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Abstract

This paper develops an asymptotic theory of nonlinear least squares estimation
by establishing a new framework that can be easily applied to various nonlinear
regression models with heteroscedasticity. As an illustration, we explore an appli-
cation of the framework to nonlinear regression models with nonstationarity and
heteroscedasticity. In addition to these main results, this paper provides a maxi-
mum inequality for a class of martingales, which is of interest in its own right.
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1 Introduction

Let {Ft}t≥0 be an increasing sequence of σ-fields on some probability space (Ω,F , P ) with

F0 = σ(φ,Ω) and let Θ be a compact set of Rq. Consider a general nonlinear regression

model with the following form:

yt = gt(θ) + ut, (1.1)

where {ut,Ft}t≥1 forms a martingale difference such that σ2
t := E(u2

t |Ft−1) < ∞, a.s.,
and gt(θ) is a Ft−1-measurable random function of θ ∈ Θ. The unknown parameters θ
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in model (1.1) can be estimated using the least squares (LS) method. Explicitly, the LS

estimator θ̂n of a real value θ0 ∈ Θ is defined by

θ̂n = arg min
θ∈Θ

n∑
t=1

[
yt − gt(θ)

]2
. (1.2)

The consistency of θ̂n is widely investigated in the literature. Earlier contributions

include Jennrich (1969), Wu (1981), Lai (1994), and Skouras (2000). More recently,

Jacob (2010) generalized previous works using a nearly necessary condition. Chan and

Wang (2015) established a general framework that is useful in nonlinear cointegrating

regression models. We also refer to Section 2.1 for further details.

This study is concerned with the asymptotic distribution of θ̂n. In this regard, most

previous frameworks were established under supt≥1 σ
2
t ≤ C < ∞ and/or strong smooth

conditions on the first- and second-order derivatives of gt(θ). For instance, see Wooldridge

(1994), Andrew and Sun (2004), Pollard and Rachenko (2006), Jacob (2010), and Chan

and Wang (2015). In the fields of econometrics and statistics, the σ2
t is commonly referred

to as a volatility process. While such a process can be random, the uniform boundedness

condition supt≥1 σ
2
t ≤ C <∞ is clearly restrictive since it excludes ARCH, GARCH, and

many other commonly used models. As a consequence, the applicability of these previous

frameworks is limited in financial econometrics due to the fact that many macro-economic

variables exhibit evidence of conditional heteroscedasticity. For instance, see Goncalves

and Kilian (2004), and Boswijk, Cavaliere, Rahbek, and Taylor (2016).

The first part of this study provides an alternative framework of the asymptotic dis-

tribution of θ̂n. Our new result has some advantages compared to previous works. First,

our framework does not assume supt≥1 σ
2
t ≤ C < ∞. As argued above, removing the

uniform boundedness condition enables our result to be widely applicable in nonlinear

regression models with heteroscedasticity. Second, unlike most previous frameworks, the

key condition (see Assumption 2.2(i) in Section 2) in the present study is directly related

to the Lipschitz difference of the first-order derivative of gt(θ) rather than the maximum

over parameter space Θ. This simplicity makes our conditions easy to verify, particular-

ly in nonlinear regression models with nonstationarity and heteroscedasticity as seen in

Section 3. Furthermore, in the development of our framework, we establish a maximum

inequality for a class of martingales. As a technical tool, this maximum inequality is very

sharp by taking advantage of the exponential inequality for self-normalized martingales

investigated in Bercu and Touati (2008). This maximum inequality has many different
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applications and is interesting in itself.

The second part of this study considers the asymptotics of least squares estimators

in nonlinear regression models with nonstationarity and heteroscedasticity, illustrating

the applicability of our main results. Nonlinear regression with integrated time series

was initially investigated in Park and Phillips (2001). Since then, many authors have

contributed to parametric, nonparametric, and semi-parametric estimation and inference

theory in this field. We only refer to Chang, Park, and Phillips (2001), Chang and Park

(2003), Bae and De Jong (2007), Wang and Phillips (2009a, 2009b, 2016), Kim and

Kim (2012), Gao and Phillips (2013), Chan and Wang (2015), Dong, Gao, and Tjötheim

(2016), and Dong and Linton (2018), together with the references cited therein. Although

there have been significant developments in the last few decades, these existing studies do

not consider the impact of conditional heteroscedasticity on the estimation and inference

theory. Using the aforementioned framework, the present study fills the gap. In this

work, the volatility process σ2
t is set to be σ2

t = σ(t/n;λt, λt−1, ...), where λk, k ∈ Z, is a

sequence of i.i.d. random vectors that are possibly unbounded and σ(.; ...) is a measurable

function satisfying certain regular conditions (we avoid supt≥1 σ
2
t ≤ C <∞). These kind

of settings allow for time-varying behaviors in volatility processes and includes a wide

class of commonly used nonlinear models such as time-varying and nonlinear GARCH, as

described in Examples 3.1-3.3 in Section 3. To the best of our knowledge, this work seems

to be the first to investigate the impact of conditional heteroscedasticity in nonlinear

cointegrating regression. For similar works on linear cointegration and unit root testing,

we refer to Cavaliere and Taylor (2007, 2009, 2010), Boswijk, Cavaliere, Rahbek, and

Taylor (2016) and the references cited therein.

This paper is organized as follows. Section 2 presents the main framework. We

also present a couple of important step results that are required in the proof of the

main framework, including the consistency of θ̂n and a maximum inequality for a class

of martingale. Section 3 considers nonlinear regression models with nonstationarity and

heteroscedasticity, extending the existing results established by Park and Phillips (2001)

and Chan and Wang (2015). Concluding remarks are provided in Section 4. Technical

proofs of the main results in Section 2 are given in Appendix.

In this study, we use the following notation: for x = (xij)1≤i≤m,1≤j≤k, ||x|| =
∑m

i=1

∑k
j=1 |xij|.

We denote constants by C,C1, ...,, which may be different at each appearance.
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2 Main results

This section investigates the asymptotic distribution of the θ̂n defined by (1.2) and

provides a couple of important technical results that are required in the proof. Let

ġt(θ) =
(
∂gt(θ)
∂θ1

, ..., ∂gt(θ)
∂θq

)′
be the first-order derivative of gt(θ). We make use of the follow-

ing assumptions.

Assumption 2.1. {ut,Ft}t≥1 forms a martingale difference with E(u2
t | Ft−1) <∞, a.s.

for each t ≥ 1.

Assumption 2.2. A matrix Dn = diag(d1n, ..., dqn) satisfying n−δ min1≤j≤q djn →∞ for

some δ > 0 exists such that

(i) ||D−1
n

[
ġt(θ1)− ġt(θ2)

]
|| ≤ ||θ1 − θ2||α Tnt for some 0 < α ≤ 1 and for any θ1, θ2 ∈ Θ,

where Tnt is adapted to Ft−1 for each n ≥ 1, satisfying

n∑
t=1

T 2
nt

[
1 + E(u2

t |Ft−1)
]

= OP (1); (2.1)

(ii) Yn := (D−1
n )′

∑n
t=1 ġt(θ0)ġt(θ0)′D−1

n →D M , where M > 0, a.s., that is, the smallest

eigenvalue of M is almost surely positive;

(iii) Zn(θ0) = OP (1), where Zn(θ) = (D−1
n )′

∑n
t=1 ġt(θ)ut.

Assumption 2.3. θ̂n →P θ0, where θ̂n is defined by (1.2).

Assumption 2.1 is commonly used in nonlinear regression models, but we do not require

the restrictive condition suptE(u2
t | Ft−1) ≤ C < ∞, that is, the uniform boundedness

of the conditional variance. Instead, we make use of a summability condition of the form

(2.1). Since the impact of conditional variance E(u2
t | Ft−1) cannot be eliminated in model

(1.1), condition (2.1) is quite natural under the Lipschitz condition for ġt(θ) in Assumption

2.2 (i). Indeed, if gt(θ) is linear with respect to θ, (2.1) holds automatically by taking Tnt =

0 for all t ≥ 1. If gt(θ) (ġt(θ)) is stationary, M in Assumption 2.2(ii) is usually a constant

and Dn = diag(
√
n, ...,

√
n) in general. Hence, we may take Tnt = 1√

n
supθ∈Θ |ġt(θ)|,

indicating (2.1) is nearly necessary. Condition (2.1) is more involved if gt(θ) (ġt(θ)) is

nonstationary or an I(1) random process. In this situation, M in Assumption 2.2(ii)

can be a positive-definite random matrix and Dn usually depends on the shape of ġt(θ).

Further discussions on this topic are presented in Section 3 using nonlinear cointegrating

regression models with heteroscedasticity. In summary, Assumption 2.2 is applicable to
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a wide class of nonlinear regression models. We discuss Assumption 2.3 separately in

Section 2.1.

The main result is as follows:

Theorem 2.1. Under Assumptions 2.1-2.3, we obtain

Dn(θ̂n − θ0) = Y −1
n Zn(θ0) + oP (1). (2.2)

If in addition

(Yn, Zn(θ0)) →D (M, Z), (2.3)

where M > 0, a.s., that is, the smallest eigenvalue of the M is almost surely positive,

then Dn(θ̂n − θ0)→D M−1 Z .

