
FUNCTIONAL CALCULUS VIA THE EXTENSION

TECHNIQUE: A FIRST HITTING TIME APPROACH

DANIEL HAUER AND DAVID LEE

Abstract. In this article, we present a solution to the problem:

Which type of linear operators can be realized by the
Dirichlet-to-Neumann operator associated with the operator

−∆− a(z) ∂
2

∂z2
on an extension problem?

which was raised in the pioneering work [Comm. Par.Diff. Equ. 32 (2007)]
by Caffarelli and Silvestre. In fact, we even go a step further by replacing
the negative Laplace operator −∆ on Rd by an m-accretive operator A
on a general Banach space X and the Dirichlet-to-Neumann operator by
the Dirichlet-to-Wentzell operator. We establish uniqueness of solutions
to the extension problem in this general framework, which seems to be
new in the literature and of independent interest. Our aim of this paper
is to provide a new Phillips-Bochner type functional calculus which uses
probabilistic tools from excursion theory. With our method, we are able
to characterize all linear operators ψ(A) among the class CBF of complete
Bernstein functions ψ, resulting in a new characterization of the famous
Phillips’ subordination theorem within this class CBF .
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1. Introduction and main results

1.1. Introduction. In [11], Caffarelli and Silvestre showed that the fractional
Laplace operator ψ(−∆) = (−∆)σ on Rd, d ≥ 1, ψ(s) = sσ, 0 < σ < 1, defined
as the singular integral operator

(−∆)σf(x) = Cσ,d C.V.

∫
Rd

f(x)− f(ξ)

|x− ξ|d+2σ
dξ,

f ∈ C∞c (Rd), can be characterized by the Dirichlet-to-Neumann operator

(1.1) f|Rd 7→ Λσf := lim
y→0+

−y1−2σuy(., y)|Rd

corresponding to the incomplete Dirichlet/extension problem

(1.2)

{
−∆u− 1−2σ

y uy − uyy = 0 on Rd+1
+ ,

u = f on ∂Rd+1
+ = Rd,

for the negative Bessel operator A := −
(

∆ + 1−2σ
y

∂
∂y + ∂2

∂y2

)
on the half space

Rd+1
+ := Rd×(0,∞). In particular, it was observed that by applying the change

of variable z = (y/2σ)2σ to the solution u(y) := u(·, y) of the Bessel equation

(1.3) −∆u− 1− 2σ

y
uy − uyy = 0 in Rd+1

+ ,

then u(z) becomes a solution of the elliptic extension equation

(1.4) −∆u− a(z)uzz = 0 in Rd+1
+ ,

for the coefficient a(z) = z−
1−2σ
σ . Moreover, one has that

y1−2σuy(y) = (2σ)1−2σuz(z)

and hence, the Dirichlet-to-Neumann operator Λσ given by (1.1) reduces to

Λσf = −(2σ)1−2σuz(0).

Subsequently, the following problem was posed in [11, Section 7.]:
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Problem 1. What other linear operators ψ(−∆) can be obtained from the

Dirichlet-to-Neumann operator associated with the operator −∆− a(z) ∂
2

∂z2 ?

The aim of this paper, is to provide an answer to this problem, and even
to go beyond. We replace the negative Laplace operator −∆ (with vanishing
conditions at infinity) on Rd by a general closed linear m-accretive operator
A defined on a Banach space X. Then A admits the property that −A gen-
erates a C0-semigroup {e−tA}t≥0 of contractions (see Section 3.6 for further
details). Further, if for a given string m on R of infinite length (see Defini-
tion 1.1), ψm is the associated complete Bernstein function with Lévy triple
(0,m(0+), νm) (see Definition 1.11 and (1.21)), and ψm(A) is the operator
defined by (1.25) via the Lévy triple (0,m(0+), νm), then the main result of
this article (Theorem 1.13) states that the characterization

(1.5) ψm(A) = Λm

holds, where Λm is the Dirichlet-to-Wentzell operator given by

(1.6) Λmf := m(0+)Au(0)− 1

2

du

dz+
(0)

for every f ∈ D(A) with corresponding unique bounded weak solution u of
the (incomplete) Dirichlet problem (see Definition 1.5 below)

(1.7)

{
Amu(z) = 0 for z ∈ (0,∞),

u(0) = f,

for the extension operator

(1.8) Am := A+Bm

on the extended space X+ = X × (0,∞). We also refer to Dirichlet prob-
lem (1.7) as the extension problem since the operator Am extends the operator
A acting on X by the 2nd-order differential operator

Bm := −1

2

d

dm

d

dz
acting on (0,∞),

where we denote by

(1.9)
du

dm
(z) := lim

h→0

u(z + h)− u(z)

m(z + h)−m(z)

(if the limit exits in X) the m-derivative at z ∈ (0,∞) of a function u :
[0,∞) → X. We refer to Definition 1.3 below for a formulation of the this
notion in the sense of distributions and also to Appendix B for further discus-
sions.

For the proof of the characterization (1.5), we employ an intermezzo of
probabilistic tools and functional analysis. We begin by proving existence and
uniqueness of bounded weak solutions of the Dirichlet problem (1.7). Mo-
tivated from the interpretation that problem (1.7) can be considered as a
classic elliptic Dirichlet problem on the “extended region” X+, our existence
proof relies on the classical approach of stopping a related stochastic process
{(Xt, Zt}t≥0 in X+ at z = 0. To be more precise, for a given string m on
R, the operator −Bm generates a stochastic process {Zt}t≥0 on [0,∞), which
we call generalized diffusion associated with m (see Definition 3.3). Thus, one
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can define the first hitting time τ of zero by {Zt}t≥0 starting from z ∈ (0,∞).
If one assumes that the Banach space X = X(Σ) is a function space with
domain Σ and −A generates a Markov process {Xt}t≥0 in the state space Σ,
then it is clear that for every f ∈ X(Σ), the unique solution u of Dirichlet
problem (1.7) is given by

(1.10) u(x, z) = E(x,z)

(
f
(
Xτ

))
for every (x, z) ∈ Σ × [0,∞). Since the first hitting time τ admits a density
(see Section 3.1 for details)

ωτ (t, z) :=
Pz(τ ∈ dt)

dt

and since the process {Xt}t≥0 in Σ is one-to-one related to the transition semi-
group {e−tA}t≥0 on X(Σ). Thus the representation (1.10) of a weak solution
u of (1.7) is equivalent to the Poisson formula

(1.11) u(z) =

∫ ∞
0

(e−tAf)ωτ (t, z) dt

for every z ∈ [0,∞). One crucial advantage of formula (1.11) is that the
process {Xt}t≥0 is not directly involved anymore to describe a weak solution u
of (1.7). Hence, formula (1.11) provides a strong candidate for being a solution
of Dirichlet problem (1.7) even though −A may not necessarily generate a
stochastic process, but still generate a C0-semigroup of contractions on X. By
using Kent’s theorem [22] on the spectral decomposition of the first hitting
time density, we are able to derive a link between the first hitting time density
ωτ in (1.11) and the Lévy measure density of the inverse local time {L̃−1

t }t≥0

at zero of the generalized diffusion {Zt}t≥0. This connections allow us to
easily calculate the Dirichlet-to-Wentzell map Λm given by (1.6), to show
that the characterization (1.5) holds, and to establish a Phillips-Bochner type
functional calculus.

1.2. Main results. In order to state the main theorems of this paper, we need
first to introduce some classic definitions and helpful notations. Throughout
this section, X denotes a Banach space and A a closed, linear operator on X
with dense domain D(A), and {e−tA}t≥0 the C0-semigroup of contractions on
X generated by −A.

Definition 1.1. A non-decreasing, right-continuous function m : R→ [0,∞)
is called a string on R of infinite length provided m has the following properties

(i) m(x) = 0 for all x < 0 and m(−0) = 0,
(ii) m(x0) <∞ for some x0 ≥ 0, and

(iii) m(x) > 0 for all x > 0.

We denote the family of all strings of infinite length by m∞.

In the following, if nothing else is said, we always refer to m as a string
on R of infinite length. The case of strings of finite length shall be studied in
a forthcoming work. Then, there is a unique Radon measure µm : B(R) →
[0,+∞] on the Borel σ-algebra B(R) of R such that

(1.12) µm((a, b]) = m(b+)−m(a+) for every a, b ∈ R with a < b
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(cf, [28, Theorem 6.7] and see also [28, Remark 6.11]). Since m(x) = 0 for all
x < 0, (1.12) yields that the µm((a, b]) = 0 for all a < b < 0. Further, we
denote by Em = supp(µm) the support of µm.

For a better understanding of the functional calculus, we develop here, but
also, in order to illustrate that our results generalize previous ones obtained
for the fractional power case (cf , for example, [11, 37, 16, 5]), we provide the
following example.

Example 1.2. Let A = −∆ be the negative Laplace operator on X = L2(Rd)
equipped with vanishing conditions at infinity. Then, in the case of the frac-
tional power ψm(−∆) = (−∆)σ, σ ∈ (0, 1) in X = L2(Rd), in the extension
equation (1.4) the coefficient a(z) is given by

(1.13) aσ(z) = 1
2m′σ(z) and aσ(z)uzz =

1

2

d

dmσ

du

dz
(z), z ∈ (0,∞),

for the string mσ ∈ m∞ on R given by

(1.14) mσ(z) :=

{
1
2

σ
1−σz

1−σ
σ if z > 0,

0 if z ≤ 0,

for every z ∈ R. For convenience, we write in (1.13)m′σ(z) to denote dmσ
dz .Thus,

equation (1.4) can be rewritten in X = L2(Rd) by

(1.15) Amσu(z) = 0 for z > 0.

It is worth mentioning that the generalized diffusion {Zt}t≥0 generated by
−Bmσ , in this case, coincides up to a multiple constant with the scaled Bessel
process {Y 2σ

t }t≥0. We continue discussing the fractional power case Aσ in the
Sections 2.3 & 2.4, and in Example 3.20 of Section 3.4. For the convenience
of the reader, we provide in Appendix A of this paper a brief review of the
Bessel process and related properties, which are relevant here.

For 1 ≤ q < ∞, let Lqµm(0,∞;X) (respectively, Lqloc,µm((0,∞);X)) denote

the weighted Lebesgue spaces of all µm-a.e. rest-classes of measurable func-
tions u : [0,∞) → X with finite integral

∫
[0,∞)‖u‖

q
Xdµm (respectively, finite∫

K‖u‖
q
Xdµm for every compact subset K ⊆ (0,∞)).

Definition 1.3. For a given u ∈ L1
loc((0,∞);X), one calls a function g ∈

L1
loc,µm

((0,∞);X) a weak m-derivative of f provided u and g satisfy

(1.16)

∫ ∞
0

g(z) ξ(z) dµm(z) = −
∫ ∞

0
u(z)

dξ

dz
(z) dz

for every ξ ∈ C∞c ((0,∞)). Due to Lemma B.3 (in the appendix of this paper),
a function g is uniquely defined through (1.16). Thus, we can call g the weak
m-derivative of u and set du

dm = g.

For 1 ≤ q < ∞, we write W 1,q
loc,µm

((0,∞);X) to denote the mixed 1st-

Sobolev space of all functions u ∈ Lqloc((0,∞);X) with weak m-derivative du
dm ∈

Lqloc,µm((0,∞);X) and by W 1,q
µm((0,∞);X) the Sobolev space of all functions

u ∈ Lq(0,∞;X) with du
dm ∈ Lqµm(0,∞;X). If µm = µLeb is the Lebesgue

measure on (0,∞), then we use the standard notation W 1,q
loc ((0,∞);X) instead

of W 1,q
loc,µLeb

((0,∞);X) and W 1,q(0,∞;X) instead of W 1,q
µLeb((0,∞);X).
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Remark 1.4. On the other hand, for given u ∈ L1
loc((0,∞);X) and g ∈

L1
loc,µm

((0,∞);X), (1.16) means that the regular (vector-valued) distribution

[u] given by

〈[u], ξ〉 :=

∫ ∞
0

u(z) ξ(z) dz, ξ ∈ C∞c ((0,∞)),

has the (vector-valued) measure g µm as its distributional derivative

〈[u]′, ξ〉 := −
∫ ∞

0
u(z)

dξ

dz
(z) dz =

∫ ∞
0

ξ(z) g(z) dµm(z)

for every ξ ∈ C∞c ((0,∞)). Thus, the weak m-derivative du
dm of u can be

characterized by

[u]′ =
du

dm
µm in D′((0,∞);X).

It is worth noting that Revuz and Yor [31] employed the notation g µm instead
of du

dm to study the generalized Sturm-Liouville problem (1.20) below for given
Radon measure µm.

Now, we are ready to introduce the notion of a weak solution of the incom-
plete Dirichlet problem (1.7) associated with the extension operator Am on
X+.

Definition 1.5 (Weak solution of the incomplete Dirichlet problem). A func-
tion u : (0,∞)→ X is called a weak solution of the extension equation

(1.17) Amu = 0 in (0,∞),

if u ∈W 1,1
loc ((0,∞);X) with du

dz ∈W
1,1
loc,µm

((0,∞);X) satisfying

u(z) ∈ D(A) and Bmu(z) = A(u(z)) for µm-a.e. z ∈ (0,∞).

Further, for given f ∈ X, we define a function u ∈ C([0,∞);X) to be a
weak solution of Dirichlet problem (1.7) for the extension operator Am defined

by (1.8) if u(0) = f in X, u ∈ W 1,1
loc ([0,∞);X) with du

dz ∈ W
1,1
loc,µm

([0,∞);X),

and u is a weak solution of (1.17).

For our next definition, it is worth noting that for a function

u ∈W 1,1
loc ([0,∞);X) with du

dz ∈W
1,1
loc,µm

([0,∞);X),

the right hand-side derivative du
dz+

(0) exists. We refer to Remark 4.1 for more

details on this.

Definition 1.6 (The Dirichlet-to-Wentzell operator associated with Am). Let
D(Λm) be the set of all f ∈ D(A) such that there exists a unique weak solution
u ∈ C([0,∞);X) of Dirichlet problem (1.7) with boundary value u(0) = f .
Then, we call the linear operator Λm : D(Λm)→ X defined by (1.6), where u
is the weak solution of (4.2) with boundary value u(0) = f , the Dirichlet-to-
Wentzell operator associated with Am.

Remark 1.7. For strings m ∈ m∞ with right hand-side limit m(0+) = 0,
the Dirichlet-to-Wentzell operator Λm reduces to the classical Dirichlet-to-
Neumann operator associated with Am.

It is convenient to apply the preceding two definitions at a fundamental
example.
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Example 1.8. Let the string m ∈ m∞ on R be the Heaviside step function

(1.18) m(x) :=

{
1 if x ≥ 0,

0 if x < 0.

The associated measure µm = δ0 is the Dirac measure at x = 0. Hence,
according to the two Definitions 1.3 and 1.5, a function u ∈ C([0,∞);X) ∩
W 1,1
loc ((0,∞);X) is a weak solution of extension equation (1.17) provided du

dz ∈
W 1,1
loc,µm

((0,∞);X), u(z) ∈ D(A) for every z > 0, and

(1.19) − 1

2

∫ ∞
0

du

dz

dξ

dz
dz = 0 for every ξ ∈ C∞c ((0,∞)).

By Lemma B.6 and (1.19) implies that u is constant on [0,∞). Thus, for given
f ∈ X, the unique bounded weak solution u of Dirichlet problem (1.7) is given
by u(z) ≡ f . This implies that the associated Dirichlet-to-Wentzell operator
Λm associated with Am reduces to

Λmf = m(0+)Au(0) = Af for all f ∈ D(A).

In other words, the Dirichlet-to-Wentzell operator Λm associated with Am
coincides with the operator A if m is the Heaviside step function. This can
be understood as a time change with the trivial subordinator idR+(s) := s,
s ∈ R+ := [0,∞). We refer the interested reader to Subsection 3.2 for further
details regarding the notion of inverse local times. In Example 1.14 we provide
an alternative proof of this case by using one of our main results in this paper.

Our first theorem provides sufficient conditions to ensure the existence,
uniqueness, and a Poisson formula of bounded weak solutions of the Dirichlet
problem (1.7) for the extension operator Am defined by (1.8) on X+.

Theorem 1.9. Let {e−tA}t≥0 be a C0-semigroup of contractions on X and
−A its infinitesimal generator on X. Further, let m ∈ m∞ be a string on
R, ωτ and ψm be the first hitting time density and the complete Bernstein
function associated with the string m. Then, for every f ∈ D(A), the Dirichlet
problem (1.7) admits a unique bounded weak solution u, and this solution u is
given by the Poisson formula (1.11).

We outline the proof of Theorem 1.9 in Section 4, in which we combine
arguments from stochastic analysis with tools from nonlinear functional anal-
ysis in a refined way. We begin in Section 4.2 by establishing uniqueness of
bounded weak solutions of Dirichlet problem (1.7); see Theorem 4.3.

To the best of our knowledge, uniqueness results for Dirichlet problem (1.7)
are only known in the case when the string m is given by (1.14), which cor-
responds to the fractional power case Aσ; either A being a sectorial operator
(see [5] and [29]), or A being an m-accretive (possibly, nonlinear and multi-
valued) operator on a Hilbert space (see [18]). Thus Theorem 4.3 essentially
improves this result within the class of accretive operators A on a Banach
space X.

