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ABSTRACT. We investigate minimal degrees of groups associated with certain wreath products. We
construct sequences of groups with the property that some proper quotients are isomorphic to sub-
groups having the same minimal degree, thus having the so-called almost exceptional property. We
show that it is possible to have an almost exceptional group with an arbitrarily long chain of normal
subgroups with respect to which the quotients all have the same minimal degree, whilst at the same
time having arbitrarily many subgroups, also with the same minimal degree, but which are pairwise
incomparable. The results depend on a theory of semidirect products, where the base group is a
k-dimensional vector space over the field with p elements, where p is a prime and k is a positive
integer, extended by a cyclic group of order p, represented by a k× k matrix. This theory uncovers
a large class of nonabelian groups of exponent p. A final application is made to construct sequences
of groups with the property that the direct products have minimal degrees that grow as a linear func-
tion of the number n of factors, whilst their respective quotients, realised as central products, have
minimal degrees that grow as an exponential function of n, generalising a result of Peter Neumann.

1. INTRODUCTION

Throughout this paper, all groups will be finite, Cn denotes a cyclic group of order n, Z(G)

denotes the centre of a group G, and Zp = {0,1, . . . , p−1} is the field with p elements for a prime
p. Addition and subtraction of subscripts should be interpreted modulo p.

The minimal (faithful) degree µ(G) of a group G is the least nonnegative integer such that G em-
beds in the symmetric group Sym(n) of permutations on a set of size n. If G is nontrivial then µ(G)

is the minimal sum of indexes for any non-empty collection of subgroups C = {H1, . . . ,Hk} with a
trivial core intersection, in which case we say that C affords a minimal (faithful) representation of
G. In this case, the subgroups H1, . . . ,Hk become the stabilisers of points in the respective orbits for
the permutation action of G, and the orbits may be identified with the sets of cosets of H1, . . . ,Hk in
G respectively. When k = 1, there is a single orbit and the representation is transitive. One of the
earliest results is due to Karpilovsky [9], which calculates minimal degrees of abelian groups, and
which will be used implicitly throughout:

Theorem 1.1. [9] If G = C
pi1

1
. . .Cpin

n
is an abelian group where n, i1, . . . , in are positive integers

and p1, . . . , pn are primes, then µ(G) = pi1
1 + . . .+ pin

n .

Johnson [8] proved a number of seminal results, including the following:
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Theorem 1.2. [8, Theorem 3] If p is an odd prime and G is a nontrivial p-group whose centre is
minimally generated by d elements, then any minimal faithful representation of G is afforded by a
collection of d subgroups. In particular, if the centre is cyclic then a minimal representation of G
must be transitive.

Proposition 1.3. [8, Proposition 3] If p is an odd prime and G is a p-group whose centre is cyclic
or elementary abelian then µ(G)≥ pµ

(
Z(G)

)
.

Wright [14] proved that taking minimal degrees is additive with respect to taking direct products of
nilpotent groups (for which Theorem 1.1 becomes a special case):

Theorem 1.4. [14, Corollary 2] If G and H are nilpotent then µ(G×H) = µ(G)+µ(H).

Clearly if H is a subgroup of G then µ(H) ≤ µ(G). However if N is a normal subgroup then
µ(G/N) may be greater than µ(G). Neumann [13] observed that if G = Dn

8 is a direct product of n
copies of the dihedral group D8 then

µ(G) = 4n , (1)

whilst

µ(G/N) = 2n+1 (2)

if N is chosen so that G/N becomes (isomorphic to) the n-fold central product of n copies of D8.
This shows that the minimal degree of the direct product of n groups may grow as a linear function
of n, whilst the minimal degree of at least one of its quotients grows as an exponential function of n.
In fact, (1) follows from Theorem 1.4 and the fact that µ(D8) = 4, whilst (2) follows from Theorem
1.2, and a simple induction, since the central product has cyclic centre and a transitive representation
of a 2-group has degree a power of 2. This idea is adapted for odd primes p in Theorem 7.2 below
and is also captured in [5, Theorem 2.1].

Easdown and Praeger in [5] refer to a group G as exceptional if G has a normal subgroup N
such that µ(G/N) > µ(G), in which case N is called a distinguished subgroup and (any group
isomorphic to) G/N is called a distinguished quotient. They prove that the smallest exceptional
groups have order 32 and exhibit several classes of exceptional groups. Other examples and classes
of exceptional groups have been studied, for example, by Lemieux [12], Britnell, Saunders and
Skyner [1] and Chamberlain [2]. By (1) and (2), Neumann’s example, G = Dn

8, is exceptional, with
an n-fold central product as distinguished quotient, if and only if n ≥ 3. In the case n = 2, (1) and
(2) yield

µ(D8 ×D8) = µ(D8 ∗D8) = 8 . (3)

We say that a group G is almost exceptional if G has a nontrivial normal subgroup N such that
µ(G/N) = µ(G), in which case N is referred to as an almost distinguished subgroup and (any group
isomorphic to) G/N an almost distinguished quotient. Thus, by (3), the group D8 ×D8 is almost
exceptional of order 64 with almost distinguished quotient D8 ∗D8. It is not difficult to prove that
the smallest almost exceptional group is D8, of order 8, with almost distinguished quotient C2 ×C2:

µ(D8) = µ(C2 ×C2) = 4 . (4)

Kovacs and Praeger [10] classify almost exceptional groups with abelian quotients, of which (4)
is also the smallest example, and conjecture that no exceptional group exists with a distinguished
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abelian quotient. Progress towards resolving this conjecture, constraining properties of any hypo-
thetical counterexample, has been made in [11], [7] and [3].

The group D8 is also (isomorphic to) the smallest instance of a nontrivial wreath product Cp ≀Cp,
when p = 2. In Lemmas 6.5 and 6.6 below, we describe all sections of Cp ≀Cp, when p is any
prime, and prove, in Theorem 6.7 that all of the nonabelian sections of order at least p4 are almost
exceptional of minimal degree p2. The development of Theorem 6.7 and its supporting lemmas
relies on an analysis of groups that decompose as semidirect products of finite dimensional vector
spaces over Zp extended by Cp, adapting a technique and notation introduced in [6], and related
to the fact that indecomposable Cp-modules over Zp form a chain (see, for example, [4]). This
technique also provides a large class of nonabelian groups of exponent p, all of which are sections
of Cp ≀Cp (see Corollary 4.4, Corollary 4.10 and Theorem 4.11). The lattice of normal subgroups of
Cp ≀Cp is fully described (see Figure 1), demonstrating that it is possible to exhibit a single group
with an arbitrarily long chain of normal subgroups, yielding quotients all with the same minimal
degree, whilst at the same time exhibiting an arbitrarily large number of pairwise incomparable
subgroups all with the same minimal degree. Theorem 7.2, in the final section, provides an analogue
of (1) and (2), but using arbitrary combinations of nonabelian sections of Cp ≀Cp, for p an odd prime.

Section 2 records identities involving binomial coefficients, which may be of independent inter-
est, and used to prove Theorem 4.2, which is a key to the later sections of the paper, by establishing
isomorphisms between sections and subgroups of Cp ≀Cp.

Section 3 introduces two large classes of almost exceptional groups that arise as wreath prod-
ucts. The first class (see Theorem 3.3) involves groups whose orders are divisible by two distinct
primes, relying on results from [6], whilst the second class (see Theorem 3.5) involves p-groups,
the simplest case of which is Cp ≀Cp, which is examined in forensic detail in Sections 5 and 6.

Section 4 develops a theory of semidirect products, whose base groups are k-dimensional vector
spaces over the field with p elements, extended by the cyclic group of order p, whose generator is
represented by a k× k matrix, where k ≤ p. All of the groups that arise turn out to be sections of
the wreath product Cp ≀Cp and have exponent p or p2, and the results are then applied in Sections 5
and 6. Section 7 gives a final application, constructing sequences of p-groups, with direct products
that have minimal degrees that grow as a linear function of the number n of factors, whilst their
quotients, formed using central products, grow as an exponential function of n.

In case it is useful for future potential research, we have included, as an appendix, data related to
wreath products of orders up to 500. The calculations were made with the assistance of GAP and
MAGMA computer algebra software, and the group identification numbers are common to both
systems. This table includes examples where, in some cases, nonabelian or noncyclic groups are
used to build the base group or the extending group.

2. IDENTITIES INVOLVING BINOMIAL COEFFICIENTS

In this short section we highlight identities involving binomial coefficients, which may be of
independent interest, and which are used in the proof of Theorem 4.2 below. These identities are
easy to prove directly using a simple counting argument, and are surely well-known. The short
proof we provide here however exploits the polynomial (λ −1)k, which is part of the apparatus, in
Section 4, leading to the definition of an extension of a vector space by the cyclic group generated
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by its companion matrix, so it is perhaps not surprising that the identities arise in one of the main
proofs.

Lemma 2.1. Let i, k and ℓ be positive integers such that i, ℓ < k. Then the following hold:

(i) If ℓ < i then (
k
ℓ

)
=

ℓ

∑
m=0

(
k− i
ℓ−m

)(
i
m

)
.

(ii) If i ≤ ℓ then (
k
ℓ

)
−
(

k− i
ℓ− i

)
=

i−1

∑
m=M

(
k− i
ℓ−m

)(
i
m

)
where M = max{0, ℓ+ i− k}.

Proof. Observe that the following (real) polynomial equation holds:

(λ −1)k −λ i(λ −1)k−i = (λ −1)k−i((λ −1)i −λ i)
= (λ −1)k−i

( i−1

∑
m=0

(−1)i+m
(

i
m

)
λ m

)
.