Remark 2.1. Given that gt(θ) = Eθ(yt|Ft−1) under Assumption 2.1, the estimation

considered herein is essentially the same as the conditional least squares estimation in-

vestigated in Wooldridge (1994), Andrew and Sun (2004), Jacob (2010), Chan and Wang

(2015), and Wang and Phillips (2016). The conditions in these existing frameworks are

usually imposed on the maximum over the parametric space Θ for quantities that are

related to the first- and second-order derivatives of gt(θ). Using Assumption 2.3, the key

step in our proof is only involved in the verifications of the following:

sup
θ∈Θ
||Zn(θ)− Zn(θ0)|| = OP (log1/2 n), (2.4)

sup
||Dn(θ−θ0)||≤logn

||Zn(θ)− Zn(θ0)|| = oP (1), (2.5)

which are in turn implied by Assumptions 2.1 and 2.2 (i) as seen in Corollary 2.1. Since

our primitive condition (2.1) is quite natural, in comparison with these existing results,

Theorem 2.1 provides a framework that is simple and easily verified.

Remark 2.2. Theorem 2.1 is still applicable to more general models:

ynt = gnt(θ) + unt, t = 1, 2, ..., n; n ≥ 1,

where, for each n ≥ 1, {unt,Fnt}1≤t≤n forms a martingale difference such that E(u2
nt|Fn,t−1) <

∞, a.s., and gnt(θ) is a Fn,t−1-measurable random function of θ ∈ Θ. The detailed state-

ment is avoided since it only involves some routine notation changes in Assumptions

2.1-2.3. This remark will be used later without further explanation.
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Remark 2.3. The entropy method has been widely used in nonlinear regression models

with stationary time series. The chaining argument with stratifications now is standard

and seems to be inevitable in investigating stochastic equicontinuity and uniform central

limit theory for martingales with stationary conditional variances (i.e., the conditional

variance converges to a constant or a deterministic variable). For instance, see Andrews

(1994) and Nishiyama (2000a, 2000b, 2007). The Zn(θ) defined in Assumption 2.2 (iii) is a

martingale, but it allows for a more general structure than that used in existing literature

when the ġt(θ) includes an I(1) random process as a part of its components. As shown

in Wang (2014), for this class of martingales, the conditional variance may converge in

distribution to a random variable rather than a constant and the limit distribution is a

mixture of normal distributions or a stochastic integral instead of a standard normal. In

terms of the complexity in structure for this new class of martingales, it is currently not

clear whether the chaining arguments with stratifications can be utilized to establish (2.4)

and (2.5). As a consequence, it seems to be difficult to use the so-called entropy condition

rather than the Lipschitz condition in Assumption 2.1 (i).

2.1 Consistency of θ̂n

The consistency of θ̂n is imposed as a preliminary condition for the asymptotic distribution

of θ̂n in Theorem 2.1, which is usually easy to handle under other conditions. For the

earlier contributions in this regard, we refer to Jennrich (1969), Wu (1981), Lai (1994), and

Skouras (2000). More recently, Proposition 3.1 in Jacob (2010) established a general result

without assuming supt σ
2
t ≤ C <∞, where σ2

t = E(u2
t | Ft−1). Let dj(θ) = gj(θ)− gj(θ0)

and Dk,θ =
∑k

j=1 d
2
j(θ). One of the conditions used in Jacob (2010) is the following infinite

sum of Dk,θ: for any δ > 0,

sup
||θ−θ0||≥δ

∞∑
k=1

σ2
k d

2
k(θ)D

−2
k,θ <∞, a.s. (2.6)

Although the consistency result given in Jacob (2010) is elegant, the infinite sum of Dk,θ

such as (2.6) is usually difficult to verify, particularly in nonlinear cointegrating regression

models considered in Section 3. For the purpose of this study, the consistency of θ̂n is

established under different settings. Our result is similar to Theorem 2.1 in Chan and

Wang (2015), but does not assume suptE(u2
t | Ft−1) ≤ C <∞.

Theorem 2.2. In addition to Assumption 2.1, a sequence of constants 0 < kn → ∞
exists such that
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(a) |gt(θ1) − gt(θ2)| ≤ ||θ1 − θ2||α Tt, for some 0 < α ≤ 1 and for all θ1, θ2 ∈ Θ, where

Tt is adapted to Ft−1, satisfying

n∑
t=1

T 2
t E(u2

t | Ft−1) = OP (k2
n/ log2 n); (2.7)

(b) k−1
n inf ||θ−θ0||≥δDn,θ, for any δ > 0, is away from 0 with probability one, as n→∞.

Then ||θ̂n − θ0|| = oP (1).

Condition (2.7) is similar to (2.1), but only depends on gt(θ) rather than the first-order

derivative of gt(θ). Given that Θ is a compact set, we may provide a simple sufficient

condition for part (b) using the finite cover theorem. This fact is stated in the following

proposition for convenience.

Proposition 2.1. Part (b) of Theorem 2.2 holds if

(i) 1
kn

∑n
t=1

[
gt(θ)−gt(θ0)

]2 →D G(θ) for any θ 6= θ0, where G(θ) is a stochastic process

of θ satisfying that, for each δ > 0, P (inf ||θ−θ0||≥δG(θ) ≥Mδ) = 1, where Mδ > 0 is

a constant depending only on δ;

(ii) |gt(θ1) − gt(θ2)| ≤ h(||θ1 − θ2||)Tt for all θ1, θ2 ∈ Θ, where Tt is a sequence of

random variables satisfying 1
kn

∑n
t=1 T

2
t = OP (1) and h(x) is a continuous function

satisfying limx↓0 h(x) = 0.

2.2 Maximum inequality for a class of martingales

In this section, we establish a new maximum inequality for a class of martingales and

hence provide a powerful technical tool to verify (2.4) and (2.5). The result is of interest

in its own right, and can be used for different purposes as seen in Remark 2.4. We use

the following assumption and the notation is slightly more general than those used in

previous sections.

Assumption 2.4. For each n ≥ 1,

(i) {unt,Fnt}t≥1 forms a martingale difference with E(u2
nt | Fn,t−1) <∞, t ≥ 1;

(ii) ynt =
{
xn1(t), · · · , xnd(t)

}
is adapted to Fn,t−1, where d ≥ 1 is an integer;

(iii) Ψ is a set of real measurable functions f(.) on Rd with #Ψ ≥ 1, where #A denotes

the number of elements in a set A.
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Theorem 2.3. Suppose Assumption 2.4 holds. If a sequence of positive constants γn →∞
exists such that

sup
f∈Ψ

n∑
t=1

f 2(ynt)
[
u2
nt + E(u2

nt | Fn,t−1)
]

= OP (γn), (2.8)

then

sup
f∈Ψ

∣∣∣ n∑
t=1

unt f(ynt)
∣∣∣ = OP

{[
γn log+(#Ψ)

]1/2}
, (2.9)

where log+(#Ψ) = max{1, log(#Ψ)}.

Theorem 2.3 is a significant extension of Theorem 3.19 in Wang (2015) (see also, Chan

and Wang, 2014) and is a very sharp result owing to the following facts:

•
[
γn log+(#Ψ)

]1/2
is the same rate as in the i.i.d./stationary cases.

• Without assuming the uniform boundedness of E(u2
nt | Fn,t−1) <∞ in t, condition

(2.8) is natural (may be necessary) because it only depends on the squared variation∑n
t=1 f

2(ynt)u
2
nt and the quadratic variation (conditional variance)

∑n
t=1 f

2(ynt)E(u2
nt |

Fn,t−1) of the martingale array
∑n

t=1 unt f(ynt);

• there are no restrictions on f(.) and γn except measurability on Rd and γn →∞.

The proof of Theorem 2.3 takes the advantage of an exponential inequality for self-

normalized martingales developed in Bercu and Touati (2008). The following corollary is

a direct consequence of Theorem 2.3, and verifies (2.4) and (2.5) under the conditions of

Theorem 2.1.

Corollary 2.1. If Assumptions 2.1 and 2.2 (i) hold, we have (2.4) and (2.5).

Remark 2.4. For a real measurable function g(x) on Rd, a common function of interests

Sn(x) of {unt, ynt}t≥1,n≥1 is defined by the following:

Sn(x) =
n∑
t=1

unt g[(ynt + x)/h], x ∈ Rd

where h = hn → 0. For instance, in nonparametric estimation problems, g may be a kernel

function K or a squared kernel function K2 and the sequence h is the bandwidth used

in nonparametric regression. Using Theorem 2.3, the uniform convergence of Sn(x) can

be established under quite general conditions, particularly allowing for both stationary
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and nonstationary random arrays ynt. As a consequence, we may provide a powerful

technical tool to investigate the uniform convergence for nonparametric estimators with

nonstationary data, as in Chan and Wang (2014), Gao et al. (2015), and Duffy (2016,

2017). Since this is beyond the scope of this study, we will report the results in a separate

work.

3 Nonlinear regression models with nonstationarity

and heteroscedasticity

This section considers nonlinear regression models having the following form:

yt = f(xt, θ) + ut, (3.1)

where f(x, ...) is a given real function indexed by θ = (θ1, ..., θq), a vector of unknown

parameters, xt is an integrated regressor and (ut,Ft)t≥1 is a sequence of martingale d-

ifferences such that xt is adapted to Ft−1. Let Θ be a compact set of Rq and assume

the unknown parameters θ ∈ Θ. As in model (1.1), the least squares estimator θ̂n of θ

is defined by (1.2) with gt(θ) = f(xt, θ). The asymptotics of θ̂n were initially investigat-

ed in Park and Phillips (2001) and then later by Chang, Park, and Phillips (2001), De

Jong and Hu (2011), and Chan and Wang (2015). In these existing studies, the uniform

boundedness of E(u2
t |Ft−1) in t was usually assumed, excluding a wide class of commonly

used volatility models such as GARCH, time-varying GARCH, and nonlinear GARCH.

Since (3.1) is a specified form of model (1.1) with gt(θ) = f(xt, θ), Theorem 2.1 can

be utilized to establish asymptotic distribution of θ̂n without assuming suptE(u2
t |Ft−1) ≤

C <∞. Consequently, we may consider nonlinear regression models with nonstationarity

and heteroscedasticity, which seems to be new to the literature.

