x) dx =
∫

G
f (x) dx.

Lemma 5.4. Let uk, k ∈ N, and u be measurable functions such that uk→ u a.e. on Ω . Let
there are positive constants α , δ and C such that∫

Ω

exp
(
(1+δ )α |uk(x)|D

′)
xA dx≤C for all k ∈ N. (5.7)

Then
lim
k→∞

∫
Ω

exp
(
α |uk(x)|D

′)
xA dx =

∫
Ω

exp
(
α |u(x)|D′

)
xA dx. (5.8)
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Proof. For β > 0 and any k ∈ N, condition (5.7) implies

∫
{x∈Ω ; |uk(x)|>β}

exp
(
α |uk(x)|D

′)
xA dx

=
∫
{x∈Ω ; |uk(x)|>β}

exp
(
(1+δ )α |uk(x)|D

′)
exp
(
δ α |uk(x)|D′

) xA dx≤ C
exp
(
δ α β D′

) .
Thus, the sequence {Fk}∞

k=1 of functions

Fk(x) = exp
(
α |uk(x)|D

′)
xA, k ∈ N,

(bounded in L1(Ω)) is, due to Lemma 5.2, equi-integrable in L1(Ω). To complete the proof
of (5.8) we apply Lemma 5.3.

Lemma 5.5. Let {uk}∞
k=1 ⊂W 1,D

0 (Ω ,mA) be such that
∫

Ω
|∇uk(x)|DxA dx ≤ 1 and let con-

ditions (5.1)–(5.3) be satisfied. Moreover, assume that if u = 0, then ν is not a Dirac mass
concentrated at one point. Then there exist constants C > 0 and p > 1 such that (2.18) holds
for all k ∈ N.

Proof. The assumption on ν implies that there exists a compact set N1 ⊂ Ω such that
0 < ν(N1)< ν

(
Ω
)
≤ 1 (cf. (5.5)). Define the following subsets of Ω :

G = Ω \N1 and Gτ =
{

x ∈Ω ; dist(x,N1)> τ
}
, τ > 0.

By the regularity of the Radon measure ν we have

lim
τ→0+

ν(Gτ) = ν(G) = ν
(
Ω
)
−ν(N1) ∈

(
0,ν
(
Ω
))
.

Thus, there is τ > 0 such that

0 < ν(G2τ)≤ ν(Gτ)< ν
(
Ω
)
.

Observe that F1 = Gτ is compact and F1 ∩N1 = /0. Applying Lemma 5.1 with F = F1 and
N = N1 we find constants δ1 > 0 and C1 > 0 such that, for all k ∈ N,∫

F1

exp
(
(1+δ1)αD,A |uk(x)|D

′)
xA dx≤C1. (5.9)

Put N2 = G2τ and F2 = Ω \Gτ . Obviously these sets are compact and disjoint. Moreover,

ν(N2)≥ ν(G2τ)> 0.

Therefore we can apply Lemma 5.1 again, now with F = F2 and N = N2, and find constants
δ2 > 0 and C2 > 0 such that, for all k ∈ N,∫

F2

exp
(
(1+δ2)αD,A |uk(x)|D

′)
xA dx≤C2. (5.10)

To complete the proof we use (5.9), (5.10) and the fact that F1 ∪F2 = Ω to obtain (2.18)
with p = min{1+δ1,1+δ2} and C =C1 +C2.
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Lemma 5.6. Let {uk}∞
k=1 ⊂W 1,D

0 (Ω ,mA) be such that
∫

Ω
|∇uk(x)|DxA dx ≤ 1 Assume that

conditions (5.1),(5.2) with u = 0, and condition

|∇uk(x)|DxA ∗
⇀ δx0 (where x0 ∈Ω ) in M (Ω) (5.11)

are satisfied. Then the following properties hold.

(i) If there is a constant c≥ 0 such that

lim
k→∞

∫
Ω

(
exp
(
αD,A |uk(x)|D

′)−1
)
xA dx = c,

then (
exp
(
αD,A |uk(x)|D

′)−1
)
xA ∗

⇀ cδx0(x) in M (Ω).

