\mathcal{W}-algebras associated with centralizers in type A

A. I. Molev

Abstract

We introduce a new family of affine \mathcal{W}-algebras $\mathcal{W}^{k}(\mathfrak{a})$ associated with the centralizers of arbitrary nilpotent elements in $\mathfrak{g l}_{N}$. We define them by using a version of the BRST complex of the quantum Drinfeld-Sokolov reduction. A family of free generators of $\mathcal{W}^{k}(\mathfrak{a})$ is produced in an explicit form. We also give an analogue of the Fateev-Lukyanov realization for the new \mathcal{W}-algebras by applying a Miura-type map.

1 Introduction

The affine \mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{g})$ at the level $k \in \mathbb{C}$ associated with a simple Lie algebra \mathfrak{g} is a vertex algebra defined by a quantum Drinfeld-Sokolov reduction [8]. These algebras originate in conformal field theory and first appeared in the work of Zamolodchikov [17] and Fateev and Lukyanov [7]. They were intensively studied both in mathematics and physics literature; see e.g. [1], [2], [5], [9, Ch. 15] for detailed reviews. More general \mathcal{W}-algebras $\mathcal{W}^{k}(\mathfrak{g}, f)$ were introduced in [11], which depend on a simple Lie (super)algebra \mathfrak{g} and an (even) nilpotent element $f \in \mathfrak{g}$ so that $\mathcal{W}^{k}(\mathfrak{g})$ corresponds to a principal nilpotent element f. Their counterparts for odd nilpotent elements f were studied in [12] and [15] from the viewpoint of quantum hamiltonian reduction.

Our goal in this paper is to introduce and describe some basic properties of \mathcal{W}-algebras $\mathcal{W}^{k}(\mathfrak{a})$, where the underlying Lie algebra \mathfrak{a} is the centralizer of a nilpotent element e in $\mathfrak{g l}_{N}$. In the case $e=0$ the corresponding algebra coincides with the principal \mathcal{W}-algebra $\mathcal{W}^{k}\left(\mathfrak{g l}_{N}\right)$.

We follow [4] to equip the Lie algebra \mathfrak{a} with an invariant symmetric bilinear form and introduce the corresponding affine Kac-Moody algebra $\widehat{\mathfrak{a}}$. Its vacuum module $V^{k}(\mathfrak{a})$ at the level k is a vertex algebra. The Lie algebra \mathfrak{a} admits a triangular decomposition $\mathfrak{a}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ which gives rise to a Clifford algebra associated with \mathfrak{n}_{+}and we let \mathcal{F} be its vacuum module. As with the case of simple Lie algebras [9, Ch. 15], the vertex algebra $C^{k}(\mathfrak{a})=V^{k}(\mathfrak{a}) \otimes \mathcal{F}$ acquires a structure of a BRST complex of the quantum Drinfeld-Sokolov reduction. We show that its cohomology $H^{k}(\mathfrak{a})^{i}$ is zero for all degrees $i \neq 0$ and define the \mathcal{W}-algebra by setting $\mathcal{W}^{k}(\mathfrak{a})=H^{k}(\mathfrak{a})^{0}$.

Furthermore, we give an explicit construction of free generators of the \mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{a})$. In the particular case $e=0$ they coincide with those previously found in [3]. Similar to this particular case, by taking the limit $k \rightarrow \infty$ we get a commutative algebra isomorphic to the classical \mathcal{W}-algebra $\mathcal{W}(\mathfrak{a})$ introduced in [14], which is also isomorphic to the center of the vertex
algebra $V^{k}(\mathfrak{a})$ at the critical level $k=-N$ as described in [4] and [13]. On the other hand, the quantum Miura map applied to the generators of $\mathcal{W}^{k}(\mathfrak{a})$ yields its realization as a subalgebra of the vertex algebra $V^{k+N}(\mathfrak{h})$ associated with the diagonal subalgebra \mathfrak{h} of \mathfrak{a}. In the case $e=0$ we recover the corresponding realization [7] of $\mathcal{W}^{k}\left(\mathfrak{g l}_{N}\right)$ as in [3]; see also [2].

Note that in the particular case where all Jordan blocks of the nilpotent e are of the same size, the Lie algebra \mathfrak{a} is isomorphic to a truncated polynomial current algebra of the form $\mathfrak{g l}_{n}[v] /\left(v^{p}=0\right)$, which is also known as the Takiff algebra. This leads to a natural generalization of our definition of the \mathcal{W}-algebras to the class of Takiff algebras $\mathfrak{g}[v] /\left(v^{p}=0\right)$ associated with an arbitrary simple Lie algebra \mathfrak{g}.

2 BRST cohomology for centralizers

Here we adapt the well-known BRST construction of vertex algebras to the case of centralizers in type A. We generally follow [1, Sec. 4] and [9, Ch. 15] with some straightforward modifications.

Let $e \in \mathfrak{g l}_{N}$ be a nilpotent matrix and let \mathfrak{a} be the centralizer of e in $\mathfrak{g l}_{N}$. Suppose that the Jordan canonical form of e has Jordan blocks of sizes $\lambda_{1}, \ldots, \lambda_{n}$, where $\lambda_{1} \leqslant \cdots \leqslant \lambda_{n}$ and $\lambda_{1}+\cdots+\lambda_{n}=N$. The corresponding pyramid is a left-justified array of rows of unit boxes such that the top row contains λ_{1} boxes, the next row contains λ_{2} boxes, etc. Denote by $q_{1} \geqslant \cdots \geqslant q_{l}$ the column lengths of the pyramid (with $l=\lambda_{n}$). The row-tableau is obtained by writing the numbers $1, \ldots, N$ into the boxes of the pyramid consecutively by rows from left to right. For instance, the row-tableau

$$
\begin{array}{|l|l|l|}
\hline 1 & 2 & \\
\hline
\end{array}
$$

corresponds to the pyramid with the rows of lengths $2,3,4$; its column lengths are $3,3,2,1$. We let $\operatorname{row}(a)$ and $\operatorname{col}(a)$ denote the row and column number of the box containing the entry a. Let $e_{a b}$ be the standard basis elements of $\mathfrak{g l}_{N}$. For any $1 \leqslant i, j \leqslant n$ and $\lambda_{j}-\min \left(\lambda_{i}, \lambda_{j}\right) \leqslant r<\lambda_{j}$ set

$$
\begin{equation*}
E_{i j}^{(r)}=\sum_{\substack{\operatorname{row}(a)=i, \operatorname{row}(b)=j \\ \operatorname{col}(b)-\operatorname{col}(a)=r}} e_{a b}, \tag{2.1}
\end{equation*}
$$

summed over $a, b \in\{1, \ldots, N\}$. It is well-known that the elements $E_{i j}^{(r)}$ form a basis of the Lie algebra \mathfrak{a}; see e.g. [6] and [16]. The commutation relations are given by

$$
\left[E_{i j}^{(r)}, E_{h l}^{(s)}\right]=\delta_{h j} E_{i l}^{(r+s)}-\delta_{i l} E_{h j}^{(r+s)}
$$

assuming that $E_{i j}^{(r)}=0$ for $r \geqslant \lambda_{j}$.