The identities in (i) and (ii) follow by comparing binomial expansions on each side. □

3. WREATH PRODUCTS WITH ELEMENTARY ABELIAN BASE GROUP

Let p be a prime and n ≥ 2 an integer. Suppose in this section that G is a finite group represented
faithfully using permutations of n letters, so we may identify G with a subgroup of Sym(n). Form
the wreath product

W = Cp ≀G = Cn
p ⋊G .

We may write W as an internal semidirect product of an elementary abelian base group B ∼=Cn
p by

an extending group also identified with G

W ≡ BG = B1 . . .BnG ,

where B is an internal direct product of B1, . . . ,Bn, where

Bk = ⟨ak⟩ ∼= Cp

for 1 ≤ k ≤ n. Elements α of W may then be expressed uniquely in the form

α =
( n

∏
k=1

aik
k

)
g

for some g ∈ G and i1, . . . , in ∈ Zp. Thus, if α and β are elements of W , say

α =
( n

∏
k=1

aik
k

)
g and β =

( n

∏
k=1

a jk
k

)
h

for some g,h ∈ G and i1, . . . , in, j1, . . . , jn ∈ Zp, then the product αβ in W , involving the wreath
action, becomes

αβ =
( n

∏
k=1

aik+ jkg
k

)
gh . (5)

Note that

β−1 =
( n

∏
k=1

a
− jkh−1

k

)
h−1 , (6)
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and we get the following conjugation action:

αβ =
( n

∏
k=1

a
− jkh−1+ikh−1+ jkh−1g
k

)
gh . (7)

In particular (as an instance of (7), taking g = 1 and β = h), we get the following conjugation action
of an element h from G on an element of the base group::( n

∏
k=1

aik
k

)h
=

n

∏
k=1

a
ikh−1

k . (8)

Since Cp may be regarded as a permutation group on p letters, it follows quickly that W is iso-
morphic to a permutation group on pn letters, so that µ(W ) ≤ pn. But B is a subgroup of W , and
µ(B) = µ(Cn

p) = pn, so, also, µ(W )≥ pn, whence

µ(W ) = np . (9)

Note that the minimal degree of W is determined by the base group B only, regardless of whether or
not the wreathing group G is represented minimally as a permutation group.

Suppose that G has m orbits, say Ω1, . . . ,Ωm. For 1 ≤ i ≤ m put

δi = ∏
k∈Ωi

ak ,

which is clearly central in W (since any element of G permutes subscripts of generators associated
with any given orbit by conjugation). Consider also

δ = a1 . . .an =
m

∏
i=1

δi .

Then δ is also central in W , being a product of central elements, and δ = δ1 if G is transitive. Put

D = ⟨δ ⟩ ∼= Cp ,

which is a central subgroup of W . The following result is probably well-known and the proof is
straightforward.

Lemma 3.1. The centre of W is
Z(W ) = ⟨δ1, . . . ,δm⟩ .

In particular, Z(W ) = D if and only if G is transitive.

We work now towards showing, in certain cases, that the quotient group W/D is isomorphic to a
subgroup of W . Let ν be the mapping from W into Zp, referred to as the evaluation map, given by
the following rule:

ν :
( n

∏
k=1

aik
k

)
g 7→

n

∑
k=1

ik , (10)

for any g ∈ G and i1, . . . , in ∈ Zp. By (5), it follows quickly that ν is a group homomorphism from
the multiplicative group W onto the additive group Zp. Consider the following subgroup of B:

K =
{ n

∏
k=1

aik
k

∣∣∣ i1 + . . .+ in = 0 mod p
}

= ⟨a1a−1
2 , . . . ,a1a−1

n ⟩ .

It follows from (8) that K is a normal subgroup of W . Now put

W = KG ,
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Clearly, W = kerν is a normal subgroup of W of index p. Since K intersects trivially with G, we
have, further, that W decomposes as an internal semidirect product:

W = KG = K ⋊G .

We now prove that W is isomorphic to the quotient group W/D under certain conditions. We first
record a large class of cases. If n is not divisible by p then W is a complement for D in W so that W
decomposes as an internal direct product W =WD =W ×D, and we have the following:

Lemma 3.2. If p and n are coprime, then W ∼=W/D.

We can now identify a large class of almost exceptional groups:

Theorem 3.3. Suppose that p and q are distinct primes and let s be the order of p modulo q.
Suppose that s ≥ 2 (so that p is not congruent to 1 modulo q) and that q < ps−1. Put W =Cp ≀Cq.
Then

µ(W ) = pq .

and W is almost exceptional with almost distinguished normal subgroup Z(W )∼=Cp.

Proof. We use the notation of this section, where n= q and the generator of G∼=Cq may be identified
with the cyclic permutation (1 2 . . . q). We have µ(W ) = pq immediately from (9). By Lemma 3.1,
since G is transitive,

Z(W ) = D ,

and, by Lemma 3.2,

W/Z(W ) = W/D ∼= W .

Observe that, inherited from the wreath action,

W ∼= V ⋊T ,

using the notation of [6], where V is a vector space over Zp of dimension q−1 and T is an invert-
ible matrix of order q with the following minimal polynomial (coinciding with the characteristic
polynomial):

χ(λ ) = 1+λ + . . .+λ q−1 ,

Since s ≥ 2, observe that χ(λ ) decomposes as a product of irreducible factors each of degree s.
Since q < ps−1, it follows from the second alternative in [6, Theorem 4.7] that

µ
(
W/Z(W )

)
= µ(W ) = µ(V ⋊T ) = pq .

This coincides with µ(W ), which shows that W is almost exceptional with almost distinguished
normal subgroup Z(W ), completing the proof of the theorem. □

Another sufficient condition for W to be isomorphic to W/D occurs when G is a transitive cyclic
permutation group of order n, but the proof is more delicate.

Lemma 3.4. Suppose that G ∼=Cn where the generator of G may be identified with the cyclic per-
mutation (1 2 . . . n), so that the action of G is transitive on {1, . . . ,n}. Then W ∼=W/D.
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Proof. It is important to note, interpreting subtraction modulo n, that the mapping

k 7→ k−1 for k ∈ {1, . . . ,n} ,

which is the inverse of the cyclic permutation (1 2 . . . n), commutes with all elements of G. Let φ
be the mapping from W into W given by the rule

φ :
( n

∏
k=1

aik
k

)
g 7→

( n

∏
k=1

aik−ik−1
k

)
g ,

for g ∈ G and i1, . . . , in ∈ Zp, where it is understood that ik−1 = in when k = 1. Observe that this
rule is well-defined because

n

∑
k=1

(ik − ik−1) =
( n

∑
k=1

ik
)
−
( n

∑
k=1

ik−1

)
=

( n

∑
k=1

ik
)
−
( n

∑
k=1

ik
)

= 0 .

The mapping is a homomorphism, because if

α =
( n

∏
k=1

aik
k

)
g and β =

( n

∏
k=1

a jk
k

)
h

for some g,h ∈ G and i1, . . . , in, j1, . . . , jn ∈ Zp, then, by (5), and the fact that the action of g com-
mutes with subtraction by 1 modulo n,

(αβ )φ =

(( n

∏
k=1

aik+ jkg
k

)
gh

)
φ =

( n

∏
k=1

a
ik+ jkg−ik−1− j(k−1)g
k

)
gh

=
( n

∏
k=1

a
ik−ik−1+ jkg− j(k−1)g
k

)
gh =

( n

∏
k=1

a
ik−ik−1+ jkg− j(kg)−1
k

)
gh

=

(( n

∏
k=1

aik−ik−1
k

)
g
)(( n

∏
k=1

a jk− jk−1
k

)
h
)

= (αφ)(βφ) .

Observe that

δφ = (a1 . . .an)φ = (a1a−1
2 )(a2a−1

3 ) . . .(an−1a−1
n )(ana−1

1 ) = δδ−1 = 1 ,

so that δ ∈ kerφ . Hence

D = ⟨δ ⟩ ⊆ kerφ .

Suppose that α ∈ kerφ . If α ̸∈ B then α = bg for some b ∈ B and g ∈ G with g ̸= 1, so that

αφ = (bφ)g ̸= 1 ,

since bφ ∈ B and g ̸= 1, contradicting that α ∈ kerφ . Hence α ∈ B, say

α =
n

∏
k=1

aik
k

for some i1, . . . , in ∈ Zp. But then

1 = αφ =
n

∏
k=1

aik−ik−1
k ,

so that ik − ik−1 = 0 for each k, yielding

i1 = in = in−1 = . . . = i2 .
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Hence α = δ i1 ∈ D. This proves that kerφ ⊆ D, so that, combined with D ⊆ kerφ , from before, we
have

kerφ = D .

Observe that, all elements of G are fixed by φ , so lie in the image, and, for each k = 1, . . . ,n−1,

akφ = aka−1
k+1 .

Hence
W = KG = ⟨a1a−1

2 ,a2a−1
3 , . . . ,an−1a−1

n ⟩G ⊆ imφ ⊆ W ,

whence
W = imφ ∼= W/kerϕ =W/D ,

completing the proof of the lemma. □

Now we can now identify another class of almost exceptional groups.

Theorem 3.5. Let n = pℓ be a nontrivial power of an odd prime p and put W =Cp ≀Cn, where the
wreath action of the cyclic group is transitive, acting on a set of size n. Then

µ(W ) = np = pℓ+1 .

and W is almost exceptional with almost distinguished normal subgroup Z(W )∼=Cp.

Proof. Let G = ⟨g⟩ ∼= Cn where g = (1 2 . . . n), so that the wreath action is transitive and we may
regard W =Cp ≀Cn as an internal semidirect product

W = ⟨a1, . . . ,an⟩⋊ ⟨g⟩ .

We then have

W =
{

ai1
1 . . .ain

n g j
∣∣ i1, . . . , in ∈ Zp , i1 + . . .+ in = 0 , j ∈ {0, . . . ,n−1}

}
.

