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Abstract. We give a complete description of Rees quotients of free inverse semigroups

given by positive relators that satisfy nontrivial identities, including identities in signature

with involution. They are finitely presented in the class of all inverse semigroups. Those

that satisfy a nontrivial semigroup identity have polynomial growth and can be given by an

irredundant presentation with at most four relators. Those that satisfy a nontrivial identity

in signature with involution, but which do not satisfy a nontrivial semigroup identity, have

exponential growth and fall within two infinite families of finite presentations with two

generators. The first family involves an unbounded number of relators, and the other

involves presentations with at most four relators of unbounded length. We give a new

sufficient condition for which a finite set X of reduced words over an alphabet A ∪ A−1

freely generates a free inverse subsemigroup of FIA and use it in our proofs.

1. Introduction

Presentations involving generators and relations may be viewed from different stand-

points, depending on the algebraic context, with sometimes surprising outcomes and con-

nections. A example of this would be Garside’s early discovery [13] that the (positive)

braid monoid embeds in the braid group, using monoid and group presentations, respec-

tively, involving identical (Coxeter type A) relations that avoid inverses of letters from the

underlying alphabet. Quite spectacularly, Paris [27], relying on results of Crisp [6], gener-

alised Garside’s result to show that all Artin monoids embed into Artin groups, now using

Coxeter relations of any type, where again the relations in the respective monoid and group

presentations are identical and only involve positive words (with alternating letters) that

avoid formal inverses. In different directions, G. Baumslag [3] studied groups defined by one

positive relator and showed that they are residually solvable, and, recently, Isherwood and

Williams [18] investigate the Tits alternative for cyclically presented groups with positive

relators of length four (and see also [12, 25] for cyclically presented groups with positive

relators of length three). The presentation

⟨a, b | ab = 1⟩ , (1)

involves a positive relator of length two and yields an infinite cyclic group, as a group

presentation, and clearly remains unchanged, as a group, by considering its cyclically pre-

sented counterpart ⟨a, b | ab = ba = 1⟩. However, as a monoid presentation, (1) produces

the bicyclic monoid, which does not embed in a group, and is in fact a well studied bisimple
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inverse semigroup that satisfies the celebrated semigroup identity

xy2xxyxy2x = xy2xyxxy2x (2)

due to Adjan [1]. Note also in [1] (see monograph [2] with detailed proofs), Adjan introduced

the class of finitely generated special monoids given by presentations whose right-hand sides

are empty words, and established that if a special monoid satisfies a nontrivial identity, then

it is a group or isomorphic to a bicyclic monoid or free monogenic monoid ⟨a, b | b = 1⟩.
It follows from a result of Scheiblich [31] that the bicyclic monoid and the free monogenic

inverse semigroup satisfy the same identities (see [33, Proposition 2.1]). This fact opens up

possible connections with presentations of inverse semigroups with zero, and is exploited

in [33, Sections 3 and 5], where the authors demonstrate that all finitely presented Rees

quotients of free inverse semigroups have polynomial growth if and only if they satisfy a

single, but complicated, semigroup identity closely related to Adjan’s identity (2). (In fact,

as demonstrated in Theorem 6.2 below, if, in addition to having polynomial growth, the

relators are all positive words, everything simplifies and the identity (2) alone suffices.)

By contrast, Izhakian and Margolis [19] prove that the monoid of 2 × 2 tropical matrices

satisfies an identity closely related (2), but twice as long, and its submonoid of upper

triangular matrices satisfies (2). Moreover, Daviaud, Johnson and Kambites [8] prove that

the identities which hold in the monoid of 2 × 2 upper triangular tropical matrices are

exactly the same as those which hold in the bicyclic monoid. Another variation is given by

Kubat and Okninski [20], who prove that the plactic monoid of rank three, associated in a

natural way with generalisations of the bicyclic monoid, satisfies a very long identity closely

related to (2).

In 1996, the authors [33] initiated the study of asymptotic behaviour of the class of finitely

presented Rees quotients of free inverse semigroups. They showed that all semigroups from

that class have polynomial or exponential growth and proved that the type of growth is

algorithmically recognisable, giving a precise anologue of a classical result due to Ufnarovsky

[36] and Gilman [14] in the study of finitely presented associative monomial algebras, using

the de Bruijn graph of a presentation [7]. From the point of view of inverse semigroups with

zero, it is natural to replace 1 by 0 in (1) and then consider

Inv⟨a, b | ab = 0⟩ (3)

regarded as a presentation as an inverse semigroup with zero (and denoted by S3 in the

sequel below). By contrast with the bicyclic monoid, the inverse semigroup defined by (3)

satisfies no nontrivial semigroup identity, because it is easily seen to contain a nonmonogenic

free subsemigroup (see for example [10, Section 1]). However, the authors prove ( [10,

Theorem 3.8], and see Theorem 2.1 below) that this inverse semigroup is the unique principal

Rees quotient of a free inverse semigroup that is not trivial or monogenic with zero satisfying

a nontrivial identity in signature with involution.

Our main goal in this paper is to give a complete description of Rees quotients of free

inverse semigroups given by positive relators that satisfy nontrivial identities, including

identities in signature with involution. It turns out, though this is not obvious, that all

such inverse semigroups are finitely presented in the class of all inverse semigroups, so that
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we can use our methods to investigate connections with growth and look for complete syn-

tactic descriptions of their presentations. Theorem 6.2 below is the main result concerning

inverse semigroups from our class that satisfy a nontrivial semigroup identity. Theorem

7.10 below is the main result concerning inverse semigroups from our class that satisfy a

nontrivial identity in signature with involution, but which do not satisfy a nontrivial semi-

group identity. This final result relies upon and may be regarded as a development of the

authors’ work in [10].

This paper is organised as follows. Section 2 includes preliminaries, setting up the nota-

tion for presentations of Rees quotients of free inverse semigroups, which defines a general

class C of inverse semigroups with zero. The subclass P, consisting of semigroups given by

presentations where all relators are positive words over the underlying alphabet, is the focus

of attention for Sections 4 to 7. In Section 3, which may be of independent interest, we

develop a sufficient condition that guarantees that a subset of a free inverse subsemigroup,

consisting of reduced words, freely generates an inverse subsemigroup, relying on Reilly’s

criterion [28, 29]. In Section 4, we provide details, including illustrations of Ufnarovsky

graphs, of several inverse semigroups with zero that play important roles in the theorems

of later sections. In Section 5, which is short, we make a major reduction, by showing that

inverse semigroups with zero from the class P that satisfy nontrivial identities in signature

with involution must be generated by at most two elements. In Section 6, we give several

characterisations of inverse semigroups with zero from the class P that satisfy a nontriv-

ial semigroup identity. This includes a syntactic description involving only two finitely

presented semigroups, using three and four relators respectively, and both of which have

polynomial growth. In Section 7, the final section, we give characterisations and syntactic

descriptions of all inverse semigroups with zero from the class P that satisfy a nontrivial

identity in signature with involution, but which do not satisfy any nontrivial semigroup

identity. All semigroups that arise are finitely presented, have exponential growth and fall

within two main classes, the first of which can involve presentations with arbitrarily many

relators, and another infinite class with at most four relators, but of arbitrary length. In the

latter class, pairs of relators appear, reminiscent of Coxeter relations, which involve words

and their reversals that alternate between two letters.