2.1 Affine vertex algebra

The Lie algebra $\mathfrak{g}=\mathfrak{g l}_{N}$ gets a \mathbb{Z}-gradation $\mathfrak{g}=\bigoplus_{r \in \mathbb{Z}} \mathfrak{g}_{r}$ determined by e such that the degree of the basis element $e_{a b}$ equals $\operatorname{col}(b)-\operatorname{col}(a)$. We thus get an induced \mathbb{Z}-gradation $\mathfrak{a}=\bigoplus_{r \in \mathbb{Z}} \mathfrak{a}_{r}$
on the Lie algebra \mathfrak{a}, where $\mathfrak{a}_{r}=\mathfrak{a} \cap \mathfrak{g}_{r}$. Note that the element (2.1) is homogeneous of degree r. The subalgebra \mathfrak{g}_{0} is isomorphic to the direct sum

$$
\begin{equation*}
\mathfrak{g}_{0} \cong \mathfrak{g l}_{q_{1}} \oplus \cdots \oplus \mathfrak{g l}_{q_{l}} \tag{2.2}
\end{equation*}
$$

Equip this subalgebra with the normalized Killing form

$$
\begin{equation*}
\langle X, Y\rangle=\frac{1}{2 N} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y), \quad X, Y \in \mathfrak{g}_{0} \tag{2.3}
\end{equation*}
$$

Now define an invariant symmetric bilinear form on \mathfrak{a} following [4]. The value $\langle X, Y\rangle$ for homogeneous elements $X, Y \in \mathfrak{a}$ is found by (2.3) for $X, Y \in \mathfrak{a}_{0}$, and is zero otherwise. Writing $X=X_{1}+\cdots+X_{l}$ and $Y=Y_{1}+\cdots+Y_{l}$ in accordance with the decomposition (2.2), we get

$$
\langle X, Y\rangle=\frac{1}{N} \sum_{i=1}^{l}\left(q_{i} \operatorname{tr} X_{i} Y_{i}-\operatorname{tr} X_{i} \operatorname{tr} Y_{i}\right)
$$

Therefore, if $\lambda_{i}=\lambda_{j}$ for some $i \neq j$ then

$$
\left\langle E_{i j}^{(0)}, E_{j i}^{(0)}\right\rangle=\frac{1}{N}\left(q_{1}+\cdots+q_{\lambda_{i}}\right)=\frac{1}{N}\left(\lambda_{1}+\cdots+\lambda_{i-1}+(n-i+1) \lambda_{i}\right),
$$

and for all i and j we have

$$
\left\langle E_{i i}^{(0)}, E_{j j}^{(0)}\right\rangle=\frac{1}{N}\left(\delta_{i j}\left(\lambda_{1}+\cdots+\lambda_{i-1}+(n-i+1) \lambda_{i}\right)-\min \left(\lambda_{i}, \lambda_{j}\right)\right),
$$

whereas all remaining values of the form on the basis vectors are zero.
The affine Kac-Moody algebra $\widehat{\mathfrak{a}}$ is the central extension $\widehat{\mathfrak{a}}=\mathfrak{a}\left[t, t^{-1}\right] \oplus \mathbb{C} K$, where $\mathfrak{a}\left[t, t^{-1}\right]$ is the Lie algebra of Laurent polynomials in t with coefficients in \mathfrak{a}. For any $r \in \mathbb{Z}$ and $X \in \mathfrak{g}$ we will write $X[m]=X t^{m}$. The commutation relations of the Lie algebra $\widehat{\mathfrak{a}}$ have the form

$$
[X[m], Y[p]]=[X, Y][m+p]+m \delta_{m,-p}\langle X, Y\rangle K, \quad X, Y \in \mathfrak{a}
$$

and the element K is central in $\widehat{\mathfrak{a}}$. The vacuum module at the level $k \in \mathbb{C}$ over $\widehat{\mathfrak{a}}$ is the quotient

$$
V^{k}(\mathfrak{a})=\mathrm{U}(\widehat{\mathfrak{a}}) / \mathrm{I}
$$

where I is the left ideal of $\mathrm{U}(\hat{\mathfrak{a}})$ generated by $\mathfrak{a}[t]$ and the element $K-k$. This module is equipped with a vertex algebra structure and is known as the (universal) affine vertex algebra associated with \mathfrak{a}; see [9], [10]. The vacuum vector is the image of the element 1 in the quotient and we will denote it by $|0\rangle$. Furthermore, introduce the fields

$$
E_{i j}^{(r)}(z)=\sum_{m \in \mathbb{Z}} E_{i j}^{(r)}[m] z^{-m-1} \in \operatorname{End} V^{k}(\mathfrak{a})\left[\left[z, z^{-1}\right]\right]
$$

so that under the state-field correspondence map we have

$$
Y: E_{i j}^{(r)}[-1]|0\rangle \mapsto E_{i j}^{(r)}(z) .
$$

The map Y extends to the whole of $V^{k}(\mathfrak{a})$ with the use of normal ordering. The translation operator T on $V^{k}(\mathfrak{a})$ is determined by the properties

$$
\begin{equation*}
T:|0\rangle \mapsto 0 \quad \text { and } \quad[T, X[m]]=-m X[m-1], \quad X \in \mathfrak{a}, \quad m<0 \tag{2.4}
\end{equation*}
$$

where $X[m]$ is understood as the operator of left multiplication by $X[m]$.

2.2 Affine Clifford algebra

Consider the following triangular decomposition of the Lie algebra \mathfrak{a},

$$
\begin{equation*}
\mathfrak{a}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+} \tag{2.5}
\end{equation*}
$$

where the subalgebras are defined by

$$
\mathfrak{n}_{-}=\operatorname{span} \text { of }\left\{E_{i j}^{(r)} \mid i>j\right\}, \quad \mathfrak{n}_{+}=\operatorname{span} \text { of }\left\{E_{i j}^{(r)} \mid i<j\right\} \quad \text { and } \quad \mathfrak{h}=\operatorname{span} \text { of }\left\{E_{i i}^{(r)}\right\},
$$

with the superscript r ranging over all admissible values. Denote by $\mathcal{C l}$ the Clifford algebra associated with $\mathfrak{n}_{+}\left[t, t^{-1}\right]$, so it is generated by odd elements $\psi_{i j}^{(r)}[m]$ and $\psi_{i j}^{(r) *}[m]$ with the parameters satisfying the conditions $1 \leqslant i<j \leqslant n$ together with $\lambda_{j}-\lambda_{i} \leqslant r \leqslant \lambda_{j}-1$ and $m \in \mathbb{Z}$. The defining relations are given by the anti-commutation relations

$$
\left[\psi_{i j}^{(r)}[m], \psi_{i j}^{(r) *}[-m]\right]=1,
$$

while all other pairs of generators anti-commute. Let \mathcal{F} be the Fock representation of $\mathcal{C l}$ generated by a vector 1 such that

$$
\psi_{i j}^{(r)}[m] \mathbf{1}=0 \quad \text { for } \quad m \geqslant 0 \quad \text { and } \quad \psi_{i j}^{(r) *}[m] \mathbf{1}=0 \quad \text { for } \quad m>0 .
$$