Our proof of this result uses arguments from nonlinear functional analysis
and exploits the fact that A is accretive. In Section 4.4, we establish existence
of bounded weak solutions of Dirichlet problem (1.7) by simply verifying that if
u is given by the integral (1.11) then u satisfies another integral representation
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(see Theorem 4.4), which implies that u satisfies all conditions of being a
weak solutions of Dirichlet problem (1.7). Then, by our uniqueness result
(Theorem 4.3), every weak solution of (1.7) can be represented by the Poisson
formula (1.11). Since the weight ωτ (t, z) in the integral (1.11) is the density
function of the first hitting time τ by a given generalized diffusion, this method
provides a first hitting time approach.

Remark 1.10. In order to keep this paper well organized, we separated our
research results obtained in the interesting Hilbert case X = H (see [19]) from
the one presented here. By focusing on sectorial operators A on a Hilbert
space H which are defined by a continuous, coercive form E : V × V → C,
where V is another Hilbert space continuously and densely embedded into
H, we obtain existence of a weak (variational) solution u of Dirichlet prob-
lem (1.7), admitting stronger regularity properties. In addition, in the case
H is separable and A admits a compact resolvent, applying the Fourier se-
ries yields that finding a weak solution u of Dirichlet problem (1.7) becomes
equivalent to determining for every eigenvalue λ ≥ 0 of A the unique bounded
weak solution φ ∈ C([0,∞);R) of the generalized Sturm-Liouville problem

(1.20)

{
−1

2φ
′′ + λφµm = 0 in (0,∞),

φ(0) = 1.

We note that similar ideas as given in [19] can be applied to pseudo-differential
operators A on L2(Rd) with a strictly positive symbol. By using the Fourier
transform, one reduces the Dirichlet problem (1.7) to a Sturm-Liouville prob-
lem. In fact, this was essentially done in [11, Section 7].

Next, we intend characterizing the operator ψm(A) among the class of com-
plete Bernstein functions ψm in terms of the Dirichlet-to-Wentzell operator
Λm. Before doing this, we briefly recall from [36] the following definition.

Definition 1.11. A function ψ : (0,∞) → R is called a Bernstein function
with Lévy triple (a, b, ν) provided ψ is given by

ψ(λ) = a+ bλ+

∫ ∞
0

(
1− e−λr

)
dν(r) for all λ > 0,

for some a, b ≥ 0 and a Lévy measure ν on (0,∞) with finite integral
∫∞

0 (r ∧
1(0,∞)(r)) dν(r). The triple (a, b, ν) is referred to as a Lévy triple. Now, a
Bernstein function ψ is called complete if it has the Lévy triple (0, b, ν) and
admits the following two properties

(i) the Lévy measure ν is absolutely continuous with respect to the Lebesgue
measure;

(ii) the density h := dν
dr of the Lévy measure ν is a completely monotone

function; that is, h is smooth and its derivatives satisfy

(−1)n h(n)(r) ≥ 0 for all n ∈ N ∪ {0}, and r > 0.

We denote the set of complete Bernstein functions by CBF .

Due to Krĕın’s theorem [25] (see also [24, Theorem 1.1]), for every string
m ∈ m∞ on R, there is a unique complete Bernstein function

(1.21) ψm(λ) := m(0+)λ+

∫ ∞
0

(
1− e−λr

)
dνm(r), λ > 0.
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Moreover, the mapping Ψ : m∞ → CBF m 7→ Ψ(m) = ψm with ψm defined
by (1.21) is bijective, and called the Krĕın’s correspondence.

Notation 1.12. For a given string m ∈ m∞ on R, we refer to the function
ψm : [0,∞)→ R given in (1.21) as the complete Bernstein function associated

with m, νm the Lévy measure associated with m, hm = dνm
dr the density of the

Lévy measure νm, and by (0,m(0+), νm) the Lévy triple associated with ψm.

According to [36, Theorem 5.2], ψ is a Bernstein function if and only if
there exists a unique vaguely continuous convolution semigroup {γt}t≥0 of sub-
probability measures γt on [0,∞) (see Definition 3.41) such that the Laplace
transform of γt

(1.22)

∫ ∞
0

e−λs dγt(s) = e−tψ(λ) for all λ > 0, t ≥ 0.

In addition, by Knight’s theorem (see Theorem 3.8 in Section 3.2) for a given
string m ∈ m∞ on R, if {Zt}t≥0 denotes the generalized diffusion associated

with m, {L̃−1
t }t≥0 the local inverse time at zero of {Zt}t≥0 (see Section 3.2

for the construction of this notion), and if ψm is the complete Bernstein
function associated with m, then the Laplace transform determines uniquely
(see (3.11)) that the convolution semigroup {γt}t≥0 of sub-probability mea-
sures γt on [0,∞) associated with ψm has to be given by the push-forward
measure

(1.23) γt((a, b]) = P(L̃−1
t ∈ (a, b]) for all a, b ∈ [0,∞), and t ≥ 0.

Now, for a given C0-semigroup {e−tA}t≥0 of contractions e−tA ∈ L(X) with
infinitesimal generator −A, and a vaguely continuous convolution semigroup
{γt}t≥0 of sub-probability measures on [0,∞), the family {e−tψ(A)}t≥0 of op-

erators e−tψ(A) on X defined by the Bochner integral

(1.24) e−tψ(A)f :=

∫
[0,∞)

e−sAf dγt(s) for every t ≥ 0 and f ∈ X

defines a C0-semigroup of contractions on X (see [36, Theorem 13.1]). Thanks
to Phillips’ subordination theorem [2] (cf, Theorem 3.45 in Section 3.7), the ab-

stractly defined infinitesimal generator −ψ(A) of the semigroup {e−tψ(A)}t≥0

can be expressed by

(1.25) ψ(A)f = af + bAf +

∫ ∞
0

(
f − e−tAf

)
dν(t)

for all f ∈ D(A), where the integral (1.25) is to be understood in the Bochner
sense, ψ is the unique Bernstein function associated with the given vaguely
continuous convolution semigroup {γt}t≥0 through (1.22), and (a, b, ν) the
corresponding Lévy triple.

Now, for a given string m ∈ m∞ on R with associated Bernstein function
ψm, our second main result provides an alternative characterization of the
operator ψm(A) in terms of the Dirichlet-to-Wentzell operator Λm.

Theorem 1.13. Let A be an m-accretive operator on a Banach space X.
Given a string m ∈ m∞ on R, let ψm be the corresponding complete Bern-
stein function with Lévy triple (0,m(0+), νm), and ψm(A) the operator given
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by (1.25) for this triple. Then, the operator ψm(A) coincides with the Dirichlet-

to-Wentzell operator Λm given by (1.6). Moreover, the semigroup {e−tψm(A)}t≥0

generated by −ψm(A) is given by

(1.26) e−tψm(A)f = E
(
e−L̃

−1
t Af

)
=

∫
[0,∞)

e−sAf dγt(s)

for every t ≥ 0, f ∈ X, where the convolution semigroup {γt}t≥0 is given

by (1.23) involving the local inverse time {L̃−1
t }t≥0 at zero of the generalized

diffusion process {Zt}t≥0 associated with m.

Example 1.14 (Example 1.8 revisited). Thanks to (1.26) in Theorem 1.13, we
can now give an alternative proof of the fact that the the Dirichlet-to-Wentzell
operator Λm for the Heaviside step function m given by (1.18) coincides with
A. Namely, for the semigroup {e−tΛm}t≥0 generated by −Λm on X, one has
then that

e−tΛmf = E
(
e
− 1

2

∫
[0,∞) LL−1

t
(z) dδ0(z)A

f
)

= E
(
e−

t
2Af

)
= e−

t
2Af

for every f ∈ X and t ≥ 0, yielding that Λm = 1
2A.

Due to Krĕın’s correspondence Ψ and by Theorem 1.13, we obtain the fol-
lowing new characterization of Phillips’s subordination theorem characterizing
ψ(A) for any ψ of the class CBF .

Corollary 1.15. Let A be an m-accretive operator on a Banach space X. If
ψ is a complete Bernstein function with Lévy triple (0, b, ν) and m ∈ m∞ the
unique string on R given by the Krĕın’s correspondence Ψ(m) = ψ, then the
two operators ψ(A) given by (1.25) and the Dirichlet-to-Wentzell operator Λm
given by (1.6) coincide.

Remark 1.16 (Problem 1 & the Dirichlet-to-‘Wentzell-Robin’ operator.). Since
for the string m introduced by (1.14), the Dirichlet-to-Wentzell operator (1.6)
reduces to the Dirichlet-to-Neumann operator (1.1), Theorem 1.13 provides
an answer to Problem 1. Moreover, given a string m ∈ m∞ on R and m-
accretive operator A on a Banach spaceX, translating the associated Dirichlet-
to-Wentzell operator Λm by α ∈ R leads to the Dirichlet-to-‘Wentzell-Robin’
operator Wα,m (cf, [4]) given by

(1.27) Wα,mf = (α idX + Λm)f for every f ∈ D(Λm).

If ψm is the complete Bernstein function associated with m, having Lévy triple
(0,m(0+), νm), then ψα,m(λ) := α + ψm(λ), λ ≥ 0, is a complete Bernstein
function with Lévy triple (α,m(0+), νm). Thus, according to Theorem 1.13,
the operator ψα,m(A) defined by (1.25) can be characterized by

ψα,m(A)f = (α idX + Λm)f for every f ∈ D(A).

The main results of this paper and and the preceding Remark 1.16 lead
naturally to the following open problem.
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Open Problem. Given a general Bernstein function ψ on R and an accretive
operators A on a Banach space X, can the operator ψ(A) still be character-
ized as an operator similar to the Dirichlet-to-‘Wentzell-Robin’ operator Wα,m,
which is associated with an extension problem similar to (1.7)?

We conclude this paper with a stability result of the operator ψm(A) by
varying the string m.

Theorem 1.17. For a given sequence {mn}n≥1 ⊆ m∞ of strings mn on R
of infinite length, let ψmn be the corresponding complete Bernstein functions
with Lévy triple (0,mn(0+), νmn). Further, for a given m-accretive operator
A on X, let ψmn(A) be the operator given by (1.25) for these triples, and

{e−tψmn (A)}t≥0 the semigroups generated by −ψmn(A). If there is a string
m ∈ m∞ on R of infinite length such that

(1.28) lim
n→∞

mn(z) = m(z) pointwise for every continuity point z of m,

then there is a complete Bernstein function ψm with Lévy triple (0,m(0+), νm)
such that for every f ∈ D(A), there exists an fn ∈ D(ψmn(A)) such that

(1.29) lim
n→∞

xn = x in X and lim
n→∞

ψmn(A)fn = ψm(A)f in X.

The next remark is a reminder for later reference.

Remark 1.18. For a better understanding of the type of convergence obtained
in 1.29 of Theorem 1.17, it worth recalling Trotter-Kato’s first approximation
theorem (cf, [14, Theorem 1.8 in Chapter IV.]). Accordingly to this theorem,
the following statements are equivalent:

(1) ψmn(A) converges to ψm(A) in the graph sense, that is, for every f ∈
D(A), there exists an fn ∈ D(ψmn(A)) such that (1.29) holds;

(2) ψmn(A) converges to ψm(A) strongly in the resolvent sense, that is, for
every f ∈ X, and some or all λ > 0,

lim
n→∞

R(λ, ψmn(A))f = R(λ, ψm(A))f in X,

where for every λ > 0 and n ≥ 1, R(λ, ψmn(A)) := (λ+ψmn(A))−1 de-
notes the resolvent operator of ψmn(A) and R(λ, ψm(A)) the resolvent
operator of ψm(A);

(3) For every f ∈ X, e−tψmn (A)f → e−tψm(A)f in X uniformly for t in
compact subintervals of [0,∞).

We outline the proof of Theorem 1.17 in Section 4.5.

1.3. Organization of this paper. The structure of this paper is as follows.
In the subsequent Section 2, we provide a historical development of the so-
called extension technique, mention important related contributions, and dis-
cuss various approaches to establish this technique. Section 3 is dedicated to
collect various notions and intermediate results, which are necessary to prove
our main results in Section 4. In particular, we recall the construction of
generalized diffusion processes (Section 3.1), and we briefly review the notion
of an inverse local time and it relation to complete Bernstein functions (Sec-
tion 3.2). Since in [11], the idea to derive the extension equation (1.4) relies on
applying the change of variable z = (y/2σ)2σ to the solution u of the Bessel
equation (1.3), we provide in the two Sections 3.3 & 3.4 a stochastic point of
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view of the impact of such a change of variable on the extension equation (1.8)
and illustrate its usefulness later in Section 5 on two applications. Section 3.5
is dedicated to the hitting time τ of generalized diffusion {Zt}t≥0 associated
with a string m on R, the probability density ωτ of τ , the transition density
p̂ of the killed process {Ẑt}t≥0 of {Zt}t≥0 and derive the spectral represen-
tations of the hitting time density ωτ . The intermediate results gathered in
this subsection are crucial to prove our main theorems in this paper. In the
sections 3.6 & 3.7, we briefly review the notions of C0-semigroups, m-accretive
operators on Banach spaces, and subordination of semigroups. As mentioned
above, Section 4 is dedicated to the proof of our two main results Theorem 1.9
and Theorem 1.13. In Section 5, we apply our main theorems for providing a
short proof of the classic limit Aσ → A in the graph sense as σ → 1−. We
also discuss briefly the case Aσ → idX in the graph sense as σ → 0+.

For the reader, who is not familiar with the mixed framework of stochastic
analysis and PDEs, we provide in the appendix of this paper a short primer
on Bessel processes (Appendix A). In addition, in Appendix B, we provide
important properties of the m-derivative (1.9), which are not available in the
literature, but are necessary for the proofs in this paper.

2. Historical development of the extension technique

Throughout this section, let Σ be an open subset of Rd, d ≥ 1, dη a positive
measure defined on Σ, and A a second order partial differential operator such
that A is positive, densely defined, and self-adjoint in L2(Σ, η). Let Σ+ denote
the half-open cylinder Σ×(0,∞) with pairs (x, y) ∈ Σ+. Then, the main object
of this section are the Dirichlet problem

(2.1)

{
Au− y2σ−1{y1−2σuy}y = 0 in Σ+,

u(x, 0) = f on Σ,

and the associated Dirichlet-to-Neumann operator

(2.2) f 7→ Λσf :=
(−1)

2σ
lim
y→0+

y1−2σuy(·, y).

We note that the above framework is the same as in Stinga and Torrea [37],
who extended some of the results in [11] on fractional powers Aσ to this more
general framework.

2.1. A trace process approach. To the best of our knowledge, Sato and
Ueno [34, Theorem 9.1] were the first, who studied the trace process {X∗t }t≥0

on a smooth boundary ∂Σ of a bounded domain Σ in a sufficiently smooth N -
dimensional manifold, whose generator is the negative Dirichlet-to-Neumann
operator −Λ given by

(2.3) f|∂Σ 7→ Λf :=
∂uf
∂ν |∂Σ

associated with a second-order uniformly elliptic differential operator A with
symmetric coefficients on Σ. Their original aim was to analyze second-order
uniformly elliptic differential operator operators equipped with Wentzell bound-
ary conditions and their corresponding stochastic processes. They showed that
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{X∗t }t≥0 is the Markov process obtained from a reflecting diffusion {Xt}t≥0

through the time change

(2.4) X∗t := XL−1(t), (t ≥ 0),

by the local time {Lt}t≥0 of {Xt}t≥0 on the boundary ∂Σ with

(2.5) L−1
t := sup{s ≥ 0 |Ls ≤ t} for all t ≥ 0.

In the mid 80s, Hsu [20] constructed a Skorokhod-type lemma (see [39,
Lemma 2.1] for the original result by Skorokhod which applies to the half-
space) for bounded domains Σ in RN with a C2-boundary ∂Σ. By applying
this lemma to a Brownian motion {Bt}t≥0 inside Σ, Hsu obtained a reflecting
Brownian motion {Xt}t≥0 inside of Σ. Then by using Itô’s lemma, Hsu showed
that the Dirichlet-to-Neumann operator (2.3) associated with the (scaled)
Laplacian 1

2∆ is the infinitesimal generator of the trace process {X∗t }t≥0 again
obtained from {Xt}t≥0 via (2.4) through the time change (2.5) (see [20, Propo-
sition 4.1]).

To see the two-step construction of the Dirichlet-to-Neumann operator via
stochastic analysis, it is worth recalling that a reflecting Brownian motion
{Xt}t≥0 inside a domain Σ is a classical Brownian motion before it hits the
first time the boundary ∂Σ. But Brownian motion killed at the boundary ∂Σ
corresponds to the classical Dirichlet problem for the (scaled) Laplacian 1

2∆
on Σ, and reflecting Brownian motion corresponds to the Neumann problem
involving the (scaled) Laplacian 1

2∆.

The trace process {X∗t }t≥0 on the bottom Σ of the cylinder Σ+ generated
by the Dirichlet-to-Neumann operator Λσ given in (2.2) is obtained by starting
with the joint process

{Xt}t≥0 := {(Xt, Yt)}t≥0 in Σ+

for given processes {Xt}t≥0 generated by the operator A in Σ and {Yt}t≥0

generated by the Bessel-operator B1−2σ = 1
2

(
d2

dy2 + 1−2σ
y

)
on the half-line

(0,+∞).
To the best of our knowledge, the joint process {Xt}t≥0 occurred the first

time in the short paper [30] by Molčanov and Ostrovskĭı. In the case Σ is the
Euclidean space RN , they proved that the trace process {X∗t }t≥0 on Σ = RN
obtained from (2.4) through the time change (2.5) of the local time {Lt}t≥0

of {Yt}t≥0 at y = 0 is generated by the fractional Laplace operator (−∆)σ on
RN .