As before, we put δ = a1 . . .an and D = ⟨δ ⟩. Then, as before (see Lemma 3.1), δ is central in W .
Since n is congruent to 0 modulo p, we have δ ∈W , so that δ is also central in W . Thus

D ⊆ Z(W ) .

Let α ∈ Z(W ), so
α = ai1

1 . . .ain
n g j

for some i1, . . . , in ∈ Zp such that i1 + . . .+ in = 0 and for some j ∈ {0, . . . ,n− 1}. If j > 0, then,
since α is central in W , and interpreting addition of subscripts modulo p,

a1a−1
2 = (a1a−1

2 )α = a j+1a−1
2+ j ̸= a1a−1

2 ,

which is a contradiction. Hence j = 0, so that

α = ai1
1 ai2

2 . . .ain
n .

Since α is central,
α = αg = ain

1 ai1
2 . . .ain−1

n ,

from which it follows quickly that i1 = i2 = . . .= in, so that α = δ i1 ∈D. This shows that Z(W )⊆D,
so that

Z(W ) = D .
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In particular, Z(W ) is cyclic. But W is a p-group, so that, by Theorem 1.2, a minimal faithful
representation of W must be transitive of degree a power of p. However, W contains a copy of Cn−1

p ,
so that

µ(W ) ≥ µ(Cn−1
p ) = (n−1)p = (pℓ−1)p = pℓ+1 − p > pℓ ,

from which it follows that µ(W )≥ pℓ+1. Now we have

pℓ+1 ≤ µ(W ) ≤ µ(W ) = pℓ+1 ,

so that

µ(W ) = µ(W ) = µ(W/D) = pℓ+1 ,

completing the proof of the theorem. □

In the following three sections we investigate the special case when W =Cp ≀Cp, culminating in a
proof that, for odd primes p, all nonabelian sections of W of order at least p4 are almost exceptional
with minimal faithful degree p2.

4. EXTENSION OF A VECTOR SPACE BY A CYCLIC GROUP

Throughout this section, p is a prime and k is a fixed integer such that 1 ≤ k ≤ p. We also fix a
k-dimensional vector space V over the field Zp, which becomes an elementary abelian group with
respect to addition. We will create a semidirect product in a natural way, extending the additive
group V by a multiplicative cyclic group of order p. The technique is adapted from [6].

The special case k = p will be important, as the group extension will become isomorphic to the
wreath product Cp ≀Cp. When k = 1, the extension trivialises. When 1 < k < p, the extension will
correspond to a nonabelian section of the wreath product.

Working over Zp, let Tk be the companion matrix of the monic polynomial

χk(λ ) = (λ −1)k = a0 +a1λ + . . .+ak−1λ k−1 +λ k ,

where, for 0 ≤ i ≤ k−1,

ai = (−1)k+i
(

k
i

)
, (11)

noting that, since the characteristic of the field is p,

χp(λ ) = (λ −1)p = λ p −1 .

Then

Tk =



0 1 0 . . . 0 0
0 0 1 . . . 0 0

0 0 0
. . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 1 0
0 0 0 . . . 0 1

−a0 −a1 −a2 . . . −ak−2 −ak−1


,
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interpreted so that T1 = [1], and, when k = p, this becomes a permutation matrix:

Tp =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
1 0 0 . . . 0 0


. (12)

The characteristic and minimal polynomials of Tk coincide with χk(λ ), so that, by the Cayley-
Hamilton Theorem, (Tk − Ik)

k is the zero matrix. Now put

Mk = Tk − Ik =



−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
0 0 −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −1 1

−a0 −a1 −a2 . . . −an−2 −1−an−1


,

which is nilpotent of index k. For example, when p = 3, we have χ2(λ ) = 1+ λ + λ 2 and the
following sequence of matrices:

M1 =
[

0
]
, M2 =

[
2 1
2 1

]
, M3 =

 2 1 0
0 2 1
1 0 2

 .

When p = 5, we have

χ2(λ ) = 1+3λ +λ 2 , χ3(λ ) = 4+3λ +2λ 2 +λ 3 , χ4(λ ) = 1+λ +λ 2 +λ 3 +λ 4 ,

and the following sequence of matrices:

M1 =
[

0
]
, M2 =

[
4 1
4 1

]
, M3 =

 4 1 0
0 4 1
1 2 2

 .

M4 =


4 1 0 0
0 4 1 0
0 0 4 1
4 4 4 3

 , M5 =


4 1 0 0 0
0 4 1 0 0
0 0 4 1 0
0 0 0 4 1
1 0 0 0 4

 .

Suppose henceforth that k > 1 (since in the case k = 1 the matrix Tk trivialises). To decongest the
notation, write

T = Tk and M = Mk .

Observe that, since k ≤ p,

T p − I = (T − I)p = (T − I)p−k(T − I)k = (T − I)p−k0 = 0 ,

so that T p = I. Hence T is an invertible matrix generating a cyclic group of order p under matrix
multiplication:

⟨T ⟩ ∼= Cp .



MINIMAL DEGREES ASSOCIATED WITH SOME WREATH PRODUCTS OF GROUPS 11

We may regard V as the vector space of k-tuples, also identified with row vectors:

V =
{
(w1, . . . ,wk)

∣∣∣ w1, . . . ,wk ∈ Zp

}
≡

{[
w1 . . . wk

] ∣∣∣ w1, . . . ,wk ∈ Zp

}
.

Then T acts on V as a linear transformation by matrix multiplication on the right. The unique
eigenvalue of T is λ = 1, with a one-dimensional eigenspace. It is well-known (see, for example,
[4]) that, up to isomorphism, V is the unique indecomposable Cp-module of degree k with respect
to a field of characteristic p. For 1 ≤ i ≤ k, put

ei = (0, . . . ,0,1,0, . . .0) ,

with 1 in the ith position and 0 in all other positions, so

{e1, . . . ,ek} (13)

is a (standard) basis for V . Then {
e1 , e1M , . . . , e1Mk−1} (14)

is also a basis for V . It may be instructive to work through the details in a particular case. Suppose,
for example that p = 5. If k = 2 then (14) becomes

{(1,0) , (4,1)} .

If k = 3 then (14) becomes
{(1,0,0) , (4,1,0) , (1,3,1)} .

If k = 4 then (14) becomes

{(1,0,0,0) , (4,1,0,0) , (1,3,1,0) , (4,3,2,1)} .

If k = 5 then (14) becomes

{(1,0,0,0,0) , (4,1,0,0,0) , (1,3,1,0,0) , (4,3,2,1,0) , (1,1,1,1,1)} .

We now form the following extension, which is a semidirect product, combining the additive
group V with the multiplicative group ⟨T ⟩ ∼=Cp:

V ⋊T = V ⋊ ⟨T ⟩ = {(v,T i) | v ∈V , i ∈ Zp} ,

using the notation and terminology of [6], but using row vectors and matrix action on the right. The
rule (adapted from [6]) for group multiplication in V ⋊T becomes the following:

(v,T i)(w,T j) = (v+wT−i,T i+ j) . (15)

The reader should be careful to distinguish between action of a matrix on a row vector, given by
matrix multiplication, and the binary group operation in the semidirect product. When k = p, the
action of the permutation matrix T on the additive group V corresponds to the wreath action of the
permutation (1 2 . . . p), generating a copy of Cp, on the multiplicative group Cp

p , so that, in this
case,

V ⋊T = Vp ⋊Tp ∼= Cp ≀Cp . (16)

Consider, for general k, where 1 < k ≤ p, a T -invariant subspace S of V . One may form the
quotient vector space V/S, on which T acts on the left, so that we may form the semidirect product

(V/S)⋊T =
{(

S+v,T i) ∣∣∣ v ∈V , i ∈ Z
}
. (17)
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On the other hand, we may identify S with

S⋊ I ≡ {(v, I) | v ∈ S} ,

which becomes a normal subgroup of V ⋊T , and then form the quotient group

(V ⋊T )/(S⋊ I) =
{
(S⋊ I)(v,T i)

∣∣∣ v ∈V , i ∈ Zp

}
. (18)

The identification (
S+v,T i) ≡ (S⋊ I)(v,T i)

is easily seen to be an isomorphism between the groups (17) and (18), so, in what follows, we may
identify them:

(V/S)⋊T ≡ (V ⋊T )/(S⋊ I) . (19)

The normal subgroups of V ⋊ T contained in the base group V ≡ V ⋊ I are just the T -invariant
subspaces of V , which form a chain, namely

{0} = V0 ⊆V1 ⊆ . . . ⊆ Vk−1 ⊆ Vk = V , (20)

where, for 0 ≤ i ≤ k,

Vi = kerMi = V Mk−i . (21)

The set containments in (20) are strict, and, for 1 ≤ i ≤ k, a basis for Vi may be taken to be the
following linearly independent set with i elements:{

e1Mk−i , e1Mk−i+1 , . . . , e1Mk−1} . (22)

In particular, for each i > 0, we have

dimVi = i , (23)

and, for 0 ≤ i ≤ k−2,

dim(Vi+1/Vi) = 1 and dim(V/Vi) = k− i ≥ 2 . (24)

Note that the one-dimensional eigenspace of T is V1 with basis{
e1Mk−1} . (25)

It should be remarked that in (14), (22) and (25), we may, if we wish, replace e1 uniformly through-
out by any one of the standard basis vectors. We provided before, at (13) and (14), two different
bases for V . The following lemma, used to prove Theorem 4.2 below, provides an alternative basis
for Vi for 1 ≤ i ≤ k, and follows from (13) by a simple induction, and for which both (13) and (25)
become extreme special cases:

Lemma 4.1. For 1 ≤ i ≤ k, a basis for Vi is{
e1Mk−i , e2Mk−i , . . . , eiMk−i} , (26)

and, for 1 ≤ j ≤ i,

e jMk−i =
k−i

∑
ℓ=0

(−1)k−i+ℓ

(
k− i
ℓ

)
e j+ℓ . (27)
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It follows from Lemma 4.1 (or by direct calculation) that