The space \mathcal{F} is a vertex algebra with the vacuum vector $\mathbf{1}$, and the translation operator T is determined by the properties $T: \mathbf{1} \mapsto 0$ and

$$
\left[T, \psi_{i j}^{(r)}[m]\right]=-m \psi_{i j}^{(r)}[m-1], \quad\left[T, \psi_{i j}^{(r) *}[m]\right]=-(m-1) \psi_{i j}^{(r) *}[m-1]
$$

The fields are defined by

$$
\psi_{i j}^{(r)}(z)=\sum_{m \in \mathbb{Z}} \psi_{i j}^{(r)}[m] z^{-m-1} \quad \text { and } \quad \psi_{i j}^{(r) *}(z)=\sum_{m \in \mathbb{Z}} \psi_{i j}^{(r) *}[m] z^{-m}
$$

so that

$$
Y: \psi_{i j}^{(r)}[-1] \mathbf{1} \mapsto \psi_{i j}^{(r)}(z) \quad \text { and } \quad Y: \psi_{i j}^{(r) *}[0] \mathbf{1} \mapsto \psi_{i j}^{(r) *}(z)
$$

The vertex algebra \mathcal{F} has a \mathbb{Z}-gradation $\mathcal{F}=\bigoplus_{i \in \mathbb{Z}} \mathcal{F}^{i}$, defined by

$$
\operatorname{deg} \mathbf{1}=0, \quad \operatorname{deg} \psi_{i j}^{(r)}[m]=-1 \quad \text { and } \quad \operatorname{deg} \psi_{i j}^{(r) *}[m]=1
$$

2.3 BRST complex

Introduce the vertex algebra $C^{k}(\mathfrak{a})$ as the tensor product

$$
C^{k}(\mathfrak{a})=V^{k}(\mathfrak{a}) \otimes \mathcal{F}
$$

We will use notation $|0\rangle$ for its vacuum vector $|0\rangle \otimes \mathbb{1}$. The vertex algebra $C^{k}(\mathfrak{a})$ is \mathbb{Z}-graded, its i-th component has the form

$$
C^{k}(\mathfrak{a})^{i}=V^{k}(\mathfrak{a}) \otimes \mathcal{F}^{i}
$$

Consider the fields $Q(z)$ and $\chi(z)$ defined by

$$
\begin{equation*}
Q(z)=\sum_{i<j} E_{i j}^{(a)}(z) \psi_{i j}^{(a) *}(z)-\sum_{i<j<h} \psi_{i j}^{(a) *}(z) \psi_{j h}^{(b) *}(z) \psi_{i h}^{(a+b)}(z), \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi(z)=\sum_{i=1}^{n-1} \psi_{i i+1}^{\left(\lambda_{i+1}-1\right) *}(z) . \tag{2.7}
\end{equation*}
$$

To simplify the formulas, here and throughout the paper we use the convention that summation over all admissible values of repeated superscripts of the form a, b, c is assumed. For instance, summation over a running over the values $\lambda_{j}-\lambda_{i}, \ldots, \lambda_{j}-1$ is assumed within the first sum in (2.6). Define the odd endomorphisms $d_{\text {st }}$ and χ of $C^{k}(\mathfrak{a})$ as the residues (coefficients of z^{-1}) of the fields (2.6) and (2.7),

$$
d_{\mathrm{st}}=Q_{(0)} \quad \text { and } \quad \chi=\sum_{i=1}^{n-1} \psi_{i i+1}^{\left(\lambda_{i+1}-1\right) *}[1] .
$$

Lemma 2.1. We have the relations

$$
d_{\mathrm{st}}^{2}=\chi^{2}=\left[d_{\mathrm{st}}, \chi\right]=0
$$

Proof. The relations are verified by the standard OPE calculus with the use of the Taylor formula and Wick theorem [10]. Using the basic OPEs

$$
\begin{equation*}
E_{i j}^{(r)}(z) E_{h l}^{(s)}(w) \sim \frac{1}{z-w}\left(\delta_{h j} E_{i l}^{(r+s)}(w)-\delta_{i l} E_{h j}^{(r+s)}(w)\right)+\frac{k\left\langle E_{i j}^{(r)}, E_{h l}^{(s)}\right\rangle}{(z-w)^{2}} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{i j}^{(r)}(z) \psi_{i j}^{(r) *}(w) \sim \frac{1}{z-w}, \quad \psi_{i j}^{(r) *}(z) \psi_{i j}^{(r)}(w) \sim \frac{1}{z-w}, \tag{2.9}
\end{equation*}
$$

we find that the OPE $Q(z) Q(w)$ is regular, thus implying that $d_{\mathrm{st}}^{2}=0$. The remaining relations are straightforward to verify.

By Lemma 2.1, the odd endomorphism $d=d_{\text {st }}+\chi$ of $C^{k}(\mathfrak{a})$ has the properties $d^{2}=0$ and $d: C^{k}(\mathfrak{a})^{i} \rightarrow C^{k}(\mathfrak{a})^{i+1}$. We thus get an analogue $\left(C^{k}(\mathfrak{a})^{\bullet}, d\right)$ of the BRST complex of the quantum Drinfeld-Sokolov reduction, associated with the Lie algebra \mathfrak{a}; cf. [9, Ch. 15]. Since d is a residue of a vertex operator, the cohomology $H^{k}(\mathfrak{a})^{\bullet}$ of the complex is a vertex algebra which we will use to define and describe the \mathcal{W}-algebras $\mathcal{W}^{k}(\mathfrak{a})$.

$3 \mathcal{W}$-algebras $\mathcal{W}^{k}(\mathfrak{a})$

Introduce another \mathbb{Z}-gradation on $C^{k}(\mathfrak{a})^{\bullet}$ by defining the (conformal) degrees by

$$
\operatorname{deg}^{\prime} E_{i j}^{(r)}[m]=\operatorname{deg}^{\prime} \psi_{i j}^{(r)}[m]=-m+i-j \quad \text { and } \quad \operatorname{deg}^{\prime} \psi_{i j}^{(r) *}[m]=-m+j-i .
$$

Observe that the differential d has degree 0 and so it preserves this gradation thus defining a \mathbb{Z}-gradation on the cohomology $H^{k}(\mathfrak{a})^{\bullet}$.

Definition 3.1. The \mathbb{Z}-graded vertex algebra $H^{k}(\mathfrak{a})^{0}$ is called the \mathcal{W}-algebra associated with the centralizer \mathfrak{a} at the level k and denoted by $\mathcal{W}^{k}(\mathfrak{a})$.

Our next goal is to prove the following analogue of [9, Thm 15.1.9] describing the structure of principal \mathcal{W}-algebras associated with simple Lie algebras.

Theorem 3.2. The \mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{a})$ is strongly generated by elements w_{1}, \ldots, w_{N} of the respective degrees

$$
\underbrace{1, \ldots, 1}_{\lambda_{n}}, \underbrace{2, \ldots, 2}_{\lambda_{n-1}}, \ldots, \underbrace{n, \ldots, n}_{\lambda_{1}} .
$$

Moreover, $H^{k}(\mathfrak{a})^{i}=0$ for all $i \neq 0$.
The proof relies on essentially the same arguments as in [9, Ch. 15] (see also [1, Sec. 4]) which we will outline in the rest of this section. A family of generators w_{1}, \ldots, w_{N} will be produced in Sec. 4.