(ii) The sequence { fk}∞
k=1 of functions

fk(x) =
(

exp(αD,A |uk(x)|D
′
)−1

)
xA, k ∈ N,

is relatively compact with respect to the weak∗-convergence in M (Ω) and the limits
of convergent subsequences belong to the set{

cδx0 ; 0≤ c≤ (S−1)mA(Ω)
}
,

where

S = sup
u

1
mA(Ω)

∫
Ω

exp
(
αD,A |u(x)|D

′)
xA dx (5.12)

through all u ∈W 1,D
0 (Ω ,mA) satisfying

∫
Ω
|∇u(x)|DxA dx≤ 1.

Proof. Statement (i). At first observe that, for any η > 0,

lim
k→∞

∫
Ω\B(x0,η)

(
exp
(
αD,A |uk(x)|D

′)−1
)
xA dx = 0. (5.13)

To see this, take N = B(x0,η/2) in Lemma 5.1 and find positive constants δ and C such
that

∫
Ω\B(x0,η) exp

(
(1+ δ )αD,A |uk(x)|D

)
xA dx ≤C. Then use Lemma 5.4 and the fact that

uk→ 0 a.e. on Ω .
Thus, for any η > 0,

lim
k→∞

∫
B(x0,η)

(
exp
(
αD,A |uk(x)|D

′)−1
)
xA dx = c. (5.14)

For an arbitrary test function ψ ∈C
(
Ω
)

and ε > 0 find η > 0 such that, for any x ∈Ω ,

|x− x0|< η =⇒ |ψ(x)−ψ(x0)|<
ε

6max{1,c}
. (5.15)
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We obtain the following estimate

I =
∣∣∣∫

Ω

ψ(x) d(cδx0(x))−
∫

Ω

ψ(x)
(

exp
(
αD,A |uk(x)|D

′)−1
)
xA dx

∣∣∣
=
∣∣∣cψ(x0)−

∫
Ω

ψ(x)
(

exp
(
αD,A |uk(x)|D

′)−1
)
xA dx

∣∣∣
≤
∫

Ω\B(x0,η)
|ψ(x)|

(
exp
(
αD,A |uk(x)|D

′)−1
)
xA dx

+
∫

B(x0,η)
|ψ(x)−ψ(x0)|

(
exp
(
αD,A |uk(x)|D

′)−1
)
xA dx

+ |ψ(x0)|
∣∣∣c−∫

B(x0,η)

(
exp
(
αD,A |uk(x)|D

′)−1
)
xA dx

∣∣∣= I1 +I2 +I3.

For the estimate of the first term we use the fact that ψ is bounded on Ω and (5.13) to find
k1 ∈ N such that, for all k ≥ k1, I1 ≤ ε/3. For the second term we use (5.14) to find k2 ∈ N
such that, for all k ≥ k2,∫

B(x0,η)

(
exp
(
αD,A |uk(x)|D

′)−1
)
xA dx≤ 2c.

Hence, by the estimate (5.15),

I2 =
∫

B(x0,η)
|ψ(x)−ψ(x0)|

(
exp
(
αD,A |uk(x)|D

′)−1
)
xA dx≤ ε

6max{1,c}
2c≤ ε

3
.

Finally, by (5.14) we find k3 ∈ N such that, for all k ≥ k3, I3 < ε

3 . Thus, for all
k ≥ max{k1,k2,k3}, I ≤ I1 +I2 +I3 < ε , which completes the proof of the first state-
ment.

Statement (ii). The inequality 0 ≤ c ≤ (S− 1)mA(Ω) follows from Theorem 4.1, that is,
from the fact that the supremum S in (5.12) is finite. Since the sequence { fk}∞

k=1 is bounded
in L1(Ω), it is relatively compact with respect to the weak∗-convergence in M (Ω). Thus,
there exists a subsequence { fki}∞

i=1 ⊂ { fk}∞
k=1 such that fki

∗
⇀ γ in M (Ω). That means,

taking ψ ≡ 1 on Ω for the test function, that

cδx0 = c = lim
i→∞

∫
Ω

(
exp
(
αD,A |uki(x)|

D′)−1
)
xA dx

= lim
i→∞

∫
Ω

ψ(x)
(

exp
(
αD,A |uki(x)|

D′)−1
)
xA dx =

∫
Ω

ψ(x) dγ(x) = γ(Ω),

which completes the proof.