Vk−1 = ⟨e2 − e1 , e3 − e2 , . . . , ek − ek−1⟩ = {(α1, . . . ,αp) | α1 + . . .+αp = 0} , (28)

and, in the special case that k = p,

V1 = ⟨e1 + . . .+ ep⟩ . (29)

We may now take each of the T -invariant subspaces in the chain (20) and form semidirect products,
with multiplication (15) inherited from V ⋊T :

Vi ⋊T ≡ Vi ⋊ ⟨T ⟩ ,

for 0 ≤ i ≤ k, and obtain a chain of subgroups of V ⋊T , with strict set containments:

⟨T ⟩ ≡ V0 ⋊T ⊆ V1 ⋊T ⊆ . . . ⊆ Vk−1 ⋊T ⊆Vk ⋊T = V ⋊T . (30)

For 0 ≤ i ≤ j ≤ k, define a mapping

Ψi, j : Vj ⋊T →Vi ⋊T

by the rule

(v,T ℓ) 7→ (vM j−i,T ℓ)

for v ∈Vj and ℓ ∈ Zp. It follows from (21) that this rule is well-defined, and from (15) and the fact
that M and T commute under matrix multiplication that Ψi, j is a group homomorphism. It follows
quickly, again using (21), that

kerΨi, j = Vj−i ⋊ I . (31)

Clearly also Ψi, j is surjective. The first isomorphism (32) in the following theorem asserts that
certain sections of V ⋊ T associated with the chain (20) of invariant subspaces are isomorphic to
subgroups. The second and third isomorphisms, (33) and (34), document cases when the action
of T is trivial. The fourth isomorphism (35) is involved (when 2 ≤ i ≤ k), allowing us to replace
k-tuples by i-tuples, acted on by Ti, instead of by Tk.

Theorem 4.2. Suppose that 0 ≤ i ≤ j ≤ k (noting the blanket assumption that k > 1). Then

(Vj/Vj−i)⋊Tk ∼= Vi ⋊Tk . (32)

If i = 0 then

Vi ⋊Tk = V0 ⋊Tk = {0}×⟨Tk⟩ ∼= Cp . (33)

If i = 1 then

Vi ⋊Tk = V1 ⋊Tk = V1 ×⟨Tk⟩ ∼= Cp ×Cp . (34)

If i ≥ 2 then

Vi ⋊Tk ∼= Vi ⋊Ti , (35)

where Vi is the vector space of i-tuples drawn from Zp (noting that Vi is a subspace of Vk, elements
of which are k-tuples).
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Proof. The isomorphism (32) follows from (31), the fundamental homomorphism theorem and the
fact that Ψi, j is surjective. The isomorphisms (33) and (34) are immediate from the definitions.
Suppose that i ≥ 2. If i = k then Vk =Vi, so that (35) is immediate. We may suppose, therefore, that
i < k. Let e1, . . . ,ei be standard basis vectors for Vi. Note that Ti is the companion matrix for the
polynomial (λ −1)i (whilst Tk, by contrast, is the companion matrix for (λ −1)k). By Lemma 4.1,
(26) and (27), {f1, . . . , fi} is a basis for Vi where, for 1 ≤ j ≤ i,

f j =
k−i

∑
ℓ=0

(−1)k−i+ℓ

(
k− i
ℓ

)
e j+ℓ . (36)

Let φ : Vi →Vi be the linear transformation with the rule

φ : α1f1 + . . .+αifi 7→ α1e1 + . . .+αiei

for α1, . . . ,αi ∈ Zp, and let Φ : Vi ⋊Tk →Vi ⋊Ti be the mapping with the rule

Φ :
(
v , T ℓ

k
)
7→

(
vφ , T ℓ

i
)

for v ∈ Vi and ℓ ∈ Zp. Clearly φ and Φ are bijective. To show that Φ is a group isomorphism,
using the multiplication rule in Vk ⋊Tk defined by (15), and the corresponding rule for Vi ⋊Tk, it
suffices to check that φ respects the actions of Tk and Ti on Vi and Vi respectively. Because φ is a
linear transformation, it is sufficient to consider actions on the basis elements. Observe, first, for
1 ≤ j < i, using (36) and the fact that j+ ℓ < k if 0 ≤ ℓ≤ k− i,

f jTk =

( k−i

∑
ℓ=0

(−1)k−i+ℓ

(
k− i
ℓ

)
e j+ℓ

)
Tk =

k−i

∑
ℓ=0

(−1)k−i+ℓ

(
k− i
ℓ

)(
e j+ℓTk

)
=

k−i

∑
ℓ=0

(−1)k−i+ℓ

(
k− i
ℓ

)
e j+1+ℓ = f j+1 ,

so that
(
f jφ

)
Ti = e jTi = e j+1 = f j+1φ =

(
f jTk)φ . Next observe that

fiTk =

( k−i

∑
ℓ=0

(−1)k−i+ℓ

(
k− i
ℓ

)
ei+ℓ

)
Tk =

(( k−i−1

∑
ℓ=0

(−1)k−i+ℓ

(
k− i
ℓ

)
ei+ℓ

)
+ ek

)
Tk

=

( k−i−1

∑
ℓ=0

(−1)k−i+ℓ

(
k− i
ℓ

)(
ei+ℓT

))
+ ekTk

=

( k−i−1

∑
ℓ=0

(−1)k−i+ℓ

(
k− i
ℓ

)
ei+ℓ+1

)
−
(

a0e1 + . . .+ak−1ek

)
=

( k−1

∑
ℓ=i

(−1)k+ℓ

(
k− i
ℓ− i

)
eℓ+1

)
−
( k−1

∑
ℓ=0

(−1)k+ℓ

(
k
ℓ

)
eℓ+1

)
=

( k−1

∑
ℓ=i

(−1)k+ℓ

((
k− i
ℓ− i

)
−
(

k
ℓ

))
eℓ+1

)
−
( i−1

∑
ℓ=0

(−1)k+ℓ

(
k
ℓ

)
eℓ+1

)

=

( i−1

∑
ℓ=0

(−1)k+ℓ+1
(

k
ℓ

)
eℓ+1

)
+

( k−1

∑
ℓ=i

(−1)k+ℓ+1
((

k
ℓ

)
−
(

k− i
ℓ− i

))
eℓ+1

)
.

Write (λ −1)i = b0 +b1λ + . . .+bi−1λ i−1 +λ i where, for 0 ≤ j ≤ i−1,

b j = (−1)i+ j
(

i
j

)
,
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and −b0, . . . ,−bi−1 are the entries, in that order, of the last row of Ti. Then, manipulating bionomial
coeffecients, using Lemma 2.1, we have(

eiTi
)
φ−1 =

(
−b0e1 − . . .−bi−1ei

)
φ−1 =

( i−1

∑
j=0

(−1)i+ j+1
(

i
j

)
e j+1

)
φ−1

=
i−1

∑
j=0

(−1)i+ j+1
(

i
j

)
f j+1 =

i−1

∑
j=0

(−1)i+ j+1
(

i
j

)( k−i

∑
m=0

(−1)k−i+m
(

k− i
m

)
e j+m+1

)

=
i−1

∑
j=0

k−i

∑
m=0

(−1) j+k+m+1
(

i
j

)(
k− i

m

)
e j+m+1 =

k−1

∑
ℓ=0

(−1)k+ℓ+1
j+m=ℓ

∑
0≤ j≤i−1
0≤m≤k−i

(
i
j

)(
k− i

m

)
eℓ+1

=

( i−1

∑
ℓ=0

(−1)k+ℓ+1
ℓ

∑
j=0

(
i
j

)(
k− i
ℓ− j

)
eℓ+1

)
+

( k−i−1

∑
ℓ=i

(−1)k+ℓ+1
i−1

∑
j=0

(
i
j

)(
k− i
ℓ− j

)
eℓ+1

)

+

( k−1

∑
ℓ=k−i

(−1)k+ℓ+1
i−1

∑
ℓ+i−k

(
i
j

)(
k− i
ℓ− j

)
eℓ+1

)

=

( i−1

∑
ℓ=0

(−1)k+ℓ+1
(

k
ℓ

)
eℓ+1

)
+

( k−i−1

∑
ℓ=i

(−1)k+ℓ+1
((

k
ℓ

)
−
(

k− i
ℓ− i

))
eℓ+1

)
+

( k−1

∑
ℓ=k−i

(−1)k+ℓ+1
((

k
ℓ

)
−
(

k− i
ℓ− i

))
eℓ+1

)
= fiTk .

This proves that (
fiφ

)
Ti = eiTi =

(
fiTk

)
φ ,

completing the verification that φ respects the group actions. This suffices to prove (35), completing
the proof of the theorem. □

Remark 4.3. That an isomorphism exists yielding (35) follows from the fact that indecomposable
Cp-modules over Zp are characterised up to isomorphism by dimension (see, for example, [4]).
The above proof however is direct. An alternative proof can also be found indirectly by forming
the group algebra A = ZCp ≡ Z[λ ], where λ is also used to denote the generator of Cp, so that
λ p = 1 and λ − 1 is nilpotent in A of index p. One can show that Vi with the action of Tk is
module-isomorphic to the submodule S of A spanned by

(λ −1)p−i , λ (λ −1)p−i , . . . , λ i−1(λ −1)p−i

whilst Vi with the action of Ti is module-isomorphic to S′ = A/(λ −1)iA with natural basis

1+(λ −1)iA , λ +(λ −1)iA , . . . , λ i−1 +(λ −1)iA ,

in both cases using module action induced by multiplication in A by λ . One then forms a module
isomorphism from S to S′ by extending the map

λ j(λ −1)p−i 7→ λ j +(λ −1)iA (0 ≤ j ≤ i−1)

and checking that the module actions match. The trickiest part of the action to check, corresponding
to the difficult case in the previous proof, is to observe that, working in A, where (λ −1)p = 0,(

λ i−1(λ −1)p−i
)

λ = λ i(λ −1)p−i = λ i(λ −1)p−i − (λ −1)p =
(
(λ i − (λ −1)i

)
(λ −1)p−i ,
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and then use the binomial expansion of λ i − (λ −1)i. The coefficients in that expansion match the
negatives of the entries of the companion matrix Ti in the previous proof. This particular manipula-
tion of formal polynomials also features in the proof of Lemma 2.1, explaining the connection with
summation formulae used in the direct proof of (35).