This section is organized as follows. Section 3.1 presents assumptions on xt and ut,

together with some discussions. In this subsection, we use three examples to illustrate

the wide applicability of our settings on ut. In the following subsections, we establish

asymptotic distributions of θ̂n. Considering that there are essential differences between

integrable and nonintegrable regression functions, we present the asymptotics in Sections

3.2 and 3.3 separately.

9



3.1 Assumptions and Examples

Throughout the section, let λi ≡ (εi−1, ηi), i ∈ Z, be a sequence of i.i.d. random vectors

with Eλ0 = 0, Eε20 = Eη2
0 = 1 and ρ = Eε0η1, and {λ∗i }i∈Z be an independent copy

of {λi}i∈Z. We make use of the following assumptions on xt and ut in the asymptotic

development.

Assumption 3.1. xt = γxt−1 + ξt, where γ = 1− τ/n, τ ≥ 0 and ξt =
∑∞

j=0 φjηt−j. The

coefficients φj, j ≥ 0 satisfy one of the following conditions:

LM. φj ∼ j−µ l(j), 1/2 < µ < 1 and l(k) is a function slowly varying at ∞.

SM.
∑∞

j=0 |φj| <∞ and φ ≡
∑∞

j=0 φj 6= 0.

Assumption 3.2. ut = σtεt with σ2
t = σ(t/n;λt, λt−1, ...), where σ(.; ...) is a measurable

function satisfying sup0≤u≤1Eσ
2(u;λ0, λ1, ...) <∞,

∫ 1

0
Eσ(u;λ0, λ1, ...)du <∞ and

sup
0≤u≤1

E
∣∣σ(u;λm, λm−1, ...)− σ(u;λm, λm−1, ..., λ1, λ

∗
0, λ
∗
1, ...)

∣∣2 ≤ C m−α, (3.2)

for any m ≥ 1 and some α >

{
4/(2µ− 1), under LM,
4, under SM.

Assumption 3.1 allows for short memory (under SM) and long memory (under LM)

innovations driving the nearly integrated regressor xk, which is quite general in practice.

Define

d2
n = E|

n∑
k=1

ξk|2 ∼
{
cµ n

3−2µl2(n), under LM,
φ2 n, under SM,

(3.3)

where cµ is a constant. Standard functional limit theory (see Buchmann and Chan (2007)

or Theorem 2.21 in Wang (2015) with a minor modification) shows that

( 1√
n

bntc∑
i=1

εi,
1√
n

bntc∑
i=1

ηi,
1√
n

bntc∑
i=1

η−i,
1

dn
x[nt]

)
⇒

(
Ut, Bt, B−t, Xt

)
, (3.4)

on DR4 [0,∞), where (Ut, Bt)t≥0 is a bivariate Brownian motion with covariance matrix:

Ω =

(
1 ρ
ρ 1

)
, {B−t}t≥0 is an independent copy of {Bt}t≥0 and Xt is defined by

Xt = W (t) + τ

∫ t

0

e−τ(t−s)W (s)ds
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with Wt =

{
G3/2−µ(t), under LM,
G1/2(t), under SM,

where Gβ is a fractional Brownian motion that has

the following form: with a+ = max{a, 0},

Gβ(t) =
1

Γ(d+ 1)

∫ t

−∞
(t− x)d+ − (−x)β+dBt.

It should be noted that Xt is an Ornstein-Uhlenbeck process having a continuous local

time LX(t, s) defined by

LX(t, s) = lim
ε→0

1

2ε

∫ t

0

I(|Xr − s| ≤ ε)dr.

These notations will be used later without further explanations.

Under the settings of Assumption 3.2, we have that (uk,Fk)k≥1, where Fk is an σ-

field generated by λk+1, λk, ..., forms a martingale difference with E(u2
k|Fk−1) = σ2

k =

σ(k/n;λk, λk−1, ...). The error process ut having a martingale difference structure has been

widely used in previous studies such as Park and Phillips (2001), Chang, Park, and Phillips

(2001), De Jong and Hu (2011), and Chan and Wang (2015). Unlike these existing studies,

in Assumption 3.2, we do not assume suptE(u2
t |Ft−1) ≤ C < ∞ since λk are possibly

unbounded random vectors. This removal of the uniform boundedness of E(u2
t |Ft−1)

ensures Assumption 3.2 is applicable for a wide class of models of heteroscedasticity,

including the time-varying behaviors in volatility processes. To illustrate, we start with

the following proposition, which is a corollary of Theorem 5.1 in Shao and Wu (2007).

Let Gk be recursively defined by

Gk = R(Gk−1, ..., Gk−p+1;λk), (3.5)

where p ≥ 1 and R is a measurable function. Recall that λi = (εi−1, ηi), i ∈ Z are i.i.d.

random vectors and {λ∗i }i∈Z is an independent copy of {λi}i∈Z.

Proposition 3.1. Suppose that EG2
0 <∞ and functions Hj exist such that

|R(y;λ0)−R(y′;λ0)| ≤
p∑
j=1

Hj(λ0)|xj − x′j| (3.6)

holds for all y = (x1, ..., xp) and y′ = (x′1, ..., x
′
p) and

∑p
j=1

[
EHj(λ0)2

]1/2
< 1. Then a

measurable function G(...) and a constant 0 < γ < 1 exist such that Gt = G(λt, λt−1, ...)

and, for all t ≥ 1,

E|G(λt, λt−1, ...)−G(λt, λt−1, ..., λ1;λ∗0, λ
∗
1, ...)|2 ≤ Cγt, (3.7)
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Due to Proposition 3.1, the following examples satisfy Assumption 3.2, indicating that

the class of models of heteroscedasticity within the framework of Assumption 3.2 is quite

large.

Example 3.1. (Time-varying GARCH(p, 1) model) Let Gt be defined by

Gt = α0 + α1Gt−1ε
2
t−1 +

p∑
j=1

βjGt−j

and ut = a(t/n)G
1/2
t εt, where a(u) is a positive locally Riemann integrable function (i.e.,

a(u) is Riemann integrable at any finite interval). Assume that α0 > 0, α1 ≥ 0, βi ≥ 0 and[
E(α1ε

2
0 + β1)2

]1/2
+
∑p

j=1 βj < 1 and Eε40 < ∞. We claim that ut satisfies Assumption

3.2.

Indeed, it follows from Proposition 3.1 [λk is replaced by εk−1 in (3.5)] with H1(θ) =

α1θ
2 + β1 and Hj(θ) = βj, j = 2, ..., p, that a measurable function G(...) exists such that

Gt = G(εt−1, εt−2, ...), EG
2
0 < ∞ and (3.7) is satisfied. As a consequence, a measurable

function σ(.; ...) so that σ2
t := a2(t/n)Gt = a2(t/n)G(εt−1, εt−2, ...) = σ(t/n; εt−1, εt−2, ...)

satisfies (3.2) exists, that is, ut = a(t/n)G
1/2
t εt = σt εt satisfies Assumption 3.2.

This example allows for time-varying volatility processes. If a(u) ≡ 1, then ut = G
1/2
t εt

is a standard GARCH(p, 1) model since Gt = α0 + α1 u
2
t−1 +

∑p
j=1 βjGt−j in this case.

Example 3.2. (Amplitude-dependent exponential autoregressive (EXPAR) model) Let

ut = Gtεt, where Gt is defined by

Gt =
[
α + β exp(−aG2

t−1)
]
Gt−1 + ε2t−1.

If a > 0, α ≥ 0, β ≥ 0 and α + β < 1 and Eε40 < ∞, it follows from Proposition 3.1 with

H1(θ) = α + β that ut satisfies Assumption 3.2. Jones (1976) originally considered the

EXPAR model. Similar to Example 3.1, if a(u) is a positive locally Riemann integrable

function, ut = a(t/n)Gtεt still satisfies Assumption 3.2.

Example 3.3. (Nonlinear GARCH model) Let ut = G
1/2
t εt, where Gt is defined by

Gt = α0 + αF (Gt−1) + βGt−1 + γu2
t−1.

This is a nonlinear GARCH model introduced by Lanne and Saikkonen (2005). Suppose

that a constant A0 exists such that |F (x)−F (x′)| ≤ A0|x−x′| for all x, x′ ∈ R. Since we

may rewrite Gt = α0 +R(Gt−1, εt−1), where R(y, ε) = αF (y) + βy + γε2y, it follows from

Proposition 3.1 that ut satisfies Assumption 3.2 if α0 > 0, α ≥ 0, β ≥ 0, γ ≥ 0 satisfying[
E
(
αA0 + β + γε20

)2]1/2
< 1.
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For more examples that satisfy Assumption 3.2, we refer to Wu and Min (2005), Shao

and Wu (2007), and Peng and Wang (2018). It should be noted that Assumption 3.2

excludes nonstationary volatility models such as those discussed in Hansen (1995) and

Cavaliere and Taylor (2007). The asymptotics for nonlinear cointegrating regression with

nonstationary volatility seem to be much more difficult since we have to establish results

on weak convergence for a functional of covariance that involves a production of two

nonlinear integrated time series. We wish to report the development in the future.

3.2 Integrable regression function

This section considers the limit distribution of θ̂n when f is an integrable function, together

with some additional smooth conditions on ηt. Write ḟ(x, θ) = (ḟ1, ..., ḟq)
′, where ḟi =

∂f(x,θ)
∂θi

, i = 1, ..., q.

Assumption 3.3. Let p(x, θ) be one of f and ḟi, i = 1, ..., q.

(i) p(x, θ0) is a bounded and integrable real function.