In the literature, one finds claims that instead of the highly-cited paper [11]
by Caffarelli and Silvestre, the approach by Molčanov and Ostrovskĭı was the
first (stochastic) proof to the extension property of (−∆)σ (i.e., Theorem 1.13
applied to A = −∆ on Σ). But, the final step, the identification of the
infinitesimal generator of the trace process with the Dirichlet-to-Neumann
map Λs, was not a considered aim in [30]. We agree with the sentiment in [6]
that the proof of this identification is far from obvious. In fact, if one intends
to prove the result in [11] by using the trace process of the joint process given

by {(Bt, Yt)}t≥0 in Rd+1
+ , where {Bt}t≥0 is a Brownian motion, then Itô’s

lemma cannot be applied immediately since the Bessel process {Yt}t≥0 is no
longer a semi-martingale when δ ∈ (0, 1) (see Appendix A for more details).
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But a potentially more fruitful approach would instead be to consider the trace
process of the joint process {(Bt, Y 2σ

t )}t≥0 in Rd+1
+ since according to Theorem

A.1, the process {Y 2σ
t }t≥0 is a submartingale. Nevertheless, in this setting one

still needs to overcome certain technical details, in order to apply the ideas
in [20]. We direct the reader to [6] for details. The scaling of the process
{Yt}t≥0 to {Y 2σ

t }t≥0 is a common technique in stochastic analysis outlined in
Section 3.3 and Section 3.4 and was also used in [11].

2.2. A Fourier approach. A first approach to use the Fourier transform to
prove Theorem 1.13 in the case of the negative Laplace operator A = −∆ on
Σ = RN was provided by Caffarelli and Silvestre [11]. Under the additional
assumption that the operator A has a discrete spectrum σ(A) = {λk}k≥0,
Stinga and Torrera [38] outlined the following Fourier-series approach to the
existence and uniqueness of solutions u to the Dirichlet problem (2.1). Under
this hypothesis, there is an orthonormal basis {φk}k≥0 in L2(Σ, µ) such that
Aφk = λkφk for all k ≥ 0. Then, for given f ∈ L2(Σ, µ), the Fourier-series

(2.6) u(·, y) =
∑
k≥0

ck(y)φk converging in L2(Σ, η) for every y > 0,

is the unique solution of Dirichlet problem (2.1) if and only if for every k ≥ 0,
ck is the unique solution of the Dirichlet problem

(2.7)


Lσ,kck = 0, on (0,∞),

ck(0) = 〈f, φk〉L2(Σ,η),

lim
y→+∞

ck(y) = 0.

for the Sturm-Liouville operator

Lσ,kc(y) := − 1

y1−2σ
{y1−2σc′}′ + λk c.

If Kσ denotes the modified Bessel function of the third kind, then the unique
solution ck to Dirichlet problem (2.7) is given by

ck(y) = yσ
21−σ

Γ(σ)
λ
σ/2
k 〈f, φk〉L2(Σ,η)Kσ(λ

1/2
k y).

By using the asymptotic of Kσ as y → 0+ and y → +∞, one sees that the
series (2.6) is a solution of Dirichlet problem (2.1).

Motivated by these ideas, we provide in this paper a stochastic proof to
our main result (Theorem 1.13). This approach simplifies essentially the re-
cently appeared proofs related to Theorem 1.13 by Assing and Herman [6],
and Kwaśnicki and Mucha [27].

2.3. A stochastic representation formula. From a stochastic analytical
point of view, it is worth mentioning that the Sturm-Liouville equation

(2.8) − y2σ−1{y1−2σc′}′ + λk c = 0 on (0,∞)

related to Dirichlet problem (2.7) is studied heavily in relation with the first
hitting time τ at zero of the 2(1 − σ)-Bessel Process {Yt} starting at y >
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0. To simplify notation, we suppress the y-dependence of τ and we refer to
Appendix A. In fact, this is quite natural, since in the Poisson formula

(2.9) u(x, y) =

∫ ∞
0

(
e−tAf

)
(x)ωσ(t, y) dt on Σ+,

of the weak solution u to the Dirichlet problem (2.1), the density

(2.10) ωσ(t, y) =
y2σ

22σΓ(σ)
e−

y2

4t
1

t1+σ
for every t, y > 0,

coincides exactly with the first hitting time density τ (cf., [17], and [10, No.
43 & 44, p.75]). We note that the Poisson formula (2.9) was obtained in [37]
by Stinga and Torrea. In other words, for (2.9), we have

u(x, y) =
y2σ

22σΓ(σ)

∫ ∞
0

(e−tAf)(x) e−
y2

4t
dt

tσ+1

=
y2σ

22σΓ(σ)

∫ ∞
0
Ex
(
f
(
Xt

))
e−

y2

4t
dt

tσ+1

=

∫ ∞
0
Ex
(
f
(
Xt

))
dPτy/√2

(t)

=

∫ ∞
0
Ex(f(Xt) |τy ∈ dt)P(τy ∈ dt)

=

∫ ∞
0
Ex(f(Xτy) |τ ∈ dt)P(τ ∈ dt)

= E(x,y)

(
E(x,y)

(
f
(
Xτ )

∣∣∣ τ)) = E(x,y)

(
f
(
Xτ

))
,

where we used that {e−tA}t≥0 with e−tAf(x) := Ex
(
f
(
Xt

))
is the transition

semigroup of the process {Xt}t≥0, and the independence of {Xt}t≥0 and τ .
Thus, the Poisson formula (2.9) is nothing less than a stochastic representation
formula to Dirichlet problem (2.1). In this paper, we outline how to derive from
Sturm-Liouville equation (2.8) the stochastic representation formula (1.11) to
the more general Dirichlet problem (1.7).

2.4. The Lévy measure of the inverse local time. The following obser-
vation is critical for the complete Bernstein case. Let s(y) = y2σ, which is
also the scale function of the Bessel process {Yt}t≥0 (see Section 3.3 for more
details). Then, for solutions u to the extension problem (2.1), Stinga and
Torrera [38] showed that

lim
y→0+

1

s′(y)

∂u

∂y
(x, y) = lim

y→0+

1

s(y)
(u(x, y)− u(x, 0)).

Inserting (2.9) into u(x, y) and u(x, 0), and by using that

(2.11) dν(t) =
1{t>0}

22σΓ(σ)

dt

tσ+1

is a Lévy measure, dominated convergence and Phillips’ subordination theorem
yield that

lim
y→0+

1

s′(y)

∂u

∂y
(x, y) = lim

y→0+

∫ ∞
0

(e−tAf(x)− f(x))
( 1

s(y)
ωσ(t, y)

)
dt
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=

∫ ∞
0

(e−tAf(x)− f(x))
1

22σΓ(σ)

1

t1+σ
dt

= − Γ(1− σ)

22σΓ(1 + σ)
Aσf(x).

Here, the important observation is that for every t > 0,

lim
y→0+

1

s(y)
ωσ(t, y) =

1

22σΓ(σ)

1

t1+σ
= lim

y→0+

1

s′(y)

∂ωσ
∂y

(t, y),

where 1
22σΓ(σ)

1
t1+σ is the density of the measure ν given in (2.11). However, it

is well-known for quite a while (cf [22] or [12]) that the measure ν is the Lévy
measure of the inverse local time process of the 2σth-powered process {Y 2σ

t }≥0

of the 2(1− σ)-Bessel process {Yt}≥0 (cf, Theorem A.1).

The goal of this paper is to exploit the idea of the first hitting time density τ
for proving the extension technique for operators ψ(A) provide ψ is a complete
Bernstein function.

3. Preliminaries

In this section, we introduce several important notions and collect related
results, which are required to proof our main theorems stated in Section 1.2.

3.1. A primer on generalized diffusion processes. In this section, we
briefly collect some basic notions from the theory of generalized diffusion pro-
cesses and strings needed throughout this paper. For an excellent review of
the subject, we refer the interested reader to [36, Chapter 14] and for a more
in depth resource see [13, Chapter 5 & 6].

After providing the definition of a string m ∈ m∞ on R (Definition 1.1), and
the associated measure µm, we still need to introduce to the following notion.

Definition 3.1. For every string m ∈ m∞ we denote by

Em := supp(µm)

the support of µm.

Remark 3.2. We note that in the language of Feller’s theory of diffusion pro-
cesses (cf., [31, Chapter III and VII]), the measure µm plays the role of a speed
measure.

With this preliminary in mind, we can start introducing generalized diffu-
sion processes. Fix a string m ∈ m∞, and for given z ∈ [0,∞), let {B+

t }t≥0

be a reflecting Brownian motion on [0,∞) starting at z. We refer to {B+
t }t≥0

as the reflecting Brownian motion.
It is well known that the reflecting Brownian motion {B+

t }t≥0 is a Hunt
process, which is symmetric with respect to the Lebesgue measure and hence,
the process {B+

t }t≥0 has an associated Dirichlet form E on L2((0,∞), dx). We
refer to [36, Appendix A.2] and the classical textbook [15] concerning Dirichlet
forms and symmetric Hunt processes. To the Dirichlet form E , one can define
the capacity Cap by

Cap(O) := inf
{
E(φ, φ) + ‖φ‖2L2((0,∞),dx) |φ ≥ 1 a.e.

}
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for every open subset O of [0,∞). Now, it is worth mentioning that for
the string m, the associated measure m is smooth in the sense that it does
not charge any set of zero capacity and if there is an increasing sequence
(An)n≥1 of closed subsets An ⊆ [0,∞) satisfying m(An) < ∞ for all n ≥ 1
and limn→∞Cap(K \An) = 0 for all compact subsets K of [0,∞).

For every z ∈ (0,∞), let {Lt(z)}t≥0 be the local time process at level z of
the reflecting Brownian motion {B+

t }t≥0. Then, the family {Lt(z)}t≥0,0≤z<∞
is jointly continuous and (after normalization) the following occupation time
formula

(3.1)

∫ t

0
g(B+

r ) dr =

∫ ∞
0

g(z)Lt(z) dz holds for all t ≥ 0,

and all Borel functions g : [0,∞) → [0,∞). Since for the string m, the asso-
ciated measure m is smooth and for the reflecting Browning motion {B+

t }t≥0

only the empty set has capacity zero, we can define a positive continuous
additive process {At}t≥0 by setting

(3.2) At =

∫
[0,∞)

Lt(z) dµm(z) for all t ≥ 0.

It follows from our construction (cf., [15, Chapter 5]) that the Revuz measure
of the process {At}t≥0 is the measure µm. Now, let {Zt}t≥0 be the process

defined by the time change {A−1
t }t≥0, that is,

(3.3) Zt := B+

A−1
t

for every t ≥ 0,

where {A−1
t }t≥0 is the right-continuous inverse of {At}t≥0 given by

A−1
t = inf{s > 0 |As > t}, (t ≥ 0).

Then, {Zt}t≥0 is an m-symmetric, continuous Hunt process in [0,∞) with
infinitesimal generator (see, for example, [15, Theorem 6.2.1])

(3.4) −Bm =
1

2

d

dm

d

dz
on L2(Em, µm).

Definition 3.3. For given m ∈ m∞, the process {Zt}t≥0 defined by (3.3) is
called a generalized diffusion process associated with m.

Here, the operator Bm given in (3.4) also occurs in the next definition (cf,
[36, p. 271]).

Definition 3.4. Let E be a non-empty, connected subset of R with −∞ ≤
l := inf E < r := supE ≤ ∞, m be a Radon measure on E, and s : E → R
a continuous, strictly increasing function. Then, let W 2,1

loc,ds,µ(E) be the set of

functions u : R→ C of the form

u(z) = α+ βz +

∫ z

l

∫
(l,y]

g(r) dµm(r) ds(y), (z ∈ R),

for some α, β ∈ C and locally m-integrable g : R → C. Note, the second
integral w.r.t. ds(y) is a Lebesgue-Stieltjes integral. If −∞ < l then for every
z ≤ l, one interprets the interval [l, y] = ∅ for y < z and hence, u(z) = α+ βz
for z < l. Then, the 2nd-order differential operator

−Bm,s =
d

dm

d

ds
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is defined by −Bm,su = g for every u ∈W 2,1
loc,ds,µm

(E).

Moreover, the following properties hold.

Proposition 3.5. Let m ∈ m∞ be a string, s = idR the identity on R, and
Bm be the operator given by (3.4) with domain D(Bm). Then, for every u ∈
D(Bm), one has that

(1) u is locally absolutely continuous on R,
(2) u is linear on R \ Em,
(3) the right derivative du

dz+
and left derivative du

dz− exist on R, and

du

dz+
(x)− du

dz−
(x) = µm{x}Bmu(x) for every 0 ≤ x ≤ supEm.

We omit the elementary proofs to the above proposition.

For a generalized diffusion process {Zt}t≥0, we can associate for every z ∈
Em, a local time process {L̃t(z)}t≥0 at level z, which can be realized as a
time-change of the local time process {Lt(z)}t≥0 of the reflecting Brownian
motion {B+

t }t≥0. Namely, we have that

(3.5) L̃t(z) = LA−1
t

(z) for every t ≥ 0, z ∈ [0,∞),

and that the following occupation times formula

(3.6)

∫ t

0
g(Zr) dr =

∫
[0,∞)

g(z)L̃t(z) dµm(z) for all t ≥ 0

holds for all essentially bounded Borel functions g : [0,∞)→ [0,∞).

3.2. Inverse local times and complete Bernstein functions. For a gen-
eralized diffusion process {Zt}t≥0, let {L̃t}t≥0 be the local time {L̃t(0)}t≥0 of

{Zt}t≥0 at the level z = 0, and {L̃−1
t }t≥0 be the inverse local time give by

L̃−1
t = inf

{
r > 0

∣∣∣ L̃r > t} for every t ≥ 0.

Then, by (3.2) and (3.5), we have that

(3.7) L̃−1
t = AL−1

t
=

∫
[0,∞)

LL−1
t

(z) dµm(z) for every t ≥ 0.

It is worth noting that the inverse local time {L̃−1
t }t≥0 is a subordinator (cf., [9,

p. 114]), that is, a one-dimensional Lévy process that is non-decreasing (a.s.).
Hence (see [2, Theorem 1.3.15]), there is a Lévy measure νm on B(R \ {0})
satisfying νm(−∞, 0) = 0,

(3.8)

∫ ∞
0

(
r ∧ 1(0,∞)(r)

)
dνm(r) <∞,

and there is some b ≥ 0 such that the Lévy symbol η of {L̃−1
t }t≥0 is given by

ηm(s) = ibs+

∫ ∞
0

(
eisr − 1

)
dνm(r) for all s ∈ R.

From this, one finds that the Laplace exponent ψm of {L̃−1
t }t≥0 is given by

(3.9) ψm(λ) = m(0+)λ+

∫ ∞
0

(
1− e−λr

)
dνm(r) for all λ ≥ 0.
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The right hand-side in (3.9) of the Laplace exponent ψm provides an im-
portant example of a Bernstein function (cf, Definition 1.11 and, cf., [36,
Theorem 3.2]).

Remark 3.6. Due to the Bernstein’s theorem of monotone functions [36, The-
orem 4.8], one has that for every completely monotone function h, there is an

associated measure ∆̂ satisfying

(3.10) h(r) =

∫ ∞
0

e−r s d∆̂(s) for all r > 0.

Definition 3.7. For given m ∈ m∞, let {Ẑt}t≥0 be the generalized process

{Zt}t≥0 associated with m killed at level 0, and hm = dνm
dr be the density

of the Lévy measure νm associated with m. Then, we call the measure ∆̂m

satisfying (3.10) for hm the principal measure of the process {Ẑt}t≥0.

The Laplace exponent of the inverse local time processes of a given general-
ized diffusion process can be described in terms of Bernstein functions thanks
to the famous result [23] by Knight.

Theorem 3.8 (Knight’s theorem [23, Theorem 3.1 and Theorem 1.2]). For
given string m ∈ m∞ on R, let {Zt}t≥0 be a generalized diffusion associated

with m and {L̃−1
t }t≥0 be the corresponding inverse local time at 0. Then the

Laplace transform of L̃−1
t is given by

(3.11) E
(
e−λL̃

−1
t

)
= e−tψm(λ) for all λ > 0,

where ψm : (0,∞)→ R is a complete Bernstein function given by

(3.12) ψm(λ) = m(0+)λ+

∫ ∞
0

(
1− e−λr

)
dνm(r) for all λ > 0.

Moreover, the mapping m 7→ ψm with ψm defined by (3.12) is a bijection
Ψ : m∞ → CBF , Ψ(m) := ψm for every m ∈ m∞ known as the Krĕın’s
correspondence.

We shall discuss properties of the principal measure ∆̂m in Section 3.5.

3.3. Substitution and Scale functions. The aim of this section is to outline
the connection between the substitution used in [11] to simplify the extension
problem (1.2) and the scaling of associated stochastic processes and to give
an overview of the impact on the corresponding Dirichlet-to-Wentzell operator
(see Section 3.4).