2. Preliminaries

We assume familiarity with definitions and elementary results from the theory of semi-

groups, which may be found in any of [4], [15], [17] or [21]. Throughout let A be a nonempty

alphabet and put

B = A ∪A−1

where the elements of A−1 are formal inverses of corresponding elements of A and vice-versa

(so A and A−1 are disjoint and any a in A may also be denoted by (a−1)−1). Let I be an

indexing set and suppose that ci ∈ B+ for each i ∈ I. Consider the inverse semigroup S

with zero given by the following presentation:

S = Inv⟨A | ci = 0 for i ∈ I ⟩ .
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In this paper we only consider presentations within the class of inverse semigroups with

zero and abbreviate the notation slightly to write

S = ⟨A | ci = 0 for i ∈ I ⟩ . (4)

The words ci are called (zero) relators. Observe that S may be regarded as (isomorphic to)

the Rees quotient of the free inverse semigroup FIA generated by A with respect to the

ideal generated by the relators. Denote by C the class of all inverse semigroups with zero

given by presentations of type (4).

In the case that both A and I are finite and nonempty, say I = {1, . . . , L} where L is a

positive integer, then (4) may be written as a finite presentation:

S = ⟨A | ci = 0 for i = 1, . . . , L ⟩ . (5)

It could be noted that the simplest nontrivial example of (5) would be

⟨ a | a2 = 0 ⟩ ,

which defines the five-element Brandt inverse semigroup. The class of finitely presented

inverse semigroups with zero defined by presentations (5) may now be formally referred to

as MFI , and has been the subject of investigations, from the point of view of growth and

identities, in previous articles by the authors [10, 11, 33–35]. In particular, the reader is

referred to Section 2 of [35] for a comprehensive summary of terminology, notation and past

results relied upon in this paper.

We say that the inverse semigroup S with zero is given by a positive presentation if the

relators in (4) are all words over A (that is avoiding letters from A−1). The class of all such

semigroups, given by positive presentations, is denoted by P. We say that a presentation of

a semigroup from class P is irredundant if none of the generators is a relator and no relator

is a factor of any of the others. In Section 4, we focus on some particular examples from P

that play critical roles in the results in Sections 6 and 7 respectively. One of them is the

inverse semigroup with zero given by the presentation

S3 = ⟨a, b | ab = 0⟩

mentioned in the introduction. The following theorem then becomes a slight adjustment

of [10, Theorem 3.7], noting that in presentations of classical algebras, such as groups,

associative rings, semigroups or monoids, if a generating set is infinite but the number of

relations is finite, then there is always a free subalgebra on two generators (so that, in the

case of an inverse semigroup presentation, no nontrivial identity in signature with involution

can be satisfied).

Theorem 2.1. The inverse semigroup with zero

S3 = ⟨a, b | ab = 0⟩

is the unique semigroup, up to isomorphism, from the class C (so, in particular also from

the class P), that has exactly one relator, is not trivial and not monogenic with zero and

satisfies a nontrivial identity in signature with involution, in fact, the following identity:

PQ = QP
where

P = P (x, y) = [yx2y, x−1y−2x−1] and Q = Q(x, y) = [y−1x2y−1, x−1y2x−1] .
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3. Free generation of inverse subsemigroups

In this section (Proposition 3.2 below), we provide a sufficient condition for a subset of

a free inverse semigroup to become a free generating set, namely that all elements of the

subset be reduced words such that the length of each word exceeds the sum of the lengths

of a largest prefix and a largest suffix shared by this word with other words in the set. This

condition is applied in two cases below (Lemma 5.1 and 7.9), as stepping stones towards

developing our main theorems in Sections 6 and 7.

We first recall Reilly’s criterion [28, Theorem 2.2] [29] for identifying free generating sets

in inverse semigroups:

If K is a subset of an inverse semigroup S then K is a set of free generators

for the inverse subsemigroup K generates if and only if K ∩K−1 is empty

and if y ∈ K ∪K−1 and yy−1 is annihilated by a product of idempotents of

the form w1w
−1
1 . . . wnw

−1
n where w1, . . . , wn are reduced words with respect

to the alphabet K, then y is the first letter of wj for some j.

In the previous statement, consider the case that S = FIA happens to a free inverse

semigroup with respect to some alphabet A. Suppose y is a reduced word over A such that

yy−1 is annihilated by a product of idempotents. Then y labels some geodesic path from

the initial vertex of the Munn tree of that product of idempotents to some vertex, which

lies in the Munn tree of one of the idempotents. But this unique geodesic path must appear

also in that particular Munn tree, since it contains the initial vertex of the Munn tree of the

product of idempotents. Hence yy−1 is in fact annihilated by just one of the idempotents

used to form the product. Note also that if K is a subset of FIA consisting of reduced words

only, then K ∩K−1 is empty automatically. Hence we have the following simplification of

Reilly’s criterion in this special case:

If K is a subset of a free inverse semigroup FIA with respect to some alphabet

A, such that all elements of K are reduced, then K is a set of free generators

for the inverse subsemigroup K generates if and only if, for all y ∈ K∪K−1,

if yy−1 is annihilated by an idempotent ww−1 where w is some reduced word

with respect to the alphabet K, then y is the first letter of w.

The following terminology adapted from [11, Section 3] will be used in the proof of

Proposition 3.2 below. If w is a word over B then we say w has the whisker property if the

word tree T (w) contains an underlying chain C of vertices such that (i) each leaf vertex of C
is a leaf of T (w), (ii) each leaf of T (w) that is not a leaf of C is connected to C by a chain of

edges, (iii) degrees of vertices of T (w) are only allowed to be 1, 2 or 3, and (iv) vertices of

degree 3 only occur on C. These connecting chains are called whiskers and are themselves

word trees of reduced words.

Figure 1. Word tree with whisker property
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In the diagram above the thick line is intended to represent the underlying chain C and

the thin lines represent the whiskers. Whiskers may be of varying length. The definition

includes the possibility that T (w) coincides with the chain C, in which case there are no

whiskers. This would occur, for example, if w is a reduced word.

Example 3.1. Let A = {a, b, c} and consider the following words over B:

u = a2b3 , u1 = b−2c4 , u2 = c−2a2 , u3 = a−1b3 .

Put

w = uu1u2u3 = a2b(b2b−2)c2(c2c−2)a(aa−1)b3 .

Then the word tree T (w) has the whisker property (see Figure 2), with an underlying

chain C traversed by the reduced part of w, which is the word a2bc2ab3, and three whiskers

traversed by b2, c2 and a respectively. It is straightforward to check that condition (6) in

the statement of Proposition 3.2 below is satisfied by X = {u, u1, u2, u3}, so, in fact, X

freely generates a free inverse subsemigroup of FIA.

b b b b b b b b b b
a a b c c a b b b

c

c

ab

b

b

b

b

b

b

Figure 2. Word tree of w = uu1u2u3

We now provide the following sufficient condition for free generation of subsets of free

inverse semigroups, which becomes routine to check in our applications below (Lemmas 5.1

and 7.9 below):

Proposition 3.2. Let FIA be the free inverse semigroup over an alphabet A. Let X be a

nonempty subset of FIA consisting of reduced words such that X ∩X−1 is empty. For each

x ∈ X ∪X−1 let mx be the maximum length of any prefix of x which x has in common with

any other element of X ∪X−1, and let Mx be the maximum length of any suffix of x which

x has in common with any other element of X ∪X−1. Suppose that the following condition

holds:

mx +Mx < ℓ(x) for all x ∈ X, where ℓ(x) is the number of letters in x. (6)

Then X is a free generating set for the inverse subsemigroup generated by X.
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Proof. Put Y = X ∪X−1, which is a disjoint union by assumption. For each x ∈ Y , denote

by xφ the prefix of x obtained by deleting from x the suffix of length Mx. Observe, by (6),

firstly, that

x is not a prefix of y for all distinct x, y ∈ Y , (7)

and, secondly, that

xφ is not a prefix of yφ for all distinct x, y ∈ Y . (8)

For any x, y ∈ Y , such that y ̸= x−1, denote by P (x, y) the length of the largest prefix of y

in common with x−1. Hence, by (6),

P (x, y) ≤ my < ℓ(y)−My .