(ii) A bounded and integrable function Tp : R→ R exists such that |p(x, θ)−p(x, θ0)| ≤
||θ − θ0||α Tp(x), for each θ, θ0 ∈ Θ and some α > 0;

(iii) Σ =
∫∞
−∞ ḟ(s, θ0)ḟ(s, θ0)′ds > 0 (i.e., Σ is a positive-definite matrix) and

∫∞
−∞(f(s, θ)−

f(s, θ0))2ds > 0 for all θ 6= θ0.

Theorem 3.1. Suppose Assumptions 3.1-3.3 hold and limt→∞ |t|δ|Eeitη1 | < ∞ for some

δ > 0. As n→∞,

√
n/dn(θ̂n − θ0)→D Σ−1/2 NL−1

X (1, 0)

√∫ 1

0

Λ2(s)dLX(s, 0) (3.8)

where Λ2(u) = Eσ(u;λ0, λ1, ...) and N is a standard q-dimensional normal random vector

independent of Xt.

Remark 3.1. If no impact comes from the time-varying in volatility process σ2
t or, in

another words, Λ2 := Λ2(u) ≡ Eσ(λ0, λ1, ...) for all u ∈ [0, 1], result (3.8) can be rewritten

as √
n/dn(θ̂n − θ0)→D Λ Σ−1/2 NL−1/2

X (1, 0),

which is pivotal upon an estimation of Λ2. Note that Λ2 = Eu2
1. Λ2 can be estimated

by σ̂2
n = 1

n

∑n
t=1

[
yt − gt(θ̂n)

]2
and σ̂2

n →P Λ2 under the conditions of Theorem 3.1.
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In application, the volatility process σ2
t usually depends on some unknown parameters,

σ2
t = σt(η), such as, where η = (η1, ..., ηm) ∈ Ξ and Ξ is a compact set of Rm. Note that

{ε2t − 1,Ft}t≥1 still forms a martingale difference and[
yt − gt(θ)

]2
= σt(η) + σt(η)(ε2t − 1). (3.9)

The unknown parameter η can be estimated in a similar manner as that of θ, namely,

η̂n = arg min
η∈Ξ

n∑
t=1

{[
yt − gt(θ̂n)

]2 − σt(η)
}2

,

where θ̂n is the LSE of θ defined by (1.2). Using some standard modifications, we can

establish the asymptotics of η, similar to Theorems 2.1 and 3.1. Considering that this is

only related to certain repeated arguments, we omit the details.

Remark 3.2. Theorem 3.1 significantly improves Theorem 3.2 of Chan and Wang (2015)

by using less restrictive smoothing conditions on f(x, θ) and allowing for extensive volatil-

ity processes as those given in Examples 3.1 - 3.3. It should be mentioned that, to prove

Theorem 3.1, we need to establish new results on convergence to local time and a mixture

of normal distributions, which will be given in Theorem 3.4 of Section 3.4.

3.3 Nonintegrable regression function

This section establishes the limit distribution of θ̂n when f is nonintegrable. As in Section

3.2, write ḟ(x, θ) = (ḟ1, ..., ḟq)
′, where ḟi = ∂f(x,θ)

∂θi
, i = 1, ..., q.

Assumption 3.4. Let p(x, θ) be one of f and ḟi, i = 1, ..., q . A real continuous function

Tp(x) exists such that

(i) |p(x, θ)− p(x, θ0)| ≤ ||θ − θ0||α Tp(x), for each θ, θ0 ∈ Θ and some α > 0;

(ii) for any bounded x, supθ∈Θ |p(lx, θ)− vp(l)hp(x, θ)|/Tp(lx) = o(1), as l→∞, where

hp(x, θ) for each θ ∈ Θ is a continuous function and vp(l) is a positive real function

that is bounded away from zero as l→∞; and

(iii) Tp(lx) ≤ vp(l)T1p(x) as |lx| → ∞, where T1p(x) is a continuous function.

Define Ψ(t) = ḣ(Xt, θ0), where ḣ(a, θ) =
(
hḟ1

(a, θ), ..., hḟq(a, θ)
)
.
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Theorem 3.2. Suppose Assumptions 3.1-3.2 and 3.4 hold. Suppose that, for each η > 0,∫
|x|≤η

[
hf (x, θ)− hf (x, θ0)

]2
dx 6= 0, for any θ 6= θ0, and∫

|x|≤η
ḣ(x, θ0) ḣ′(x, θ0)dx is a positive-definite matrix. (3.10)

Then, as n→∞,

Dn (θ̂n − θ0)→D

(∫ 1

0

Ψ(t)Ψ(t)′dt
)−1

∫ 1

0

Ψ(t) Λ(t) dUt, (3.11)

where Λ2(t) = Eσ(t;λ0, λ1, ...) and Dn =
√
n diag

(
vḟ1

(dn), ..., vḟq(dn)
)
.

Remark 3.3. As indicated in Chan and Wang (2015) and Park and Phillips (2001),

nonlinear cointegrating regressions with structures described in Theorem 3.2 are useful

for modeling money demand functions. In such cases, yt is the logarithm of the real money

balance, xt is the nominal interest rate, and f can either be f(x, α, β) = α + β log |x| or

f(x, α, β) = α + β log(1+|x|
|x| ). See Bae and de Jong (2007) and Bae et al. (2006) for

empirical studies investigating the estimation of money demand functions in the United

States and Japan respectively. See also Bae et al. (2004) for the derivation of these

functional forms from the underlying money demand theories studied in macroeconomics.

Remark 3.4. Unlike Theorem 3.1, even in the case that Λ2 = Λ(u) is a constant over

u ∈ [0, 1] that can be estimated, the limit distribution is not pivotal because it depends

on ρ which is hidden in the joint distribution of
(
Ψ(t), Ut

)
. It seems to be difficult to

estimate this nuisance parameter at the moment and hence we leave it for future work.

Remark 3.5. Theorem 3.4 of Chan and Wang (2015) provided a result that is sim-

ilar to Theorem 3.2, but imposing strong restrictions on uk and f(x, · · · ) such that

supk≥1E(u2
k|Fk−1) ≤ C < ∞ and ∂2f

∂θi∂θj
, i, j = 1, ..., q, satisfy some similar conditions

as those of Assumption 3.4 in the present paper. Theorem 3.2 is not only applicable in

nonlinear cointegrating regression models with various volatility processes as those dis-

cussed in Examples 3.1-3.3, but also the verification of the conditions imposed on f(x, · · · )
is quite straightforward.

3.4 Convergence to stochastic integrals, local time and a mix-
ture of normal distributions

The proofs of Theorems 3.1 and 3.2 depend on certain fundamental results on conver-

gence to stochastic integrals, local time and a mixture of normal distributions, which are

summarized in this section. We remark that Theorem 3.4 is new to literature.

15



Recall that (σkεk,Fk)k≥1 forms a martingale difference, where σ2
k = σ(k/n;λk, λk−1, ...)

and Fk is an σ-field generated by λk, λk−1, ...,. By using a standard argument on functional

martingale limit theorem, we have

( 1√
n

bntc∑
i=1

εi,
1√
n

bntc∑
i=1

σiεi
)
⇒
(
Ut,

∫ t

0

√
Eσ(s, λ0, λ1, ...) dUs

)
,

on DR2 [0, 1]. This, together with (3.4), implies that

( 1

dn
x[nt],

1√
n

bntc∑
i=1

σiεi
)
⇒
(
Xt,

∫ t

0

√
Eσ(s;λ0, λ1, ...) dUs

)
,

on DR2 [0, 1]. Let Λ2(s) = Eσ(s;λ0, λ1, ...). An application of Kurtz and Protter (1991)

now yields the following result on the convergence to stochastic integrals.

Theorem 3.3. If H(x) and H1(x) are continuous functions, then

{ 1

n

n∑
k=1

H(xk/dn),
1√
n

n∑
k=1

H1(xk/dn)σkεk
}

→D

{∫ 1

0

H(Xs)ds,

∫ 1

0

H1(Xs)Λ(s)dUs
}
. (3.12)

If there are more smooth conditions on ηt, we also have the following results on con-

vergence to local time and a mixture of normal distributions.

Theorem 3.4. Let g(x) and g1(x) be bounded functions satisfying
∫∞
−∞(|g(x)|+|g1(x)|)dx <

∞. Suppose that limt→∞ |t|ε|Eeitη1| <∞ for some ε > 0.

(i) We have

( 1√
n

[nt]∑
k=1

ηk,
1√
n

[nt]∑
k=1

η−k,
dn
n

n∑
k=1

g(xk)σ
2
k

)
⇒

(
Bt, B−t,

∫ ∞
−∞

g(x)dx

∫ 1

0

Λ2(s)LX(ds, 0)
)
, (3.13)

on DR3 [0, 1].

(ii) For any l(x) satisfying E|l(ε1)| <∞, we have

n∑
k=1

g(xk)σ
2+δ
k l(εk) = OP (n/dn), (3.14)

where 0 ≤ δ <

{
(2µ− 1)/(3− 2µ), under LM,
1, under SM.
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(iii) We have {(dn
n

)1/2
n∑
k=1

g(xk)σk εk,
dn
nh

n∑
k=1

g1(xk)
}

→D

{
N L̃

1/2
X ,

∫ ∞
−∞

g1(s)dsLX(1, 0)
}
, (3.15)

where L̃X =
∫∞
−∞ g

2(x)dx
∫ 1

0
Λ2(s)LX(ds, 0) and N is a standard normal variate

independent of X.

