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Abstract

We consider the center of the affine vertex algebra at the critical level associated with the
simple Lie algebras of types B, C and D. We derive new formulas for the generators of the
center which were produced earlier with the use of the Brauer algebra symmetrizer.

1 Introduction
Let g be a simple Lie algebra over C equipped with a standard symmetric invariant bilinear form.
The affine Kac–Moody algebra ĝ is defined as the central extension

ĝ = g [t, t−1]⊕ CK (1.1)

of the Lie algebra of Laurent polynomials in t. The vacuum module Vcri(g) at the critical level
over ĝ is the quotient of the universal enveloping algebra U(ĝ) by the left ideal generated by g[t]
and K + h∨. The vacuum module has a vertex algebra structure and is known as the (universal)
affine vertex algebra; see e.g. [4] and [6]. The center of the vertex algebra Vcri(g) is defined by

z(ĝ) = {S ∈ Vcri(g) | g[t]S = 0}.

Any element of z(ĝ) is called a Segal–Sugawara vector. The vertex algebra axioms imply
that the center is a commutative associative algebra which can be regarded as a subalgebra of
U
(
t−1g[t−1]

)
. The algebra z(ĝ) is equipped with the derivation T = −d/dt arising from the

vertex algebra structure. By a theorem of Feigin and Frenkel [3], the differential algebra z(ĝ)
possesses generators S1, . . . , Sn so that z(ĝ) is the algebra of polynomials

z(ĝ) = C [T rSl | l = 1, . . . , n, r > 0],

where n = rank g; see also [4]. The algebra z(ĝ) is known as the Feigin–Frenkel center, and
we call S1, . . . , Sn a complete set of Segal–Sugawara vectors. According to [3] (see also [4]),
the center can be identified with the classicalW-algebra associated with the Langlands dual Lie
algebra Lg via an affine version of the Harish-Chandra isomorphism

z(ĝ) ∼=W(Lg). (1.2)
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Explicit formulas for complete sets of Segal–Sugawara vectors were given in [1] and [2]
for the Lie algebras g of type A and in [7] for types B, C and D with the use of the Brauer
algebra. Their images with respect to the Harish-Chandra isomorphism (1.2) were found in [9];
see also [8] for a detailed exposition of these results and applications to commutative subalgebras
in enveloping algebras and to higher order Hamiltonians in the Gaudin models. Complete sets of
Segal–Sugawara vectors for the Lie algebra of typeG2 were produced in [10] by using computer-
assisted calculations. A different way to construct generators of z(ĝ) was developed in [11] which
lead to new explicit formulas for the Lie algebras of types B,C,D and G2.

In this note we derive new formulas for the Segal–Sugawara vectors produced in [7] for types
B, C and D by eliminating the dependence on the Brauer diagrams with horizontal edges. In
particular, the vectors are given explicitly in the symplectic case thus resolving the ‘analytic con-
tinuation’ procedure used in [7]; see also [8, Ch. 8]. We also show that the Segal–Sugawara
vectors in this case coincide with those in [11] obtained by a different method. Such an identifi-
cation in the orthogonal case is not immediately clear.

The support of the Australian Research Council, grant DP180101825 is gratefully acknowl-
edged.

2 Segal–Sugawara vectors

2.1 Definitions and notation
We will regard the orthogonal Lie algebra oN with N = 2n+ 1 and N = 2n and symplectic Lie
algebra spN with N = 2n as subalgebras of glN spanned by the elements Fi j ,

Fi j = Ei j − Ej ′i ′ and Fi j = Ei j − εi εj Ej ′i ′ ,

respectively, for oN and spN , where the Ei j are the standard basis elements of the Lie algebra
glN and i ′ = N − i + 1. In the symplectic case we set εi = 1 for i = 1, . . . , n and εi = −1 for
i = n+ 1, . . . , 2n.