Lemma 5.7. Let {uk}∞
k=1 ⊂W 1,D

0 (Ω ,mA) be such that
∫

Ω
|∇uk(x)|DxA dx≤ 1 Suppose that

conditions (5.1) and (5.2) hold and that u 6= 0. Then there exist constants C > 0 and δ > 0
such that, for all k ∈ N, ∫

Ω

exp
(
(1+δ )αD,A |uk(x)|D

′)
xA dx≤C. (5.16)

To prove the lemma we need the following result.
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Lemma 5.8. Let R > 0 and let {gk}∞
k=1 be a sequence of non-increasing absolutely contin-

uous functions on the interval [0,R] such that gk(R) = 0. Set uk(x) = gk(|x|) for x ∈ B(0,R)
and k∈N and suppose that

∫
B(0,R) |∇uk(x)|DxA dx≤ 1, k∈N. In addition, assume that (5.1)–

(5.3) hold. If, for any δ > 0,

lim
k→∞

∫
B(0,R)

exp
(
(1+δ )αD,A |uk(x)|D

′)
xA dx = ∞, (5.17)

then, for each r ∈ (0,R),

lim
k→∞

uk = 0 uniformly on B(0,R)\B(0,r). (5.18)

Proof. Observe that, for any r ∈ (0,R),

lim
k→∞

∫
B(0,R)\B(0,r)

|∇uk(x)|DxA dx = 0. (5.19)

Indeed, if it is not the case, then (possibly passing to a subsequence) we find ε ∈ (0,1)
and r0 ∈ (0,R) such that, for all k ∈ N,

∫
B(0,R)\B(0,r0)

|∇uk(x)|DxA dx≥ ε . Thus, taking a test

function ψ ∈C
(
B(0,R)

)
such that 0≤ψ ≤ 1 and ψ ≡ 1 on B(0,R)\B(0,r0), we obtain that

ν
(
B(0,R)\B(0,r0)

)
> 0.

However, by Lemma 5.1, it leads to a contradiction and so (5.19) holds.
To prove (5.18) we use the fact that the functions uk, k ∈ N, are radially non-increasing.

Therefore, if x ∈ B(0,R)\B(0,r0), then r ≤ |x|< R, and so

0≤ uk(x) = gk(|x|)≤ gk(r), k ∈ N.

Thus, it is enough to show that
lim
k→∞

gk(r)→ 0. (5.20)

Since the functions gk, k ∈ N, are absolutely continuous and satisfy gk(R) = 0, we have
gk(r) =−

∫ R
r g′k(t) dt. Then, using the Hölder inequality (cf. also (4.2)) and (5.19), we obtain

0≤ gk(r) =
∫ R

r
|g′k(t)| t

D−1
D t−

D−1
D dt ≤

(∫ R

r
|g′k(t)|DtD−1

)1/D(∫ R

r
t−1 dt

)1/D′

=
(

log R
r

)1/D′
(∫

∂B
xA dσ(x)

)−D(∫
B(0,R)\B(0,r)

|∇uk(x)|DxA dx
)1/D

→ 0 when k→ ∞,

which verifies (5.20).

Further we use a result of Cabré and Ros-Oton [4, Proposition 4.2] which is a direct con-
sequence of their isoperimetric inequality ([4, inequality (1.7)]) and a result of Talenti [24].
The following proposition is also mentioned in [12, Lemma 2.1].