Let u, u1, . . . , un ∈ Y and suppose that w = uu1 . . . un is a reduced word with respect to Y .

We will show that the word tree of w has the whisker property (as explained above, before

Figure 1), such that an initial segment of the underlying chain C is the word tree of uφ.

This is certainly true if n = 0, because the word tree of a reduced word is a chain, so we

may assume n ≥ 1. Note that u−1 and u1 are different words, because w is reduced with

respect to Y . Hence, by (7), we have that u−1 is not a prefix of u1. Put e1 = ℓ(u) and

d1 = ℓ(u)− P (u1, u) .

Then d1 is positive and the initial vertex of the Munn tree of uu1 must be a leaf. Note that

d1 = ℓ(u) if and only if uu1 is reduced. Now put

e2 = ℓ(u1)− P (u1, u) ,

which is positive by condition (6). Observe that the word tree T (u) is a chain of length e1
and T (uu1) is a word tree with the whisker property, having an underlying chain of length

d1 + e2, with at most one whisker, of length P (u1, u), when P (u1, u) is positive, attached

to the chain at the node located d1 edges from the initial vertex (see Figure 3).

b b

b

P (u1, u)

d1 e2

Figure 3. Word tree of uu1

This is the start of an inductive process. If n = 1 then we have finished, so suppose that

n ≥ 2. Put u0 = u. For 2 ≤ i ≤ n, put

di = ℓ(ui−1)− P (ui−1, ui−2)− P (ui, ui−1)

and, for 2 ≤ i ≤ n+ 1, put

ei = ℓ(ui−1)− P (ui−1, ui−2) ,
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noting that this extends the definition of e2, and both di and ei are positive, by condition

(6). Note also that, for 1 ≤ i ≤ n,

ei = di + P (ui, ui−1) ,

and ei = di if and only if the word ui−1ui is reduced with respect to A. Suppose, as inductive

hypothesis, that 1 ≤ k < n and the word tree T (uu1 . . . uk) has the whisker property with

an underlying chain Ck of length

d1 + . . .+ dk + ek+1

with at most k whiskers, being the number of elements i such that 1 ≤ i ≤ k and ui−1ui is

reducible with respect to A. All whiskers of lengths amongst the positive values of

P (u1, u0) , P (u2, u1) , . . . , P (uk, uk−1)

are attached to the nodes located

d1 , d1 + d2 , . . . , d1 + . . .+ dk

edges respectively from the initial vertex of Ck. Observe that u−1
k cannot be a prefix of uk+1,

by (7), since u−1
k and uk+1 are different words, as w is reduced with respect to Y . We modify

the chain Ck by removing edges corresponding to the suffix of uk of length P (uk+1, uk) and

then adding edges corresponding to the suffix of uk+1 obtained by deleting its prefix (in

common with u−1
k ) of length P (uk+1, uk). This produces a new chain Ck+1 of length

d1 + . . .+ dk + dk+1 + ek+2 .

We can now reinstate the edges corresponding to the common prefix of u−1
k and uk+1 to

add a whisker to the tree of length P (uk+1, uk), in the case that this length is positive.

This completes the construction of the word tree of T (uu1 . . . ukuk+1), which again has the

whisker property, and establishes the inductive step. Figure 4 illustrates the final outcome

of this construction. In the illustration, the whiskers are drawn with varying lengths, though

of course whiskers could have the same lengths, and whiskers will not exist at nodes where

the concatenation of consecutive words yields a reduced word.

b b . . .

b

b

P (u1, u)

d1 d2 dn en+1

P (u2, u1)

b

b

P (un, un−1)

b

b

P (un−1, un−2)

bb

Figure 4. Word tree of w = uu1 . . . un
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This shows that the word tree of w = uu1 . . . un has the whisker property. The initial

segment of the underlying chain, up to and including the node to which the first whisker is

attached, or the entire chain if there are no whiskers, becomes the Munn tree of a reduced

word for which uφ is a prefix, with the initial vertex being the initial vertex of the underlying

chain.

Suppose now that y ∈ Y and yy−1 is annihilated by an idempotent ww−1, where w =

uu1 . . . un is a reduced word with respect to the alphabet Y . We want to show that y = u.

Suppose to the contrary that y ̸= u and denote by

(T, α, α) =
(
T (w), α(w), α(w)

)
the Munn tree of w (where the initial and terminal vertices coincide). By what we proved,

T has the whisker property with respect to an underlying chain, where α is the initial

vertex of this chain, and the initial segment of this chain, up to and including the vertex

where the first whisker is attached, or the entire chain if there are no whiskers, extends (and

possibly equals) the Munn tree of uφ. Denote by (T ′, α, α) the Munn tree of the idempotent

(uφ)(uφ)−1, which typically would use just a fragment of the underlying chain of T . Since

yy−1 is annihilated by w, we have that yφ labels some unique path in T emanating from α.

Hence either (i) this path exhausts T ′, so that uφ is a prefix for yφ, or (ii) yφ labels a path

that terminates inside T ′, so that yφ is a prefix of uφ. Both cases (i) and (ii) contradict

(8), since y and u are different words. Hence, in fact, y = u, so that Reilly’s criterion is

satisfied, and X becomes a free generating set for the inverse subsemigroup of FIA that it

generates. This completes the proof of the proposition. □

Condition (6) is equivalent to condition (N2) in the definition of a Nielsen basis [23,

Chapter 1], so we have immediately the following:

Corollary 3.3. Let F (A) be the free group over a finite alphabet A. Let X be a finite

subset of F (A) consisting of reduced words. If X is a Nielsen basis then X freely generates

an inverse subsemigroup of the free inverse semigroup FIA.

Another related sufficient condition for a finite subset X of reduced words over a finite

alphabet A ∪ A−1 to be a basis for a free inverse subsemigroup Inv⟨X⟩ of FIA was found

by Margolis and Meakin [24, remark following Theorem 3.6], who considered closed finitely

generated inverse subsemigroups. We also mention their example [24, p. 88], the set X =

{ab, ac, bc}, which freely generates a free inverse subsemigroup over the alphabet {a, b, c}.
Since X does not satisfy condition (6), this condition is not necessary in general for free

generation of an inverse subsemigroup.

4. Examples

In this section, we provide details, including the graphs, of particular inverse semigroups

with zero, namely S1, S2, S3, S4 and S8(1), which play key roles in the two main results of

this paper (Theorems 6.2 and 7.10 below).

Example 4.1. The following inverse semigroups play a critical role in describing and char-

acterising semigroups in the class P that satisfy a nontrivial semigroup identity (Theorem
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6.2 below):

S1 = ⟨a, b | a2 = b2 = ab = 0⟩ and S2 = ⟨a, b | a2 = b2 = ab = ba = 0⟩ .

They are both homomorphic images of the following semigroups:

S3 = ⟨a, b | ab = 0⟩ and S4 = ⟨a, b | a2 = b2 = 0⟩ ,

which, in turn, play a critical role in describing semigroups from P that do not satisfy a

nontrivial semigroup identity, but satisfy a nontrivial identity in signature with involution

(Theorem 7.10 below). It could be noted that the presentation for S2 would reduce to the

three element null semigroup, if the presentation were interpreted within the class of all

semigroups with zero.