We will use the notation Fij[r] = Fijt
r with r ∈ Z for elements of the Kac–Moody algebra

ĝ for g = oN or spN , as defined in (1.1). We will regard the N × N matrix F [r] =
[
Fij[r]

]
as

the element

F [r] =
N∑

i,j=1
eij ⊗ Fij[r] ∈ EndCN ⊗ U(ĝ),

where eij are the standard matrix units. It has the skew-symmetry property F [r] + F [r]t = 0
with respect to the transposition defined by

t : eij 7→

ej′i′ in the orthogonal case,
εiεj ej′i′ in the symplectic case.

(2.1)

For each a ∈ {1, . . . ,m} introduce the element F [r]a of the algebra

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

⊗ U(ĝ) (2.2)
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by

F [r]a =
N∑

i,j=1
1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a) ⊗ Fij[r].

The a-th partial transposition ta on the algebra (2.2) acts as the map (2.1) on the a-th copy of
EndCN and as the identity map on all other tensor factors.

2.2 Symmetrizer in the Brauer algebra
An m-diagram d is a collection of 2m dots arranged into two rows with m dots in each row
connected by m edges such that any dot belongs to only one edge. The product dd ′ of two
diagrams d and d ′ is determined by placing d under d ′ and identifying the vertices of the bottom
row of d ′ with the corresponding vertices in the top row of d. Let s be the number of closed
loops obtained in this placement. The product dd ′ is given by ω s times the resulting diagram
without loops. The algebra Bm(ω) is defined as the C(ω)-linear span of the m-diagrams with
this multiplication. For 1 6 a < b 6 m denote by sab and εab the respective diagrams of the
form

r r r r r rr r r r r r
��

��
��PPPPPP· · ·

· · ·
· · ·
· · ·

· · ·
· · ·

1 a b m

and r r r r r rr r r r r r� �� �· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

1 a b m

They generate the algebra Bm(ω). Its subalgebra spanned over C by the diagrams without hori-
zontal edges will be identified with the group algebra of the symmetric group C [Sm] so that sab

is identified with the transposition (a b).
We will use a special element s(m) ∈ Bm(ω), known as the symmetrizer. Several explicit

expressions for s(m) are collected in [8, Ch. 1]; we will recall one of them, as appeared in [5],

s(m) = 1
m!

bm/2c∑
r=0

(−1)r

(
ω/2 +m− 2

r

)−1 ∑
d∈D(r)

d, (2.3)

where D(r) ⊂ Bm(ω) denotes the set of diagrams which have exactly r horizontal edges in the
top (and hence in the bottom) row. Since D(0) = Sm, the element

h(m) = 1
m!

∑
d∈D(0)

d (2.4)

is the symmetrizer in C [Sm].
The Brauer algebra Bm(ω) with the special values ω = N and ω = −N acts on the tensor

space
(CN)⊗m = CN ⊗ CN ⊗ . . .⊗ CN︸ ︷︷ ︸

m

(2.5)
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so that the action centralizers the respective actions of the orthogonal and symplectic groups. In
the orthogonal case, the generators of Bm(N) act by the rule

sab 7→ Pab, εab 7→ Qab, 1 6 a < b 6 m, (2.6)

where Pab is defined by

Pab =
N∑

i,j=1
1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ eji ⊗ 1⊗(m−b), (2.7)

while

Qab =
N∑

i,j=1
1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ ei′j′ ⊗ 1⊗(m−b).

In the symplectic case, the action of Bm(−N) with N = 2n in the space (2.5) is defined by

sab 7→ −Pab, εab 7→ −Qab, 1 6 a < b 6 m, (2.8)

where Pab is defined in (2.7), and

Qab =
2n∑

i,j=1
εiεj 1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ ei′j′ ⊗ 1⊗(m−b).