Corollary 4.4. The semidirect product Vk ⋊Tk embeds in the wreath product Cp ≀Cp. In particular,
all sections of Vk ⋊Tk are sections of Cp ≀Cp.

Proof. We have Vp ⋊Tp ∼= Cp ≀Cp by (16). Using (35) of Theorem 4.2, but with p for k, and k for
i, and interpreting Vk, in this context, as consisting of k-tuples (not p-tuples if k < p), we get that
Vk ⋊Tk is isomorphic to a subgroup of Cp ≀Cp, and the corollary follows. □

Lemma 4.5. The centre of Vk ⋊Tk is cyclic of order p, namely,

Z(Vk ⋊Tk) = V1 = ⟨e1Mk−1
k ⟩ . (37)

and µ(Vk ⋊Tk) = p2.

Proof. Note that the action of T = Tk is nontrivial, since e1T = e2 ̸= e1, and V = Vk is an abelian
group (under addition). Hence the centre of V ⋊T consists precisely of elements from V that are
fixed by the action of T , that is, elements of the eigenspace of T with respect to the eigenvalue 1.
Hence (37) follows from (25) . By Proposition 1.3,

µ(V ×T ) ≥ pµ
(
Z(V ⋊T )

)
= pµ(Cp) = p2 .

Let S be the subspace of V of codimension 1 generated by e1, . . . ,ek−1, which becomes a subgroup
of V ⋊T of index p2. The core of S is a T -invariant subspace of V , so must be one of the subspaces
appearing in the chain (20). Suppose that the core of S is nontrivial. Then S must contain V1, the
atom of (20), which we have just observed is the centre of V ⋊T . Hence S contains some nonzero
central element v, must have the form

v = α1e1 +α2e2 + . . .+αk−1ek−1 ,

for some α1, . . . ,αk−1 ∈ Zp, where at least one of α1, . . . ,αk−1 is nonzero. Hence there is some
largest ℓ≤ k−1, such that αℓ ̸= 0 and

v = α1e1 +α2e2 + . . .+αℓeℓ .

But then, by centrality of v and the form of the matrix T ,

v = vT k−ℓ−1 = α1ek−ℓ+1 +α2ek−ℓ+2 + . . .+αℓek ,

which contradicts that v is a linear combination of v1, . . . ,vk−1. Hence the core of S must be trivial,
so that S affords a faithful permutation representation of V ⋊T of degree

|V ⋊T : S| = p2 .

Hence µ(V ⋊T )≤ p2, so that µ(V ⋊T ) = p2, completing the proof of the lemma. □

Corollary 4.6. Let i and j be integers such that 0 ≤ i ≤ j−2 ≤ k−2. Then the group (Vj/Vi)⋊Tk

has cyclic centre Vi+1/Vi of order p and minimal degree p2.
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Proof. Put ℓ= j− i, so that ℓ≥ 2. By Theorem 4.2 and isomorphisms (32) and (35),

(Vj/Vi)⋊Tk ∼= Vℓ⋊Tk ∼= Vℓ⋊Tℓ ,

and the result follows by Lemma 4.5, using ℓ in place of k. □

Theorem 4.7. If k ≥ 3 then Vk ⋊Tk is almost exceptional of minimal degree p2.

Proof. Suppose that k ≥ 3. Put G =Vk⋊Tk and N = Z(G). Then N =V1 and µ(G) = p2, by Lemma
4.5. By (32) and (35) of Theorem 4.2,

G/N = (Vk/V1)⋊Tk ∼= Vk−1 ⋊Tk ∼=V k−1 ⋊Tk−1 .

But k−1 > 1, so that, applying Lemma 4.5, with k−1 in place of k, we get

µ(G/N) = µ
(
V k−1 ⋊Tk−1

)
= p2 = µ(G) ,

completing the proof that G is almost exceptional. □

Corollary 4.8. Let i and j be integers such that 0 ≤ i ≤ j−3 ≤ k−3. Then the group (Vj/Vi)⋊Tk

is almost exceptional of minimal degree p2.

Proof. Put ℓ= j− i, so that ℓ≥ 3. Again

(Vj/Vi)⋊Tk ∼= Vℓ⋊Tℓ ,

and the result now follows by Theorem 4.7, with ℓ in place of k. □

Lemma 4.9. Elements of Vp ⋊Tp have order 1, p or p2. An element α has order p2 if and only if
α ̸∈Vp ∪ (Vp−1 ⋊Tp), that is,

α = (v,T i
p)

for some v ∈Vp\Vp−1 and i ∈ Zp\{0}, in which case α p is a nontrivial element of V1, the centre of
Vp ⋊Tp.

Proof. Write, as usual, T = Tp, I = Ip, V = Vp and put G = V ⋊T . The subgroup V is elementary
abelian, so all of its elements have order 1 or p. Thus if an element of G does not have order 1 or p
then it must belong to G\V . Let α be an element of G\V , so

α = (v,T i)

for some v ∈ V and i ∈ Zp\{0}. We show that α has order p if v ∈ Vp−1 and order p2 otherwise.
We may write

v = λ1e1 +λ2e2 + . . .+λpep

for some λ1,λ2, . . . ,λp ∈ Zp. Using the multiplication rule (15) for G, we have

α p = (w, I) ≡ w ,

where
w = v+vT−i +vT−2i + . . .+vT−(p−1)i .

Recall from (12) that T = Tp is a permutation matrix, so the effect of applying T−i to v is to subtract
i from the subscripts of the coefficients modulo p, that is,

vT−i = λ1e1−i +λ2e2−i + . . .+λpep−i .
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Observe that, for any k ∈ {1, . . . , p}, the sequence

k , k− i , k−2i , . . . , k− (p−1)i

reproduces the sequence 1,2, . . . , p, in some order, when evaluated modulo p. Hence we may rewrite
w, gathering together and reordering coefficients, as

w = (λ1 + . . .+λp)e1 +(λ1 + . . .+λp)e2 + . . .+(λ1 + . . .+λp)ep

= (λ1 + . . .+λp)(e1 + . . .+ ep) .

We may now apply (28) (when k = p). If v ∈Vp−1 then λ1 + . . .+λp = 0 in Zp, so that w = 0 and
α has order p. On the other hand, if v ̸∈ Vp−1 then λ1 + . . .+λp ̸= 0, giving w ̸= 0, so that w has
order p and α has order p2, in which case α p ≡ w is a nonzero scalar multiple of the generator of
Z(G) =V1, by (29). This completes the proof of the lemma. □

Corollary 4.10. The exponent of Vp ⋊Tp is p2 and the exponent of Vp−1 ⋊Tp is p.

Proof. By Lemma 4.9, elements of Vp ⋊Tp have order dividing p2, and elements in the set (Vp ⋊
Tp)\(Vp∪(Vp−1⋊Tp) have order p2. Hence the exponent of Vp⋊Tp is p2. By Lemma 4.9, elements
of Vp−1 ⋊Tp have order dividing p, so the exponent of Vp−1 ⋊Tp is p, completing the proof of the
corollary. □

Theorem 4.11. The exponent of Vk ⋊Tk is

{
p2 if k = p,

p if k < p.

Proof. Put G = Vk ⋊ Tk. If k = p then the exponent of G is p2, by Corollary 4.10. Suppose that
k < p. For the purposes of applying Theorem 4.2, let Vk denote the vector space consisting of p-
tuples, which is a Tp-invariant subspace of Vp of dimension k defined by (21) and appearing in the
corresponding chain (20) of subspaces. Let Vk, using the overline notation of Theorem 4.2, now
denote the vector space of k-tuples, acted on by Tk. With this shift in notation, G = Vk ⋊ Tk. By
Theorem 4.2 and (35) (interpreted with p for k, and k for i, in this application), we now have

G = Vk ⋊Tk ∼= Vk ⋊Tp ,

the latter being a nontrivial subgroup of Vp−1 ⋊ Tp, since k ≤ p− 1, which has exponent p, by
Corollary 4.10. Hence G also has exponent p, completing the proof of the theorem. □

5. THE WREATH PRODUCT Cp ≀Cp

Let p be a prime and put W =Cp ≀Cp. Recall, by identifying the second copy of the cyclic group
Cp with the permutation group ⟨(1 2 . . . p)⟩ we have the isomorphism

W = Cp ≀Cp ∼= Vp ⋊Tp

where Tp is the permutation matrix given by (12). As observed previously, µ(W ) = p2, and W may
be identified with the following permutation group on p2 letters:

W ∼= ⟨(x11 x12 . . . x1p),(x11 x21 . . .xp1)(x12 x22 . . .xp2) . . .(x1p x2p . . .xpp)⟩ .

We may also give W the following presentation, which will be identified with W in what follows:

W ≡ ⟨a1, . . . ,ap,c | ap
i = [ai,a j] = cp = 1 ,ac

i = ai+1 (1 ≤ i, j ≤ p, i ̸= j)⟩ (38)
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where it is understood that ap+1 ≡ a1. Put

B = ⟨a1, . . . ,ap⟩ ∼= Cp × . . .×Cp ,

which becomes the base group, extended by the cyclic group C = ⟨c⟩, so that W becomes an internal
semidirect product

W = BC = B⋊C .