The inverse semigroup S1 has the following Ufnarovsky graph, leading to a detailed

analysis in [11, Example 2.2]:

a b−1

b a−1

Figure 5. Ufnarovsky graph of S1

By adding the relator ba, we get the inverse semigroup S2, which has the following simplified

graph:

a b−1

b a−1

Figure 6. Ufnarovsky graph of S2
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By contrast, the graph of S3 is as follows:

a b−1

b a−1

Figure 7. Ufnarovsky graph of S3

and the graph of S4 is as follows:

a b−1

b a−1

Figure 8. Ufnarovsky graph of S4

The semigroups S3 and S4 clearly have exponential growth, as their graphs contain vertices

in different cycles. There are many ways of seeing that S2 has polynomial growth. It follows

from the fact that S1 has polynomial growth, explained from several different points of view

in [11], and the fact that S2 is a homomorphic image of S1. The language of nonzero reduced

words in S2 can be read from the graph and is

(1 ∪ a)(b−1a)∗(1 ∪ b−1) ∪ (1 ∪ a)(b−1a)∗(1 ∪ b−1) .

The Gelfand-Kirillov dimension of S1 was calculated in [11, Example 2.3] to be four. In

the case of S2, the language of nonzero reduced words has Gelfand-Kirillov dimension one

(because of the isolated cycles), and the calculation (which is an adaptation of the technique

used in [32]) involving word trees that are chains is the same, associating with every reduced

word of length m some subset that consists of a quadratic function in m distinct nonzero

elements of the semigroup S2. It follows that the Gelfand-Kirillov dimension of S2 is three.

Observe further that S2 is a terminal object in the subclass of P, in the sense that S2 has

no proper homomorphic images involving positive relators other than inverse semigroups

that are trivial or the five element Brandt inverse semigroup ⟨a | a2 = 0⟩.
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Example 4.2. By contrast with S1 and S2, the following inverse semigroup has exponential

growth and plays a central role in describing and characterising semigroups in the class P

that satisfy an identity in signature with involution:

SΠ = ⟨a, b | a2 = b2 = aba = bab = 0⟩

(see Proposition 7.8 and Theorem 7.10 below, where SΠ = S8(1)). It has the following

Ufnarovsky graph:

ab−1 ba

b−1a−1 a−1b

ab ba−1

b−1a a−1b−1

Figure 9. Ufnarovsky graph of SΠ

It is clear that SΠ has exponential growth because there are vertices in the graph contained

in different cycles. Observe that SΠ also lies on a boundary, in the sense that it has no

proper homomorphic images having exponential growth within the class of semigroups in

P. Any proper homomorphic image of SΠ obtained by adding positive relators is either

trivial or isomorphic to the inverse monogenic semigroup ⟨a | a2 = 0⟩, S1 or S2, described

in the previous example.

5. Reduction to at most two generators

In this short section, we show that inverse semigroups with zero from the class P that

satisfy some nontrivial identity in signature with involution (which, of course, includes those

members of the class satisfying some nontrivial semigroup identity) have a presentation

involving at most two generators. This major reduction relies on the following simple

lemma, which is an application of Proposition 3.2 and which in turn relies on Reilly’s

criterion [28].
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Lemma 5.1. Let A be an alphabet containing three distinct letters a, b and c and let T be

the inverse subsemigroup of FIA generated by

u = a−1bc−1a and v = c−1ba−1c .

Then

(a) T is freely generated by u and v.

(b) The only reduced words over the alphabet {a, b, c} that divide elements of T in FIA,

and which are positive with respect to {a, b, c}, are the letters a, b and c.

Proof. Consider the alphabet Y = {u, v}. Observe, by inspection, that, for all y ∈ Y ∪Y −1,

we have ℓ(y) = 4 and my = My = 1, so that

my +My = 2 < ℓ(y) = 4 ,

so that (6) is satisfied. By Proposition 3.2, (a) holds. By inspection of word trees of elements

of T , (b) holds, completing the proof of the lemma. □

Theorem 5.2. Consider an inverse semigroup with zero

S = ⟨A | ci = 0 for i ∈ I ⟩

from the class P such that ci ̸∈ A for all i ∈ I. If S does not contain a nonmonogenic

free inverse subsemigroup then |A| ≤ 2. In particular, if S satisfies a nontrivial identity in

signature with involution then |A| cannot be larger than two.

Proof. Suppose that S does not contain a nonmonogenic free inverse subsemigroup and that

|A| ≥ 3, so that A contains distinct letters a, b and c. let T be the inverse subsemigroup

of FIA generated by a−1bc−1a and c−1ba−1c. By Lemma 5.1, T is a free nonmonogenic

inverse semigroup. If no element of T is zero in S then S contains a free nonmonogenic

inverse subsemigroup, which is a contradiction. Hence at least one element of T is divided

by a positive relator ci for some i ∈ I. By Lemma 5.1, ci equals one of a, b or c, so that

ci ∈ A, producing another contradiction, completing the proof. □

6. Semigroup identities and polynomial growth

We begin this section with the following theorem, which tells us that S1 (and hence also

its homomorphic image S2) satisfies Adjan’s identity for the bicyclic monoid [1]. This result

is a stepping stone to providing a cascade of characterisations, and a complete syntactic

description, given later in this section (Theorem 6.2), of semigroups from the class P that

satisfy a nontrivial semigroup identity. The syntactic descriptions, in the case where such

semigroups are nontrivial and nonmonogenic with zero, involve only S1, using three relators,

and S2, using four relators.

Theorem 6.1. The inverse semigroup with zero

S1 = ⟨a, b | a2 = b2 = ab = 0⟩

satisfies Adjan’s identity:

xy2xxyxy2x = xy2xyxxy2x . (9)
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Proof. Let A = {a, b}. Consider a reduced word w over A ∪A−1 that is nonzero in S1. By

inspection (see [11, Example 2.3]), w or w−1 may be written in one of the following forms:

bα(a−1b)β , bα(a−1b)βa(b−1a)γb−δ (10)

for some nonnegative integers β, γ and for some α, δ ∈ {0, 1}. If follows from (10) and the

relators defining S1 that if w2 is nonzero in S1, then

w = (a−1b)γ or w = (ab−1)γ (11)

for some nonzero integer γ.

Let u, v ∈ S1. If u2, v2, uv or vu evaluate to zero in S1 then (9) holds trivially when u

and v are substituted for x and y respectively. Hence we may suppose that all of u2, v2 uv

and vu and their reduced parts

(u)2 , (v)2 , u v , v u are nonzero in S1 . (12)

If follows from (11) and (12) that u and v are both nontrivial integer powers of a−1b or

ab−1. There is no loss in generality in assuming that

u = (ab−1)α and v = (ab−1)β (13)

for some nonzero integers α and β. We can write both u and v in their respective Schein

canonical forms:

u = u1u
−1
1 . . . uku

−1
k u and v = v1v

−1
1 . . . vℓv

−1
ℓ v (14)

where k and ℓ are nonnegative integers and u1, . . . , uk, v1, . . . , vℓ are reduced. From (14), it

follows that, being divisors of u2 and v2 respectively,

u−1
i uui and v−1

j vvj are nonzero in S1 (15)

for 1 ≤ i ≤ k and 1 ≤ j ≤ ℓ. From (10), (13) and (15) it follows that each ui and vj has

the form

(ab−1)γaε or (ba−1)γbε (16)

for some nonnegative integer γ and for some ε ∈ {0, 1} such that γ + ε > 0. Put

L =
{
(ab−1)−αbεb−ε(ab−1)α+β+γaδa−δ(ab−1)−γ | α, β, γ ≥ 0 ,

ε, δ ∈ {0, 1} , α+ β + γ > 0
}

and

I = L ∪ L−1 .

If follows, from (14) and (16), and a simple induction, that u, v ∈ I. But I embeds in the

free monogenic semigroup (see [33, Lemma 5.1]), which satisfies Adjan’s identity (by [31]

and [33, Proposition 2.1]). Hence (9) holds when u and v are substituted for x and y

respectively. This completes the proof of the theorem. □

In the main result of this section, we give equivalent conditions for inverse semigroups

from P to satisfy some nontrivial semigroup identity.
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Theorem 6.2. Consider an inverse semigroup with zero

S = ⟨A | ci = 0 for i ∈ I ⟩

from the class P. Then the following conditions are equivalent:

(a) S satisfies a nontrivial semigroup identity.