2.3 Formulas for the Segal–Sugawara vectors
We will denote by S(m) the image of the symmetrizer s(m) ∈ Bm(ω) under the respective actions
(2.6) and (2.8), assuming m 6 n in the symplectic case. Using the rational function

γm(ω) = ω +m− 2
ω + 2m− 2

define the elements φm of the vacuum module Vcri(oN) ∼= U
(
t−1g[t−1]

)
by

φm = γm(ω) tr1,...,m S
(m)F1 . . .Fm, (2.9)

where F = T +F [−1] and ω = N and ω = −N , respectively, for the orthogonal and symplectic
cases. The trace is taken with respect to all m copies of the endomorphism algebra EndCN in
(2.2). In the symplectic case the values of m are restricted to 1 6 m 6 2n+ 1 with an additional
justification of the formula (2.9) for n+1 6 m 6 2n+1 via an ‘analytic continuation’ argument;
see [8, Sec. 8.3].

As proved in [7] (see also [8, Ch. 8]), all elements φm belong to the Feigin–Frenkel center
z(ĝ) (they are denoted by φmm therein). Moreover, the elements φ2, φ4, . . . , φ2n form a complete
set of Segal–Sugawara vectors for g = o2n+1 and sp2n, whereas φ2, φ4, . . . , φ2n−2,PfF [−1] form
a complete set of Segal–Sugawara vectors for g = o2n, where PfF [−1] is the (noncommutative)
Pfaffian of the matrix F [−1].
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Expand the product F1 . . .Fm in (2.9) as a linear combination of monomials of the form

F [−r1]a1 . . . F [−rs]as , 1 6 a1 < · · · < as 6 m, (2.10)

with r1 + · · ·+ rs = m and ri > 1. By [8, Lemmas 8.1.5 & 8.3.1], any permutation of the factors
F [−ri]ai

in the expression

tr1,...,m S
(m)F [−r1]a1 . . . F [−rs]as (2.11)

does not change its value. Therefore, applying conjugations by suitable permutations of the index
set 1, . . . ,m and using the cyclic property of trace, we can bring (2.11) to the form

tr1,...,m S
(m)F [−p1]1 . . . F [−ps]s,

where 1 6 p1 6 · · · 6 ps is the sequence r1, . . . , rs arranged in the increasing order. This
determines the components Φ(m)

s in the expansion

tr1,...,m S
(m)F1 . . .Fm =

m∑
s=1

tr1,...,m S
(m)Φ(m)

s , (2.12)

so that Φ(m)
s is a linear combination of monomials of the form F [−p1]1 . . . F [−ps]s. Note that

the summands in (2.12) with odd values of s are equal to zero because the matrices F [−pa] are
skew-symmetric with respect to the transposition t, while S(m) is stable under the simultaneous
transpositions with respect to all m copies of EndCN ; see e.g. [8, Prop. 1.2.8].

Example 2.1. For m = 4 we have

tr1,2,3,4 S
(4)F1F2F3F4 = tr1,2,3,4 S

(4)
(
Φ(4)

2 + Φ(4)
4

)
with

Φ(4)
2 = 8F [−1]1F [−3]2 + 3F [−2]1F [−2]2 and Φ(4)

4 = F [−1]1F [−1]2F [−1]3F [−1]4;

cf. [8, Sec. 8.2].

To state the main theorem, denote by H(m) the image of the element h(m) defined in (2.4),
under the respective actions (2.6) and (2.8) of the Brauer algebra. Note that H(m) acts as
the symmetrization operator on the tensor space (2.5) in the orthogonal case, and as the anti-
symmetrization operator in the symplectic case.

Theorem 2.2. For k = 1, . . . , n the Segal–Sugawara vector φ2k is given by

φ2k =
k∑

l=1

(
ω + 2k − 2

2k − 2l

)(
2k
2l

)−1

tr1,...,2l H
(2l)Φ(2k)

2l . (2.13)
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Proof. We consider the orthogonal and symplectic cases simultaneously and assume in the cal-
culations in the symplectic case that 2k 6 n; then apply the same arguments as in [8, Sec. 8.3]
to extend the result to all values of k. By (2.12) we have

φ2k = γ2k(ω)tr1,...,2k S
(2k)F1 . . .F2k = γ2k(ω)

k∑
l=1

tr1,...,2k S
(2k)Φ(2k)

2l .

Now use [8, Lemma 1.3.2] to calculate the partial traces to get

γ2k(ω)tr2l+1,...,2k S
(2k) =

(
ω + 2k − 2

2k − 2l

)(
2k
2l

)−1

γ2l(ω)S(2l).