It is clear that the substitution

z =
( y

2σ

)2σ
for y > 0 and fixed 0 < s < 1,

transforms the differential equation in the Dirichlet problem (2.1) to the non-
divergence form equation

Au− 1

z−
2σ−1
σ

uzz = 0 in Σ× (0,∞);

see [11], or alternatively for more details, see [18, Lemma 3.4]. Moreover,
Stinga and Torrea [37] proved that for the scale function

(3.13) s(y) = y2σ for y > 0 and fixed 0 < σ < 1,
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the co-normal derivative (2.2) can be rewritten as

du

ds
(·, 0) := lim

y→0+

u(·, y)− u(·, 0)

s(y)
=

(−1)

2σ
lim
y→0+

y1−2σuy(·, y).

On the other hand, in stochastic analysis the function s given by (3.13) is
used to scale the 2(1 − σ)-Bessel process {Yt}t≥0 in [0,∞) starting at y = 0
in order to derive stronger properties of the process (see Theorem A.1 in the
appendix). In order to give more details t this, we briefly need to review the
necessary definition and results on scale functions from [31, Chapter 7].

For given −∞ ≤ l < r ≤ ∞, let El,r be either a closed, open or semi-closed
interval in R, and let {Yt}t≥0 be a continuous, regular, strong Markov process
on the state space El,r with a killing time ζ. Further, suppose, {Yt}t≥0 can
only be killed at the end-points l and r of El,r, provided they do not belong
to El,r. For given c ∈ El,r, we define the first time {Yt}t≥0 hits y = c by

(3.14) τ cY := inf
{
t > 0

∣∣∣ Yt = c
}
.

In this framework the following important existence result of a scale function
holds.

Proposition 3.9 ([31, Chapter VII, Proposition 3.2]). Under the hypothesis of
this subsection, there exists a continuous, strictly increasing function s : El,r →
R with the property that for every a, b, y ∈ El,r satisfying l ≤ a < y < b ≤ r,
one has that

(3.15) Py(τ bY < τaY ) =
s(y)− s(a)

s(b)− s(a)
,

where Py(A) denotes the conditional probability of the event A under the con-
dition that the process {Yt}t≥0 starts at y.

With this in mind, we can now give the definition of a scale function.

Definition 3.10. A continuous, strictly increasing function s : El,r → R is
called a scale function of a continuous, regular, strong Markov process {Yt}t≥0

on the state space El,r if for every a, b, y ∈ El,r satisfying l ≤ a < y < b ≤ r,
one has that (3.15) holds.

We note that if s : El,r → R is a scale function of the process {Yt}t≥0, then
it is not hard to see that for every α, β ∈ R, the function s̃ : El,r → R given
by the affine transformation

s̃(y) = αs(y) + β for every y ∈ El,r
is another scale function of the process {Yt}t≥0. Thus, if there is a scale
function s of the process {Yt}t≥0, then there are infinitely many scale functions
of {Yt}t≥0, and moreover, there is no loss of generality to assume that s(0) = 0.

Now, if there is a scale function s of the process {Yt}t≥0 on El,r, then we
can define the scaled process {Zt}t≥0 on the state space Es(l),s(r) by setting

Zt := s(Yt) for every t ≥ 0,

where s(l) and s(r) are the possibly improper limits

s(l) := lim
y→l+

s(y) and s(r) := lim
y→r−

s(y).
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Now, for every a, b, z ∈ Es(l),s(r) satisfying l ≤ a < y < b ≤ r, one has that

Pz(τ bZ < τaZ) =
z − a
b− a

,

showing that the identity s(z) = z is a scale function of the scaled process
{Zt}t≥0.

Definition 3.11. One says that a process {Xt}t≥0 on the state space El,r is
of natural scale if the identity s(x) = x, (x ∈ El,r), is a scale function of the
the process {Xt}t≥0.

Processes of natural scale have the following characterization.

Proposition 3.12 ([31, Chapter VII, Proposition 3.5]). A continuous, reg-
ular, strong Markov process process {Xt}t≥0 on state space El,r is of natural
scale if and only if {Xt}0≤t≤τ lX∧τrX is a local martingale.

From this proposition, we can conclude the following characterization of a
scale function s.

Corollary 3.13. A continuous, strictly increasing function s : El,r → R is
called a scale function of a continuous, regular, strong Markov process {Yt}t≥0

on the state space El,r if and only if for the scaled process {Zt}t≥0,

(3.16) {Zt}0≤t≤τs(l)Z ∧τs(r)Z

is a local martingale.

With this preliminary, we can now come back to the example of the Bessel
process.

Example 3.14. For σ ∈ (0, 1), the 2(1 − σ)-Bessel process {Yt}t≥0 starting
at y = 0 for is a continuous, regular, strong Markov process has state space
E0,∞ = [0,∞). By Theorem A.1, the 2σth-powered process {Y 2σ

t }t≥0 is sub-
martingale with the Doob-Meyer decomposition Y 2σ

t = Mt + Lt, consisting
of a continuous martingale {Mt}t≥0 and a continuous, non-decreasing process
{Lt}t≥0 carried by the zeros of {Yt}t≥0. Thus, for the function s(y) = y2σ, the
scaled process {Zt}t≥0 give by Zt = Y 2σ

t , (t ≥ 0), satisfies (3.16) and hence
by Corollary 3.13, {Zt}t≥0 is of natural scale; or in other words, s is a scale
function of the 2(1− σ)-Bessel process {Yt}t≥0.

3.4. Speed measures. In this section, we intend to outline the impact of
scale function s on speed measures m̂ and the associated generalized diffusion
{Zt}t≥0 associated with m ∈ m∞.

We built upon the scenario from Section 3.3. For given −∞ ≤ l < r ≤ ∞,
let El,r be either a closed, open or semi-closed interval in R, and {Yt}t≥0 be
a continuous, regular, strong Markov process on the state space El,r with a
killing time ζ. Further, suppose, {Yt}t≥0 can only be killed at the end-points
l and r of El,r, provided they do not belong to El,r.

Let I = (a, b) be an open interval such that the closure [a, b] ⊂ El,r, and let
σI := inf{t > 0 |Yt 6∈ I} be the first time {Yt}t≥0 exiting the interval I. Then,
for the starting point y of {Yt}t≥0, one has that y ∈ I yields that the first exit
time σI = τaY ∧ τ bX almost surely, and y /∈ I implies that the first exit time
σI = 0 almost surely. Further, let

mI(y) := Ey(σI) for every y ∈ R.
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Now, let us take J = (c, d) to be an open subinterval of I. Then by the
strong Markov property of {Yt}t≥0 and due to property (3.15), one obtains
that for every scale function s : El,r → R of {Yt}t≥0, one has that

mI(y) = mJ(y) + Ey(EYσJ (σI))

= mJ(y) +
s(d)− s(y)

s(d)− s(c)
mI(c) +

s(y)− s(c)
s(d)− s(c)

mI(d)

for all a < c < x < d < b.
Given a scale function s : El,r → R of {Yt}t≥0 and an open interval I = (a, b)

with closure [a, b] in El,r, let

Gs,I(x, y) :=



(s(x)− s(a))(s(b)− s(y))

s(b)− s(a)
if a ≤ x ≤ y ≤ b,

(s(y)− s(a))(s(b)− s(x))

s(b)− s(a)
if a ≤ x ≤ y ≤ b,

0 otherwise.

With this preliminary, we can now recall the following existence theorem of
the speed measure m̂.

Theorem 3.15 ([31, Chapter VII, Proposition 3.5]). Let {Yt}t≥0 be a contin-
uous, regular, strong Markov process on the state space El,r. Then, there exists

a unique Radon measure µm̂ on the interior E̊l,r of El,r and a scale function
s : El,r → R of {Yt}t≥0 such that for every open sub-interval I = (a, b) of E,
one has

(3.17) mI(y) =

∫
I
Gs,I(y, r) dµm̂(r) for every y ∈ I.

The above existence theorem leads to the following definition.

Definition 3.16. For a continuous regular, strong Markov process {Yt}t≥0 on
the state space El,r, one calls the Radon measure m̂ satisfying (3.17) the speed
measure of the process {Yt}t≥0.

For our next theorem, we recall the following elementary definition.

Definition 3.17. For a strictly increasing continuous function s : (a, b)→ R
defined on an open interval (a, b) with range Rg(s) ⊆ R, a function f : Rg(s)→
R is called s-differentiable at y ∈ Rg(s) if the limit

lim
ŷ→y

f(ŷ)− f(y)

s(ŷ)− s(y)

exists and then, we denote by

df

ds
(y) := lim

ŷ→y

f(ŷ)− f(y)

s(ŷ)− s(y)

the s-derivative of f at y.

Remark 3.18. Recall, every continuous, strictly increasing function s : (a, b)→
R is a.e. differentiable in (a, b). Thus, if f is differentiable at y ∈ Rg(s) and
s′(y) > 0 exists, then the s-derivative of f

(3.18)
df

ds
(y) =

df

dy
(y)

1

s′(y)
.
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Now, our next theorem outlines the relation between the speed measure
m̂ and scale function s : El,r → R in sense of infinitesimal generator of the
process {Yt}t≥0. Here, we denote by AY the infinitesimal generator of {Yt}t≥0

and by D(AY ) its domain.

Theorem 3.19 ([31, Chapter VII, Theorem 3.12 and Proposition 3.13]). Let
{Yt}t≥0 be a continuous, regular, strong Markov process on the state space
E0,r, (0 < r ≤ ∞), with infinitesimal generator B. Then, there is a scale
function s : E0,r → R of {Yt}t≥0 such that

Bf =
d

dm̂

df

ds
for every f ∈ D(B),

where m̂ is the speed measure of {Yt}t≥0. Moreover, if E0,r = [0, r), then one
has that

m̂(0+)Bf(0)− df

ds+
(0) = 0 for every f ∈ D(B).

From this theorem, one see that the pair (s, m̂) of the scale function s and
the speed measure m̂ given by Theorem 3.19 characterizes the infinitesimal
generator B of the continuous, regular, strong Markov process {Yt}t≥0.

Let us consider the 2(1− σ)-Bessel process {Yt}t≥0 as an example.

Example 3.20. We recall (cf., [12, Sect. 1.2]) that for σ ∈ (0, 1), the infini-
tesimal generator BY of the 2(1− σ)-Bessel process {Yt}t≥0 on [0,∞) is given
by

BY u =
1

2

d2u

dy2
+

1− 2σ

2y

du

dy

=
1

2y1−2σ

d

dy

(
y1−2σ du

dy

)
=

1

2

( y
2σ

)2σ−1 d

dy

(( y
2σ

)1−2σ du

dy

)
.

From the above computation, it is natural that the scale function s and speed
measure µm̂Y are given by

s(y) =
( y

2σ

)2σ
and dµm̂Y (y) = 2

( y
2σ

)1−2σ
dy,

and so, by (3.18), one sees that

BY u =
1

2

( y
2σ

)2σ−1 d

dy

du

ds
=

d

dm̂Y

du

ds
.

Next, if we apply the substitution

z = s(y) =
( y

2σ

)2σ

to the process {Yt}t≥0; that is, one sets Zt = s(Yt), then the process {Zt}t≥0 is
the (up to a multiple constant) 2σth-power process (cf., Theorem A.1), which
is of natural scale (cf., Example 3.14) with speed measure µm̂Z given by

dµm̂Z (z) = 2z−
2σ−1
σ dz.
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Hence, the infinitesimal generator BZ of {Zt}t≥0 is given by

BZ =
1

2
z

2σ−1
σ

d2u

dz2
=

1

2z
1−2σ
σ

d

dz

du

dz
=

d

dm̂Z

du

dz
.

On the other hand, the process {Zt}t≥0 is a generalized diffusion associated
with the string m given by

m(z) =


∫ z

0
dµm̂Z (s) =

2σ

1− σ
z

1−σ
σ if z ≥ 0,

0 otherwise.

In the context of local times and generalized diffusions, it is natural to
ask what the effect is for a given continuous, regular, strong Markov process
{Zt}t≥0 associated with a given string m ∈ m∞, if one switches from natural
scale to the original scale, that is, from {Zt}t≥0 to {Yt}t≥0 by setting

(3.19) Yt = s−1(Zt) for all t ≥ 0,

for a scale function s : El,r → R of {Yt}t≥0. To see this, we employ the

occupation times formula (3.6) involving the local time process {L̃t(z)}t≥0 of
{Zt}t≥0 at level z. Then,∫ t

0
g(s−1(Zr)) dr =

∫
Em

g(s−1(z))L̃t(z) dµm(z)

for every g ∈ L∞(Em). Applying the change of variable z = s(y) to the
integral on the right hand-side of the last equation, yields that

(3.20)

∫ t

0
g(Yr) dr =

∫
s−1(Em)

g(y)L̃t(s(y)) ds−1
# µm(y),

where s−1
# µm is the push-forward measure of m by s−1. Since s(0) = 0, the

rescaling (3.19) with the scale function s does not affect the local time L̃t(0) of

{Zt}t≥0 at level 0. Moreover, the process {L̃t(s(y))} is a local time process of
{Yt}t≥0 at level s(y). Thus, the occupation times formula (3.20) suggests that
the speed measure m̂Y associated with the process {Yt}t≥0 is the push-forward

measure s−1
# m, which certainly is the case (cf., [31, see Chapter VII, Exercise

3.18]).

In Table 1, we summarize the relation between a scale function s, the speed
measure µm̂Y associated with {Yt}t≥0, and the natural scaled process {Zt}t≥0

via (3.19), and its impact to the Dirichlet problem and corresponding Dirichlet-
to-Wentzell operator (DtW operator).

We note that the generator is slightly different than what is proposed in
Theorem 3.19 in the sense that we add a factor of 1

2 . The reason for this is
that in Section 3.1 we obtain a generalized diffusion by considering a time
change of reflecting Brownian motion. The generator of a reflecting Brownian

motion is 1
2
d2

dx2 however the generator of the generalized diffusion is 1
2
d
dm

d
dx

hence for us it is convenient to keep a factor of 1
2 .

We conclude this section with the following remark.
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string m original scale s natural scale idR

speed measure µm̂Y = s−1
# µm µm̂Z = µm

generator −1
2

d
dm̂Y

d
ds −1

2
d

dm
d
dz

Dirichlet prb. Au− 1
2

d
dm̂Y

d
dsu = 0 Au− 1

2
d

dm
d
dzu = 0

DtW operator u(0) 7→ m(0+)Au(0)− 1
2
du
ds+

(0) u(0) 7→ m(0+)Au(0)− 1
2
du
dz +

(0)

Table 1. Scale functions, speed measures, DtW operator

Remark 3.21. It is worth noting that for every string m ∈ m∞, the generalized
diffusion process {Zt}t≥0 associated with m, is already in natural scale s =
2 idR and the speed measure m̂Z coincides with the associated measure µm of
m. This follows immediately from the fact that the infinitesimal generator B
of {Zt}t≥0 is given by (3.4).

3.5. Hitting times and spectral representations. Hitting time densities
admit the useful property of a spectral decomposition (see, for instance, the
papers [22], [26] or [24], the survey paper [33, Section 3], and [17] containing
interesting examples). We intend to use the spectral decomposition of hitting
time densities to directly calculate the Dirichlet-to-Wentzell operator Λm.

For a given string m ∈ m∞, let {Zt}t≥0 be a generalized diffusion process
associated with m, and

(3.21) τ := inf
{
t > 0

∣∣∣Zt = 0
}

be the first hitting time of z = 0 by {Zt}t≥0. Then through τ , we can define

the killed process {Ẑt}t≥0 by setting

Ẑt :=

{
Zt t ≤ τ,
∂ t > τ,

where ∂ denotes the coffin state.

Remark 3.22. We note that the killed process {Ẑt}t≥0 has the same speed
measure m and the same scale function s = 2 idR as {Zt}t≥0 (cf., Remark 3.21).

Moreover, the infinitesimal generator −B̂m of the killed process {Ẑt}t≥0 is
the 2nd-order differential operator −Bm defined in (3.4) equipped with the
boundary conditions f(0) = 0.

Further, the killed process {Ẑt}t≥0 has a transition density

p̂(t, z, y) :=
Pz(Ẑt ∈ dy)

dµm
=

Pz(Zt ∈ dy | t < τ)

dµm

for every t ≥ 0, z, y ∈ [0,∞). In the next proposition, we recall some impor-
tant properties from [21, Section 4.11] of the transition density p̂(t, z, y).
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Proposition 3.23 ([21, Section 4.11] & [26]). For a given string m ∈ m∞, let
{Zt}t≥0 be the generalized diffusion process with generator 1

2
d

dm
d
dz . Then the

transition density p̂(t, z, y) of the killed process {Ẑt}t≥0 is a jointly continuous
function p̂ : [0,∞)× [0,∞)× [0,∞)→ [0,∞) with the following properties.

(1) p̂(t, z, 0) = p̂(t, 0, y) = 0 for every t ≥ 0, z, y ∈ [0,∞).
(2) p̂ is symmetric; that is,

p̂(t, z, y) = p̂(t, y, z) for all t ∈ [0,∞) and y, z ∈ (0,∞).

The next definition contains the core density of our Poisson formula (1.11).

Definition 3.24. For a given string m ∈ m∞, let τ be the first hitting time
of z = 0 of a generalized diffusion process {Zt}t≥0 associated with m. Then τ
has the probability density

ωτ (t, z) :=
Pz(τ ∈ dt)

dt
for every z ∈ (0,∞) and t > 0.

To derive the spectral representation of the first hitting time density ωτ , we
begin by recalling from [22, Section 5] the so-called eigenfunction expansion

{C(·, γ)}γ>0 of the operator B̂m, which is directly related to the killed process

{Ẑt}t≥0 (cf. Remark 3.22). To do so, for given γ > 0, let C(·, γ) be the unique
solution of

(3.22)

−
1

2

d

dm

d

dz
C(z, γ) = γ C(z, γ) for z ∈ (0,∞),

C(0; γ) = 0, limz→0+
C(z;γ)

2z = 1.