(b) S satisfies Adjan’s identity for the bicyclic monoid.

(c) S does not contain a nonmonogenic free subsemigroup.

(d) S is finitely presented and has polynomial growth.

(e) S is trivial, a monogenic inverse semigroup with zero or isomorphic to

S1 = ⟨a, b | a2 = b2 = ab = 0⟩ or S2 = ⟨a, b | a2 = b2 = ab = ba = 0⟩ .

Proof. If S is trivial or a monogenic inverse semigroup with zero then S is a homomorphic

image of the free monogenic inverse semigroup, which satisfies Adjan’s identity (9). If

S = S2 then S is a homomorphic image of S1. By Theorem 6.1, S1 satisfies (9). Thus, in

all cases, if S is trivial, a monogenic inverse semigroup with zero, or isomorphic to S1 or

S2, then S satisfies (9). Thus (e) implies (b). Clearly (b) implies (a), and (a) implies (c).

We now prove that (c) implies (e). Suppose that S does not contain a nonmonogenic

free subsemigroup and that S is not trivial and not a monogenic inverse semigroup with

zero. We show that S is isomorphic to S1 or S2. In particular, |A| ≥ 2. If ci ∈ A for some

i ∈ I then we may remove ci from A and all relators containing ci, without changing S up

to isomorphism. Hence, there is no loss of generality in assuming that ci ̸∈ A for all i ∈ I.

Certainly, S does not contain a nonmonogenic free inverse subsemigroup, so, by Theorem

5.2, |A| ≤ 2, whence |A| = 2. We may suppose that A = {a, b}.
Let U be the subsemigroup of FIA generated by a2b−1 and ab−1, which is clearly free.

Hence, some element of U must be zero in S. But the only positive words dividing elements

of U in FIA are a, b and a2. Since a and b are not relators, we conclude that a2 must be a

relator. By a similar argument, b2 must also be a relator.

Let V be the subsemigroup of FIA generated by ab−1aba−1b and ab−1, which is easily

shown to be free. Hence, some element of V must be zero in S. But the only positive words

dividing elements of V are a, b, ab and ba. Since a and b are not relators, we conclude that

ab or ba must be a relator. In either case, S must be a homomorphic image of S1. But all

positive words over A that are not a or b must contain a2, b2, ab or ba as a subword. Hence

all homomorphic images of S1 defined by positive presentations are isomorphic to S1 or S2.

This completes the proof that (c) implies (e).

If (e) holds then clearly S is finitely presented, and, in each case, S has polynomial

growth, in particular, because S1 has polynomial growth, by [11, Example 2.3], so that (d)

holds. That (d) implies (c) follows from [33, Theorem 1], and the proof of the theorem is

complete. □

7. Identities in signature with involution and exponential growth

In this final section, we provide a sequence of lemmas and propositions leading to two

main theorems. Theorem 7.3 exhibits a nontrivial identity in signature with involution

for the inverse semigroup S4. (A nontrivial identity in signature with involution for the

inverse semigroup S3 had already been found in [10], documented above in Theorem 2.1.)
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Propositions 7.4 and 7.8 give complete syntactic descriptions of proper homomorphic images

of S3 and S4 respectively. The final result, Theorem 7.10 below, gives characterisations of

inverse semigroups from P that satisfy a nontrivial identity in signature with involution but

satisfy no nontrivial semigroup identity.

The next two lemmas refer to the inverse semigroup with zero

S4 = ⟨a, b | a2 = b2 = 0⟩ .

and are used to find a nontrivial identity in signature with involution satisfied by S4 (see

Theorem 7.3 below). Put A = {a, b} and B = A∪A−1. Because of the relations a2 = b2 = 0,

nonempty reduced words w over A ∪A−1 that are nonzero in S4 must have the form

w = aε1bδ1aε2bδ2 . . . aεkbδk (17)

for some positive integer k and integers ε1, δ1, . . . , εk, δk, which are all ±1, except for ε1 and

δk, which may be 0 or ±1.

Lemma 7.1. Let w ∈ S4 be a nonempty reduced word over B that is nonzero in S4. Then

each of the following conditions implies that w2 = 0 in S4:

(a) w = c or cw′c for some letter c ∈ B and reduced word w′ (possibly empty) over B.

(b) w is reduced but not cyclically reduced.

(c) w has odd length.

Proof. Sufficiency of (a) is clear because a2 = b2 = 0 in S4. Suppose that w is a reduced

but not cyclically reduced word that is nonzero in S4 and let ŵ denote its reduced part.

By (17), the length of w must be odd, which implies also that the length of ŵ is odd. By

the form of (17) applied to ŵ, it follows that ŵ starts and finishes with the same letter, so

that (ŵ)2 = 0 in S4, by the sufficiency of (a). Since (ŵ)2 divides w2 in FIA, it follows that

w2 = 0 in S4. This proves sufficiency of (b) and simultaneously sufficiency of (c). □

Lemma 7.2. Let u and v be nonempty reduced words over B such that u, v and uv are

nonzero in S4. Suppose that the word uv is not reduced. Then either v−1 is a suffix for u,

or u−1 is a prefix for v. In particular, if u and v have the same length then u = v−1.

Proof. We have that u = z1t and v = t−1z2 for some reduced words z1, z2, t, where t is

nonempty and z1z2 is reduced. The lemma will be proved by showing that either z1 or z2 is

empty. Suppose to the contrary that both z1 and z2 are nonempty. Applying the form (17)

to each of u and v, using the fact that t is nonempty, we deduce that the terminal letter of

z1 coincides with the initial letter of z2. Then a2 or b2 divides z1z2, which in turn divides

uv in FIA. But then uv = 0 in S4, which contradicts our hypothesis. Hence at least one of

the words z1, z2 must be empty, and the lemma is proved. □

We can now prove the following theorem, which becomes one of the main steps in finding

a complete description (Theorem 7.10 below) of semigroups from P that satisfy a nontrivial

identity in signature with involution, but which do not have polynomial growth.
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Theorem 7.3. The inverse semigroup with zero given by the presentation

S4 = ⟨a, b | a2 = b2 = 0⟩

satisfies the following identity in signature with involution:

x [x, y]2 y−1 = x [x, y] y−1 ,

or equivalently,

x2yx−1y−1xyx−1y−2 = x2yx−1y−2 . (18)

Proof. Consider any x, y ∈ S4. We may suppose that all of x2, y2, xy and x−1y−1 are

nonzero in S4, for otherwise (18) holds trivially. By Lemma 7.1, both x and y have even

length greater than or equal to two, and, by (17), consecutive letters in each word alternate

between the alphabets {a±1} and {b±1}. Put

u = xy = x y and v = x−1y−1 = x−1 y−1 .

Because of the alternation of the alphabets and even lengths, either x y is reduced, in which

case y x is also reduced, and

ℓ(u) = ℓ(x) + ℓ(y) = ℓ(v) ,

or x y is not reduced, in which case y x is also not reduced, and, by Lemma 7.2,

ℓ(u) =
∣∣ℓ(x)− ℓ(y)

∣∣ = ℓ(v) .

In either case, ℓ(u) = ℓ(v). If xyx−1y−1 is zero in S then (18) holds trivially. Hence we

may suppose that

uv = xyx−1y−1

is nonzero in S4. But then uv is nonzero and not reduced, so that u = v−1, by Lemma 7.2.