For i = 0, . . . , p, let Ai correspond to Vi, under the isomorphism between W = B⋊C and Vp ⋊Tp.
Then (20) corresponds to the following chain, which becomes a complete list of distinct normal
subgroups of W contained in the base group B:

{1} = A0 ⊆ A1 ⊆ A2 ⊆ . . . ⊆ Ap−2 ⊆ Ap−1 ⊆ Ap = B . (39)

In particular, we have the following analogues of (29) and (28):

A1 = ⟨a1a2 . . .ap⟩ (40)

and
Ap−1 = ⟨a1a−1

2 , a2a−1
3 , . . . , ap−1a−1

p ⟩ =
{

aα1
1 . . .aαp

p
∣∣ α1 + . . .+αp = 0

}
. (41)

Observe that Ap−1 is the kernel of the evaluation homomorphism ν from A to the additive group Zp

with the rule
ν : aα1

1 . . .aαp
p 7→ α1 + . . .+αp .

Henceforth, to decongest the notation in what follows, put

K = Ap−1 .

We may form W/Ai, for each i, and, by analogy with (19) identify this with (A/Ai)⋊C. The result
of Corollary 4.6 now translates to the following:

Z(W/Ai) = Ai+1/Ai , (42)

for each 0 ≤ i ≤ p−2, which is cyclic, because the vector space Vi+1/Vi is one-dimensional.
Consider now a proper normal subgroup N of W that is not contained in the base group B. Then N

must contain an element x that has, as a factor, a nontrivial power of the generator c, with respect to
the presentation (38). By replacing x by a suitable power, there is no loss of generality in assuming

x = ac ∈ N (43)

for some a ∈ A. But now, because N is normal in W , we have, for each i < p,

[x,ai] = [ac,ai] = [c,ai] = a−c
i ai = a−1

i+1ai = aia
−1
i+1 ∈ N ,

so that, by (41),
K ⊆ N . (44)

It follows quickly, using the action of c on generators of A, that

(ac)p = (a1 . . .an)
aν . (45)

But the index of K in W is p2, so that, since N is a proper subgroup of W not contained in A, it
follows that N has index p in W and decomposes as a product of subgroups:

N = ⟨K ∪{x}⟩ = K⟨x⟩ . (46)
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This product becomes an internal semidirect product with these factors if and only if x has order p,
which occurs, by (45), if and only if aν = 0, that is, if and only if a ∈ K, in which case

N = ⟨K ∪{ac}⟩ = ⟨K ∪{c}⟩ = K⟨c⟩ = K ⋊ ⟨c⟩ . (47)

Observe further that
(aa−aν

1 )ν = aν −aν = 0 ,

so that aa−aν
1 ∈ K, so that, by (43) and (44),

aaν
1 x = (aa−aν

1 )−1ax ∈ N .

But aν ∈ Zp, so, there is no loss in generality, in assuming, instead of (43), that

x = a j
1c ∈ N , (48)

for some j ∈ Zp. When j = 0, we have (47). For j ̸= 0, we have, in place of (46), the following:

N = K⟨a j
1c⟩ . (49)

Putting all of this together, using (39), (47) and (49), we obtain the lattice of all normal subgroups
of W =Cp ≀Cp, depicted in the Hasse diagram of Figure 1.

b

b

b

b

b

W =Cp ≀Cp

...

b

b

b

b b bb . . .Ap = B

Ap−1 = K

Ap−2

Ap−3

A2

A1 = Z(W ) = ⟨a1 . . .ap⟩

K ⋊ ⟨c⟩ K⟨a1c⟩ K⟨a2
1c⟩ K⟨ap−1

1 c⟩

{1}

FIGURE 1. Lattice of normal subgroups of Cp ≀Cp
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The following corollary now follows quickly from results of the previous section, which shows
that it is possible to have almost exceptional groups with arbitrarily many nonisomorphic almost
distinguished quotients. In fact, the normal subgroups form an arbitrarily long chain, so that the
quotients have different orders.

Corollary 5.1. Let p be any prime. The group W =Cp ≀Cp is almost exceptional of minimal faithful
degree p2. If p is odd then W contains a chain of p−2 nontrivial normal subgroups, such that the
respective quotients have the same minimal faithful degree.

Proof. If p = 2 then W ∼= D8, which we have noted is almost exceptional at (4). Suppose henceforth
that p is odd. By Theorem 4.7 and Corollary 4.8, taking k = j = p, we have

µ(W ) = µ(W/Ai) = p2

for 1 ≤ i ≤ p− 2. By observing that A1, . . . ,Ap−2 (exhibited in Figure 1) form a chain of distinct
normal subgroups, the proof is complete. □

6. SECTIONS OF THE WREATH PRODUCT

Again we put W = Cp ≀Cp, and, as in the previous section, we identify elements and subgroups
associated with the presentation (38), and adopt the notation B = Ap for the base group and K =

Ap−1,Ap−2, . . . ,A1 = Z(W ),A0 = {1} for the chain of normal subgroups properly contained in B.

Lemma 6.1. Suppose that w ∈W\B. Then wp ∈ Z(W ). Further wp ̸= 1 if and only if w = ac j for
some a ∈ B\K and for some j ∈ {1, . . . , p− 1}, in which case Z(W ) = ⟨wp⟩. In particular, w has
order p or p2.

Proof. This is a translation of Lemma 4.9 and corresponding facts about Vp ⋊Tp ∼=W . □

Lemma 6.2. Suppose that H is a subgroup of W such that H is not contained in B. Then

H = Aℓ⟨ac⟩ (50)

for some ℓ ∈ {0, . . . , p} and a ∈ B. If a ∈ Aℓ then H becomes an internal semidirect product

H = Aℓ⟨c⟩ = Aℓ⋊ ⟨c⟩ ∼= Cℓ
p ⋊Cp . (51)

If a ∈ K then H becomes an internal semidirect product

H = Aℓ⋊ ⟨ac⟩ ∼= Cℓ
p ⋊Cp . (52)

Proof. Because H ̸∈ A, there exists w ∈ H of the form

w = ac

for some a ∈ B. Clearly H ∩B ⊆ B = Ap, so there is some least ℓ≤ p, such that

H ∩B ⊆ Aℓ .

Let v ∈ H. If v ∈ B then v ∈ H ∩B ⊆ Aℓ, so that v ∈ Aℓ⟨w⟩. Suppose now that v ̸∈ B, so that

v = bci

for some b ∈ B and i ∈ {1, . . . , p−1}. Then

wi = dci



22 IBRAHIM ALOTAIBI AND DAVID EASDOWN

for some d ∈ B, so that

v−1wi = c−ib−1dci = (b−1d)ci ∈ H ∩B ⊆ Aℓ ,

so that v ∈ Aℓ⟨w⟩. This proves that
H ⊆ Aℓ⟨w⟩ . (53)

We claim that
H ∩B = Aℓ . (54)

First note that (54) holds trivially if ℓ= 0. Suppose now that ℓ > 0. By minimality of ℓ, there exists
b ∈ H with b ∈ Aℓ\Aℓ−1. Regarding Aℓ as a vector space over Zp, on which w acts by conjugation,
b generates a submodule of Aℓ, and this is contained in H. Since b ̸∈ Aℓ−1, this submodule must
coincide with Aℓ, since the submodules form a chain, so that

Aℓ ⊆ H ∩B ⊆ Aℓ ,

whence H ∩B = Aℓ. This shows that (54) holds for all ℓ, and so

Aℓ⟨w⟩ = (H ∩B)⟨w⟩ ⊆ H . (55)

By (53) and (55), we conclude that
H = Aℓ⟨w⟩ ,

proving (50). If a ∈ Aℓ then, immediately, Aℓ∩⟨c⟩= {1}, yielding an internal semidirect product

H = Aℓ⟨ac⟩ = Aℓ⟨c⟩ = Aℓ⋊ ⟨c⟩ ,

verifying (51). If a ∈ K then, by Lemma 6.1, the order of w is p, so that Aℓ ∩⟨w⟩ = {1}, whence
H is an internal semidirect product of Aℓ by ⟨w⟩, verifying (52). This completes the proof of the
lemma. □

Lemma 6.3. Suppose that 0 ≤ m ≤ ℓ−2 ≤ p−2, a ∈ B and put

H = Aℓ⟨ac⟩/Am .

Then
Z(H) = Am+1/Am

is cyclic of order p and µ(H) = p2.

Proof. Consider the subgroup
H ′ = Aℓ⟨c⟩/Am ,

so that H ′ = H if a = 1, and H ′ ∼= H if |a|= p. Observe that if b ∈ B then b commutes with c if and
only if b commutes with ac, from which it follows that

Z(H) = Z(H ′) .

Under the isomorphism between W =Cp ≀Cp and Vp ⋊Tk, we have that H ′ corresponds to

(Vℓ/Vm)⋊Tp ,

which, by Corollary 4.6, has minimal degree p2 and centre

Z
(
(Vℓ/Vm)⋊Tp

)
= Vm+1/Vm ,

which, in turn, using the inverse of the isomorphism, corresponds to

Z(H ′) = Am+1/Am .
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The statement of the lemma is then immediate if a = 1 or |a| = p. Suppose then that a ̸= 1 and
|a| ̸= p. By Lemma 6.1, a ∈ Ap\Ap−1 and |a|= p2. We have

µ(H) ≥ µ
(
⟨ac⟩

)
= µ(Cp2) = p2 ,

and, again by Corollary 4.6,

µ(H) ≤ µ
(
(Ap/Am)⟨c⟩

)
= µ(Vp/Vm)⋊T ) = p2 ,

whence µ(H) = p2, completing the proof of the lemma. □

Lemma 6.4. Suppose that S = H/N is a section of W such that N is not contained in B. Then S is
trivial or cyclic of order p.