Lemma 5.9. Let u be a Lipschitz continuous function in Rn such that
mA
(
{x ∈ Rn ; |u(x)| > t}

)
< ∞ for every t > 0. Then there exists a radial rearrangement

uF of u such that

(i) uF is nonnegative and radially decreasing;
(ii) mA

(
{x ∈ Rn ; |u(x)|> t}

)
= mA

(
{x ∈ Rn ; uF(x)> t}

)
for all t > 0;
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(iii) for every Young function Φ∫
Rn

Φ
(
|∇uF(x)|

)
xA dx≤

∫
Rn

Φ
(
|∇u(x)|

)
xA dx;

(iv) if Ψ : (0,∞)→ (0,∞) is a nondecreasing and measurable function, then∫
Rn

Ψ
(
uF(x)

)
xA dx =

∫
Rn

Ψ
(
|u(x)|

)
xA dx.

This symmetrization we use for proving Lemma 5.7.

Proof of Lemma 5.7. We show (5.16) by contradiction. If it is not the case, using density
of C∞

0 (Ω) in W 1,D
0 (Ω ,mA), we can find a sequence of functions vk ∈ C∞

0 (Ω), k ∈ N, such
that ∫

Ω

|∇vk(x)|DxA dx≤ 1, vk ⇀ u in W 1,D
0 (Ω ,mA)

and
lim
k→∞

∫
Ω

exp
(
(1+δ )αD,A |vk(x)|D

′)
xA dx = ∞ for every δ > 0. (5.21)

By Lemma 5.9 we obtain (possibly passing to a subsequence) that∫
B(0,R)

|∇vFk (x)|DxA dx≤ 1 and vFk ⇀ uF in W 1,D
0 (B(0,R),mA),

moreover,
vFk → uF in LD(B(0,R),mA) and uF 6= 0.

Further, by Lemma 5.9 (iv),

lim
k→∞

∫
B(0,R)

exp
(
(1+δ )αD,A vFk (x)D′)xA dx = ∞ for every δ > 0.

Applying Lemma 5.8 to the sequence
{

vFk
}∞

k=1 (possibly passing to a subsequence) we find
that, for each r ∈ (0,R),

lim
k→∞

vFk = 0 uniformly on B(0,R)\B(0,r).

However, it contradicts to uF 6= 0.

Proof of Theorem 2.13. Statement (i). It follows from Lemma 5.6.
Statement (ii). The assertion directly follows from Lemma 5.5.
Statement (iii). It is a consequence of Lemma 5.7.
The assertion (2.19) then follows, due to (5.2), by Lemma 5.4.

6 Epilogue

Comparison with a result of Lam We want to point out that our Theorem 2.7 is slightly
different from the result of Lam [12, Theorem 1.1]. The main difference is that Lam consid-
ers the domain

Ω
∗ =

{
(x1, . . . ,xn) ∈Ω ; xi > 0 whenever Ai > 0

}
instead of Ω . Consequently, his optimal constant α∗D,A is different from our αD,A. Namely,

α
∗
D,A = 2−k/(D−1)

αD,A,

where k is the number of strictly positive entries of A = (A1, . . . ,An). It is not difficult to
derive all the corresponding results for the setting of Lam.
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Existence of an extremal function Let us mention an interesting question about the exis-
tence of an extremal function in (2.12) with α = αD,A. That means, we are interested if there
exists a function from the Sobolev space W 1,D

0 (Ω ,mA) for which the supremum

sup
‖∇u‖D,Ω ,mA≤1

1
mA(Ω)

∫
Ω

exp
(
αD,A|u(x)|D

′)
xA dx

is attained. The answer is positive for the classical case A1 = · · ·= An = 0, D = n. The first
result in this direction is due to L. Carleson and A. Chang [5], who proved the existence of
an extremal function when Ω is a ball in Rn. It was extended to arbitrary bounded domain
Ω in R2 by M. Flutcher in [9] and to arbitrary bounded domain Ω in Rn by K. Lin in [13].
More information can be found also in the papers [14] and [22]. To keep this paper read-
able we decided to include our results concerning this topic in our forthcoming papers. At
this moment we are not aware of any results in the case when at least one of the numbers
A1, . . . ,An is nonzero.
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