Remark 3.6. The past decade has witnessed significant progress in investigating the

convergence to local time and the convergence to a mixture of normal distributions. We

refer to Wang and Phillips (2009a, 2009b), Jeganathan (2004, 2008), Wang (2014, 2015),

Wang, Phillips and Kasparis (2018), Duffy (2019) and references therein. The recent

result (3.13) provides an extension of existing results by allowing for σ2
k to be a nonlinear

process (i.e., σ2
k = σ(k/n;λk, λk−1, ...). As a consequence, Theorem 3.4 is applicable

to time varying GARCH and nonlinear GARCH and many other volatility models, as

described in Examples 3.1-3.3.

4 Conclusion

The least squares method is widely used in nonlinear regression analysis and many ar-

ticles have investigated the asymptotics of least squares estimators. The present paper

provides a new framework on asymptotic theory for general nonlinear regression models

with heteroscedasticity. Our results apply to various nonlinear models with stationary

and nonstationary regressors and the conditions imposed are straightforward and easy to

verify. The author hopes the results derived in this paper prove useful in related areas,

particularly in nonlinear cointegrating regressions where nonstationarity and nonlinearity

play a role.
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A Proofs of the main results in Section 2

We start with the proof of Theorem 2.3 and then those of Corollary 2.1 because the results

of Corollary 2.1 are required to prove Theorem 2.1. The proofs of Theorems 2.1 and 2.2

and Proposition 2.1 will follow. The notations are the same as in the previous sections

except that they are mentioned explicitly.

Proof of Theorem 2.3. LetMn,k(f) =
∑k

t=1 unt f(ynt) and Zn,k(f) =
∑k

t=1 f
2(ynt)

[
u2
nt+

E(u2
nt | Fn,t−1)

]
, where 1 ≤ k ≤ n. Let Mn(f) = Mn,n(f) and Zn(f) = Zn,n(f). For any

ε > 0, by (2.8), there exist A0 and n0 such that, for all n ≥ n0,

P
(

sup
f∈Ψ

Zn(f) ≥ A0γn
)
≤ ε/2. (A.1)

Note that, for any A > 0,

P
(

sup
f∈Ψ
|Mn(f)| ≥ A

[
γn log+(#Ψ)

]1/2)
≤ P

(
sup
f∈Ψ

Zn(f) ≥ A0γn
)

+
∑
f∈Ψ

P
(
|Mn(f)| ≥ A

[
γn log+(#Ψ)

]1/2
, Zn(f) ≤ A0γn

)
.

Result (2.9) will follow if we prove the following: for each f ∈ Ψ and m ≥ 2

P
(
|Mn(f)| ≥

√
2mA0

[
γn log+(#Ψ)

]1/2
, Zn(f) ≤ A0γn

)
≤ C min{(#Ψ)−m, e−m}. (A.2)

To prove (A.2), we need the following fact:

F: If X is a random variable such that E(X | F) = 0 and E(X2 | F) < ∞, then, for

any t > 0,

E
[
etX−

t2

2
X2 | F

]
≤ 1 +

t2

2
E
(
X2 | F

)
. (A.3)

The fact F is a conditional version of Lemma 2.1 in Bercu and Touati (2010). Indeed, by

using Jensen’s inequality, we obtain

A(t) := E
[
etX−

t2

2
X2 | F

]
≥ e−

t2

2
E(X2|F)

≥ 1− t2

2
E(X2 | F),

for any t ∈ R. On the other hand, we have

A(t) + A(−t) = E
[
e−

t2

2
X2(

etX + e−tX
)
| F
]
≤ 2,
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indicating that

A(t) ≤ 2− A(−t) ≤ 1 +
t2

2
E(X2 | F).

We next prove (A.2) by using similar arguments as in the proof of Theorem 2.1 of

Bercu and Touati (2010). Let A+
n = {Mn(f) ≥ x, Zn(f) ≤ y}, where x > 0 and y > 0.

By using Cauchy-Schwartz inequality, for all t > 0, we have

P (A+
n ) ≤ E

[
e(tMn(f)−tx)/2I(A+

n )
]

= E
[
e
t
2
Mn(f)− t

2

4
Zn(f) e

t2

4
Zn(f)− tx

2 I(A+
n )
]

≤ e
t2y
4
− tx

2

√
EVn,n(t)P (A+

n ), (A.4)

where, for k ≥ 1, Vn,k(t) = etMn,k(f)− t
2

2
Zn,k(f). Write xk = f(ynk)unk. Following the fact F,

E
[
etxk−

t2

2
x2
k−

t2

2
E(x2

k|Fn,k−1)
)
| Fn,k−1

]
= e−

t2

2
E(x2

k|Fn,k−1)E
[
etxk−

t2

2
x2
k | Fn,k−1

]
≤ e−

t2

2
E(x2

k|Fn,k−1)
[
1 +

t2

2
E
(
x2
k | Fn,k−1

)]
≤ 1,

we obtain the following: for k ≥ 1,

E
[
Vn,k(t) | Fn,k−1

]
≤ Vn,k−1(t)E

[
etxk−

t2

2
x2
k−

t2

2
E(x2

k|Fn,k−1)
)
| Fn,k−1

]
≤ Vn,k−1(t).

It follows that

EVn,k(t) ≤ EVn,k−1(t) ≤ ... ≤ EVn,1(t) = E
{
E
[
Vn,1(t) | Fn,0

]}
≤ 1.

By taking this estimate into (A.4), we obtain

P (A+
n ) ≤ inf

t>0
exp

(t2y
2
− tx

)
= e−x

2/2y

Let A−n = {Mn(f) ≤ −x, Zn(f) ≤ y}, where x > 0 and y > 0. Similarly, we have

P (A−n ) ≤ e−x
2/2y. As a consequence, we obtain

P (|Mn(f)| ≥ x, Zn(f) ≤ y) ≤ P (A+
n ) + P (A−n ) ≤ 2e−x

2/2y,

yielding (A.2) by taking x =
√

2mA0(γn log+(#Ψ))1/2 and y = A0γn. 2

23



Proof of Corollary 2.1. We first show that (2.1) implies that, for ∀ε > 0, there exist

n0 and A0 such that, for all n ≥ n0,

P
( n∑
t=1

T 2
nt u

2
t ≥ A2

0

)
≤ ε, i.e.,

n∑
t=1

T 2
nt u

2
t = OP (1). (A.5)

To prove (A.5), let νn(A) = inf
{
k ≥ 1 :

∑k
t=1 T

2
ntE(u2

t |Ft−1) ≥ A
}

, kn(A) =
[
νn(A) −

1
]
∧ n and Rn(A) =

∑kn(A)
t=1 T 2

ntE(u2
t |Ft−1). It is readily seen that

Rn(A) ≤
νn(A)−1∑
t=1

T 2
ntE(u2

t |Ft−1) ≤ A

and, as a consequence,

ERn(A) = E
( kn(A)∑

t=1

T 2
nt u

2
t

)
≤ A, for each A > 0.

On the other hand, for ∀ε > 0, there exist A0 ≥ 2/ε and n0 such that, for all n ≥ n0,

P
( n∑
t=1

T 2
ntE(u2

t |Ft−1) ≥ A0

)
≤ ε/2,

due to (2.1). Now, for ∀ε > 0, we have

P
( n∑
t=1

T 2
nt u

2
t ≥ A2

0

)
≤ P

[
kn(A0) 6= n

]
+ P

( kn(A0)∑
t=1

T 2
nt u

2
t ≥ A0

)
≤ P

(
νn(A0) ≤ n

)
+ A−2

0 E
( kn(A0)∑

t=1

T 2
nt u

2
t

)
≤ P

( n∑
t=1

T 2
ntE(u2

t |Ft−1) ≥ A0

)
+ A−2

0 ERn(A0)

≤ ε/2 + A−1
0 ≤ ε,

which yields (A.5).

We are now ready to prove Corollary 2.1, starting with (2.4). Let θj ∈ Θ be different

so that Θj = {θ : ||θ − θj|| ≤ n−1/α}, j = 1, 2, ..., nk, for some integer k ≥ 1/α, covers Θ,

where 0 < α ≤ 1 is given as in Assumption 2.2 (i). Note that, by Hölder’s inequality,

sup
θ∈Θj

||Zn(θ)− Zn(θj)|| ≤ sup
θ∈Θj

n∑
t=1

||D−1
n

[
ġt(θ)− ġt(θj)

]
|| |ut|

≤ n−1

n∑
t=1

|Tnt| |ut|

≤ n−1/2
( n∑
t=1

T 2
ntu

2
t

)1/2
= OP (n−1/2), (A.6)
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for any 1 ≤ j ≤ nk, due to (A.5). Result (2.4) will follow if we prove

max
1≤j≤nk

||Zn(θj)− Zn(θ0)|| = OP (log1/2 n). (A.7)

In fact (A.7) follows immediately from Theorem 2.3 with γn = 1 owing to the following

facts: Zn(θj)− Zn(θ0) =
∑n

k=1D
−1
n

[
ġt(θ)− ġt(θj)

]
uk and

In := max
1≤j≤nk

n∑
t=1

||D−1
n

[
ġt(θ)− ġt(θj)

]
||2
[
u2
t + E(u2

t | Ft−1)
]

≤ max
1≤j≤nk

||θj − θ0||2α
n∑
t=1

T 2
nt

[
u2
t + E(u2

t | Ft−1)
]

= OP (1). (A.8)

The proof of (2.5) is similar except that θj is chosen so that ||Dn(θj − θ0)|| ≤ log n. In

this case, instead of (A.8), we have

In ≤ max
1≤j≤nk

||D−1
n Dn(θj − θ0)||2α

n∑
t=1

T 2
nt

[
u2
t + E(u2

t | Ft−1)
]

= OP (||D−1
n log n||2α) = OP (log−3 n),

Now it follows from Theorem 2.3 with γn = log−3 n that

max
1≤j≤nk

||Zn(θj)− Zn(θ0)|| = OP (log−1 n) = oP (1).