The desired formula will be implied by the relation

γ2l(ω)tr1,...,2l S
(2l)Φ(2k)

2l = tr1,...,2l H
(2l)Φ(2k)

2l (2.14)

which is a consequence of the relation in the Brauer algebra provided by the following lemma.
For every a ∈ {1, . . . ,m} introduce the transposition ta as the linear map

ta : Bm(ω)→ Bm(ω), d 7→ d ta ,

where the diagram d ta is obtained from d by swapping the a-th vertices in the top and bottom
rows. In particular, s ta

ab = εab and ε ta
ab = sab. Denote by Jm the subspace of Bm(ω) spanned by

all sums d+ d ta with d ∈ Bm(ω) and a = 1, . . . ,m.

Lemma 2.3. For m = 2k we have

γ2k(ω)s(2k) ≡ h(2k) mod J2k.

Proof. We will start with the formula (2.3) for s(2k) and use an inductive procedure to apply a
sequence of reductions modulo J2k to eliminate all diagrams containing horizontal edges from
the sum. As a first step, for each r = 0, 1, . . . , k split the set of diagrams D(r) into three subsets,

D(r) = D(r,−) ∪ D(r,0) ∪ D(r,+), (2.15)

where d ∈ D(r,−) if and only if the vertices 1 in the top and bottom rows are the ends of horizontal
edges; d ∈ D(r,+) if and only if the vertices 1 are the ends of different non-horizontal edges, and
the remaining diagrams belong to D(r,0). In particular, D(0) = D(0,+) and D(k) = D(k,−). It is
clear by the application of the transposition t1 that for r > 0∑

d∈D(r,0)

d ≡ 0 mod J2k and
∑

d∈D(r+1,−)

d ≡ −
∑

d∈D(r,+)

d mod J2k.

Taking into account the relation(
ω/2 + 2k − 2

r

)−1

+
(
ω/2 + 2k − 2

r + 1

)−1

= ω + 4k − 2
ω + 4k − 4

(
ω/2 + 2k − 3

r

)−1

,
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we can conclude from (2.3) that the reduction modulo J2k yields the equivalence

γ2k(ω)s(2k) ≡ γ2k−2(ω + 2)
(2k)!

k−1∑
r=0

(−1)r

(
ω/2 + 2k − 3

r

)−1 ∑
d∈D(r,+)

d. (2.16)

Note that the inverse binomial coefficients in this expression coincide with those in (2.3) for
m = 2k − 2 with the parameter ω replaced with ω + 2.

For the second step of the reduction, represent each set D(r,+) as the union

D(r,+) =
k⋃

a,b=2
D(r,+)

a,b ,

where the subset D(r,+)
a,b consists of the diagrams d containing the (non-horizontal) edges (1, a)

and (1, b). Re-arrange expression (2.16) to include the extra internal sum over the diagrams
d ∈ D(r,+)

a,b with fixed values of a and b. If a = b, then by ignoring the vertices 1 and a in
the top and bottom rows, we get the desired part of the expression modulo J2k by the induction
hypothesis. If a 6= b, then split the union D(r,+)

a,b ∪ D(r,+)
b,a as in (2.15),

D(r,+)
a,b ∪ D(r,+)

b,a = D(r,+,−)
{a,b} ∪ D

(r,+,0)
{a,b} ∪ D

(r,+,+)
{a,b} ,

where d ∈ D(r,+,−)
{a,b} if and only if the remaining vertices a and b are the ends of horizontal edges;

d ∈ D(r,+,+)
{a,b} if and only if the remaining vertices a and b are the ends of different non-horizontal

edges, and the remaining diagrams belong to D(r,+,0)
{a,b} . Similar to the first reduction step, the

application of the composition of transpositions t1 ◦ ta ◦ tb shows that for r > 0∑
d∈D(r,+,0)

{a,b}

d ≡ 0 mod J2k and
∑

d∈D(r+1,+,−)
{a,b}

d ≡ −
∑

d∈D(r,+,+)
{a,b}

d mod J2k.