For all $1 \leqslant i<j \leqslant n$ and $r=\lambda_{j}-\lambda_{i}, \ldots, \lambda_{j}-1$ introduce the fields

$$
\begin{equation*}
e_{i j}^{(r)}(z)=E_{i j}^{(r)}(z)+\sum_{h>j} \psi_{i h}^{(a)}(z) \psi_{j h}^{(a-r) *}(z)-\sum_{h<i} \psi_{h j}^{(a)}(z) \psi_{h i}^{(a-r) *}(z), \tag{3.1}
\end{equation*}
$$

where we keep using the convention on the summation over a as in (2.6). Similarly, for $i \geqslant j$ and $r=0,1, \ldots, \lambda_{j}-1$ set

$$
\begin{equation*}
e_{i j}^{(r)}(z)=E_{i j}^{(r)}(z)+\sum_{h>i}: \psi_{i h}^{(a)}(z) \psi_{j h}^{(a-r) *}(z):-\sum_{h<j}: \psi_{h j}^{(a)}(z) \psi_{h i}^{(a-r) *}(z): . \tag{3.2}
\end{equation*}
$$

Note that by the defining relations in the Clifford algebra $\mathcal{C} l$, the normal ordering is necessary only for the case where $i=j$ and $r=0$. Introduce Fourier coefficients $e_{i j}^{(r)}[m]$ of the fields (3.1) and (3.2) by setting

$$
e_{i j}^{(r)}(z)=\sum_{m \in \mathbb{Z}} e_{i j}^{(r)}[m] z^{-m-1}
$$

In the formulas of the next lemmas we assume that the fields with out-of-range parameters are equal to zero.

Lemma 3.3. (i) For $i \geqslant j$ and $h<l$ we have

$$
\begin{equation*}
\left[e_{i j}^{(r)}[m], \psi_{h l}^{(s) *}[p]\right]=\delta_{l j} \psi_{h i}^{(s-r) *}[m+p]-\delta_{h i} \psi_{j l}^{(s-r) *}[m+p] . \tag{3.3}
\end{equation*}
$$

Moreover, if $i \geqslant j$ and $h \geqslant l$ then

$$
\left[e_{i j}^{(r)}[m], e_{h l}^{(s)}[p]\right]=\delta_{h j} e_{i l}^{(r+s)}[m+p]-\delta_{i l} e_{h j}^{(r+s)}[m+p]+m \delta_{m,-p}(k+N)\left\langle E_{i j}^{(r)}, E_{h l}^{(s)}\right\rangle .
$$

(ii) For $i<j$ and $h<l$ we have

$$
\left[e_{i j}^{(r)}[m], \psi_{h l}^{(s)}[p]\right]=\delta_{h j} \psi_{i l}^{(r+s)}[m+p]-\delta_{i l} \psi_{k j}^{(r+s)}[m+p]
$$

and

$$
\left[e_{i j}^{(r)}[m], e_{h l}^{(s)}[p]\right]=\delta_{h j} e_{i l}^{(r+s)}[m+p]-\delta_{i l} e_{h j}^{(r+s)}[m+p] .
$$

Proof. All relations are easily verified with the use of the OPEs (2.8) and (2.9).
For all $i=1, \ldots, n$ set

$$
\begin{equation*}
\alpha_{i}=-\lambda_{i}+\frac{k+N}{N}\left(\lambda_{1}+\cdots+\lambda_{i-1}+(n-i+1) \lambda_{i}\right) . \tag{3.4}
\end{equation*}
$$

Lemma 3.4. The following relations hold for all $i \geqslant j$:

$$
\begin{align*}
{\left[d_{\mathrm{st}}, e_{i j}^{(r)}(z)\right] } & =\sum_{h=j}^{i-1}: e_{h j}^{(a+r)}(z) \psi_{h i}^{(a) *}(z):-\sum_{h=j+1}^{i}: \psi_{j h}^{(a) *}(z) e_{i h}^{(a+r)}(z):+\alpha_{j} \delta_{r 0} \partial_{z} \psi_{j i}^{(0) *}(z) \\
{\left[\chi, e_{i j}^{(r)}(z)\right] } & =\psi_{j i+1}^{\left(\lambda_{i+1}-r-1\right) *}(z)-\psi_{j-1 i}^{\left(\lambda_{j}-r-1\right) *}(z) \tag{3.5}
\end{align*}
$$

Moreover, for all $i<j$ we have

$$
\begin{aligned}
{\left[d_{\mathrm{st}}, e_{i j}^{(r)}(z)\right] } & =0, & {\left[\chi, e_{i j}^{(r)}(z)\right] } & =0 \\
{\left[d_{\mathrm{st}}, \psi_{i j}^{(r)}(z)\right] } & =e_{i j}^{(r)}(z), & {\left[\chi, \psi_{i j}^{(r)}(z)\right] } & =\delta_{i j-1} \delta_{r \lambda_{j}-1}
\end{aligned}
$$

and

$$
\left[d_{\mathrm{st}}, \psi_{i j}^{(r) *}(z)\right]=-\sum_{i<h<j} \psi_{i h}^{(a) *}(z) \psi_{h j}^{(r-a) *}(z), \quad\left[\chi, \psi_{i j}^{(r) *}(z)\right]=0 .
$$

Proof. All relations are verified by using the OPEs (2.8) and (2.9). We give some details for the proof of the first relation. As a first step, by a direct computation with the use of the Wick theorem we get the OPE

$$
\begin{aligned}
Q(z) e_{i j}^{(r)}(w) & \sim \frac{1}{z-w}\left(\sum_{h=j}^{i-1}: e_{h j}^{(a+r)}(w) \psi_{h i}^{(a) *}(w):-\sum_{h=j+1}^{i}: e_{i h}^{(a+r)}(w) \psi_{j h}^{(a) *}(w):\right) \\
& +\frac{1}{(z-w)^{2}} \delta_{r 0}\left(k\left\langle E_{i j}^{(0)}, E_{j i}^{(0)}\right\rangle+\lambda_{1}+\cdots+\lambda_{j-1}+(n-i) \lambda_{j}\right) \psi_{j i}^{(0) *}(z),
\end{aligned}
$$

where the term $\psi_{j i}^{(0) *}(z)$ is nonzero only if $j<i$ and $\lambda_{i}=\lambda_{j}$. Relation (3.3) of Lemma 3.3 implies (assuming summation over a) that

$$
: e_{i h}^{(a+r)}(w) \psi_{j h}^{(a) *}(w):=: \psi_{j h}^{(a) *}(w) e_{i h}^{(a+r)}(w):+\delta_{r 0} \lambda_{j} \partial_{w} \psi_{j i}^{(0) *}(w) .
$$

The required relation now follows by applying the Taylor formula to $\psi_{j i}^{(0) *}(z)$ to write

$$
\psi_{j i}^{(0) *}(z)=\psi_{j i}^{(0) *}(w)+(z-w) \partial_{w} \psi_{j i}^{(0) *}(w)+\ldots,
$$

and then by taking the residue over z in the resulting expressions.