Alternatively, for every γ > 0, C(·, γ) satisfies

(3.23) C(z; γ) = 2z − 2γ

∫ z

0

∫
(0,x]

C(r; γ) dµm(r) dx

for every z ∈ [0,∞). Next, let {Cn}n≥0 be a sequence of functions Cn :
[0,∞)→ R recursively defined by C0(z) := 2z, and for every n ≥ 1,

(3.24) Cn(z) := 2

∫ z

0

∫
(0,x]

Cn−1(r) dµm(r) dx, (z ∈ [0,∞)).

For this sequence {Cn}n≥0 (cf., [13, Section 5.4] for a similar construction),
the function C(·, γ) has the following series representation

(3.25) C(z, γ) =

∞∑
n=0

(−γ)nCn(z)

for every z ∈ [0,∞) and γ > 0. Note, the series on the right hand-side in (3.25)
converges locally uniformly on [0,∞). This follows from the Weierstrass M-
test, and the estimates (3.26) in the subsequent lemma. The next statements
will be useful later in the proofs of our theorems to verify the hypothesis of
dominated convergence.

Lemma 3.25 ([33, Lemma 3.1 and 3.2]). For every n ≥ 0, the functions Cn
defined in (3.24) are positive and increasing along [0,∞), and satisfy

(3.26) Cn(z) ≤ 2z

n!

(
2

∫ z

0
M(x) dx

)n
.
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where M(x) := m(x) − m(0) for x > 0. Moreover, for the unique solution
C(·, γ) of (3.12),one has that

(3.27) |C(z, γ)| ≤ 2z eγ2
∫ z
0 M(x)dx

for every γ > 0 and z ∈ [0,∞).

Proof. It follows from (3.24) and since C0(z) = 2z that each Cn is positive and
increasing along [0, rm). Next, we show that inequality (3.26) by an induction
over n ≥ 0. Obviously, (3.26) is satisfies by C0(z) = 2z and hence, the case
n = 0 holds. Now, suppose that (3.26) holds for an integer n ≥ 1. Then, it
remains to show that (3.26) holds for n+ 1. But by induction hypothesis, one
sees that

Cn+1(z) = 2

∫ z

0

∫
(0,x]

Cn(r) dµm(r) dx

≤ 2

∫ z

0

∫
(0,x]

r

n!

(
2

∫ r

0
M(u) du

)n
dµm(r) dx

≤ 2z

n!

∫ z

0

∫
(0,x]

(
2

∫ r

0
M(u) du

)n
dµm(r) dx

≤ 2z

n!

∫ z

0

∫
(0,x]

(
2

∫ x

0
M(u) du

)n
dµm(r) dx

≤ 2z

n!

∫ z

0

(
2

∫ x

0
M(u) du

)n
M(x) dx

=
2z

(n+ 1)!

(
2

∫ z

0
M(x)dx

)n+1
.

This proves (3.26) for n + 1 and hence, this inequality holds for all integers
n ≥ 0. One sees that estimate (3.27) holds after applying (3.26) to the series
representation (3.25). This completes the proof of this lemma. �

By [26, Theorem 2.3], for the killed process {Ẑt}t≥0, there exists a σ-finite

measure ∆̂m, called the principal measure of {Ẑt}t≥0, for which the following
holds

(3.28)

∫ ∞
0

1

γ(γ + 1)
d∆̂m(γ) <∞

and

(3.29)

∫ ∞
0

1

γ
d∆̂m(γ) =∞.

From this, one can deduce the following integral representation

(3.30) p̂(t, z, y) =

∫ ∞
0

e−γtC(z, γ)C(y, γ) d∆̂m(γ), (t ≥ 0, z, y ∈ [0,∞)),

of the transition density p̂ of {Ẑt}t≥0. Further, the following spectral repre-
sentation of the hitting time density ωτ and representation of the density hm
of the Lévy measure νm associated with m (cf, Definition 1.11) is available.

Theorem 3.26 ([26, Theorem 3.1 and 3.2]). For a given string m ∈ m∞, let
τ be the first hitting time of z = 0 by a generalized diffusion process {Zt}t≥0

associated with m, and ωτ the probability density of τ . Further, for given γ >
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0, let C(·, γ) be the unique solution of (3.12). Then, the following statements
hold.

(1) The probability density ωτ has the spectral representation

(3.31) ωτ (t, z) =

∫ ∞
0

e−γtC(z, γ) d∆̂m(γ)

for every t > 0, z ∈ (0,∞).
(2) One has that

(3.32) ωτ (t, z) = lim
y→0+

p̂(t, z, y)

2y
for every z ∈ (0,∞).

(3) The density hm = dνm
dt of the Lévy measure νm associated with m, one

has that

(3.33) hm(t) = lim
z→0+

ωτ (t, z)

2z
=

∫ ∞
0

e−γt d∆̂m(γ) for every t > 0.

Integrating formula (3.31) of the first hitting density ωτ of τ over (t,∞) for
t > 0, then by (3.27) and Fubini’s theorem yields the following.

Corollary 3.27 ([33, Proposition 3.7]). For a given string m ∈ m∞ on R, let
τ be the first hitting time (3.21) of z = 0 by a generalized diffusion {Zt}t≥0

associated with m, and for γ > 0, let C(·, γ) be the unique solution of (3.12).
Then for every z ∈ (0,∞), one has that

Pz(τ > t) =

∫ ∞
0

e−γt

γ
C(z, γ) d∆̂m(γ) for all t ∈ [0,∞).

In our next proposition, we collect some important properties of an anti-
derivative βm of the density hm of νm, which we require later in Section 4.3
to derive an integration by parts argument (see Lemma 4.6).

Proposition 3.28. For a given string m ∈ m∞ on R, let ∆̂m be the principal
measure associated with m, and set

(3.34) βm(t) :=

∫ ∞
0

1

γ
e−γt d∆̂m(γ) for every t > 0.

Then, the following properties hold.

(1) The function βm : (0,∞)→ [0,∞) is differentiable with derivative

(3.35)
dβm
dt

(t) = hm(t) for every t > 0.

(2) One has that

(3.36) lim
t→0+

tβm(t) = lim
t→∞

βm(t) = 0.

Proof. By applying the elementary inequality

(3.37) (γ + 1)e−γt ≤ 1

t
et holding for all t > 0,

to the integrand in (3.34) shows that

βm(t) ≤ 1

t
et
∫ ∞

0

1

γ(1 + γ)
d∆̂m(γ).
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Since the integral on right hand-side is finite (see (3.28)), βm is a finite positive
function on (0,∞). To see that βm is differentiable at t > 0, note that the
integrand f : (0,∞)× (0,∞)→ (0,∞) given by

f(γ, t) =
1

γ
e−γt for every (γ, t) ∈ (0,∞)× (0,∞),

is continuously differentiable in t with partial derivative ∂f
∂t (γ, t) = −e−γt.

Moreover, since e−γt ≤ e−γε for any 0 < ε < t and since

0 ≤ e−γε . 1

γ(γ + 1)
for every γ ∈ (0,∞),

it follows from (3.28) and Lebesgue’s dominated convergence theorem that the
parameter integral

βm(t) =

∫ ∞
0

f(γ, t) d∆̂m(γ)

is differentiable and dβm
dt (t) = hm(t) with hm given by (3.35). Further, since

for every γ > 0, limt→∞ f(γ, t) = 0, and since

0 ≤ f(γ, t) ≤ f(γ,M) for every t > M > 0,

we can conclude again from Lebesgue’s dominated convergence theorem that
limt→∞ βm(t) = 0. Finally, by using again (3.37), one sees that

0 ≤ t f(γ, t) ≤ et

γ(γ + 1)
for every (γ, t) ∈ (0,∞)× (0,∞),

and since limt→0+ t f(γ, t) = 0, it follows from (3.28) and Lebesgue’s domi-
nated convergence theorem that limt→0+ tβm(t) = 0. This completes the proof
of (3.36) and thereby the proof of this proposition. �

The following proposition provides a crucial identity to prove existence of
a weak solution to the extension problem (1.7) (see Section 4.3).

Proposition 3.29. For a given string m ∈ m∞ on R, let ωτ be the probability
density (3.32) of the first hitting time τ of z = 0 by a generalized diffusion
process {Zt}t≥0 associated with m, and βm given by (3.34). Then, one has
that

(3.38) 2

∫ z

0

∫
(0,x]

ωτ (t, v) dµm(v)dx = 2 z βm(t)− Pz(τ > t)

for every z ∈ (0,∞) and t > 0.

Proof. Let t > 0 and z ∈ (0,∞). According to the spectral representa-
tion (3.31) of the first hitting time density ωτ (Theorem 3.26), one sees that∫ z

0

∫
(0,x]

ωτ (t, v) dµm(v) dx

=

∫ z

0

∫
(0,x]

∫ ∞
0

e−γtC(v, γ) d∆̂m(γ) dµm(v) dx

=

∫
Ωz

∫ ∞
0

e−γtC(v, γ) d∆̂m(γ) d(µLeb ⊗ µm)(x, v).

(3.39)

where we set Ωz = {(x, v) ∈ [0,∞)2 : 0 ≤ v ≤ x ≤ z} and µLeb ⊗ µm
is the product measure of the one-dimensional Lebesgue measure µLeb and
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µm. Further, if p̂ is the transition density of the killed process {Ẑt}t≥0 of the
generalized diffusion {Zt}t≥0 and hm the density hm of the Lévy measure νm
associated with m, then by Cauchy-Schwarz’s inequality, by (3.30), and by
(3.33), one sees that∫ ∞

0
e−γt|C(v, γ)| d∆̂m(γ)

≤
(∫ ∞

0
e−γt d∆̂m(γ)

) 1
2
(∫ ∞

0
e−γt|C(v, γ)|2 d∆̂m(γ)

) 1
2

=
√
hm(t)

√
p̂(t, v, v)

and so, ∫
Ωz

∫ ∞
0

e−γt|C(v, γ)|d∆̂m(γ) d(µLeb ⊗ µm)(x, v)

≤
∫

Ωz

√
hm(t)

√
p̂(t, v, v) d(µLeb ⊗ µm)(x, v)

=
√
hm(t)

∫
Ωz

√
p̂(t, v, v) d(µLeb ⊗ µm)(x, v)

=
√
hm(t)

∫ z

0

∫
(0,x]

√
p̂(t, v, v) dµm(v)dx

≤
√
hm(t) z ‖

√
p̂(t, ·, ·)‖L∞([0,z]2) µm((0, z]).

Note, the right hand-side of the last estimate above is finite since p̂(t, ·, ·) is
continuous on [0,∞)2 by Proposition 3.23. Therefore, we have thereby shown
that the function

g(γ, v) := e−γtC(v, γ) belongs to L1((0,∞)× Ωz; ∆̂m ⊗ (µLeb ⊗ µm)).

Hence, by Fubini’s theorem and subsequently by applying the identity (3.23)
for C(v, γ), (3.34), and by Corollary 3.27, one sees that

2

∫
Ωz

∫ ∞
0

e−γtC(v, γ) d∆̂m(γ) d(µLeb ⊗ µm)(x, v)

=

∫ ∞
0

(
2

∫
Ωz

e−γtC(v, γ) d(µLeb ⊗ µm)(y, v)

)
d∆̂m(γ)

=

∫ ∞
0

(
2

∫ z

0

∫
(0,y]

e−γtC(v, γ) dµm)(v) dy

)
d∆̂m(γ)

= 2z

∫ ∞
0

1

γ
e−γtd∆̂m(γ)−

∫ ∞
0

1

γ
e−γtC(z, γ)d∆̂m(γ)

= 2z βm(t)− Pz(τ > t).

Combining this with (3.39), one sees that (3.38) holds. �

3.6. Semigroups and a bit of convex analysis. This section is dedicated
to recall the definition of a C0-semigroup of contractions, Hille-Yosida-Phillips’
characterization of the infinitesimal generator −A of such a semigroup, and
to recall some important definitions and notions from convex analysis used
throughout this paper. Here, let X denote a Banach space equipped with
norm ‖·‖X , X ′ its dual space and 〈·, ·〉X′,X the duality pairing.
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Definition 3.30 (C0-semigroup of contractions). A family {Tt}t≥0 of linear
operators Tt ∈ L(X) is called a C0-semigroup of contractions on X provided

(i) Tt+s = Tt ◦ Ts for every t, s ≥ 0;
(ii) T0 = idX ;
(iii) for every x ∈ X, the function t 7→ Ttx belongs to C([0,∞);X);
(iv) ‖Tt‖L(X) ≤ 1 for all t ≥ 0.

Definition 3.31 (Infinitesimal generator). For a given C0-semigroup {Tt}t≥0

on X, one can define an associated infinitesimal generator −A on X by setting

D(A) :=
{
x ∈ X

∣∣∣ lim
h→0+

Thx− x
h

exists in X
}

and

−Ax := lim
h→0+

Thx− x
h

for every x ∈ D(A).

Notation 3.32. To emphasize that for a given operator A and a C0-semigroup
{Tt}t≥0, −A is the infinitesimal generator of {Tt}t≥0, we write {e−tA}t≥0 in-
stead of {Tt}t≥0.

In order to characterize operators A, for which −A is the infinitesimal gen-
erator of a C0-semigroup of contractions, we require to recall some notions
from convex analysis.

Definition 3.33. For a given convex, proper functional ϕ : X → (−∞,∞]
with effective domain D(ϕ) := {u ∈ X |φ(u) < ∞}, the sub-differential ∂ϕ :
X → 2X is a possibly multi-valued mapping given by

∂ϕ(u) =
{
x′ ∈ X ′

∣∣∣ 〈x′, v − u〉X′,X ≤ ϕ(v)− ϕ(u) ∀ v ∈ X
}

for every u ∈ D(ϕ).

Definition 3.34. Let ξ ∈ C([0,∞)) be a continuous, monotone, and surjective

function satisfying ω(0) = 0. Then the (multi-valued) operator Jξ : X → 2X
′

given by

Jξ(x) =
{
x′ ∈ X ′

∣∣∣ 〈x′, x〉X′,X = ‖x′‖X′ ‖x‖X , ‖x′‖X = ξ(‖x‖X)
}

for every x ∈ X, is called the duality map with gauge function ξ. In the case,
the gauge function ξ(r) = r, r ∈ [0,∞), we simply write J instead of Jξ and
call it the normalized duality map.

Remark 3.35. Since the duality map Jξ is the sub-differential operator ∂ϕ :

X → 2X
′

of the convex functional ϕ(x) = ζ(‖x‖X) for ζ(r) :=
∫ r

0 ξ(s) ds,
r ≥ 0, it follows that Jξ is monotone, that is, one has that

〈x′1 − x′2, x1 − x2〉X′,X ≥ 0 for all pairs (x1, x
′
1), (x2, x

′
2) ∈ Jξ.

Moreover, for every x ∈ X, Jξ(x) is closed, convex and non-empty subset of
X ′.

Definition 3.36. Let J : X → 2X
′

be the normalized duality map given by

J(x) =
{
x′ ∈ X ′

∣∣∣ 〈x′, x〉X′,X = ‖x‖2X = ‖x′‖2x′
}

for every x ∈ X.
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Then, a linear operator A : D(A) → X with domain D(A) ⊆ X is called
accretive if for every u ∈ D(A), there is an x′ ∈ J(u)

Re〈x′, Au〉X′,X ≥ 0.

Further, A is called m-accretive if A is accretive and satisfies the so-called
range condition; that is, for every f ∈ X and λ > 0, there exists a unique
u ∈ D(A) such that u+ λAu = f .

Theorem 3.37 ([3, Corollary 3.3.5]). Let A be a linear operator on X. Then,
−A is the infinitesimal generator of a C0-semigroup of contractions {e−tA}t≥0

on X if and only if A is m-accretive on X.

3.7. Subordination of semigroups. In this section, we briefly review the
definition of ψ(A) for a given Bernstein function ψ and a linear m-accretive
operator A on a Banach space X. Here, we follow closely [36, Chapter 13]

We begin by recalling the following definitions.

Definition 3.38. A finite Borel measure ν on [0,∞) is called a sub-probability
measure provided ν([0,∞)) ≤ 1.

Definition 3.39. Let (X, τ) be a locally compact topological Hausdorff space.
Then a sequence {νn}n≥1 of Radon measures νn on X converges vaguely to a
measure ν if ∫

X
ϕ(x) dνn(x)→

∫
X
ϕ(x) dν(x) as n→∞

for all compactly supported, continuous, real-valued functions ϕ on X (we
denote this set of functions by Cc(X).

Definition 3.40. The convolution µ∗ν of two sub-probability measures µ and
ν on [0,∞) is defined by∫

[0,∞)
ϕ(t) d(µ ∗ ν)(t) =

∫
[0,∞)

∫
[0,∞)

ϕ(t+ s) dµ(t) dν(s)

for every bounded continuous function ϕ on [0,∞) (which we summarize in
the set Cc([0,∞))).

We note that the convolution µ∗ν of two sub-probability measures µ and ν
is again a sub-probability measure on [0,∞). With the convolution-operation,
we can defined now the following type of semigroups.