Hence

[x, y] = xyx−1y−1 = uv = 1

in the free group. This shows that [x, y] is idempotent in S4, and (18) holds, completing

the proof of the theorem. □

We now develop some notation and apparatus that enables us to describe, in a compact

way (see Proposition 7.4 below), all homomorphic images of the semigroup S3. Let n be a

positive integer and suppose that

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)

are finite sequences of nonnegative integers such that x is decreasing, y is increasing and at

least one entry is nonzero. Define

Sx,y = ⟨a, b | ab = bx1ay1 = . . . = bxnayn = 0⟩ , (19)

which is a member of our class P and a homomorphic image of the inverse semigroup

⟨a, b | ab = 0⟩. For example, if x = (4, 3, 2, 1, 0) and y = (0, 1, 2, 3, 4) then

Sx,y = ⟨a, b | ab = b4 = b3a = b2a2 = ba3 = a4 = 0⟩ .

The notion of irredundancy of an arbitrary inverse semigroup presentation of the form (4)

is given in [35, Section 2], and, in our context (as defined above in the Preliminaries), a
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presentation is irredundant if none of the generators are relators and no relator is a factor

of any of the others. Observe, by inspection (see (20), (21) and (22) below), that the

presentation (19) violates irredundancy if and only if a or b is a relator, which occurs if and

only if x1 = 1 and y1 = 0, or xn = 0 and yn = 1, that is,

(x,y) ∈
{ (

(1), (0)
)
,
(
(0), (1)

)
,
(
(k, 0), (0, 1)

)
,
(
(1, 0), (0, k)

) ∣∣ k ≥ 1
}
.

In particular, the presentation (19) is irredundant if n ≥ 3. To decongest the notation

slightly, in the case that n = 1, we can write

Si.j = S(i),(j) .

Note that S0,0 is not defined and

S1,1 = ⟨a, b | ab = ba = 0⟩ .

Observe that S1,1 is a homomorphic image of Sx,y for any positive integer n if and only if

x and y are sequences of positive integers. Further, S1,1 has exponential growth, by [11,

Theorem 5.2], and is a terminal object in the subclass of P consisting of semigroups where

none of the generators are nilpotent, in the sense that S1,1 is unchanged upon adding further

positive relators that avoid a2 and b2. Observe further that, in general, if s is the sequence

obtained by reversing a finite sequence s, then

Sy,x
∼= Sx,y ,

under the isomorphism induced by mapping a to b−1 and b to a−1.

Most of the time, the finitely presented inverse semigroup Sx,y has exponential growth

(see Lemma 7.4 below), but there are some exceptions:

S1,0 = ⟨a, b | ab = b = 0⟩ = ⟨a⟩ ∪ {0} ∼= S0,1 (20)

is free monogenic with zero,

S(1,0),(0,1) = ⟨a, b | ab = b = a = 0⟩ = {0} (21)

is trivial,

S(1,0),(0,k) = ⟨a, b | ab = b = ak = 0⟩ = ⟨a | ak = 0⟩ ∼= S(k,0),(0,1) (22)

is monogenic with zero, for any integer k ≥ 2,

S(2,0),(0,2) = ⟨a, b | ab = b2 = a2 = 0⟩ (23)

has polynomial growth (see [11, Example 2.3]), and

S(2,1,0),(0,1,2) = ⟨a, b | ab = b2 = ba = a2 = 0⟩ (24)

also has polynomial growth, being a homomorphic image of S(2,0),(0,2). By contrast,

S(3,0),(0,2) = ⟨a, b | ab = b3 = a2 = 0⟩ ∼= S(2,0),(0,3) (25)

and

S(1,0),(1,2) = ⟨a, b | ab = ba = a2 = 0⟩ ∼= S(2,1),(0,1) (26)

have exponential growth, by [11, Theorem 6.1]. Consider, also,

S(3,1,0),(0,1,2) = ⟨a, b | ab = b3 = ba = a2 = 0⟩ ∼= S(2,1,0),(0,1,3) (27)
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and

S(3,2,1,0),(0,1,2,3) = ⟨a, b | ab = b3 = b2a = ba2 = a3 = 0⟩ . (28)

Both of these have exponential growth. One can see this, for example, by observing that

the subsemigroup T of FI{a,b} generated by a−1b and a−1b2 is free (see [11, Lemma 3.1]),

no element of which is divided by any of the relators in (27) or (28), so that T embeds in

both semigroups. Put

L =
{ (

(0), (0)
)
,
(
(1), (0)

)
,
(
(0), (1)

)
,
(
(k, 0) , (0, 1)

)
,
(
(1, 0), (0, k)

)
,(

(2, 0), (0, 2)
)
,
(
(2, 1, 0), (0, 1, 2)

) ∣∣ k ≥ 1
}
.

(29)

Now we can fully describe elements of P that are homomorphic images of ⟨a, b | ab = 0⟩,
and identify those that have exponential growth:

Proposition 7.4. Let S be a semigroup from the class P given by an inverse semigroup

presentation

⟨a, b | ci = 0 for i ∈ I⟩
such that ab is zero in S. Then S is finitely presented in the class of inverse semigroups

and is isomorphic to one of the following finitely presented Rees quotients of free inverse

semigroups over the alphabet {a, b}:

S3 = ⟨a, b | ab = 0⟩ or Sx,y given by (19) ,

for some finite decreasing sequence x and some increasing sequence y of nonnegative integers

of the same length such that at least one entry is nonzero. Further, S has exponential growth

if and only if S is isomorphic to S3 or Sx,y for some (x,y) ̸∈ L, where L is given by (29).

Remark 7.5. It should be noted that it is well-known that the semigroup over the alphabet

A = {a, b} given by positive relators, one of which is ab, must be finitely presented. Here,

the language of all words over A that avoid ab is b∗a∗, and every ascending chain of ideals in

the free semigroup A+, starting from the principal ideal generated by ab, stabilises in a finite

number of steps (see König’s Lemma, [30, Corollary 2.4]). Our goal here, however, is to give a

syntactic description of all possible ascending chains, distinguishing the cases of polynomial

and exponential growth that arise when we consider inverse semigroup presentations.

Proof of Proposition 7.4. The first part of this proof is direct and elementary, and may be

regarded as a proof of the two-dimensional case of the well-known Dickson’s lemma [9] (see

Remark 7.6 below). An alternative proof, using Higman’s lemma [16], is also given below in

Remark 7.7. Suppose that S is a proper homomorphic image of S3, so must contain at least

one positive word w that avoids ab as a subword and evaluates to zero. We may choose w

to be of the form

w = bx1ay1 = 0

for some nonnegative integers x1 and y1 such that x1 + y1 > 0 and y1 is as small as

possible. But then, having fixed y1, we may suppose that x1 is as small as possible (since

any word with larger exponent of b would evaluate to zero as a consequence). Hence S is a

homomorphic image of

Sx1,y1 = ⟨a, b | ab = bx1ay1 = 0⟩ .



20 D. EASDOWN AND L.M. SHNEERSON

If the image is not proper then S = Sx,y, where x = (x1) and y = (y1) so that S is given

by (19), in an instance where n = 1. Note that at least one of x1 or y1 is positive.

Suppose then that S is a proper image of Sx1,y1 , so S must contain at least one positive

word w that evaluates to zero and avoids ab and bx1ay1 , so that

w′ = bx2ay2 = 0

for some nonnegative integers x2 and y2 such that x2+y2 > 0 and y2 is as small as possible.

Then, having fixed y2, we may suppose that x2 is as small as possible. By minimality of

y1, however, y2 ≥ y1. Since bx1ay1 does not divide w′ we have that x2 < x1. If y2 = y1 then

we have a contradiction, by the minimality of x1. Hence y2 > y1, and S is a homomorphic

image of Sx,y where x = (x1, x2) and y = (y1, y2). If the image is not proper then S = Sx,y

is given by (19), in an instance where n = 2.