Denote by $C^{k}(\mathfrak{a})_{0}$ the subspace of $C^{k}(\mathfrak{a})$ spanned by all vectors of the form

$$
e_{i_{1} j_{1}}^{\left(r_{1}\right)}\left[m_{1}\right] \ldots e_{i_{q} j_{q}}^{\left(r_{q}\right)}\left[m_{q}\right] \psi_{h_{1} l_{1}}^{\left(s_{1}\right) *}\left[p_{1}\right] \ldots \psi_{h_{t} l_{t}}^{\left(s_{t}\right) *}\left[p_{t}\right]|0\rangle, \quad i_{a} \geqslant j_{a}, \quad h_{a}<l_{a}
$$

and by $C^{k}(\mathfrak{a})_{+}$the subspace of $C^{k}(\mathfrak{a})$ spanned by all vectors of the form

$$
e_{i_{1} j_{1}}^{\left(r_{1}\right)}\left[m_{1}\right] \ldots e_{i_{q} j_{q}}^{\left(r_{q}\right)}\left[m_{q}\right] \psi_{h_{1} l_{1}}^{\left(s_{1}\right)}\left[p_{1}\right] \ldots \psi_{h_{t} l_{t}}^{\left(s_{t}\right)}\left[p_{t}\right]|0\rangle, \quad i_{a}<j_{a}, \quad h_{a}<l_{a} .
$$

By Lemma 3.3, both $C^{k}(\mathfrak{a})_{0}$ and $C^{k}(\mathfrak{a})_{+}$are vertex subalgebras of $C^{k}(\mathfrak{a})$. Furthermore, by Lemma 3.4 each of the subalgebras is preserved by the differential $d=d_{\mathrm{st}}+\chi$. This implies the tensor product decomposition of complexes

$$
C^{k}(\mathfrak{a})^{\bullet} \cong C^{k}(\mathfrak{a})_{0}^{\bullet} \otimes C^{k}(\mathfrak{a})_{+}^{\bullet}
$$

Hence the cohomology of $C^{k}(\mathfrak{a})^{\bullet}$ is isomorphic to the tensor product of the cohomologies of $C^{k}(\mathfrak{a})_{0}^{\bullet}$ and $C^{k}(\mathfrak{a})_{+}^{\bullet}$.

By Lemma 3.4, for $i<j$ we have

$$
\left[d, e_{i j}^{(r)}[m]\right]=0, \quad\left[d, \psi_{i j}^{(r)}[m]\right]=e_{i j}^{(r)}[m]+\delta_{i j-1} \delta_{r \lambda_{j}-1} \delta_{m,-1}
$$

Therefore, the complex $C^{k}(\mathfrak{a})_{+}^{\bullet}$ has no higher cohomologies, while its zeroth cohomology is onedimensional; see [9, Sec 15.2.6]. So the cohomology of $C^{k}(\mathfrak{a})^{\bullet}$ is isomorphic to the cohomology of the complex $C^{k}(\mathfrak{a})_{0}^{\bullet}$. To calculate the latter, equip this complex with a double gradation by setting

$$
\operatorname{bideg} e_{i j}^{(r)}[m]=(i-j, j-i), \quad \operatorname{bideg} \psi_{i j}^{(r) *}[m]=(j-i, i-j+1)
$$

Then $C^{k}(\mathfrak{a})_{0}^{\bullet}$ acquires a structure of bicomplex with bideg $\chi=(1,0)$ and bideg $d_{\text {st }}=(0,1)$. Take χ as the zeroth differential of the associated spectral sequence and $d_{\text {st }}$ as the first. Next we compute the cohomology of $C^{k}(\mathfrak{a})_{0}^{\bullet}$ with respect to χ.

Consider the linear span of all fields $e_{i j}^{(r)}(z)$ with $i \geqslant j$ and $r=0,1, \ldots, \lambda_{j}-1$. We will choose a new basis of this vector space which is formed by the fields

$$
P_{l}^{(r)}(z)=e_{n n-l+1}^{(r)}(z)+e_{n-1 n-l}^{\left(r+\lambda_{n}-\lambda_{2}\right)}(z)+\cdots+e_{l 1}^{\left(r+\lambda_{n}+\cdots+\lambda_{l+1}-\lambda_{n-l+1}-\cdots-\lambda_{2}\right)}(z)
$$

for $l=1, \ldots, n$ and $r=0,1, \ldots, \lambda_{n-l+1}-1$ together with

$$
I_{i j}^{(r)}(z)=\sum_{h=1}^{i} e_{j-h i-h+1}^{\left(r+\lambda_{j-1}+\cdots+\lambda_{j-h+1}-\lambda_{i}-\cdots-\lambda_{i-h+2}\right)}(z)
$$

for $i<j$ and $r=0,1, \ldots, \lambda_{i}-1$. The following properties of the new basis vectors are immediate from (3.5).

Lemma 3.5. We have the relations

$$
\left[\chi, P_{l}^{(r)}(z)\right]=0 \quad \text { and } \quad\left[\chi, I_{i j}^{(r)}(z)\right]=\psi_{i j}^{\left(\lambda_{j}-r-1\right) *}(z)
$$

Lemma 3.5 allows us to apply the arguments of [9, Sec. 15.2.9] to conclude that all higher cohomologies of the complex $C^{k}(\mathfrak{a})_{0}^{\bullet}$ with respect to χ vanish, while the zeroth cohomology is the commutative vertex subalgebra of $C^{k}(\mathfrak{a})_{0}^{\bullet}$ spanned by all monomials

$$
\begin{equation*}
P_{l_{1}}^{\left(r_{1}\right)}\left[m_{1}\right] \ldots P_{l_{q}}^{\left(r_{q}\right)}\left[m_{q}\right]|0\rangle \tag{3.6}
\end{equation*}
$$

where we use the Fourier coefficients $P_{l}^{(r)}[m]$ defined by

$$
\begin{equation*}
P_{l}^{(r)}(z)=\sum_{m \in \mathbb{Z}} P_{l}^{(r)}[m] z^{-m-1} \tag{3.7}
\end{equation*}
$$

By a standard procedure outlined in [9, Sec. 15.2.11], each element of this subalgebra gives rise to a cocycle in the complex $C^{k}(\mathfrak{a})_{0}^{\bullet}$ with the differential d. Moreover, the cocycles $W_{l}^{(r)}$ corresponding to the vectors $P_{l}^{(r)}[-1]|0\rangle$ with $l=1, \ldots, n$ and $r=0,1, \ldots, \lambda_{n-l+1}-1$ strongly generate the \mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{a})$. The proof of Theorem 3.2 is completed by the observation that the conformal degree of the generator $W_{l}^{(r)}$ equals l.