This leads to the second step reduction formula analogous to (2.16), and the argument continues
in the same way by an obvious induction.

The required relation (2.14) follows from Lemma 2.3 because the transposition ta on the
Brauer algebra is consistent with the partial transposition ta on the tensor product (2.2). That is,
if an element s ∈ Bm(ω) has the form s = d+d ta , then for the image S of s under the respective
actions (2.6) and (2.8) we have

tr1,...,m S F [−p1]1 . . . F [−pm]m = 0,

since S is stable the transposition ta, while F [−pa] + F [−pa]t = 0.

Remark 2.4. (i) The equality of the top degree components in (2.14) is a relation for elements
of the symmetric algebra S

(
t−1g[t−1]

)
and it follows by comparing the Chevalley images of both

sides; see [8, Prop. 2.2.4 & Cor. 2.2.10].
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(ii) By [8, Lemma 1.3.4], for the partial trace of the element h(2k) ∈ B2k(ω) we have

tr2l+1,...,2k h
(2k) =

(
ω + 2k − 1

2k − 2l

)(
2k
2l

)−1

h(2l).

Since the coefficient of h(2l) differs from that in formula (2.13) only by the shift ω 7→ ω− 1, one
can write an equivalent formula in the symbolic form

φ2k = tr1,...,2k H
(2k)F1 . . .F2k, (2.17)

where the symbol H (m) is interpreted via an expansion similar to that of (2.9), with the partial
traces calculated by the rule

trmH
(m) = ω +m− 2

m
H

(m−1)

for ω = N or −N , respectively. In the symplectic case, this can be interpreted more formally
by calculating the right hand side of (2.17) on the space (2.2) with N = 2n + 1, where H (m) is
understood as the anti-symmetrization operator, while F [−1] is regarded as the N × N matrix
whose entries in the last row and column are zero.

(iii) For any nonzero z ∈ C , the image of a complete set of Segal–Sugawara vectors under
the evaluation homomorphism

U
(
t−1g[t−1]

)
→ U(g), X[r] 7→ Xzr,

with X ∈ g and r < 0, is a set of algebraically independent generators of the center of U(g); see
[8, Prop. 6.5.2]. Therefore, Theorem 2.2 provides new formulas for such generators in types B,
C and D by applying the evaluation homomorphism to the Segal–Sugawara vectors φ2k.

Finally, we will make a connection with the results of [11] in the symplectic case and so will
now take g = sp2n. The elements $(∆2k[−1]) ∈ U

(
t−1sp2n[t−1]

)
were introduced therein via

the symmetrization map $, and in our notation they can be written as

$(∆2k[−1]) = tr1,...,2k H
(2k)F [−1]1 . . . F [−1]2k,

for k = 1, . . . , n. As above, expand the product F1 . . .Fm as a linear combination of monomials
of the form (2.10). By applying conjugations by suitable permutations of the index set 1, . . . ,m
and using the cyclic property of trace, we get the expansion

tr1,...,m H
(m)F1 . . .Fm =

m∑
s=1

tr1,...,m H
(m)Ψ(m)

s ,

so that Ψ(m)
s is a certain linear combination of monomials of the form F [−r1]1 . . . F [−rs]s,where

r1 + · · ·+ rs = m and ri > 1. By evaluating partial traces, we get

tr1,...,2l H
(2l)Ψ(2k)

2l =
(

2k
2l

)
$
(
T 2k−2l∆2l[−1]

)
.
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The proof of Theorem 2.2 shows that formula (2.13) will remain valid if tr1,...,2l H
(2l)Φ(2k)

2l is
replaced with tr1,...,2l H

(2l)Ψ(2k)
2l . Therefore, taking ω = −2n in the formula, we derive the

identity

φ2k =
k∑

l=1

(
2n− 2l + 1

2k − 2l

)
$
(
T 2k−2l∆2l[−1]

)
,

so that φ2k coincides with the Segal–Sugawara vector given by [11, Theorem 4.4].
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