We may suppose then that S is a proper homomorphic image of this Sx,y, and we move

to the next step in an inductive process.

Suppose, more generally, that n ≥ 2 and S is a proper homomorphic image of Sx,y

for some decreasing sequence x = (x1, . . . , xn) and increasing sequence y = (y1, . . . , yn)

of nonnegative integers. In particular, x1 and yn are positive. We may assume, as part

of this inductive hypothesis, that, for 2 ≤ i ≤ n, we have chosen yi to be the smallest

nonnegative integer such that bxiayi evaluates to zero in S, for some xi < xi−1, and that for

this yi, we have chosen xi as small as possible. Because S is a proper homomorphic image,

S must contain at least one positive word w′′ that evaluates to zero but avoids each of ab,

bx1ay1 , . . . , bxnayn , so that

w′′ = bxn+1ayn+1 = 0

for some nonnegative integers xn+1 and yn+1 such that xn+1+yn+1 > 0 and yn+1 is as small

as possible. Then, having fixed yn+1, we may suppose that xn+1 is as small as possible.

Since bxnayn does not divide w′′ we have that either xn+1 < xn or yn+1 < yn. Suppose that

xn+1 ≥ xn, so yn+1 < yn. By minimality of y1, however, yn+1 ≥ y1. Hence there is a least

integer i such that 2 ≤ i ≤ n and

yi−1 ≤ yn+1 < yi .

If, also, xi−1 ≤ xn+1, then the word bxi−1ayi−1 divides w′′, which is a contradiction. Hence

xn+1 < xi−1. But this now contradicts the conditions for the minimality of yi (as part of

the inductive hypothesis). This proves that xn+1 < xn. If yn+1 ≤ yn then we contradict

either the minimality of yn (if yn+1 < yn) or the minimality of xn (if yn+1 = yn). Hence

yn+1 > yn. Now put

x′ = (x1, . . . , xn, xn+1) and y′ = (y1, . . . , yn, yn+1) .

We have that S is a homomorphic image of Sx′,y′ , establishing the inductive step.

This inductive process however must terminate after a finite number of steps because the

first sequence is decreasing with nonnegative entries. This shows that S is finitely presented

and S is given by (19) for some positive integer n, some decreasing sequence x and some

increasing sequence y, such that at least one of the entries is positive.

Suppose that S is isomorphic to S3 or to Sx,y for (x,y) ̸∈ L. As noted in observations

preceding this proposition, all of these are defined by irredundant presentations, in the
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sense of [35, Section 2]. Observe that S3 is defined by one relator and Sx,y is defined by two

relators, if x and y are sequences of length 1, so have exponential growth, by [11, Theorem

5.2]. If x and y are sequences of length 2 then, because (x,y) ̸∈ L, it follows that Sx,y has

S(3,0),(0,2) or S(2,1),(0,1) as a homomorphic image, so has exponential growth (explained above

following (25) and (26)). If x and y are sequences of length 3 then, because (x,y) ̸∈ L,
it follows that Sx,y has S(3,1,0),(0,1,2) as a homomorphic image, so has exponential growth

(explained above following (27)). Suppose finally that x and y are sequences of length

n ≥ 4. Then Sx,y has S(3,2,1,0),(0,1,2,3) as a homomorphic image, so has exponential growth

(explained above following (28)). In all cases S has exponential growth.

Finally, by observations above relating to (20), (21), (22), (23) and (24), if (x,y) ∈ L
then Sx,y has polynomial growth. This completes the proof of the proposition. □

Remark 7.6. The proof of the first part of Proposition 7.4 regarding the finiteness of the

presentation of S follows quickly from a classical lemma of Dickson [9], which says that the

partially ordered set (Nm,≤) has no infinite antichains. Indeed, let

S = ⟨a, b | ab = 0 , bxiayi = 0 (i = 1, 2, . . .)⟩ (30)

be any positive presentation of S. Then the relation bxjayj = 0 can be deduced from the

relation bxiayi = 0 if and only if (xi, yi) ≤ (xj , yj) in (N2,≤). Thus the relation bxjayj

occurs in an irredundant presentation of S if and only if (xi, yi) is a minimal element, with

respect to the partial order, of the subset of ordered pairs (x, y) such that bxay = 0 in S. By

Dickson’s lemma, we immediately deduce that the irredundant presentation of S equivalent

to (30) must be finite. The first part of the proof of Proposition 7.4, in fact, becomes a

proof of Dickson’s lemma for m = 2.

Remark 7.7. An alternative proof of the first part of Proposition 7.4 is related to a result

of Higman [16]. Consider the free monoid A∗ with respect to a finite nonempty set A.

For u, v ∈ A∗, say that u embeds in v, and write u ≤e v, if u can be obtained from v by

cancelling some letters. Then u ≤e v means that if u = u1u2 . . . un has a letter by letter

factorisation over A, then the equation

v = v1u1v2u2 . . . vnunvn+1

holds in A∗ for some words v1, . . . , vn+1. In modern parlance, u is called a scattered subword

of v. If (E,≤) is a partially ordered set and X ⊆ E, then the set

X = {y ∈ E | (∃x ∈ X) x ≤ y}

is called the closure of X (or ideal generated by X). It is easy to see that (A∗,≤e) is

a partially ordered set that does not have infinite descending chains. This is called the

division ordering on A∗. One of the corollaries of Higman’s theorem [16], proved for abstract

algebras, and applied to division orderings, is that for any infinite sequence of words {un}∞n=1

over a finite alphabet A, one can find two indices i and j such that i < j and ui ≤e uj . A

short proof of this result, which we refer to as Higman’s lemma, was found by Conway [5, pp.

52-53] (and see [22] also for more details and comments). In particular, Higman’s lemma

shows that, for any nonempty subset H of A∗, the partially ordered set (H,≤e) has a finite

number of minimal elements and every ideal is finitely generated. Denote the set of all
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minimal elements of (H,≤e) by min(H). Thus min(H) is a finite nonempty set whose

closure is H. We apply these observations in the context of the presentation (30) of S,

using A = {a, b} and

H = {bαaβ | bαaβ = 0 in S} .

A relation U ≡ (bxjayj = 0) can be deduced from a relation V ≡ (bxiayi = 0), in the class

of all semigroups with zero (as well as in the class of all inverse semigroups with zero), if

and only if xi ≤ xj and yi ≤ yj , in which case V can be obtained from U by deleting xj −xi
occurrences of the letter b and yj − yi occurrences of the letter a, that is, bxiayi ≤e b

xjayj .

This means that H = minH = H and relators in the irredundant presentation of S

equivalent to (30) are precisely elements of the set min(H) ∪ {ab}. Now suppose that the

irredundant presentation of S consists of n relators, so that we may suppose

S = ⟨a, b | ab = 0 , bxiayi = 0 (i = 1, 2, . . . , n)⟩ (31)

where all relators are pairwise incomparable in (A∗,≤e). Then i ̸= j implies that xi ̸= xj
and yi ̸= yj . Also xi > xj implies yi < yj . Without loss of generality, then, we may suppose

in (31) that x1 > x2 > . . . > xn and yn < yn−1 < . . . < y1, so that the finite sequence

x = (x1, . . . , xn) is decreasing whilst the sequence y = (y1, . . . , yn) is increasing, and we

have recovered the presentation (19), completing this alternative proof of the first part of

Proposition 7.4.

The next proposition gives a complete description of proper homomorphic images of the

inverse semigroup S4. It is notable that cascades of examples occur (semigroups S6(i) and

S8(i), for i ≥ 1, in the statement of the proposition below), where relators occur with

equations resembling Coxeter relations.