4 Generators of $\mathcal{W}^{k}(\mathfrak{a})$

For an $n \times n$ matrix $A=\left[a_{i j}\right]$ with entries in a ring we will consider its column-determinant defined by

$$
\operatorname{cdet} A=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn} \sigma \cdot a_{\sigma(1) 1} \ldots a_{\sigma(n) n}
$$

We will produce generators of the \mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{a})$ as elements of the vertex algebra $C^{k}(\mathfrak{a})_{0}$. Combine the Fourier coefficients $e_{i j}^{(r)}[-1] \in$ End $C^{k}(\mathfrak{a})_{0}$ into polynomials in a variable u by setting

$$
e_{i j}(u)=\sum_{r=0}^{\lambda_{j}-1} e_{i j}^{(r)}[-1] u^{r}, \quad i \geqslant j .
$$

Let x be another variable and consider the matrix

$$
\mathcal{E}=\left[\begin{array}{ccccc}
x+\alpha_{1} T+e_{11}(u) & -u^{\lambda_{2}-1} & 0 & \ldots & 0 \\
e_{21}(u) & x+\alpha_{2} T+e_{22}(u) & -u^{\lambda_{3}-1} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & -u^{\lambda_{n}-1} \\
e_{n 1}(u) & e_{n 2}(u) & \ldots & \ldots & x+\alpha_{n} T+e_{n n}(u)
\end{array}\right]
$$

where the constants α_{i} are defined in (3.4). Its column-determinant is a polynomial in x of the form

$$
\begin{equation*}
\operatorname{cdet} \mathcal{E}=x^{n}+w_{1}(u) x^{n-1}+\cdots+w_{n}(u), \quad w_{l}(u)=\sum_{r} w_{l}^{(r)} u^{r} \tag{4.1}
\end{equation*}
$$

so that the coefficients $w_{l}^{(r)}$ are endomorphisms of $C^{k}(\mathfrak{a})_{0}$.
The particular case $e=0$ of the following theorem (that is, with $\lambda_{1}=\cdots=\lambda_{n}=1$) is contained in [3, Thm 2.1].

Theorem 4.1. All elements $w_{l}^{(r)}|0\rangle$ with $l=1, \ldots, n$ and

$$
\begin{equation*}
\lambda_{n-l+2}+\cdots+\lambda_{n}<r+l \leqslant \lambda_{n-l+1}+\cdots+\lambda_{n} \tag{4.2}
\end{equation*}
$$

belong to the \mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{a})$. Moreover, the \mathcal{W}-algebra is strongly generated by these elements.

Proof. The first part of the theorem will follow if we show that the elements $w_{l}^{(r)}|0\rangle \in C^{k}(\mathfrak{a})_{0}$ are annihilated by the differential d. To verify this property, it will be convenient to identify $C^{k}(\mathfrak{a})_{0}$ with an isomorphic vertex algebra $\widetilde{V}^{k}(\mathfrak{a})$ defined as follows; cf. [3]. Consider the Lie superalgebra

$$
\begin{equation*}
\left(\mathfrak{b}\left[t, t^{-1}\right] \oplus \mathbb{C} K\right) \oplus \mathfrak{m}\left[t, t^{-1}\right] \tag{4.3}
\end{equation*}
$$

where the Lie algebra \mathfrak{b} is spanned by the vectors $e_{i j}^{(r)}$ with $i \geqslant j$ and $r=0,1, \ldots, \lambda_{j}-1$ understood as basis elements of the low triangular part $\mathfrak{n}_{-} \oplus \mathfrak{h}$ in the decomposition (2.5) via the identification $e_{i j}^{(r)} \rightsquigarrow E_{i j}^{(r)}$, the even element K is central and \mathfrak{m} is the supercommutative Lie superalgebra spanned by (abstract) odd elements $\psi_{i j}^{(r) *}$ with $i<j$ and $r=\lambda_{j}-\lambda_{i}, \ldots, \lambda_{j}-1$. The even component of the Lie superalgebra (4.3) is the Kac-Moody affinization $\mathfrak{b}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ of \mathfrak{b} with the commutation relations given by

$$
\left[e_{i j}^{(r)}[m], e_{h l}^{(s)}[p]\right]=\delta_{h j} e_{i l}^{(r+s)}[m+p]-\delta_{i l} e_{h j}^{(r+s)}[m+p]+m \delta_{m,-p} K\left\langle E_{i j}^{(r)}, E_{h l}^{(s)}\right\rangle,
$$

where the element $e_{i j}^{(r)}[m]$ is now understood as the vector $e_{i j}^{(r)} t^{m}$. The remaining commutation relations coincide with those in (3.3), where $\psi_{i j}^{(r) *}[m]$ is understood as the vector $\psi_{i j}^{(r) *} t^{m-1}$. Now define $\widetilde{V}^{k}(\mathfrak{a})$ as the representation of the Lie superalgebra (4.3) induced from the onedimensional representation of $(\mathfrak{b}[t] \oplus \mathbb{C} K) \oplus \mathfrak{m}[t]$ on which $\mathfrak{b}[t]$ and $\mathfrak{m}[t]$ act trivially and K acts as $k+N$. Then $\widetilde{V}^{k}(\mathfrak{a})$ is a vertex algebra isomorphic to $C^{k}(\mathfrak{a})_{0}$ so that the fields with the same names respectively correspond to each other. Moreover, the cyclic span of the vacuum vector over the Lie algebra $\mathfrak{b}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ is a subalgebra of the vertex algebra $\widetilde{V}^{k}(\mathfrak{a})$ isomorphic to the vacuum module $V^{k+N}(\mathfrak{b})$.

Observe that the coefficients $w_{l}^{(r)}$ defined in (4.1) can now be understood as elements of the universal enveloping algebra $\mathrm{U}\left(t^{-1} \mathfrak{b}\left[t^{-1}\right]\right)$. As a vertex algebra, $\widetilde{V}^{k}(\mathfrak{a})$ is equipped with the (-1)-product, and each Fourier coefficient $e_{i j}^{(r)}[m]$ with $m<0$ can be regarded as the operator of left (-1)-multiplication by the vector $e_{i j}^{(r)}[m]|0\rangle$, and which is the same as the left multiplication by the element $e_{i j}^{(r)}[m]$ in the algebra $\mathrm{U}\left(t^{-1} \mathfrak{b}\left[t^{-1}\right]\right)$. Therefore, the monomials in the elements $e_{i j}^{(r)}[m]$ which occur in the expansion of the column-determinant $\operatorname{cdet} \mathcal{E}$ can be regarded as the corresponding (-1)-products calculated consecutively from right to left, starting from the vacuum vector.

By Lemma 3.4, for $i \geqslant j$ we have the relations

$$
\begin{aligned}
{\left[d, e_{i j}^{(r)}[-1]\right]=\sum_{h=j}^{i-1} e_{h j}^{(a+r)}[-1] \psi_{h i}^{(a) *}[0] } & -\sum_{h=j+1}^{i} \psi_{j h}^{(a) *}[0] e_{i h}^{(a+r)}[-1] \\
& +\psi_{j i+1}^{\left(\lambda_{i+1}-r-1\right) *}[0]-\psi_{j-1 i}^{\left(\lambda_{j}-r-1\right) *}[0]+\alpha_{j} \delta_{r 0} \psi_{j i}^{(0) *}[-1] .
\end{aligned}
$$