This, together with (A.6), yields (2.5). 2

Proof of Theorem 2.1. Let Q̇n be the first derivative of Qn(θ) so that Q̇n = ∂Qn/∂θ.

Let fk(θ) = gk(θ)− gk(θ0) and

Qn(θ) =
n∑
k=1

[
yk − gk(θ)

]2
=

n∑
k=1

[
uk − fk(θ)

]2
.

We have

Q̇n(θ) = −
n∑
t=1

ġt(θ)(ut − ft(θ))

= −
n∑
t=1

ġt(θ0)ut +
n∑
t=1

ġt(θ0)ġt(θ0)′(θ − θ0)

+R1n(θ) +R2n(θ) + R3n(θ), (A.9)
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where

R1n(θ) =
n∑
t=1

[
ġt(θ0)− ġt(θ)

]
ut,

R2n(θ) =
n∑
t=1

[
ġt(θ)− ġt(θ0)

]
ft(θ),

R3n(θ) =
n∑
t=1

ġt(θ0)
[
ft(θ)− ġt(θ0)′(θ − θ0)

]
Given that ft(θ0) = 0, it follows from Taylor’s expansion and Assumption 2.2(i) that,

for some θ̃ between θ0 and θ,

|ft(θ)− ġt(θ0)′(θ − θ0)| ≤ |
[
ġt(θ̃)− ġt(θ0)

]′
(θ − θ0)|

≤ d(θ̃, θ0)Tnt ||Dn(θ − θ0)||. (A.10)

As a consequence, by recalling ||θ̂n − θ0|| →P 0 and d(θ, θ0) as θ → θ0, we have

||D−1
n R3n(θ̂n)||

= oP (1) ||Dn(θ̂n − θ0)||
n∑
t=1

||D−1
n ġt(θ0)|| |Tnt|

= oP (1) ||Dn(θ̂n − θ0)||
( n∑
t=1

||D−1
n ġt(θ0)||2

)1/2 ( n∑
t=1

T 2
nt

)1/2

= oP
(
||Dn(θ̂n − θ0)||

)
,

where we have used
∑n

t=1 ||D−1
n ġt(θ0)||2 = OP (1) and

∑n
t=1 T

2
nt = OP (1) due to Assump-

tion 2.2. Similarly, ||D−1
n R2n(θ̂n)|| = oP

(
||Dn(θ̂n − θ0)||

)
.

Let θ = θ̂n in (A.9). Given that Q̇n(θ̂n) = 0, it follows from these estimates and (A.9)

that

0 = −D−1
n

n∑
t=1

ġt(θ0)ut + YnDn(θ̂n − θ0) +D−1
n R1n(θ̂n) + oP

[
||Dn(θ̂n − θ0)||

]
,

i.e.
[
by noting ||Y −1

n || = OP (1)
]
,

Dn(θ̂n − θ0)

= Y −1
n Zn(θ0)− Y −1

n D−1
n R1n(θ̂n) + oP

[
||Dn(θ̂n − θ0)||

]
. (A.11)

Given that ||Y −1
n Zn(θ0)|| = OP (1), by using (A.11), (2.2) will follow if we prove

||D−1
n R1n(θ̂n)|| = oP (1). (A.12)
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Indeed, if (A.12) holds, then ||Dn(θ̂n − θ0)|| = OP (1) by (A.11). Invoking this estimate

into (A.11) again, we obtain

Dn(θ̂n − θ0) = Y −1
n Zn(θ0) + oP (1),

as required.

We use Corollary 2.1 to prove (A.12). First note that, by (2.4),

||D−1
n R1n(θ̂n)|| ≤ sup

θ∈Θ
|Zn(θ)− Zn(θ0)| = OP (log1/2 n).

By taking this estimate into (A.11), we get ||Dn(θ̂n− θ0)|| = OP (log1/2 n). Now it follows

from (2.5) that, for any η > 0,

P
(
||D−1

n R1n(θ̂n)|| ≥ η
)

≤ P
(
||Dn(θ̂n − θ0)|| ≥ log n

)
+ P

(
sup

θ:||Dn(θ−θ0)||≤logn

|Zn(θ)− Zn(θ0)| ≥ η
)

→ 0, as n→∞,

implying (A.12). The proof of Theorem 2.1 is complete. 2

Proof of Theorem 2.2. Write Ln,θ =
∑n

k=1 dk(θ)uk and Qn(θ) =
∑n

k=1

[
yk − gk(θ)

]2
.

Given that θ0 is a real value of the model (1.1), we have∑
u2
k = Qn(θ0) ≥ Qn(θ̂n) =

∑
u2
k +Dn,θ̂ − 2Ln,θ̂ ,

thus indicating that, for any ε > 0,

P (||θ̂n − θ0|| ≥ ε) ≤ P
(

sup
||θ−θ0||≥ε

|Ln,θ| /Dn,θ ≥ 1/2
)

≤ P
(

sup
θ∈Θ
|Ln,θ| ≥ 1/2 inf

||θ−θ0||≥ε
Dn,θ

)
.

Hence, by using condition (b), Theorem 2.2 will follow if we prove

sup
θ∈Θ
|Ln,θ| = oP (kn). (A.13)

The proof of (A.13) is similar to that of Corollary 2.1 with minor modifications. We omit

the details. 2

Proof of Proposition 2.1. First note that, for any δ > 0 and λ0 > 0, an integer m0

that depends only on λ0 and θj, j = 1, ...,m0, exists such that

||θj − θ0|| ≥ δ and Θ ∩ {||θ − θ0|| ≥ δ} ⊂ ∪m0
j=1Nλ0(θj),
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where Nx(y) = {θ : ||θ − y|| ≤ x}. Given that |gt(θ1) − gt(θ2)| ≤ h
(
||θ1 − θ2||

)
Tt, it is

readily seen that, uniformly for θ ∈ Nλ0(θj), j = 1, 2, ...,m0,

|Dn,θ −Dn,θj | ≤
( n∑
t=1

[
gt(θ)− gt(θj)

]2)1/2 ( n∑
t=1

[
gt(θ) + gt(θj)− 2gt(θ0)

]2)1/2

≤ 2 sup
θ∈Θ

h1/2(||θ||) max
1≤j≤m0

sup
θ∈Nλ0

(θj)

h1/2
(
||θ − θ1||

) n∑
t=1

T 2
t .

Hence, by recalling that k−1
n

∑n
t=1 T

2
t = OP (1) and h(x) is continuous with limx↓0 h(x) = 0,

we have

k−1
n max

1≤j≤m0

sup
θ∈Nλ0

(θj)

|Dn,θ −Dn,θj | = oP (1), (A.14)

for any δ > 0, as λ0 → 0 (m0 →∞, respectively) and n→∞. Now, to prove Proposition

2.1, it suffices to show for any δ > 0, m0 ≥ 1 and η > 0 that there exist Mδ (depending

only on δ) and n0 such that for all n ≥ n0,

P
(
k−1
n min

1≤j≤m0

Dn,θj ≥Mδ

)
≥ 1− η. (A.15)

In fact, by using condition (i) and taking Mδ > 0 as in condition (i), there exists an

n0 such that, uniformly for j = 1, ...,m0 and n ≥ n0,

P
(
k−1
n Dn,θj ≥Mδ

)
≥ P

[
G(θj) ≥Mδ

]
− η/m0

≥ P
[

inf
||θ−θ0||≥δ

θ∈Θ

G(θ) ≥Mδ

]
− η/m0 = 1− η/m0.

for any m0 ≥ 1 and η > 0. We now have

P
(
k−1
n min

1≤j≤m0

Dn,θj < Mδ

)
≤

m0∑
j=1

P
(
k−1
n Dn,θj < Mδ

)
< η,

implying (A.15). 2

B Proofs of the main results in Section 3

We prove Theorems 3.1 and 3.2 by checking the conditions of Theorem 2.1, where certain

fundamental results in Theorems 3.3 and 3.4 are required. Theorem 3.3 is well-known in

the literature. The proof of Theorem 3.4 will be given in the end of this section.
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Proof of Theorem 3.1. It suffices to show that the consistency of θ̂n, Assumption 2.2(i)

and (2.3) hold. In fact, under the conditions of Theorem 3.1, it follows from Theorem 3.4

that

dn
n

n∑
t=1

[
f(xt, θ)− f(xt, θ0)

]2
→D G(θ) :=

∫ ∞
−∞

[
f(x, θ)− f(x, θ0)

]2
dxLX(1, 0); (B.1)

dn
n

n∑
t=1

T 2
p (xt)(1 + σ2

t ) = OP (1), (B.2)

where Tp(x) is given in Assumption 3.3(ii) with p(x, θ) = f(x, θ) or ḟj(x, θ), j = 1, ..., q;

and for any α′i = (αi1, ..., αiq) ∈ R, i = 1, 2, 3,{(dn
n

)1/2
n∑
k=1

α′3ḟ(xk, θ0)σk εk,
dn
n

n∑
k=1

α′1ḟ(xk, θ0)ḟ(xk, θ0)′α2

}

→D

{√
α′3Σα3N

√∫ 1

0

Λ2(s)dLX(s, 0), α′1Σα2 LX(1, 0)
}

=D

{
α′3Σ1/2 N

√∫ 1

0

Λ2(s)dLX(s, 0), α′1Σα2 LX(1, 0)
}
, (B.3)

where N is a q-dimensional standard normal vector independent of X.