Definition 3.41. A family {γt}t≥0 of finite Borel measures γt on [0,∞) is
called a vaguely continuous convolution semigroup of sub-probability measures
provided the family {γt}t≥0 satisfies

(i) γt([0,∞)) ≤ 1 for all t ≥ 0 (sub-probability condition);
(ii) µt+s = γt ∗ µs for all t, s ≥ 0 (semigroup property);

(iii) lim
t→0

γt = δ0 vaguely (vague continuity).

The next theorem highlights the bijective relation between Bernstein func-
tions ψ and vaguely continuous convolution semigroup of sub-probability mea-
sures.
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Theorem 3.42 ([36, Theorem 5.2]). Let {γt}t≥0 be a vaguely continuous con-
volution semigroup of sub-probability measures on [0,∞). Then there exists a
unique Bernstein function ψ such that the Laplace transform of γt

(3.40)

∫ ∞
0

e−λs dγt(s) = e−tψ(λ) for all λ > 0, t ≥ 0.

Conversely, for a given Bernstein function ψ, there exists a unique vaguely
continuous convolution semigroup {γt}t≥0 of sub-probability measures on [0,∞)
satisfying (3.40).

The following proposition provides the existence theorem of the operator
ψ(A) via the infinitesimal generator of a semigroup.

Proposition 3.43 ([36, Proposition 13.1]). Let {e−tA}t≥0 be a C0-semigroup
of contractions with infinitesimal generator A on a Banach space X, and
{γt}t≥0 be a vaguely continuous convolution semigroup of sub-probability mea-
sures on [0,∞) with the corresponding Bernstein function ψ. Then the family

{e−tψ(A)}t≥0 defined by the Bochner integral

(3.41) e−tψ(A)f :=

∫
[0,∞)

e−sAf dγt(s) for every t ≥ 0, f ∈ X,

defines a C0-semigroup {e−tψ(A)}t≥0 of contractions e−tψ(A) ∈ L(X).

Notation 3.44 (The operator ψ(A)). For a given m-accretive operator A on
a Banach space X, and vaguely continuous convolution semigroup {γt}t≥0 of
sub-probability measures γt associated the corresponding Bernstein function
ψ, we denote by ψ(A) the infinitesimal generator (see Definition 3.31) of the

semigroup {e−tψ(A)}t≥0 given by (3.41).

Theorem 3.45 (Phillips’ subordination theorem, [36, Theorem 13.6]). Let
{e−tA}t≥0 be a C0-semigroup of contractions with infinitesimal generator −A
on Banach space X, and ψ be a Bernstein function with the Lévy triple (a, b, ν).

Consider the semigroup {e−tψ(A)}t≥0 with the infinitesimal generator −ψ(A).
Then, the domain D(A) of A is an operator core of the domain D(ψ(A)) of
ψ(A) and

ψ(A)f = af + bAf +

∫ ∞
0

(
f − e−tAf

)
dν(t)

for all f ∈ D(A), where the integral is to be understood in the Bochner sense.

4. Proofs of the Main Results

Throughout this section, let m ∈ m∞ and associated Lebesgue-Stieltjes
measure µm. Further, {Zt}t≥0 be a generalized diffusion associated with m, τ
the first hitting time of z = 0 by the process {Zt}t≥0 as defined in (3.21), and
ψm the associated complete Bernstein function (3.12) from Theorem 3.8.

For the moment, we assume that A : D(A) → X is merely a closed, linear
operator defined on a Banach X with norm ‖·‖X , and denote by X ′ the dual
space, and 〈·, ·〉X′,X the corresponding duality brackets.

Then, the main object of this section is the Dirichlet-to-Wentzell operator

(4.1) f 7→ Λmf := m(0+)Au(0)− 1

2

du

dz+
(0)
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associated with the Dirichlet problem

(4.2)

{
Au(z)− 1

2
d

dm
d
dzu(z) = 0, for z ∈ (0,∞),

u(0) = f,

for given f ∈ D(A). In the next subsection, we briefly discuss the notion of a
weak solution u to the Dirichlet problem (4.2) introduced in Definitions 1.5.

4.1. Weak solutions. We begin by discussing the the notion of weak solu-
tions u to the Dirichlet problem (4.2) as it was introduced in Definition 1.5.

Remark 4.1. For a given string m ∈ m∞, µm the associated measure to m,
and Em the support of µm. Then the following comments are worth noting.

(a) We show in the Proposition B.7 (in the appendix) that a function
f ∈ L1

loc((0,∞);X) has a weak m-derivative g ∈ L1
loc,µm

((0,∞);X) if
and only if f can be represented by

f(z2) = f(z1) +

∫ z1

z2

g(r) dµm(r) for a.e. z1, z2 ∈ (0,∞).

(b) Due to Remark (a), for given f ∈ X, a weak solution u of Dirich-
let problem (4.2) is characterized by satisfying u ∈ C([0,∞);X) ∩
W 1,1
loc ([0,∞);X), the weak derivative du

dz is weakly m-differentiable, and

there is a g ∈ L1
loc,µm

([0,∞);X) satisfying

(4.3) u(z) = f +
du

dz−
(0) z +

∫ z

0

∫
[0,y]

g(r) dµm(r) dy

for every z ∈ [0,∞), where du
dz−(0) denotes the left hand-side derivative

of u at z = 0, and

2Au(z) = g(z) for µm-a.e. z ∈ (0,∞).

This formulation consistent with the real-valued function case de-
scribed in [36] provided by Revuz and Yor.

(c) In comparison to Remark 1.4, an alternative characterization of a weak
solution u is of the extension equation

(4.4) Au(z)− 1

2

d

dm

d

dz
u(z) = 0 in z ∈ (0,∞),

is given by u belonging to W 1,1
loc ((0,∞);X), for µm-a.e. z ∈ (0,∞), one

has that u(z) ∈ D(A), Au ∈ L1
loc,µm

((0,∞);X), and

(4.5)
1

2

d2u

dz2
= Auµm in D′((0,∞);X).

(d) A function u given by (4.3) with weak m-derivative

d

dm

du

dz
∈ L1

loc,µm([0,∞);X)

is linear on [0,∞) \Em, the left and right hand-side derivative du
dz−(z),

du
dz+

(z) exist at every z ∈ [0,∞) with

du

dz+
(z) =

du

dz−
(0) +

∫
[0,z]

g(r) dµm(r),
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du

dz−
(z) =

du

dz−
(0) +

∫
[0,z)

g(r) dµm(r),

and u′ is a.e. continuous on [0,∞).

With these comments in mind, we can now start by establishing uniqueness
of bounded solutions of Dirichlet problem (4.2).

4.2. Uniqueness of weak solutions of the Dirichlet problem. In this
subsection, we outline our uniqueness result of bounded solutions of Dirichlet
problem (4.2). Our method to prove uniqueness relies essentially on tools and
arguments borrowed from the theory of nonlinear evolution theory (see, for
instance, [8, 18]).

Throughout this section, we assume that the operator A in the extension
problem (4.2) is accretive on X as defined in Definition 3.36.

Our first lemma partially generalizes a result by Bénilan [8].

Lemma 4.2. For a given string m ∈ m∞, let µm be the associated measure
to m. Let ϕ : X → R be a continuous, convex functional on a Banach space
X satisfying ϕ(0) = 0, and for some g ∈ L1

loc,µm
([0,∞);X), x, β ∈ X, let

u ∈ C([0,∞);X) be given by

(4.6) u(z) = x+ β z +

∫ z

0

∫
[0,y]

g(r) dµm(r) dy

for every z ∈ [0,∞). Then the following statements hold.

(1) The mapping z 7→ ϕ(u(z)) is differentiable from the right at every
z ∈ [0,∞) with

(4.7)
d

dz+
ϕ(u(z)) = max

w∈∂ϕ(u(z))
〈w, du

dz+
(z)〉X′,X ,

where ∂ϕ denotes the sub-differential of ϕ (see Definition 3.33).
(2) The mapping z 7→ d

dz+
ϕ(u(z)) is m-differentiable µm-a.e. on [0,∞),

and locally of bounded variation.
(3) For every z ∈ [0,∞) such that d

dm
du
dz+

(z) and d
dm

d
dz+

ϕ(u(z)) exist, one

has that

(4.8)
d

dm

d

dz+
ϕ(u(z)) ≥ 〈w, d

dm

du

dz+
(z)〉X′,X

for every w ∈ ∂ϕ(u(z)).

Proof. Let u be given by (4.6). Then u is differentiable from the right at every
z ∈ [0,∞). Thus, claim (1) follows by the same arguments as in [8, Lemme 1]
with u′(z) replaced by du

dz+
(z).

To see that claim (2) holds, let 0 ≤ z1 ≤ z2 ≤ T < ∞ and for i = 1, 2, let
wi ∈ ∂ϕ(u(zi)) such that (4.7) holds. Then,

d

dz+
ϕ(u(z2))− d

dz+
ϕ(u(z1))

= 〈w2,
du

dz+
(z2)− du

dz+
(z1)〉X′,X + 〈w2 − w1,

du

dz+
(z1)〉X′,X .
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Since
du

dz+
(z) = β +

∫
[0,z]

g(r) dµm(r), z ∈ [0,∞),

we have that

〈w2,
du

dz+
(z2)− du

dz+
(z1)〉X′,X = 〈w2,

∫
(z1,z2]

g(r) dµm(r)〉X′,X

≥ −‖w2‖X′
∫

(z1,z2]
‖g(r)‖X dµm(r).

On the other hand, since

u(z2)− u(z1)

z2 − z1
=

du

dz+
(z1)−

∫
[0,z1]

g(r) dµm(r)

+ 1
z2−z1

∫ z2

z1

∫
[0,z]

g(r) dµm(r) dz,

one has that

(4.9)
u(z2)− u(z1)

z2 − z1
=

du

dz+
(z1)− 1

z2−z1

∫ z2

z1

∫
(z1,z]

g(r) dµm(r) dz.

Therefore and since ∂ϕ is monotone,

〈w2 − w1,
du

dz+
(z1)〉X′,X ≥ 〈w2 − w1,

1
z2−z1

∫ z2

z1

∫
(z1,z]

g(r) dµm(r) dz〉X′,X

≥ −‖w2 − w1‖X′
∫

(z1,z2]
‖g(r)‖X dµm(r).

By hypothesis, the functional ϕ is continuous on X. Hence, on every bounded
subset U of X, there is a constant M > 0 such that

‖x′‖X′ ≤M for every x′ ∈ ∂ϕ(u) and u ∈ U .

Further, by the continuity of u : [0, T ] → X, there is a bounded open subset
U of X containing u([0, T ]). Thus, there is an M > 0 such that

〈w2,
du

dz+
(z2)− du

dz+
(z1)〉X′,X ≥ −M

∫
(z1,z2]

‖g(r)‖X dµm(r).

and

〈w2 − w1,
du

dz+
(z1)〉X′,X ≥ −2M

∫
(z1,z2]

‖g(r)‖X dµm(r)

and hence,

d

dz+
ϕ(u(z2))− d

dz+
ϕ(u(z1)) ≥ −3M

∫
(z1,z2]

‖g(r)‖X dµm(r),

or, equivalently, for

h(z) :=
d

dz+
ϕ(u(z)) and H(z) :=

∫
[0,z]
‖g(r)‖X dµm(r),

one has that h(z2) + H(z2) ≥ h(z1) + H(z1). Since 0 ≤ z1 ≤ z2 ≤ T < ∞
were arbitrary, we have thereby shown that z 7→ h(z) +H(z) is monotonically
increasing along [0, T ], and hence m-differentiable µm-a.e. on [0,∞). Since H
is also monotone, it is also m-differentiable µm-a.e. on [0,∞), which implies
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that h(z) = d
dz+

ϕ(u(z)) is m-differentiable µm-a.e. on [0,∞). This completes

the proof of statement (2).
Next, let u be given by (4.6). Then, one has that

(4.10)
d

dm

du

dz+
(z) = g(z)

for µm-a.e. z ∈ (0,∞). From this, we can infer that

(4.11) lim
h→0+

u(z + h)− 2u(z) + u(z − h)

h (m(z)−m(z − h))
=

d

dm

du

dz+
(z) in X

for µm-a.e. z ∈ (0,∞). To see that (4.11) holds, we first write

u(z + h)− 2u(z) + u(z − h)

h (m(z)−m(z − h))
=

u(z + h)− u(z)

h (m(z)−m(z − h))
− u(z)− u(z − h)

h (m(z)−m(z − h))
.

Then for h > 0, (4.9) yields that

u(z + h)− u(z) =
du

dz+
(z)h−

∫ z+h

z

∫
(z,y]

g(r) dµm(r) dy

and

u(z)− u(z − h) =
du

dz+
(z − h)h−

∫ z

z−h

∫
(z−h,y]

g(r) dµm(r) dy.

Thus,

u(z + h)− u(z)− (u(z)− u(z − h))

h (m(z)−m(z − h))

=

du
dz+

(z)− du
dz+

(z − h)

m(z)−m(z − h)
− 1

h (m(z)−m(z−h))

∫ z+h

z

∫
(z,y]

g(r) dµm(r) dy

+ 1
h (m(z)−m(z−h))

∫ z

z−h

∫
(z−h,y]

g(r) dµm(r) dy.

If (4.10) holds at z ∈ (0,∞) and if z a Lebesgue point of µm, then the last two
terms on the right hand-side of the latter equation tend to zero as h → 0+,
showing that (4.11) holds.

Finally, for w ∈ ∂φ(u(z)), the monotonicity of ∂φ implies that

φ(u(z + h))− 2φ(u(z)) + φ(u(z − h))

h (m(z)−m(z − h))

≥
〈w, u(z + h)− 2u(z) + u(z − h)〉X′,X

h (m(z)−m(z − h))

= 〈w, u(z + h)− 2u(z) + u(z − h)

h (m(z)−m(z − h))
〉X′,X .

(4.12)

Thus, for every z ∈ [0,∞) such that d
dm

du
dz+

(z) and d
dm

d
dz+

ϕ(u(z)) exist, taking

the limit as h→ 0+ in (4.12) yields that (4.8) holds. �

With the help of Lemma 4.2, we obtain uniqueness of bounded solutions of
the Dirichlet problem (4.2) in a Banach spaces X.
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Theorem 4.3 (Uniqueness of bounded solutions). Let m ∈ m∞ with associ-
ated measure µm, and A an accretive operator on the Banach space X. Then,
for every given f ∈ X, there is at most one solution u ∈ L∞([0,∞);X) of
Dirichlet problem (4.2).

Proof. Let u ∈ L∞([0,∞);X) be a solution of Dirichlet problem (4.2) with
initial data f = 0 and ϕ(x) := 1

2‖x‖
2
X for every x ∈ X. Since the operator A

is accretive on X, one has that

〈w, d

dm

du

dz+
(z)〉X′,X ≥ 0 for every w ∈ ∂ϕ(u(z)).

Hence by (4.8) of Lemma 4.2, the function z 7→ ‖u(z)‖2X is convex on [0,∞).
Since u is bounded, also the function z 7→ ‖u(z)‖2X is bounded and hence
monotonically decreasing. This implies that

‖u(z)‖2X ≤ ‖u(0)‖2X = 0 for all z ∈ [0,∞),

completing the proof of this theorem. �

4.3. Existence of weak solutions of the Dirichlet problem. In this sec-
tion, we establish existence of bounded solutions u of Dirichlet problem (4.2)
under the hypothesis that A is an m-accretive operator on a Banach space X,
and for given initial value f ∈ D(A). Our approach to this combines argu-
ments from stochastic analysis with linear semigroup theory. In particular, it
is based on the spectral representation of the first hitting time density ωτ of
a given generalized diffusion {Zt}t≥0 on [0,∞) (see Theorem 3.26). Thus, we
employ the same notation here as introduced in Subsection 3.5.

Throughout this subsection, let m ∈ m∞ with associated measure µm. Fur-
ther, let A an m-accretive operator on X and {e−tA}t≥0 the semigroup gener-
ated by −A. Further, let {Zt}t≥0 be a generalized diffusion on [0,∞) associ-

ated with m, Bm = 1
2

d
dm

d
dz the infinitesimal generator of {Zt}t≥0, and ωτ the

density (3.32) of the first hitting time τ of z = 0 by {Zt}t≥0. Then, for given
f ∈ X, we set

(4.13) u(z) :=

∫ ∞
0

(e−tAf)ωτ (t, z) dt, z ∈ [0,∞).

Then, our aim is to show that the function u given by (4.13) is a solution of
the Dirichlet problem (4.2).

Since the semigroup {e−tA}t≥0 is contractive, one easily sees that the inte-
gral in (4.13) is finite. Moreover, one has that

(4.14) sup
z∈[0,∞)

‖u(z)‖X ≤ sup
z∈[0,∞)

∫ ∞
0
‖e−tAf‖Xωτ (t, z) dt ≤ ‖f‖X ,

showing that u ∈ L∞(0,∞;X).
Next, we intend to show that for given f ∈ D(A), the function u given

by (4.13) is a weak solution of the extension equation (4.4) satisfying u(0) = f .
More specifically, we show that u can be rewritten as follows.

Theorem 4.4. In addition to the hypotheses of this subsection, let f ∈ D(A),

and u be given by (4.13). Then u belongs to W 1,1
loc ([0,∞);X) and satisfies

(1) u(0) = f in X,



A FIRST HITTING TIME APPROACH 39

(2) u(z) ∈ D(A) for every z ∈ [0,∞),
(3) Au ∈ L∞([0,∞);X), and
(4) u can be rewritten as

u(z) = f − 2z

∫ ∞
0

[
f − e−tAf

]
hm(t) dt

+ 2

∫ z

0

∫
(0,x]

Au(v) dµm(v) dx
(4.15)

for every z ∈ [0,∞).