Proof. Suppose that S is nontrivial. By Lemma 6.2 and (54), we have

N = Aℓ⟨ac⟩ and N ∩B = Aℓ

for some ℓ ∈ {0, . . . , p} and a ∈ B. But H also is not contained in A, so, again, by Lemma 6.2 and
(54), we have

H = Am⟨bc⟩ and H ∩B = Am

for some m ∈ {0, . . . , p} and b ∈ B. But

a−1b = c(c−1a−1bc)c−1 =
(
(ac)−1bc)

)bc ∈ H ∩B = Am ,

so we also have
H = Am⟨bc⟩ = Am⟨ab−1bc⟩ = Am⟨ac⟩ .

Further, since H ̸= N, we have
m > ℓ .

Suppose that m> ℓ+1, so that Am properly contains Aℓ+1. By Corollary 4.6, the group (Vm/Vℓ)⋊Tp

has cyclic centre of order p, which must be the unique minimal normal subgroup Vℓ+1/Vℓ, so that,
correspondingly,

Z(Am⟨c⟩/Aℓ) = Aℓ+1/Aℓ .

Choose any d ∈ Am\Aℓ+1. But N is normal in H, so that

[d,c] = [d,ac] ∈ N ∩B = Aℓ .

Hence the coset Aℓ d commutes with the coset Aℓ c , so that

Aℓ d ∈ Z(Am⟨c⟩/Aℓ) = Aℓ+1/Aℓ ,

whence d ∈ Aℓ+1. But this contradicts that d ̸∈ Aℓ+1. This proves that m = ℓ+1, so that

H = Aℓ+1⟨ac⟩ ,

and N =Aℓ⟨ac⟩ has index p in H. Hence S =H/N is cyclic of order p, and the lemma is proved. □

Lemma 6.5. Let S be an abelian section of W =Cp ≀Cp Then either

(i) S is elementary abelian of rank at most p, in which case µ(S) = kp for some k such that
0 ≤ k ≤ p, or

(ii) S is cyclic of order p2, in which case µ(S) = p2.

Case (ii) occurs if and only if S = ⟨ac⟩ for some a ∈ B\K.
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Proof. Clearly (i) holds if S is trivial, so we may assume that S is nontrivial. If S is a section of
B then immediately S must be elementary abelian of rank at most p and (i) holds. Hence we may
suppose that S = H/N is not a section of B, say for some subgroup H of G not contained in B. If N
is not contained in B then, by Lemma 6.4, S is trivial or cyclic of order p, so that (i) holds. We may
suppose, therefore, that N is contained in B, so is an elementary abelian subgroup of rank r, say. By
Lemma 6.2 and (54), we have

H = Aℓ⟨ac⟩ and H ∩B = Aℓ

for some ℓ ∈ {0, . . . , p} and a ∈ A. Since N ⊆ H ∩B = Aℓ, we have

r ≤ ℓ ,

whence N = Ar, since Ar is the unique normal subgroup of H contained in Aℓ of rank r. If r ≤ ℓ−2
then

S = Aℓ⟨ac⟩/Ar

is nonabelian, since Z(S) = Ar+1/Ar, by Lemma 6.3, which is impossible. Hence r = ℓ or ℓ− 1.
Suppose that r = ℓ−1. Then ℓ≥ 1 and

S = Aℓ⟨ac⟩/Aℓ−1 .

If ℓ≥ 2 then S is elementary abelian of order p2, noting that

(ac)p ∈ Z(W ) = A1 ⊆ Aℓ−1 ,

by Lemma 6.1, and (i) holds. If ℓ= 1 then

S = A1⟨ac⟩/A0 ≡ Z(W )⟨ac⟩ =

{
⟨ac⟩ ∼= Cp2 if a ∈ B\K ,

Z(W )×⟨ac⟩ ∼= Cp ×Cp if a ∈ K ,

by Lemma 6.1, so that (ii) or (i) hold respectively. Suppose finally that r = ℓ. If ℓ≥ 1 then

S = Aℓ⟨ac⟩/Aℓ
∼= ⟨ac⟩ ,

which is cylic of order p, noting that (ac)p ∈ Z(W ) = A1 ⊆ Aℓ, by Lemma 6.1, and (i) holds. If
ℓ= 0 then

S = A0⟨ac⟩/A0 ≡ ⟨ac⟩ ∼=

{
Cp2 if a ∈ B\K ,

Cp if a ∈ K ,

by Lemma 6.1, so that (ii) or (i) hold respectively. Note, from just two subcases in the above
analysis, that (ii) holds if and only if S = ⟨ac⟩ with a∈B\K, completing the proof of the lemma. □

Lemma 6.6. Let S be a nonabelian section of W =Cp ≀Cp Then

S = Am⟨ac⟩/Aℓ

for some a ∈ A, and ℓ≤ m−2 such that 0 ≤ ℓ≤ p−2 and 2 ≤ m ≤ p. Furthermore,

µ(S) = p2 .
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Proof. Suppose that S = H/N for some H and N. If N is not contained in B, then, by Lemma 6.4, S
is trivial or cyclic of order p, contradicting that S is nonabelian. Hence N is contained in B so is an
elementary abelian subgroup of rank ℓ, say. If H is also contained in B then S would be elementary
abelian, again a contradiction. Hence H is not contained in B, so that, by Lemma 6.2 and (54), we
have

H = Am⟨ac⟩ and H ∩B = Am

for some m ∈ {0, . . . , p} and a ∈ B. Since N ⊆ H ∩B = Aℓ, we have

ℓ ≤ m .

Note that N is closed under conjugation by ac, so also under conjugation by c, so that N is normal
in W . Hence N = Aℓ, since Aℓ is the unique normal subgroup of W contained in Am of rank ℓ. If
ℓ= m or ℓ= m−1, then S is abelian, by the proof of the previous lemma, which is a contradiction.
Hence ℓ≤ m−2, so that ℓ≤ p−2 and 2 ≤ m. By Lemma 6.3, we have

Z(S) = Aℓ+1/Aℓ ,

which is cyclic of order p, so that, by Proposition 1.3,

µ(S) ≥ pµ
(
Z(S)

)
= p2 .

But S is a subgroup of W and µ(W ) = p2, so that µ(S) = p2, completing the proof of the lemma. □

Theorem 6.7. Let p be any odd prime. A section S of Cp ≀Cp is almost exceptional if and only if
S is nonabelian of order at least p4, in which case µ(S) = p2 and S is isomorphic to an extension
of a k-dimensional vector space over Zp by a cyclic group of order p with a nontrivial conjugation
action, for some k such that 3 ≤ k ≤ p.

Proof. Put W = Cp ≀Cp and suppose that S is a section of W . If S is abelian then S cannot be
exceptional (by Theorem 1.1).

Suppose that S is nonabelian. In the following, we show that |S| ≥ p3 and S is almost exceptional
if and only if |S| ≥ p4. By Lemma 6.6,

S = Am⟨ac⟩/Aℓ

for some a ∈ A, and ℓ ≤ m− 2 such that 0 ≤ ℓ ≤ p− 2 and 2 ≤ m ≤ p, and µ(S) = p2. Then
Am/Aℓ is an elementary abelian normal subgroup of S of rank m− ℓ≥ 2, which may be regarded as
a vector space of dimension m− ℓ over Zp. By Lemma 6.1, we have (ac)p ∈ A1 ⊆ Am, so that S is
an extension of Am/Aℓ by

S/(Am/Aℓ) ∼= Am⟨ac⟩/Am ∼= ⟨ac⟩/(⟨ac⟩∩Am) = ⟨ac⟩/⟨(ac)p⟩ ∼= Cp ,

noting, again by Lemma 6.1, that ac has order p or p2. This shows that S is an extension of a
k-dimensional vector space by a cyclic group of order p. The wreath action, inherited from W ,
guarantees that the conjugation action is nontrivial. Put

k = m− ℓ ,

so that k ≥ 2. If k = 2 then

S = Am⟨ac⟩/Am−2 ,



26 IBRAHIM ALOTAIBI AND DAVID EASDOWN

|S| = p3, and the nontrivial quotients of S are elementary abelian, by the proof of Lemma 6.5, of
minimal degree less that p2, so that S is not almost exceptional. Suppose that k ≥ 3, so Am−2/Aℓ is
a nontrivial normal subgroup of S. Then

Am⟨ac⟩/Am−2 ∼= S/(Am−2/Aℓ)

is a nontrivial quotient of S of minimal degree p2, so that S is almost exceptional. Observe that

|S| = |Am⟨ac⟩/Aℓ| = pm−ℓ+1 = pk+1 ≥ p4 ,

completing the proof of the theorem. □

7. APPLICATION TO CENTRAL PRODUCTS

Recall that if H and K are groups such that Z1 is a subgroup of Z(H) and Z2 is a subgroup of
Z(K), and φ : Z1 → Z2 is an isomorphism, then the external central product of H and K via φ is the
group

H ∗K = (H ×K)/N

where
N = {(h−1,hφ) | h ∈ Z1} .

Recall that a group G is an internal central product of subgroups H and K if G = HK and elements
of H commute with elements of K, in which case G is isomorphic to the external central product
of H and K via the identity map applied to H ∩K. The external central product H ∗K above, via
φ : Z1 → Z2, may be identified with an internal central product HK in a natural way, by identifying
H with (H ×{1})N/N, K with ({1}×K)N/N and H ∩K with

{N(h,1) | h ∈ Z1} = {N(1,hφ | h ∈ Z1} .