Given that P (LX(1, 0) > 0) = 1, we have P
[

inf ||θ−θ0||≥δ
θ∈Θ

G(θ) ≥ Mδ

]
= 1, where

M−1
δ = inf ||θ−θ0||≥δ

θ∈Θ

∫∞
−∞

[
f(x, θ) − f(x, θ0)

]2
dx > 0 for each δ > 0. The consistency of θ̂n

follows from (B.1), (B.2) with p(x, θ) = f(x, θ) and Proposition 2.1 with gt(θ) = f(xt, θ)

and kn = n/dn. Assumption 2.2(i) follows from (B.2) with ġt(θ) = f(xt, θ) by setting

Dn =
√
n/dndiag(1, ..., 1), and (2.3) follows from (B.3) with M = ΣLX(1, 0) and Z =

Σ1/2

√∫ 1

0
Λ2(s)dLX(s, 0)N. The proof of Theorem 3.1 is complete. 2

Proof of Theorem 3.2. Similar to the proof of Theorem 3.1, it only needs to show the

following results under Assumptions 3.1-3.2 and 3.4: (The notations are the same in these

assumptions except that they are mentioned explicitly)

1

nv2
f (dn)

n∑
t=1

[
f(xt, θ)− f(xt, θ0)

]2
→D G(θ) :=

∫ 1

0

[
hf (Xt, θ)− hf (Xt, θ0)

]2
dt, (B.4)

1

n

n∑
t=1

T 2
1p(xt/dn)(1 + σ2

t ) = OP (1), (B.5)
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where T1p(x) is given in Assumption 3.4(iii) with p(x, θ) = f(x, θ) or ḟj(x, θ), j = 1, ..., q,

and for any α′i = (αi1, ..., αiq) ∈ R, i = 1, 2, 3,

(α′1 Ynα2, α′3Wn)

→D

(∫ 1

0

α′1 Ψ(t)Ψ(t)′ α2dt,

∫ 1

0

α′3Ψ(t) Λ(t) dUt

)
, (B.6)

where Yn = (D−1
n )′

∑n
t=1 ḟ(xt, θ0)ḟ(xt, θ0)′D−1

n and

Wn = (D−1
n )′

n∑
t=1

ḟ(xt, θ0)σtεt.

Indeed, due to the continuity of Xt, condition (3.10) ensures P
[

inf ||θ−θ0||≥δ
θ∈Θ

G(θ) ≥
Mδ

]
= 1 for some Mδ > 0, a.s. This, together with (B.5) with p(x, θ) = f(x, θ), implies

the consistency of θ̂n by Proposition 2.1. On the other hand, (3.10) and (B.6) yields Yn →∫ 1

0
Ψ(t)Ψ(t)′ dt > 0. Hence Theorem 3.2 follows from an easy application of Theorem 2.1.

We only prove (B.4). Others can be obtained by similar arguments with minor modi-

fication and hence the details are omitted. Write x∗t = xtI(|xt|/dn ≤ A),

Rn(θ) =
n∑
t=1

[
f(xt, θ)− vf (dn)hf (xt/dn, θ)

]2
,

R∗n(θ) =
n∑
t=1

[
f(x∗t , θ)− vf (dn)hf (x

∗
t/dn, θ)

]2
.

For any fixed A > 0, it follows from Assumptions 3.4(ii) and (iii) that

sup
θ∈Θ
|R∗n(θ)| ≤ o(1) v2

f (dn)
n∑
t=1

T 2
1f (x

∗
t/dn) = o(1)nv2

f (dn),

as n→∞. This implies that, for any ε > 0,

P
( 1

nv2
f (dn)

sup
θ∈Θ
|Rn(θ)| ≥ ε

)
≤ P

(
xk 6= x∗k, for some k=1,...,n

)
+ P

( 1

nv2
f (dn)

sup
θ∈Θ
|R∗n(θ)| ≥ ε

)
≤ P

(
max

1≤k≤n
|xk|/dn ≥ A

)
+ P

( 1

nv2
f (dn)

sup
θ∈Θ
|R∗n(θ)| ≥ ε

)
→ 0,

as n→∞ first and then A→∞, namely, we have

sup
θ∈Θ
|Rn(θ)| = oP

[
nv2

f (dn)
]
. (B.7)
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Now, by letting

∆n = sup
θ∈Θ
|Rn(θ)|+ sup

θ∈Θ
|Rn(θ)|1/2

( 1

n

n∑
t=1

[
hf (xt/dn, θ)− hf (xt/dn, θ0)

]2)1/2

,

and noting that

1

nv2
f (dn)

n∑
t=1

[
f(xt, θ)− f(xt, θ0)

]2
=

1

n

n∑
t=1

[
hf (xt/dn, θ)− hf (xt/dn, θ0)

]2
+ 4 ∆̃n,

where |∆̃n| ≤ ∆n, result (B.4) follows from (B.7) and Theorem 3.3. 2

Proofs of Theorem 3.4. We start with two preliminary lemmas. Recall that {λ∗k}k∈Z
is an independent copy of {λk}k∈Z. Let λ∗ = (λ∗1, λ

∗
2, ...).

Lemma B.1. Let p(u, x, x1, ..., xm; y), where y = (y1, y2, ...), be a real function of its

components and t1, ..., tm ∈ Z, where m ≥ 0. There exists an m0 > 0 such that the

following results hold.

(i) For any h > 0 and k ≥ 2m+m0, we have

E| p(k/n, xk/h, λt1 , ..., λtm ;λ∗)|

≤ C h

dk

∫ ∞
−∞

E|p(k/n, y, λ1, ..., λm;λ∗)|dy. (B.8)

(ii) For any h > 0, k − j ≥ 2m+m0 and j + 1 ≤ t1, ..., tm ≤ k, we have∣∣E [p(k/n, xk/h, λt1 , ..., λtm ;λ∗)
∣∣∣λj, λj−1, ...;λ

∗]∣∣
≤

C h
∑k−min{t1,...,tm}

j=0 |φj|
d2
k−j

m∑
j=1

∫ ∞
−∞

E
{[
|p(k/n, y, λ1, ..., λm;λ∗) ηj|

] ∣∣∣λ∗} dy
+
Ch

dk−j

∫ ∞
−∞

∣∣E[p(k/n, y, λ1, ..., λm;λ∗)
∣∣∣λ∗]∣∣ dy. (B.9)

Proof. We only prove (B.9) as the other is similar except simpler. Note that

xk − xj =
k∑

i=j+1

γk−i ξi +

j∑
i=1

(γk−i − γj−i) ξi

=
k∑

i=j+1

γk−i
( i∑
u=j+1

+

j∑
u=−∞

)
ηuφi−u +

j∑
i=1

(γk−i − γj−i) ξi.
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We may have

xk = x1jk + x2jk, (B.10)

where x1jk =
∑k

i=j+1 ηi ak,i with

ak,i =
k∑
u=i

γk−uφu−i = ak−i,

and x2jk depends only on ηj, ηj−1, ...

Let Λm =
∑m

j=1 ηtjak−tj and y∗jk = x1jk − Λm. It is readily seen that an m0 > 0

exists such that, whenever k − j ≥ 2m + m0, E(y∗jk)
2 � d2

k−j. As a consequence, similar

arguments to those in the proof of Theorem 2.18 of Wang (2015) yields that

whenever k − j ≥ 2m + m0, y∗jk/dk−j has a density function νjk(x), which is

uniformly bounded over x by a constant C and

sup
x
|νjk(x+ u)− νjk(x)| ≤ C min{|u|, 1}. (B.11)

This, together with (B.10) and the independence of ηi, implies that

E
{
p(k/n, xk/h, λt1 , ..., λtm ;λ∗) | F∗j

}
= E

{
p
[
k/n, (x2jk + Λm + y∗jk)/h, λt1 , ..., λtm ;λ∗

]
| F∗j

}
= E

{∫ ∞
−∞

p
[
k/n, (x2jk + Λm + dk−jy)/h, λt1 , ..., λtm ;λ∗

]
νjk(y) dy | F∗j

}
=

h

dk−j

∫ ∞
−∞

E
{
p(k/n, y, λt1 , ..., λtm ;λ∗) νjk

(−x2jk − Λm + hy

dk−j

) ∣∣F∗j }dy,(B.12)

where λ∗ = (λ∗1, λ
∗
2, ...) and F∗j is a σ-field generated by λj, λj−1, ...;λ

∗
1, λ
∗
2, ...