Introducing the Laurent polynomials

$$
\phi_{i j}=\sum_{r=\lambda_{i}-\lambda_{j}}^{\lambda_{i}-1} \psi_{j i}^{(r) *}[0] u^{-r}, \quad i>j,
$$

we can write the relations in the form

$$
\left[d, e_{i j}(u)\right]=\left\{\sum_{h=j}^{i-1} e_{h j}(u) \phi_{i h}-\sum_{h=j+1}^{i} \phi_{h j} e_{i h}(u)+\phi_{i+1 j} u^{\lambda_{i+1}-1}-\phi_{i j-1} u^{\lambda_{j}-1}+\alpha_{j} T \phi_{i j}\right\}_{+},
$$

where the symbol $\{\ldots\}_{+}$indicates the component of a Laurent polynomial containing only nonnegative powers of u,

$$
\left\{\sum_{i} c_{i} u^{i}\right\}_{+}=\sum_{i \geqslant 0} c_{i} u^{i}
$$

Let $\mathcal{E}_{i j}$ denote the (i, j) entry of the matrix \mathcal{E}. Since d commutes with the translation operator T, we come to the commutation relations

$$
\begin{equation*}
\left[d, \mathcal{E}_{i j}\right]=\left\{\sum_{h=j}^{i-1} \mathcal{E}_{h j} \phi_{i h}-\sum_{h=j+1}^{i} \phi_{h j} \mathcal{E}_{i h}+\phi_{i+1 j} u^{\lambda_{i+1}-1}-\phi_{i j-1} u^{\lambda_{j}-1}\right\}_{+} \tag{4.4}
\end{equation*}
$$

which hold for $i \geqslant j$. The column-determinant of \mathcal{E} can be written explicitly in the form ${ }^{1}$

$$
\operatorname{cdet} \mathcal{E}=\sum_{p=0}^{n-1} \sum_{0=i_{0}<i_{1}<\cdots<i_{p}<i_{p+1}=n} \mathcal{E}_{i_{1} i_{0}+1} \mathcal{E}_{i_{2} i_{1}+1} \ldots \mathcal{E}_{i_{p+1} i_{p}+1} u^{\lambda_{j_{1}}-1+\cdots+\lambda_{j_{q}}-1}
$$

where $\left\{j_{1}, \ldots, j_{q}\right\}$ is the complement to the subset $\left\{i_{0}+1, \ldots, i_{p}+1\right\}$ in the set $\{1, \ldots, n\}$. Since d is the residue of a vertex operator, d is a derivation of the (-1)-product on $\widetilde{V}^{k}(\mathfrak{a})$. Hence, using (4.4), we get

$$
\begin{aligned}
{[d, \operatorname{cdet} \mathcal{E}]=} & \sum_{p=0}^{n-1} \sum_{0=i_{0}<i_{1}<\cdots<i_{p}<i_{p+1}=n} \sum_{s=0}^{p} \mathcal{E}_{i_{1} i_{0}+1} \ldots \mathcal{E}_{i_{s} i_{s-1}+1} \\
\times\left\{\sum_{i_{s}<i_{s+1}^{\prime}<i_{s+1}} \mathcal{E}_{i_{s+1}^{\prime} i_{s}+1} \phi_{i_{s+1}} i_{s+1}^{\prime}\right. & -\sum_{i_{s}<i_{s}^{\prime}<i_{s+1}} \phi_{i_{s}^{\prime}+1 i_{s}+1} \mathcal{E}_{i_{s+1} i_{s}^{\prime}+1} \\
& \left.+\phi_{i_{s+1}+1 i_{s}+1} u^{\lambda_{i_{s+1}+1}-1}-\phi_{i_{s+1} i_{s}} u^{\lambda_{i s+1}-1}\right\}_{+} \\
& \times \mathcal{E}_{i_{s+2} i_{s+1}+1} \ldots \mathcal{E}_{i_{p+1} i_{p}+1} u^{\lambda_{j_{1}}-1+\cdots+\lambda_{j q}-1}
\end{aligned}
$$

Now apply the quasi-associativity property of the (-1)-product [10, Ch. 4],

$$
\left(a_{(-1)} b\right)_{(-1)} c=a_{(-1)}\left(b_{(-1)} c\right)+\sum_{j \geqslant 0} a_{(-j-2)}\left(b_{(j)} c\right)+\sum_{j \geqslant 0} b_{(-j-2)}\left(a_{(j)} c\right)
$$

[^0]to bring the expression to the right-normalized form, where the consecutive (-1)-products are calculated from right to left. Note that by Lemma 3.3(i) the additional terms coming from the sums over $j \geqslant 0$ annihilate the vacuum vector because all arising commutators involve elements with distinct subscripts.

Regarding the above expansion of $[d, \operatorname{cdet} \mathcal{E}]$ as being written in the right-normalized form, observe that if we ignore all symbols $\{\ldots\}_{+}$, then it would turn into a telescoping sum and so would be identically zero.

As a next step, for a fixed value $l \in\{1, \ldots, n\}$ consider the terms in the expansion of $[d, \operatorname{cdet} \mathcal{E}]$ containing the variable x with the powers at least $n-l$. Such terms can occur only in those summands where the cardinality of the subset $\left\{i_{0}+1, \ldots, i_{p}+1\right\}$ is at least $n-l+1$. Therefore, the maximum value of the powers $\lambda_{j_{1}}-1+\cdots+\lambda_{j_{q}}-1$ of the variable u which occur in these terms in the expansion, equals $\lambda_{n-l+2}+\cdots+\lambda_{n}-l+1$. This means that the coefficients of the powers of u exceeding $\lambda_{n-l+2}+\cdots+\lambda_{n}-l$ can be calculated from the expansion $[d, \operatorname{cdet} \mathcal{E}]$ with all symbols $\{\ldots\}_{+}$omitted. However, as we observed above, this expansion is identically zero. It is clear from (4.1) that the degree of the polynomial $w_{l}(u)$ equals $\lambda_{n-l+1}+\cdots+\lambda_{n}-l$ so that the relations $d w_{l}^{(r)}|0\rangle=0$ hold for the parameters r and l satisfying the conditions of the theorem.

To show that the vectors $w_{l}^{(r)}|0\rangle$ are strong generators of $\mathcal{W}^{k}(\mathfrak{a})$, consider the gradation on $\mathrm{U}\left(t^{-1} \mathfrak{b}\left[t^{-1}\right]\right)$ defined by setting the degree of $e_{i j}^{(r)}[m]$ equal to $j-i$. It is clear from the formulas for the column-determinant $\operatorname{cdet} \mathcal{E}$ that the lowest degree component of the vector $w_{l}^{(r)}|0\rangle$ with $r=r^{\prime}+\lambda_{n-l+2}+\cdots+\lambda_{n}-l+1$ coincides with $P_{l}^{\left(r^{\prime}\right)}[-1]|0\rangle$ for all $r^{\prime}=0,1, \ldots, \lambda_{n-l+1}-1$, as defined in (3.7). Therefore, by the argument completing the proof of Theorem 3.2 at the end of Sec. 3, the vector $w_{l}^{(r)}|0\rangle$ coincides with the respective cocycle $W_{l}^{\left(r^{\prime}\right)}$.

As was observed in the proof of Theorem 4.1, the lowest degree components of the generators $w_{l}^{(r)}|0\rangle$ generate a commutative vertex subalgebra of $C^{k}(\mathfrak{a})_{0}^{\bullet}$ spanned by all monomials (3.6). Hence, using the terminology of [1, Sec. 3.6], we come to the following; cf. [1, Prop. 4.12.1].
Corollary 4.2. The linear span of vectors $w_{l}^{(r)}|0\rangle$ satisfying (4.2) generates a PBW basis of the \mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{a})$.