Proposition 7.8. Let S be a semigroup from the class P which is a proper homomorphic

image of the inverse semigroup

S4 = ⟨a, b | a2 = b2 = 0⟩ .

Then S is finitely presented and either S is trivial or monogenic with zero, or S is isomorphic

to

S5(i) = ⟨a, b | a2 = b2 = (ab)i = 0⟩ ,

S6(i) = ⟨a, b | a2 = b2 = (ab)i = (ba)i = 0⟩ ,

S7(i) = ⟨a, b | a2 = b2 = (ab)ia = 0⟩ or

S8(i) = ⟨a, b | a2 = b2 = (ab)ia = (ba)ib = 0⟩ ,
for some integer i ≥ 1. Then S has exponential growth in all cases, except when S is trivial

or monogenic with zero, or when S is isomorphic to S5(1) or S6(1), in which case S has

polynomial growth.

Proof. First note that there must be some positive word w over the alphabet {a, b} that is

zero in S but is not divisible by a2 or b2. We may assume that w is as short as possible. If

w = a or w = b then S must be trivial or monogenic with zero.

Suppose that w is not equal to a or b. Then w must be one of

(ab)i , (ba)i , (ab)ia , (ba)ia ,
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for some positive integer i. Suppose first that w = (ab)i. Then S is a homomorphic image

of S5(i). If this image is proper then there must be another positive word w′ that evaluates

to zero in S, has length at least 2i but is not divisible by a2, b2 or (ab)i. The only such

word is

w′ = (ba)i

so that S is a homomorphic image of S6(i). But all words of length greater than 2i that are

not divisible by a2 or b2 are divisible by w or w′, so that S must be isomorphic to S6(i).

If w = (ba)i then, interchanging the roles of a and b, we again conclude that S is

isomorphic to S5(i) or S6(i).

By a similar argument, if w = (ab)ia or w = (ba)ib then S is isomorphic to S7(i) or S8(i).

Observe that S5(1) has polynomial growth, by [11, Theorem 6.1], Hence S6(1), being a

homomorphic image, also has polynomial growth.

Note that

S8(1) = ⟨a, b | a2 = b2 = aba = bab = 0⟩

is a homomorphic image of S5(i), S6(i), S7(j) and S8(j) for all i ≥ 2 and j ≥ 1. But it is

easy to see that the words ba−1 and b−1aba−1 generate a free subsemigroup of FI{a,b}, no

element of which is divisible by a2, b2, aba or bab, so that S8(1) contains a nonmonogenic free

subsemigroup. Hence S8(1) has exponential growth. Hence S5(i), S6(i), S7(j) and S8(j)

have exponential growth for all i ≥ 2 and j ≥ 1, completing the proof of the proposition.

□

The following lemma is our second application of Proposition 3, and is used in Theorem

7.10 below, to severely limit the possibilities of inverse semigroups with zero from P that

can satisfy a nontrivial identity in signature with involution.

Lemma 7.9. Let A be an alphabet containing two distinct letters a and b and let T be the

inverse subsemigroup of FIA generated by

u = ab−1a2b−1a and v = ba−1ba−1 .

Then

(a) T is freely generated by u and v.

(b) The only positive reduced words over A that divide elements of T in FIA are a, b,

a2, ab and ba.

Proof. Consider the alphabet Y = {u, v}. Observe, by inspection, that,

mu = Mv = mv−1 = Mv−1 = 3

and

Mu = mv = mu−1 = Mv−1 = 0 ,

whilst

ℓ(u) = ℓ(u−1) = 6 ℓ(v) = ℓ(v−1) = 4 ,

from which it is immediate that the set Y satisfies condition (6). Then, by Proposition 3.2,

condition (a) of the lemma holds. By inspection of word trees of elements of T , (b) holds,

completing the proof of the lemma. □
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In the final result, we give a complete description of inverse semigroups from P that

satisfy some nontrivial identity in signature with involution, but which do not satisfy a

semigroup identity. Such semigroups are all finitely presented and have exponential growth.

The descriptions rely crucially on the inverse semigroup S3, which has a central role in the

results of [10], and whose homomorphic images are listed in Proposition 7.4, and on the

inverse semigroup S4, whose homomorphic images are listed in Proposition 7.8. Some

details regarding both S3 and S4, including the graphs associated with their presentations,

are given above in Example 4.1.

Theorem 7.10. Consider an inverse semigroup with zero

S = ⟨A | ci = 0 for i ∈ I ⟩

from the class P. Suppose that S does not satisfy a nontrivial semigroup identity. Then the

following conditions are equivalent:

(a) S satisfies a nontrivial identity in signature with involution.

(b) S does not contain a nonmonogenic free inverse subsemigroup.

(c) S is finitely presented and is isomorphic to

S3 = ⟨a, b | ab = 0⟩ ,

Sx,y = ⟨a, b | ab = bx1ay1 = . . . = bxnayn = 0⟩ ,
for some integer n ≥ 1, some finite decreasing sequence x and some increasing

sequence y of nonnegative integers of the same length, such that (x,y) is not in the

list L of exceptions (29), or S is isomorphic to

S4 = ⟨a, b | a2 = b2 = 0⟩ ,

S5(i) = ⟨a, b | a2 = b2 = (ab)i = 0⟩ or

S6(i) = ⟨a, b | a2 = b2 = (ab)i = (ba)i = 0⟩
for some integer i ≥ 2, or

S7(j) = ⟨a, b | a2 = b2 = (ab)ja = 0⟩ or

S8(j) = ⟨a, b | a2 = b2 = (ab)ja = (ba)jb = 0⟩ ,
for some integer j ≥ 1.

If S satisfies any (and hence all) of these conditions then S is finitely presented and has

exponential growth.

Proof. We show that (c) implies (a). If S is isomorphic to S3 or S4 then S satisfies a non-

trivial identity in signature with involution, by Theorems 2.1 and 7.3 respectively. Observe

that each Sx,y is a homomorphic image of S3, and each S5(i), S6(i), S7(j) and S8(j) is

a homomorphic image of S4. Hence, if S is isomorphic to any of the semigroups listed in

(c) then S satisfies a nontrivial identity in signature with involution. Thus (c) implies (a).

Clearly (a) implies (b).

It remains to prove that (b) implies (c). Suppose that S does not contain any nonmono-

genic free inverse subsemigroup. Certainly |A| ≥ 2. As before, there is no loss of generality

in assuming that no relator belongs to the alphabet A. By Theorem 5.2, |A| = 2, so that

we may assume A = {a, b}.
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Let T be the inverse subsemigroup of FIA generated by ab−1a2b−1a and ba−1ba−1. By

Lemma 7.9, T is a free nonmonogenic subsemigroup, and only a, b, a2, ab and ba can be

words over the positive alphabet A that are divisors of elements of T in FIA. Hence, some

element of T must be zero in S. Since a and b are not relators, we conclude that a2, ab or

ba must be a relator.

If a2 is not a relator then ab or ba is a relator, so that S is a homomorphic image of S3.

In this case, by Proposition 7.4, S is isomorphic to S3 or Sx,y for some x and y such that

(x,y) ̸∈ L.
By symmetry, the same conclusion follows if b2 is not a relator.

The remaining case is that a2 and b2 are both relators, and then S must be a homomorphic

image of S4, so that, by Proposition 7.8, S is isomorphic to S4, S5(i), S6(i), S7(j) or S8(j)

for some i ≥ 2 or j ≥ 1. This completes the proof that (b) implies (c).

If S satisfies any (and hence all) of these conditions then, in particular, S is finitely

presented, and by hypothesis does not satisfy a nontrivial semigroup identity, so that S

cannot have polynomial growth, by Theorem 6.2, whence S has exponential growth, by [33,

Corollary 1]. This completes the proof of the theorem. □
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