We note that by the Radon property of the measure µm it follows that
L∞(0,∞;X) is contained in L1

loc,µm
([0,∞);X). Thus, by Remark 4.1, the

representation (4.15) of u implies that u is a weak solution of Dirichlet prob-
lem (4.2). The statement of Theorem 4.4 establishes our main result Theo-
rem 1.9.

The proof of Theorem 4.4 proceeds in several steps. We begin by showing
that u(z) ∈ D(A) for every z ∈ (0,∞) and that statement 3 holds.

Lemma 4.5. In addition to the hypotheses of this subsection, let f ∈ D(A),
and u be given by (4.13). Then for every z ∈ (0,∞), u(z) ∈ D(A) and

(4.16) Au(z) =

∫ ∞
0

(Ae−tAf)ωτ (t, z) dt.

Moreover, one has that

(4.17) sup
z∈[0,∞)

‖Au(z)‖X ≤ ‖Af‖X .

Proof. Let f ∈ D(A), u be given by (4.13), and z ∈ (0,∞). Then by f ∈ D(A),
we have that Ae−tAf = e−tA(Af), and since the family {e−tA}t≥0 consists of
contractive operators e−tA ∈ L(X), one sees that∫ ∞

0
‖Ae−tAf‖X ωτ (t, z) dt =

∫ ∞
0
‖e−tA(Af)‖X ωτ (t, z) dt

≤ ‖Af‖X
∫ ∞

0
ωτ (t, z) dt

≤ ‖Af‖X ,

(4.18)

showing that the function g(t) := e−tAf ωτ (t, z) is Bochner integrable. Since
A is a closed linear operator on a Banach space X, g(t) ∈ D(A) for every
t ≥ 0, it follows from [3, see Proposition 1.1.7] that u(z) =

∫∞
0 g(t) dt belongs

to D(A) and (4.16) holds. Now, thanks to (4.16), the estimates in (4.18) show
that (4.17) holds. �

Our next step is to calculate for the function u given by (4.13) the integral
on the left hand-side of (4.19) below. To do this, we employ the integral
identity from Lemma 3.29.

Lemma 4.6. In addition to the hypotheses of this subsection, let f ∈ D(A),
u be given by (4.13), and βm the antiderivative of the density hm of the Lévy
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measure νm is defined as in (3.34). Then one has that

2

∫ z

0

∫
(0,x]

Au(v) dµm(v) dx = 2z

∫ ∞
0

(Ae−tAf)βm(t) dt

−
∫ ∞

0
(Ae−tAf)Pz(τ > t) dt,

(4.19)

for every z ∈ (0,∞).

Proof. Let f ∈ D(A) and z ∈ (0,∞). Then, by (4.16),∫ z

0

∫
(0,x]

Au(v) dµm(v) dx =

∫ z

0

∫
(0,x]

∫ ∞
0

(Ae−tAf)ωτ (t, v) dtdµm(v) dx.

Since∫ z

0

∫
(0,x]

∫ ∞
0
‖Ae−tAf‖X ωτ (t, v) dt dµm(v) dx ≤ z µm((0, z]) ‖Af‖X ,

it follows from Fubini’s theorem for Bochner Integrals (see, for instance, [3,
Theorem 1.1.9]) and by Lemma 3.29 that

2

∫ z

0

∫
(0,x]

Au(v) dµm(v) dx

= 2

∫ z

0

∫
(0,x]

∫ ∞
0

(Ae−tAf)ωτ (t, v) dtdµm(v) dx

=

∫ ∞
0

(Ae−tAf)

(
2

∫ z

0

∫
(0,x]

ωτ (t, v) dµm(v) dx

)
dt

=

∫ ∞
0

(Ae−tAf)
(

2 z βm(t)− Pz(τ > t)
)

dt.

From this, one sees that (4.19) holds. �

We are now ready to prove the remaining statements of Theorem (4.4).

Proof of Theorem 4.4. Given f ∈ D(A) and for z ∈ (0,∞), let u be given
by (4.13). We focus on proving the characterization (4.15). By Lemma 4.6,
and since

d
dte
−tAf +Ae−tAf = 0,

it follows that

2

∫ z

0

∫
(0,x]

Au(v) dµm(v) dx

= 2z

∫ ∞
0

(Ae−tAf)βm(t) dt−
∫ ∞

0
(Ae−tAf)Pz(τ > t) dt

= 2z

∫ ∞
0

(Ae−tAf)βm(t) dt+

∫ ∞
0

Pz(τ > t)
d

dt
e−tAf dt.

(4.20)

To complete the proof of the representation (4.15), it remains to compute the
integral terms on the left hand-side of (4.20). Since ωτ (t, z) is the probability
density of the first hitting time τ , and since t 7→ ωτ (t, z) is continuous on
(0,∞), we have that

d

dt
Pz(τ > t) = −ωτ (t, z) for every t > 0 and z ∈ (0,∞).
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By using this together with an integration by parts, one sees that

(4.21)

∫ ∞
0

Pz(τ > t)
d

dt
e−tAf dt = −f +

∫ ∞
0

e−tAf ωτ (t, z) dt = −f + u(z)

completing the computation of one of the two integral terms on the left hand-
side of (4.20). Before we can compute also the second integral term on the
left hand-side of (4.20), we require proving that the two limits

(4.22) lim
t→0+

βm(t)
(
f − e−tAf

)
= lim

t→∞
βm(t)

(
f − e−tAf

)
= 0

exist in X. Since f ∈ D(A), and since {e−tA}t≥0 is contractive on X, one has
that

‖f − e−tAf‖X =

∥∥∥∥∫ t

0
e−sA(−Af) ds

∥∥∥∥
X

≤ t ‖Af‖X .

Thus, and by (3.36) from Proposition 3.36, one sees that

lim
t→0+

|βm(t)| ‖f − e−tAf‖X ≤ lim
t→0+

‖Af‖X |tβm(t)| = 0.

To see that the second limit in (4.22) holds as well, we use again that the
semigroup {e−tA}t≥0 is contractive on X and apply (3.36). Then, one easily
sees that

lim
t→∞
|βm(t)| ‖f − e−tAf‖X ≤ lim

t→∞
|βm(t)| 2 ‖f‖X = 0.

Now, by (3.35) from Proposition 3.36, an integration by parts yields that

2 z

∫ ∞
0

(
Ae−tAf

)
βm(t) dt

= 2 z

∫ ∞
0

d

dt

(
f − e−tAf

)
βm(t) dt

= 2 z

∫ ∞
0

(
f − e−tAf

)
hm(t) dt− lim

t→∞
2 z
(
f − e−tAf

)
βm(t)

+ lim
t→0+

2 z
(
f − e−tAf

)
βm(t)

and so, (4.22) implies that

(4.23) 2 z

∫ ∞
0

(
Ae−tAf

)
βm(t) dt = 2 z

∫ ∞
0

(
f − e−tAf

)
hm(t) dt.

Applying (4.21) and (4.23) to (4.20), one finds the desired representation (4.15)
of u. Further, by the integral representation (4.15), it follows that u belongs to

W 1,1
loc ([0,∞);X) and u(0) = f in X. This completes the proof of Theorem 4.4.

�

4.4. Proof of Theorem 1.13: a first hitting time approach. In this
subsection, we outline the proof of Theorem 1.13 based on a first hitting time
approach.

Proof of Theorem 1.13. Let f ∈ D(A), and u be the unique weak solution
of Dirichlet problem (4.2). Then, by the continuity of u and by (4.17), the
function

g(x) :=

∫
(0,x]

Au(v) dµm(v) for every x ∈ [0,∞),
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is right-continuous at x = 0 and g(0+) = 0. Therefore, we can conclude from
(4.15) that

du

dz+
(0) = lim

h→0+

u(h)− u(0)

h

= lim
h→0+

[
(−2)

∫ ∞
0

(f − e−tAf)hm(t) dt

+
2

h

∫ h

0

∫
(0,x]

Au(v) dµm(v) dx

]

= (−2)

∫ ∞
0

(f − e−tAf)hm(t) dt

and so,

Λmf = m(0+)Au(0)− 1

2

du

dz+
(0)

= m(0+)Af +

∫ ∞
0

(f − e−tAf)hm(t) dt

= ψm(A)f.

According to Phillips’ subordination theorem (Theorem 3.45), the domain
D(A) of A is a core of D(ψm(A)). Thus, we have thereby shown that the two
operators Λm and ψm(A) coincide.

Further, let {L̃−1
t }t≥0 be the local inverse time at zero of the generalized

diffusion process {Zt}t≥0 associated with m. Then by Knight’s theorem (see
Theorem 3.8), the Laplace transform determines uniquely (see (3.11)) that
the convolution semigroup {γt}t≥0 of sub-probability measures γt on [0,∞)
associated with ψm has to be given by the push-forward measure (1.23). Thus
and by (3.41) from Proposition 3.43, one sees that

e−tψm(A)f =

∫
[0,∞)

e−sAf dγt(s) = E
(
e−L̃

−1
t Af

)
for every t ≥ 0, f ∈ X, showing that (1.26) holds. This completes the proof
of this theorem. �

4.5. Stability: Proof of Theorem 1.17. This section is dedicated to outline
the proof of Theorem 1.17.

We begin this subsection with the following lemma.

Lemma 4.7. Let m ∈ m∞ and for every n ∈ N, mn ∈ m∞ be strings on
R of infinite length respectively with associated measures µm and µmn. If
mn(z)→ m(z) as n→∞ for every continuity point z ∈ R of m, then one has
that

(4.24) lim
n→∞

L−1
mn,t = L−1

m,t P-a.e. and for all t ≥ 0.

where denote by {L−1
mn,t}t≥0 and {L−1

m,t}t≥0 the inverse local time process at
zero of the generalized diffusions {Zmn,t}t≥0 and {Zm,t}t≥0 associated with
mn and m.
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For the proof of this lemma, we use the Portmanteau theorem applied to
the special case that the sequence {µmn}n≥1 of measures µmn is induced by a
string mn ∈ m∞.

Theorem 4.8 ([35, Theorem 21.15]). Let m and mn for every n ∈ N, be
monotone increasing functions on R and µm and µmn the associated measures
to m and mn, respectively. Then, the following statements are equivalent.

(1) One has that mn(z) → m(z) as n → ∞ for every continuity point
z ∈ R of m;

(2) One has that µmn → µm as n→∞ vaguely.

With this result in mind, we can now outline the proof of Lemma 4.7.

Proof of Lemma 4.7. Since each mn and m are strings on R of infinite length,
(3.7) yields that the associated inverse local time process {L−1

mn,t}t≥0 and

{L−1
m,t}t≥0 at zero of the generalized diffusions {Zmn,t}t≥0 associated with mn

and {Zm,t}t≥0 associated with m admit the integral representation

L−1
mn,t =

∫
[0,∞)

LL−1
t

(z) dµmn(z) and L−1
m,t =

∫
[0,∞)

LL−1
t

(z) dµm(z)

P-a.e. and for all t ≥ 0. Moreover, according to Theorem 4.8, the pointwise
convergence of mn(z) → m(z) as n → ∞ at every continuity point z ∈ R of
m yields that µmn → µm as n → ∞ vaguely. Thus, in order to establish the
desired limit (4.24), it is sufficient to show that

(4.25) lim
n→∞

∫
[0,∞)

Lt(z) dµmn(z) =

∫
[0,∞)

Lt(z) dµm(z)

P-a.s. for every t ≥ 0. Note, the limit (4.25) follows from the vaguely con-
vergence µmn → µm as n → ∞ provided that for every t ≥ 0, the map Lt is
continuous and has a compact support in [0,∞). To see that the latter holds,
recall that the local time process {Lt(z)}t≥0 of {B+

t }t≥0 is a jointly continu-
ous mapping L : [0,∞) × [0,∞) → [0,∞) assigning (t, z) 7→ Lt(z). Thus, for
every t ≥ 0, Lt : [0,∞) → [0,∞) is continuous. To see that for every t ≥ 0,
the map Lt has a compact support in [0,∞), set M := sups∈[0,t]B

+
s . By the

continuity of the reflecting Brownian motion {B+
t }t≥0, the upper bound M is

finite and so, by applying the occupation times formula (3.1) to the function
g := 1(M,∞), we can conclude that∫ ∞

M
Lt(z) dz =

∫ t

0
1(M,∞)(B

+
s ) ds = 0.

This shows that for every t ≥ 0, Lt(z) = 0 for every z > M , that is, the
function z 7→ Lt(z) has compact support in [0,∞). This proves (4.25). This
completes the proof of this lemma. �

Now, we are ready to give the proof of Theorem 1.17.

Proof of Theorem 1.17. Let A be an m-accretive operator on X, and for given
strings {mn}n≥1 ⊆ m∞ and m ∈ m∞, let ψmn be the associated complete Bern-

stein function given by (3.12). Further, let {e−tψmn (A)}t≥0 and {e−tψm(A)}t≥0
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be the semigroups generated by −ψmn(A) and −ψm(A) on X, respectively.
Then, our first aim is to show that for every f ∈ X,

(4.26) e−tψmn (A)f → e−tψm(A)f in X pointwise for every t ≥ 0.

According to Theorem 1.13, the operator ψmn(A) and ψm(A) respectively
coincide with their Dirichlet-to-Wenzell operator Λmn and Λm given by (1.6).
In particular, by the integral representation (1.26) of Theorem 1.13, one has
that can be rewritten as

e−tψmn (A)f = E
(
e−L̃

−1
mn,t

Af
)

and e−tψm(A)f = E
(
e−L̃

−1
m,tAf

)
,

where {L̃−1
mn,t}t≥0 and {L̃−1

m,t}t≥0 are respectively the local inverse times at
zero of the generalized diffusions {Zmn,t}t≥0 associated with mn and {Zm,t}t≥0

associated with m. From this, one sees that

‖e−ψm(A)tf − e−ψmn (A)tf‖X ≤ E
∥∥∥e−L̃−1

m,tAf − e−L̃
−1
mn,t

Af
∥∥∥
X
.

Since the semigroup {e−tA}t≥0 is contractive and strongly continuouse−tA,
limit (4.26) follows from Lebesgue’s dominate convergence theorem and by
limit (4.24).

Now, for every λ > 0, let R(λ, ψ̃m(A)) := (λidX+ψ̃m(A))−1 be the resolvent

operator of ψ̃m(A) on X and for every n ≥ 1, let R(λ, ψmn(A)) be the resolvent
operator of ψmn(A). Then by [14, Theorem 1.10 in Chapter II.], for every

f ∈ X, R(λ, ψ̃m(A))f and R(λ, ψmn(A))f admit the integral representations

R(λ, ψ̃m(A))f =

∫ ∞
0

e−λte−tψ̃m(A)f dt

and

R(λ, ψmn(A))f =

∫ ∞
0

e−λte−tψmn (A)f dt

from where one can conclude that

‖R(λ, ψ̃m(A))f −R(λ, ψmn(A))f‖X

≤
∫ ∞

0
e−λt

∥∥∥e−tψ̃m(A)f − e−tψmn (A)f
∥∥∥
X

dt.

Thus, by (4.26), and since the semigroups {e−tψ̃m(A)}t≥0 and {e−tψmn (A)}t≥0

are contractive, Lebesgue’s dominate convergence theorem yields that

lim
n→∞

R(λ, ψmn(A))f = R(λ, ψ̃m(A))f in X,

for every λ > 0 and f ∈ X; that is, ψmn(A)→ ψ̃m(A) strongly in the resolvent
sense. By Trotter-Kato’s first approximation theorem (see Remark 1.18), this
type of convergence is equivalent to the type of convergence stated in Theo-
rem 1.17. �

5. Application

In order to demonstrate the usefulness of the main results of this paper, we
discuss in this section one classical example.
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5.1. Limits of fractional powers Aσ as σ → 1−. Let A be an m-accretive
operator on Banach space X. Then, we intend to give a proof of the limit

(5.1) lim
σ→1−

Aσ = A in the graph sense

by using Theorem 1.17. It is worth noting that this limit has been well studied
(see, for instance, [7, Lemma 2.3]). Here, we provide an alternative, which from
our perspective is much simpler.

For given 0 < σ < 1 and f ∈ D(A), we begin by realizing the fractional
power Aσ by the Dirichlet-to-Neumann operator Λm̃σ associated with the fol-
lowing incomplete Dirichlet problem

(5.2)

{
Au(z)−

(
σ

1−σ

)
z

2σ−1
σ

d2u
dz2 (z) = 0 for z ∈ (0,∞),

u(0) = f,

for the extension operator

Am̃σ = A+Bm̃σ with Bm̃σ = −
( σ

1− σ

)
z

2σ−1
σ

d2

dz2
.

By comparing Dirichlet problem (5.2) with (1.2) from the introduction, then
one realized that the extension equation

Am̃σu = 0 on X+

in problem (5.2) is a scaled version (by the factor σ/(1− σ)) of the extension
equation Amσ = 0 employed in Example 1.2. In fact, this is one possibility
to circumvent the fact that for the string mσ introduced in (1.14) the limit as
σ → 1− does not exist. The string m̃σ corresponding to Dirichlet problem (5.2)
is given by

(5.3) m̃σ(z) =
σ

1− σ
mσ(z) =

{
1
2z

1−σ
σ if z ≥ 0,

0 if z < 0,

for every z ∈ R, and the associate complete Bernstein function

ψm̃σ(λ) =
σσ−1(1− σ)σ

2

Γ(1− σ)

Γ(σ)
λσ for every λ ≥ 0.