We use the notation H ∗K to denote both the external and associated internal central products of H
and K. In this section, we will only be considering central products, in terms of the above notation
for the external central product, where p is an odd prime, H and K are p-groups and

Z1 = Z(H) ∼= Cp ∼= Z(K) = Z2 . (56)

It follows from (56), regarded as an internal central product, and the definitions, that

Z(H ∗K) = H ∩K ∼= Cp . (57)

Hence, we may iterate taking central products and have, as a consequence of (57), the following
result:

Lemma 7.1. Let p be an odd prime and n ≥ 2 an integer. Suppose that G1, . . . ,Gn are nonabelian
p-groups such that

Z(Gi) ∼= Cp

for 1 ≤ i ≤ n. Then
Z(G1 ∗ . . .∗Gn) ∼= Cp . (58)

For 1 ≤ i ≤ n,
µ(Gi) = pαi (59)

for some positive integer αi, and
µ(G1 ∗ . . .∗Gn) = pα (60)
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for some positive integer α ≥ max{α1, . . . ,αn}+1.

Proof. Put G = G1 ∗ . . . ∗Gn. That Z(G) ∼= Cp follows from (57), so that (58) holds. By Theo-
rem 1.2, each of µ(G1), . . . ,µ(Gn),µ(G) must be a power of p, since the minimal representations
are transitive. In particular, there are positive integers α1, . . . ,αn,α such that (59) and (60) hold.
Certainly

µ(G) ≥ max{µ(G1), . . . ,µ(Gn)} = pmax{α1,...,αn} ,

since Gi embeds in G for 1 ≤ i ≤ n. Reordering the groups, if necessary, we may suppose that

µ(G1) = max{µ(G1), . . . ,µ(Gn)} ,

so that α1 = max{α1, . . . ,αn} and

pα = µ(G) ≥ µ(G1) = pα1 ,

so that α ≥ α1. Suppose that α = α1, so that µ(G) = µ(G1). Observe that G may be regarded as an
internal central product G = G1H where H ∼= G2 ∗ . . .∗Gn is a nonabelian group and

Z(G) = Z(G1) = Z(H) = G1 ∩H ∼= Cp .

In particular, H is noncyclic so H contains a nontrivial subgroup S such that

S∩G1 = S∩ (G1 ∩H) = S∩Z(G) = S∩Z(H) = {1} .

Hence, because all elements of G1 commute with all elements of H, the subgroup G1S of G is an
internal direct product, so that, by Theorem 1.4,

µ(G) ≥ µ(G1S) = µ(G1)+µ(S) > µ(G1) = µ(G) ,

which is a contradiction. Hence α ≥ α1 +1, completing the proof of the lemma. □

We can now exhibit a proliferation of sequences of exceptional p-groups with the property that
taking the minimal faithful degree of successive direct products grows as a linear function of the
number of factors, compared with exponential growth of the minimal faithful degree of the associ-
ated central products (which are quotients of the respective direct products).

Theorem 7.2. Suppose that p is an odd prime and n ≥ 1 is an integer. Suppose that G1, . . . ,Gn are
nonabelian sections of Cp ≀Cp. Then

µ(G1 × . . .×Gn) = np2 , (61)

whilst
µ(G1 ∗ . . .∗Gn) = pn+1 . (62)

In particular, for n ≥ 2, the group G1 × . . .×Gn is exceptional with minimal faithful degree that is
a linear function of n, with distinguished quotient G1 ∗ . . . ∗Gn, which has minimal faithful degree
that is an exponential function of n.

Proof. By Lemma 6.6, µ(Gi) = p2 for 1 ≤ i ≤ n and, by Theorem 1.4,

µ(G1 × . . .×Gn) = µ(G1)+ . . .+µ(Gn) = np2 ,

verifying (61). We verify (62) by induction. The induction starts trivially, so suppose (62) holds for
n ≥ 1 and that Gn+1 is a nonabelian section of Cp ≀Cp. Put

H = G1 ∗ . . .∗Gn
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and
G = H ∗Gn+1 .

We may regard G as an internal central product G = HGn+1, where

Z(G) = Z(H) = Z(Gn+1) = H ∩Gn+1 .

By the inductive hypothesis, µ(H) = pn+1 and, by Lemma 6.6, µ(Gn+1) = p2, so that

max{pn+1, p2} = pn+1 .

By Lemma 7.1,
µ(G) ≥ p(n+1)+1 = pn+2 .

To establish the inductive step, it suffices to find a faithful representation of G of degree pn+2.
By Lemmas 6.3 and 6.6, the centres of G1, . . . ,Gn+1 are cyclic of order p. By Lemma 7.1, H
also has a cyclic centre of order p. By Theorem 1.2, H and Gn+1 have transitive faithful minimal
representations afforded by some subgroups S1 for H and S2 for Gn+1 respectively. By faithfulness,

S1 ∩Z(H) = S2 ∩Z(Gn+1) = {1} .

In particular,
{1} = S1 ∩Z(H) = S1 ∩H ∩Gn+1 = S1 ∩Gn+1 ,

which implies that
S1 ∩S2 = {1} .

Elements of H commute with elements of Gn, so that S1S2 is a subgroup of G, which becomes an
internal direct product. Hence |S1S2|= |S1||S2|, so that

|G : S1S2| =
|G|

|S1S2|
=

|H||Gn+1|
p|S1||S2|

=
1
p

µ(H)µ(Gn+1) = pn+1+2−1 = pn+2 .

We now verify that S1S2 has trivial core in G. Let

x ∈ S1S2 ∩Z(G) = S1S2 ∩ (H ∩Gn+1) ,

so that x = st for some s ∈ S and t ∈ T . But then, since x, t ∈ Gn+1, we have

s = xt−1 ∈ S1 ∩Gn+1 = S1 ∩ (H ∩Gn+1) = S1 ∩Z(H) = {1} ,

and, also, since x,s ∈ H, we have

t = xs−1 ∈ S2 ∩H = S2 ∩ (H ∩Gn+1) = S2 ∩Z(Gn+1) = {1} .

This shows that x = s = t = 1, so that the core of S1S2 in G must be trivial. This shows that S1S2 is
a core-free subgroup of G of index pn+2, so that

µ(G) ≤ pn+2 ,

whence µ(G) = pn+2, establishing the inductive step, so that (62) holds always. Observe that, for
n ≥ 2,

pn+2 > np2 ,

so that G1 × . . .×Gn is exceptional with distinguished quotient G1 ∗ . . .∗Gn, completing the proof
of the theorem. □
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8. APPENDIX: WREATH PRODUCTS OF ORDERS UP TO 500

Q: G is almost exceptional, i.e. ∃ nontrivial N ◁G such that µ(G) = µ(G/N)

E : G is exceptional, i.e. ∃ N ◁G such that µ(G)< µ(G/N)

D : Decreasing quotients, i.e. µ(G/N)< µ(G) for all nontrivial N ◁G

S : ∃ proper S ≤ G such that µ(G) = µ(S)

N : G is nilpotent

Groups Order. ID µ(G) N S Q E D

C2 ≀ C2 8.3 4 ✓ ✓ ✓ × ×

C3 ≀ C2 18.3 6 × ✓ × × ✓

C2 ≀ C3 24.13 6 × ✓ × × ✓

C4 ≀ C2 32.11 8 ✓ ✓ ✓ × ×

C2
2 ≀ C2 32.27 8 ✓ ✓ × × ✓

C2 ≀ S3 48.48 6 × ✓ × × ✓

C5 ≀ C2 50.3 10 × ✓ × × ✓

C2 ≀ C4 64.32 8 ✓ ✓ ✓ × ×

C2 ≀ C2
2 64.138 8 ✓ ✓ ✓ × ×

C6 ≀ C2 72.30 10 × ✓ × × ✓

S3 ≀ C2 72.40 6 × ✓ × × ✓

C3 ≀ C3 81.7 9 ✓ ✓ ✓ × ×

C7 ≀ C2 98.3 14 × ✓ × × ✓

C8 ≀ C2 128.67 16 ✓ ✓ ✓ × ×

(C2 ×C4) ≀ C2 128.628 12 ✓ ✓ ✓ × ×

D8 ≀ C2 128.928 8 ✓ ✓ ✓ × ×

Q8 ≀ C2 128.937 16 ✓ ✓ × × ✓

C3
2 ≀ C2 128.1578 12 ✓ ✓ × × ✓

C2 ≀ C5 160.235 10 × ✓ ✓ × ×

C9 ≀ C2 162.3 18 × ✓ × × ✓

Continued on next page
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Table 1 – continued from previous page

Groups Order. ID µ(G) N S Q E D

C3 ≀ S3 162.10 9 × ✓ ✓ × ×

C2
3 ≀ C2 162.52 12 × ✓ ✓ × ×

C4 ≀ C3 192.188 12 × ✓ ✓ × ×

C2 ≀ A4 192.201 8 × ✓ ✓ × ×

C2
2 ≀ C3 192.1540 12 × ✓ × × ✓

C10 ≀ C2 200.31 14 × ✓ × × ✓

D10 ≀ C2 200.43 10 × ✓ × × ✓

C11 ≀ C2 242.3 22 × ✓ × × ✓

C12 ≀ C2 288.239 14 × ✓ ✓ × ×

Dic3 ≀ C2 288.389 14 × ✓ × × ✓

(C2 ×C6) ≀ C2 288.724 14 × ✓ × × ✓

D12 ≀ C2 288.889 10 × ✓ × × ✓

A4 ≀ C2 288.1025 8 × ✓ × × ✓

C2 ≀ D10 320.1636 10 × ✓ ✓ × ×

C3 ≀ C4 324.162 12 × ✓ × × ✓

C3 ≀ C2
2 324.167 12 × ✓ × × ✓

C13 ≀ C2 338.3 26 × ✓ × × ✓

C5 ≀ C3 375.6 15 × ✓ ✓ × ×

C14 ≀ C2 392.27 18 × ✓ × × ✓

D14 ≀ C2 392.37 14 × ✓ × × ✓

C15 ≀ C2 450.29 16 × ✓ × × ✓
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