As x2jk depends only on ηj, ηj−1, ..., and j + 1 ≤ t1, ..., tm ≤ k, we have∣∣∣E{p(k/n, y, λt1 , ..., λtm) νjk
(−x2jk + hy

dk−j

) ∣∣F∗j }∣∣∣
≤ C

∣∣∣E{p(k/n, y, λ1, ..., λm;λ∗)
∣∣λ∗1, λ∗2, ...}∣∣∣.
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By taking this fact into (B.12) and by using (B.11), we have∣∣E{p(k/n, xk/h, λt1 , ..., λtm ;λ∗) | F∗j
}∣∣

≤ h

dk−j

∫ ∞
−∞

E
{
|p(k/n, y, λt1 , ..., λtm ;λ∗)|∣∣∣ νjk(−x2jk − Λm + hy

dk−j

)
− νjk

(−x2jk + hy

dk−j

)∣∣∣ ∣∣F∗j } dy
+
Ch

dk−j

∫ ∞
−∞

∣∣∣E{p(k/n, y, λ1, ..., λm;λ∗)
∣∣λ∗1, λ∗2, ...}∣∣∣dy

≤ Ch

dk−j

∫ ∞
−∞

E
{
|p(k/n, y, λt1 , ..., λtm ;λ∗)| min{|Λm|/dk−j, 1}

∣∣F∗j } dy
+
Ch

dk−j

∫ ∞
−∞

∣∣∣E{p(k/n, y, λ1, ..., λm;λ∗)
∣∣λ∗1, λ∗2, ...}∣∣∣dy

≤
Ch
∑k−min{t1,...,tm}

j=0 |φj|
d2
k−j

∫ ∞
−∞

E
{
|p(k/n, y, λ1, ..., λm, λ

∗)|
m∑
j=1

|ηj|
∣∣λ∗1, λ∗2, ...} dy

+
Ch

dk−j

∫ ∞
−∞

∣∣∣E{p(k/n, y, λ1, ..., λm;λ∗)
∣∣λ∗1, λ∗2, ...}∣∣∣dy,

as required. 2

Lemma B.2. Let 0 ≤ m = mn ≤ n/2 be a sequence of integers and, for each n ≥ 1,

σn(u, x1, ..., xm; y), where y = (y1, y2, ...), be a real function of its components. For any

bounded real function g(x) satisfying
∫∞
−∞ |g(x)|dx <∞ and any h = hn > 0, we have

E
n∑
k=1

|g(xk/h)σn(k/n, λk, λk−1, ..., λk−m;λ∗)|

≤ C h (m+ n/dn) sup
0≤u≤1

E |σn(u, λ1, λ2, ..., λm;λ∗)|. (B.13)

If in addition Eσn(u, λ1, ..., λm; λ̃) = 0 for each u ∈ [0, 1], where λ̃ = (λm+1, λm+2, ...),

then

E
[ n∑
k=1

g(xk/h)σn(k/n, λk, λk−1, ..., λk−m;λ∗)
]2

≤ C τ 2
nm

[
max{m1/2, log n}h2 +mdn/n+ h

]
(n/dn)

+Cτn τ1n h
2(n/dn)2, (B.14)

where τ 2
n = sup0≤u≤1 Eσ

2
n(u, λ1, ..., λm;λ∗) and

τ 2
1n = sup

0≤u≤1
E
∣∣∣σn(u, λ1, ..., λm;λ∗)− σn(u, λ1, ..., λm; λ̃)

∣∣∣2.
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Proof . We only prove (B.14). The proof of (B.13) is similar except it is simpler. Write

σn,k = σn(k/n, λk, λk−1, ..., λk−m;λ∗) and νn = 2m + m0, where m0 is given as in Lemma

B.1. We have

E
[ n∑
k=1

g(xk/h)σn(k/n, λk, λk−1, ..., λk−m, λ
∗)
]2

≤ 2C E
[ νn∑
k=1

|σn,k|
]2

+ 2E
[ n∑
k=νn+1

g(xk/h)σn,k

]2

≤ 2C E
[ νn∑
k=1

|σn,k|
]2

+ 2
n∑

k=νn+1

E
{
g2(xk/h)σ2

n,k

}
+ 4

n∑
k=νn+1

[ νn∑
j=1

+
n−k∑

j=νn+1

]
|E
{
g(xk/h)σn,kg(xk+j/h)σn,k+j

}
|

:= R1n +R2n +R3n +R4n. (B.15)

Let πn,j(y) = E
(
|σn(k/n, λ1, λ2, ..., λm; y) ηj|

)
, 1 ≤ j ≤ m, and π̂n(y) = Eσn(k/n, λ1, λ2, ..., λm; y).

It is readily seen from (B.8) that, for k ≥ νn and 1 ≤ j ≤ m

E
{
|g(xk/h)σn,k|πn,j(λ∗)

}
≤ Chd−1

k E
{
|σn,k|πn,j(λ∗)

}
≤ Chd−1

k Eσ2
n(k/n, λ1, ..., λm;λ∗) ≤ Chd−1

k τ 2
n.

On the other hand, by recalling that Eσn(k/n, λ1, ..., λm; λ̃) = 0 and λ̃ is independent of

λ∗, we have

E|π̂n(λ∗)|2 = E
∣∣∣E{[σn(k/n, λ1, ..., λm;λ∗)− σn(k/n, λ1, ..., λm; λ̃)] | λ∗

}∣∣∣2
≤ E

∣∣∣σn(k/n, λ1, ..., λm;λ∗)− σn(k/n, λ1, ..., λm; λ̃)
∣∣∣2 ≤ τ 2

1n,

thus indicating

E
{
|g(xk/h)σn,k| |π̂n(λ∗)|

}
≤ Chd−1

k E
{
|σn,k| |π̂n(λ∗)|

}
≤ Chd−1

k τn τ1n.

Consequently, by (B.9), we obtain

|E
{
g(xk/h)σn,kg(xk+j/h)σn,k+j

}
|

≤ E
{
|g(xk/h)σn,k| |E

[
g(xk+j/h)σn,k+j|F∗k

]
|
}

≤ Ch
∑m

s=0 |φs|
d2
j

m∑
j=1

E
{
|g(xk/h)σn,k|πn,j(λ∗)

}
+
Ch

dj
E
{
|g(xk/h)σn,k| |π̂n(λ∗)|

}
≤ C h2m

m∑
s=0

|φs| d−2
j d−1

k τ 2
n + Ch2d−1

j d−1
k τn τ1n,
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for k, j ≥ νn. Now it is readily seen that

R4n ≤ C h2m
m∑
s=0

|φs|
n∑

k=νn+1

d−1
k

n−k∑
j=νn+1

d−2
j τ 2

n

+C h2 τn τ1n

n∑
k=νn+1

d−1
k

n−k∑
j=νn+1

d−1
j

≤ C h2m max{m1/2, log n} (n/dn) τ 2
n + Ch2(n/dn)2τnτ1n.

Similarly, by using Lemma B.1 (i) and Hölder’s inequality, we have

R1n +R2n +R3n ≤ C
(
ν2
n + νn h

n∑
k=1

d−1
k

)
τ 2
n

≤ C m (mdn/n+ h) (n/dn) τ 2
n.

By taking these estimates into (B.15), we establish (B.14). 2

We are now ready to prove (3.13)-(3.15). Let m = (n/dn)1/2 and set

σ2
1k = σ∗k

2(m) = σ(k/n, λk, λk−1, ..., λk−m, λ
∗
1, λ
∗
2, ...).

First note that Eσ2
k = Eσ2

1k = Eσ(k/n, λ0, λ1, ...). It follows from (3.2) and (B.14) with

h = 1 that

E
∣∣dn
n

n∑
k=1

g(xk)
[
σ2

1k − Eσ2
1k

]∣∣2
≤ C sup

0≤u≤1
Eσ2(u, λ0, λ1, ..) (dn/n)1/4 + C sup

0≤u≤1

[
Eσ2(u, λ0, λ1, ..)

]1/2
sup

0≤u≤1

(
E|σ(u, λ1, λ2, ..., λm, λ̃)− σ(u, λ1, λ2, ..., λm, λ

∗)|2
)1/2

≤ C1(dn/n)1/4 + C1(dn/n)α/4 = o(1). (B.16)

Similarly, for any 0 ≤ δ <

{
(2µ− 1)/(3− 2µ), under LM,
1, under SM,

it follows from (3.2) that

dn
n

n∑
k=1

E
{
|g(xk)| |σ2

k − σ2
1k|1+δ

}
≤ dn

n

n∑
k=1

(
E|g(xk)|2/(1−δ)

)(1−δ)/2 (
E|σ2

k − σ2
1k|2
)(1+δ)/2

≤ dn
n

n∑
k=1

d
(δ−1)/2
k m−α(1+δ)/2 ≤

(dn
n

)1+α/4
n∑
k=1

d
(δ−1)/2
k

≤
{
n(1/2−µ)α/4+1/2, under LM,
n1/2−α/8, under SM,

= o(1), (B.17)
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where we used E|g(xk)| ≤ Cd−1
k by (B.8) with h = 1. By virtue of (B.16) and (B.17) with

δ = 0, we have

dn
n

∣∣ n∑
k=1

g(xk)
[
σ2
k − Eσ2

k

]∣∣
≤ dn

n

∣∣ n∑
k=1

g(xk)
[
σ2

1k − Eσ2
1k

]∣∣+
dn
n

n∑
k=1

|g(xk)| |σ2
k − σ2

1k(n)| = oP (1),

indicating that

dn
n

n∑
k=1

g(xk)σ
2
k

=
dn
n

n∑
k=1

g(xk)Eσ(k/n, λ0, λ1, ...) +
dn
n

n∑
k=1

g(xk)
[
σ2
k − Eσ2

k

]
=

dn
n

n∑
k=1

g(xk)Eσ(k/n, λ0, λ1, ...) + oP (1).

This implies (3.13) by Theorem 2.21 of Wang (2015). Similarly, by using (B.17), we obtain

dn
n

n∑
k=1

E|g(xk)σ
2+δ
k ρ(εk)|

≤ E|ρ(ε1)| dn
n

n∑
k=1

E|g(xk) |σ2
k − σ2

1k|(2+δ)/2 +
dn
n

n∑
k=1

E
{
|g(xk)| |σ2

1k|1+δ
}

= O(1),

thus implying (3.14), where we used (B.8) together with some simple calculations.

To prove (3.15), let xnk = (dn/n)1/2g(xk)σk. Given that g(x) is bounded by a constant

C > 0, by virtue of (3.10) with some δ > 0, we obtain the following:

max
1≤k≤n

|xnk| ≤
[
C1+δ

(dn
n

)(2+δ)/2
n∑
k=1

|g(xk)| |σk|2+δ
]1/(2+δ)

= oP (1)

and

1√
n

n∑
k=1

|xnk| ≤ d−1/2
n (dn/n)

n∑
k=1

|g(xk)||σk| = OP (d−1
n ) = oP (1).

Now, by recalling (3.13), the result follows easily from an application of the extended

martingale limit theorem of Wang (2014, 2015)). 2
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