Then, by our main Theorem 1.13, the Dirichlet-to-Neumann operator Λm̃σ
associated with Am̃σ characterizes Aσ up to a multiplicative constant; namely,
one has that

Λm̃σ =
σσ−1(1− σ)σ

2

Γ(1− σ)

Γ(σ)
Aσ

(cf. the results mentioned in Section 2.3). Since for the family {m̃σ}σ∈(0,1) of
strings,

lim
σ→1−

m̃σ(z) = m(z) :=

{
1
2 if z ≥ 0,

0 if z < 0

the Heaviside step function, by Theorem 1.17 and Example 1.8, we get that

lim
σ→1−

σσ−1(1− σ)σ

2

Γ(1− σ)

Γ(σ)
Aσ =

1

2
A in the graph sense.



46 DANIEL HAUER AND DAVID LEE

From this and since

lim
σ→1−

σσ−1(1− σ)σ
Γ(1− σ)

Γ(σ)
= 1,

we can conclude that limit (5.1) holds.

Remark 5.1 (Probabilistic justification). Since Aσ coincides up to a scalar
multiple with the Dirichlet-to-Neumann operator associated with the exten-
sion operator A+ Bmσ on X+ = X × (0,∞) and Bmσ is the generator of the
2σth-powered process {Y 2σ

t }t≥0 in [0,∞) of the Bessel process {Yt}t≥0 of di-
mension 2(1−σ), the limit (5.1) can be justified with probabilistic arguments.
In fact, the limit (5.1) means that the process induced by Aσ changes to the
process generated by A. This makes sense if one considers the interaction of
the Bessel process with the left boundary point z = 0. For σ ∈ (0, 1), the set
{0} is reflecting for the Bessel process of dimension 2(1 − σ). For the Bessel
process of dimension 0, the case when σ = 1, the set {0} is absorbing.

To conclude this section we note that both strings mσ from (1.14) and m̃σ

from (5.3) can’t be used in combination with Theorem 1.17 for proving that

lim
σ→0+

Aσ = idX in the graph sense

holds for any given m-accretive operator A on Banach space X. The reason
for this is that the pointwise limit

lim
σ→0+

mσ(z) = lim
σ→0+

m̃σ(z) = m(z) :=

{
∞ if z > 1,

0 if z ≤ 1,

the Delta-function, is not a string.

Appendix A. A Primer on Bessel processes

In this subsection, we give a brief reminder on the theory of Bessel processes.
For a detailed review of this subject, we refer the interested reader to [31,
Chapter IX] or [39, Chapter 3]. Throughout this paper, we denote by {Bt}t≥0

a standard Brownian motion in R starting at x = 0.

We begin by recalling the definition of the squared Bessel process of di-
mension δ ≥ 0; this process {Y 2

t }t≥0 is the unique, continuous, non-negative
process defined by the stochastic differential equation (SDE)

Y 2
t = y2 + δt+

∫ t

0
2
√
Y 2
s dBs for every t ≥ 0, y ∈ R.

Then, for δ ≥ 0, the δ-Bessel process {Yt}t≥0 is obtained by taking the square
root

(A.1) Yt :=
√
Y 2
t for every t ≥ 0.

In the case δ > 1, Itô’s Lemma yields that the δ-Bessel process {Yt}t≥0 is
the unique solution to the SDE

(A.2) Yt = y +
δ − 1

2

∫ t

0

1

Ys
ds+Bt for every t ≥ 0, y ≥ 0.

It is well known that equation (A.2) satisfies path-wise uniqueness and has
strong solutions due to the drift being monotone decreasing (cf., [39, Theorem
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3.2]). For δ = 1, the squared Bessel process {Yt}t≥0 coincides with the squared
Brownian motion and hence, the 1-Bessel process {Yt}t≥0 coincides with the
reflecting Brownian motion {B+

t }t≥0, which is the unique solution of the SDE

(A.3) B+
t = y +Bt + Lt for every t ≥ 0, y ≥ 0,

where {Lt}t≥0 is a continuous, monotone, non-decreasing process, with L0 = 0,

dLt ≥ 0, and
∫ t

0 B
+
s dLs = 0 for all t ≥ 0. Uniqueness of the solution {B+

t }t≥0

to (A.3) follows from the Skorokhod lemma (see [39, Lemma 2.1]).
In the case 0 < δ < 1, the situation is far more delicate and the δ-Bessel

process {Yt}t≥0 is no longer a solution of equation (A.2). Instead (cf., [39,
Proposition 3.8 & 3.12]), for the process {Yt}t≥0 given by (A.1), there is a
continuous family {`at }a,t≥0, called diffusion local times, satisfying the occupa-
tion times formula ∫ t

0
ϕ(Yr) dr =

∫ ∞
0

ϕ(a) `at a
δ−1 da

for all t ≥ 0 and bounded and Borel-measurable functions ϕ : R+ → R+, and
{Yt}t≥0 satisfies

Yt = y +
δ − 1

2(2− δ)

∫ ∞
0

`at − `0t
a

aδ−1 da+Bt for all t ≥ 0, y ≥ 0.

The next result due to Donati-Martin, Roynette, Vallois and Yor [12] is
quite important for understanding the probabilistic approach to the Dirichlet-
to-Neumann operator in the fractional power case as discussed in Section 2.

Theorem A.1. For σ ∈ (0, 1), let δ = 2(1 − σ) and {Yt}t≥0 be the δ-Bessel
process starting at y = 0. Then, the 2σth-powered process {Y 2σ

t }t≥0 is a sub-
martingale with the Doob-Meyer decomposition

Y 2σ
t = 2σ

∫ t

0
Y 2σ−1
r dBr + Lt

where {Lt}t≥0 is a continuous non-decreasing process, carried by the zeros of
{Yt}t≥0; that is, {Lt}t≥0 only increases when Yt = 0. Further, the inverse local

time process {L−1
t }t≥0 of {Lt}t≥0 given by

L−1
t := inf

{
r > 0

∣∣∣Lr > t
}
, (t ≥ 0),

is an σ-stable subordinator satisfying

E
(
e−uL

−1
t

)
= e
−tΓ(1−σ)

Γ(1+σ)
uσ

2σ for every t, u > 0

and Lévy measure ν given by (2.11).

Appendix B. A distributional definition of df
dm

The first section of the appendix deals with some reminder on distributional
definition of df

dm when m ∈ m∞ is a string and f : [0,∞) → X is a Banach
space X-valued measurable function. Throughout this section, let X be a
Banach space with norm ‖·‖X and X ′ its dual space with duality brackets
〈·, ·〉X′,X and m ∈ m∞ a string with associated measure µm.

We begin by considering the smooth case.
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Definition B.1. We say that a function f : [0,∞) → X is m-differentiable
at t ∈ (0,∞) provide the limit

df

dm
(t) := lim

h→0

f(t+ h)− f(t)

m(t+ h)−m(t)
exists in X.

Then, we call df
dm(t) the (classic) m-derivative of f at t ∈ (0,∞).

Of course, one natural question is to ask, which functions arem-differentiable.
One example is given by the following result generalizing the classic theorem
of Lebesgue (see, e.g., [28, Theorem 1.18]).

Theorem B.2. Let m ∈ m∞ be a string with associated measure µm. Then
every monotone function f : [0,∞)→ R is µm-a.e. m-differentiable.

Proof. By Lebesgue’s theorem, the two sets

Nf :=
{
t ∈ [0,∞)

∣∣∣ f ′(t) does not exist
}

and

Nm :=
{
t ∈ [0,∞)

∣∣∣m′(t) does not exist
}

are measurable subsets of [0,∞) with Lebesgue measure λ(Nf ) = 0 and
λ(Nm) = 0. Further, we decompose [0, rm) into three disjoint Borel-measurable
sets

A1 =
{
t ∈ N c

m

∣∣∣m′(t) = 0
}
, A2 =

{
t ∈ N c

m |m′(t) 6= 0
}
, A3 = Nm.

By the partition (Ai)
3
i=1 of [0,∞), one has that

[0,∞) = Nf ∪̇N c
f =

⋃̇3

i=1
(N c

f ∩Ai) ∪̇
⋃̇3

i=1
(Nf ∩Ai).

Since the support Em := supp(µm) of the measure µm is the set where m
increases, one has that µm(A1) = 0 and µm(A3) = 0. Thus, by the mono-
tonicity of µm, we can conclude that µm(Nf ∩ A1) = 0, µm(N c

f ∩ A1) = 0,

µm(Nf ∩ A3) = 0, and µm(N c
f ∩ A3) = 0. Therefore, it remains to focus on

the two cases

Nf ∩A2 =
{
t
∣∣∣m′(t) 6= 0 & f ′(t) does not exist

}
and

N c
f ∩A2 =

{
t
∣∣∣m′(t) 6= 0 & f ′(t) does exist

}
.

By Lebesgue ’s decomposition (cf., [28, Theorem B.67 & Section 6.3]), the
Lebesgue-Stieltje measure µm has the unique decomposition

µm = µm,ac + µm,s,

where µm,ac is absolutely continuous w.r.t. the Lebesgue measure λ and µm,s
is singular. Moreover, µm,ac is given by

µm,ac(E) =

∫
E∩Nc

m

m′(t) dλ(t)

for every Borel-measurable subset E of [0,∞). But since Nf has Lebesgue
measure λ(Nf ) = 0, we also have that

µm(Nf ∩A2) = µm,ac(Nf ) = 0.
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Therefore, we have shown that the set

N := [0,∞) \ (Nf ∩A2)

has measure µm(N) = 0 and

df

dm
(t) exits at all t ∈ [0,∞) \N =

{
t ∈ [0,∞)

∣∣∣m′(t) 6= 0 & f ′(t) exists
}

.

�

For the moment, suppose the string m ∈ m∞ is a smooth real-valued func-
tion satisfying m′ ≥ c0 on R+ for some c0 > 0. Then, the associated measure
µm to m is absolutely continuous with respect to the Lebesgue measure and
if f is differentiable at t, then one easily sees that f is, in particular, m-
differentiable and

df

dm
(t) = lim

h→0

f(t+ h)− f(t)

h

h

m(t+ h)−m(t)
= f ′(t)

1

m′(t)
.

Now, set g(t) := df
dm(t) and recall that Radon-Nikodym derivative dµm

dt (t) =
m′(t) on (0,∞). Therefore, an integration by parts shows that∫ ∞

0
g(t) ξ(t)dµm(t) =

∫ ∞
0

f ′(t)
1

m′(t)
ξ(t)dµm(t)

=

∫ ∞
0

f ′(t) ξ(t)dt

= −
∫ ∞

0
f(t) ξ′(t)dt

for every real-valued test function ξ ∈ C∞c ((0,∞)). We emphasize that since
the measure µm associated to the given string m is a Radon measure on [0,∞),
we have the following result.

Lemma B.3. Let m ∈ m∞ be a string with associated measure µm. If a
function f ∈ L1

loc,µm
(0,∞;X) satisfies

(B.1)

∫ ∞
0

f(t) ξ(t) dµm(t) = 0

for all ξ ∈ C∞c ((0,∞)), then f(t) = 0 in X for a.e. t ∈ (0,∞).

Proof. Let ξ ∈ C∞c ((0,∞)) and suppose (B.2) holds. Then multiplying (B.2)
by x′ ∈ X gives ∫ ∞

0
〈x′, f(t)〉X′,X ξ(t) dµm(t) = 0

Since the measure µm associated to the given string m is a Radon mea-
sure on [0,∞), and the scalar-valued function t 7→ 〈x′, f(t)〉X′,X belongs to
L1
loc,µm

(0,∞), it follows from [32, Theorem 3.14] that 〈x′, f(t)〉X′,X = 0 for

a.e. t ∈ (0,∞). Since x′ ∈ X ′ was arbitrary, and the dual space X is sepa-
rating elements of X (Hahn-Banach), we can conclude that f(t) = 0 in X for
a.e. t ∈ (0,∞). �

Because of Lemma B.3, Definition 1.3 of the weak m-derivative make sense.
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Definition B.4. For a given string m ∈ m∞ on R, a function f : [0,∞)→ R is
called to bem-continuous at t0 ∈ (0,∞) if for every ε > 0 there is an δ > 0 such
that for all t ∈ [0,∞) satisfying |m(t0)−m(t)| < δ, one has ‖f(t)−f(t0)‖X < ε.
Further, f is called uniformly m-continuous on [0,∞) if for every ε > 0 there is
an δ > 0 such that for all t1, t2 ∈ [0,∞) satisfying |m(t1)−m(t2)| < δ, one has
‖f(t1)− f(t2)‖X < ε. Finally, f is called absolutely m-continuous on [0,∞) if
for every ε > 0 there is an δ > 0 such that for every finite family ((ak, bk))

n
k=1

of disjoint sub-intervals of [0,∞) satisfying
∑n

k=1|m(bk)−m(ak)| < δ, one has∑n
k=1‖f(bk)− f(ak)‖X < ε.

Proposition B.5. Let m ∈ m∞ be a string with associated measure µm. If
g ∈ L1

loc,µm
([0,∞);X) then

f(t) :=

∫ t

t0

g(r) dµm(r), t ∈ [0,∞),

is locally m-absolutely continuous on [0,∞) and at µm-a.e. t ∈ [0,∞), f(t) is

m-differentiable with df
dm(t) = g(t).

Proof. Since f satisfies

‖f(t)− f(s)‖X ≤
∫ t

s
‖g(r)‖X dµm(r)

for every t, s ∈ [0,∞) with s < t, it follows that f is m-absolutely continuous.
By [1, Corollary 2.23], one has that for every µm-Lebesgue point t ∈ [0,∞),

lim
h→0+

1
m(t+h)−m(t−h)

∫ t+h

t−h
‖g(r)− g(t)‖X dµm(r) = 0.

Further, for such t ∈ [0,∞) and h > 0, one has that∥∥∥∥g(t)− f(t+ h)− f(t)

m(t+ h)−m(t)

∥∥∥∥
X

=

∥∥∥∥g(t)− 1
m(t+h)−m(t)

∫ t+h

t
g(r) dµm(r)

∥∥∥∥
X

≤ 1
m(t+h)−m(t)

∫ t+h

t
‖g(t)− g(r)‖X dµm(r).

Similarly, for such t ∈ [0,∞) and h < 0,∥∥∥∥g(t)− f(t+ h)− f(t)

m(t+ h)−m(t)

∥∥∥∥
X

≤ 1
m(t)−m(t+h)

∫ t

t+h
‖g(t)− g(r)‖X dµm(r).

Now, by letting h→ 0+ in the above estimates yields that f is m-differentiable
with df

dm(t) = g(t). �

Further, we have the following important lemma.

Lemma B.6. If a function f ∈ L1
loc(0,∞;X) satisfies

(B.2)

∫ ∞
0

f(t) ξ′(t) dµm(t) = 0

for all ξ ∈ C∞c ((0,∞)), then there is a C ∈ X such that f(t) = C for a.e.
t ∈ (0,∞).
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Proof. Let ξ and η ∈ C∞c ((0,∞)) such that η 6= 0. Since η− ξ′ ∈ C∞c ((0,∞)),
the function

χ(t) :=
η(t)− ξ′(t)∫∞

0 η(r) dµm(r)
, t ∈ (0,∞),

belongs to C∞c ((0,∞)) and
∫∞

0 χ(r) dµm(r) = 1. Inserting ξ into (B.2) gives

0 =

∫ ∞
0

f(t) ξ′(t) dµm(t)

=

∫ ∞
0

f(t) η(t) dµm(t)−
∫ ∞

0

(
f(t)χ(t)

∫ ∞
0

η(r) dµm(r)

)
dµm(t)

=

∫ ∞
0

(
f(t)−

∫ ∞
0

f(r)χ(r)dµm(r)

)
η(t) dµm(t)

Since η ∈ C∞c ((0,∞)) was arbitrary, it follows from Lemma B.3 that

f(t) = C :=

∫ ∞
0

f(r)χ(r)dµm(r) for a.e. t ∈ (0,∞).

�

Thanks to the above lemma, we can make the following statements.

Proposition B.7. Let m ∈ m∞ be a string with associated measure µm. Fur-
ther, let f ∈ L1

loc([0,∞);X) and g ∈ L1
loc,µm

([0,∞);X). Then, the following
statements are equivalent.

(1) One has that g = df
dm is the weak m-derivative of f ;

(2) There is an x ∈ X such that

(B.3) f(t) = x+

∫ t

0
g(r) dµm(r), a.e. on [0,∞).

Proof. We show that (1) implies (2). For this, set

w(t) = f(t)−
∫ t

0
g(r) dµm(r), t ∈ [0,∞).

Then, by Fubini’s theorem,∫ ∞
0

(∫ t

0
g(r) dµm(r)

)
ξ′(t) dt =

∫ ∞
0

(∫ ∞
r

ξ′(t) dt

)
g(r) dµm(r)

= −
∫ ∞

0
g(r) ξ(r)dµm(r)

and so,∫ ∞
0

w(t) ξ′(t) dt =

∫ ∞
0

f(t) ξ′(t) dt−
∫ ∞

0

(∫ t

0
g(r) dµm(r)

)
ξ′(t) dt = 0.

Therefore, (B.3) follows from Lemma B.6. The implication (2) implies (1)
follows from Proposition B.5. �
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