5 Miura map and Fateev-Lukyanov realization

Consider the affine Kac-Moody algebra $\mathfrak{\mathfrak { h }}=\mathfrak{h}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ associated with \mathfrak{h} and the bilinear form defined in Sec. 2.1. Its generators are elements $e_{i i}^{(r)}[m]$ with $i=1, \ldots, n$, where r runs over the set $0,1, \ldots, \lambda_{i}-1$ and m runs over \mathbb{Z}. The element K is central and the commutation relations are given by the OPEs

$$
e_{i i}^{(r)}(z) e_{j j}^{(s)}(w) \sim \frac{K\left\langle E_{i i}^{(r)}, E_{j j}^{(s)}\right\rangle}{(z-w)^{2}},
$$

where we set

$$
e_{i i}^{(r)}(z)=\sum_{m \in \mathbb{Z}} e_{i i}^{(r)}[m] z^{-m-1}
$$

Define the vacuum module $V^{k+N}(\mathfrak{h})$ over $\widehat{\mathfrak{h}}$ as the representation induced from the one-dimensional representation of $\mathfrak{h}[t] \oplus \mathbb{C} K$ on which $\mathfrak{h}[t]$ acts trivially and K acts as $k+N$. Then $V^{k+N}(\mathfrak{h})$ is a vertex algebra with the vacuum vector $|0\rangle$ and translation operator T defined as in (2.4) for $X \in \mathfrak{h}$. Recalling the constants α_{i} introduced in (3.4), expand the product

$$
\left(x+\alpha_{1} T+e_{11}(u)\right) \ldots\left(x+\alpha_{n} T+e_{n n}(u)\right)=x^{n}+v_{1}(u) x^{n-1}+\cdots+v_{n}(u)
$$

and define the coefficients $v_{l}^{(r)}$ by writing $v_{l}(u)=\sum_{r} v_{l}^{(r)} u^{r}$.
The particular case $e=0$ of the following proposition is the realization of the \mathcal{W}-algebra $\mathcal{W}^{k}\left(\mathfrak{g l}_{n}\right)$ given by Fateev and Lukyanov [7]; see also [3].

Proposition 5.1. The elements $v_{l}^{(r)}|0\rangle$ with $l=1, \ldots, n$ and r satisfying (4.2) generate a subalgebra of the vertex algebra $V^{k+N}(\mathfrak{h})$, isomorphic to the \mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{a})$.

Proof. The Lie algebra projection $\mathfrak{b} \rightarrow \mathfrak{h}$ with the kernel \mathfrak{n}_{-}induces the vertex algebra homomorphism $V^{k+N}(\mathfrak{b}) \rightarrow V^{k+N}(\mathfrak{h})$. As we have seen in the previous section, the \mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{a})$ can be regarded a subalgebra of the vertex algebra $V^{k+N}(\mathfrak{b})$. Hence, we get a vertex algebra homomorphism

$$
\Upsilon: \mathcal{W}^{k}(\mathfrak{a}) \rightarrow V^{k+N}(\mathfrak{h})
$$

obtained by restriction, which we can call the Miura map; cf. [2, Sec. 5.9], [9, Sec. 15.4]. For the image of the column-determinant we have

$$
\Upsilon: \operatorname{cdet} \mathcal{E} \mapsto\left(x+\alpha_{1} T+e_{11}(u)\right) \ldots\left(x+\alpha_{n} T+e_{n n}(u)\right)
$$

Therefore, the images of the generators of $\mathcal{W}^{k}(\mathfrak{a})$ under the Miura map are found by

$$
\Upsilon: w_{l}^{(r)}|0\rangle \mapsto v_{l}^{(r)}|0\rangle .
$$

It was shown in the proof of [14, Prop. 4.3] that all elements $T^{s} v_{l}^{(r)} \in \mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)$, where $s \geqslant 0$ and $l=1, \ldots, n$ with r satisfying conditions (4.2), are algebraically independent. In view of Corollary 4.2, this implies that the Miura map is injective. Therefore, its image is a vertex subalgebra of $V^{k+N}(\mathfrak{b})$ isomorphic to $\mathcal{W}^{k}(\mathfrak{a})$ which is strongly generated by the elements $v_{l}^{(r)}|0\rangle$ satisfying conditions (4.2).

After re-scaling the elements $e_{i j}^{(r)}[m] \mapsto k^{-1} e_{i j}^{(r)}[m]$ and letting $k \rightarrow \infty$ the \mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{a})$ turns into a commutative vertex algebra isomorphic to the classical \mathcal{W}-algebra introduced in [14].

References

[1] T. Arakawa, Representation theory of \mathcal{W}-algebras, Invent. Math. 169 (2007), 219-320.
[2] T. Arakawa, Introduction to \mathcal{W}-algebras and their representation theory, in "Perspectives in Lie theory", pp. 179-250, Springer INdAM Ser., 19, Springer, Cham, 2017.
[3] T. Arakawa and A. Molev, Explicit generators in rectangular affine \mathcal{W}-algebras of type A, Lett. Math. Phys. 107 (2017), 47-59.
[4] T. Arakawa and A. Premet, Quantizing Mishchenko-Fomenko subalgebras for centralizers via affine \mathcal{W}-algebras, Trans. Mosc. Math. Soc. 78 (2017), 217-234.
[5] P. Bouwknegt and K. Schoutens, \mathcal{W}-symmetry in conformal field theory, Phys. Rep. 223 (1993), 183-276.
[6] J. Brown and J. Brundan, Elementary invariants for centralizers of nilpotent matrices, J. Aust. Math. Soc. 86 (2009), 1-15.
[7] V. A. Fateev and S. L. Lukyanov, The models of two-dimensional conformal quantum field theory with Z_{n} symmetry, Internat. J. Modern Phys. A 3 (1988), 507-520.
[8] B. Feigin and E. Frenkel, Quantization of the Drinfeld-Sokolov reduction, Phys. Lett. B 246 (1990), 75-81.
[9] E. Frenkel and D. Ben-Zvi, Vertex algebras and algebraic curves, Mathematical Surveys and Monographs, vol. 88, Second ed., American Mathematical Society, Providence, RI, 2004.
[10] V. Kac, Vertex algebras for beginners, University Lecture Series, 10. American Mathematical Society, Providence, RI, 1997.
[11] V. Kac, Shi-Shyr Roan and M. Wakimoto, Quantum reduction for affine superalgebras, Comm. Math. Phys. 241 (2003), 307-342.
[12] J. O. Madsen and E. Ragoucy, Quantum hamiltonian reduction in superspace formalism, Nucl. Phys. B429 (1994), 277-290.
[13] A. Molev, Center at the critical level for centralizers in type A, arXiv:1904.12520.
[14] A. Molev and E. Ragoucy, Classical \mathcal{W}-algebras for centralizers, arXiv:1911.08645.
[15] A. Molev, E. Ragoucy and U.R. Suh, Supersymmetric \mathcal{W}-algebras, arXiv:1901. 06557.
[16] D. Panyushev, A. Premet and O. Yakimova, On symmetric invariants of centralisers in reductive Lie algebras, J. Algebra 313 (2007), 343-391.
[17] A. B. Zamolodchikov, Infinite extra symmetries in two-dimensional conformal quantum field theory, Teoret. Mat. Fiz. 65 (1985), 347-359.

School of Mathematics and Statistics University of Sydney, NSW 2006, Australia
alexander.molev@sydney.edu.au

[^0]: ${ }^{1}$ This also shows that it coincides with the row-determinant of \mathcal{E} defined in a similar way.

