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A CONSTRAINT ON THE RANDOM PACKING OF DISKS 

RICHARD COWAN,* University ofHong Kong 

Abstract 

This paper addresses random packing of equal-sized disks in a manner such that 
no disk has a gap on its circumference large enough to accommodate an extra 
touching neighbour. This structure generalises the deterministic packing models 
discussed in classical geometry (Coxeter (1961), Hilbert and Cohn-Vossen (1952)). 
Relationships with the dual mosaic formed by joining the centres of touching disks 
are established. Constraints on the neighbourhood of disks and on the packing 
density are established. 

TESSELLATIONS; MOSAICS 

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 52C15 

1. A disk ensemble 

Consider, as in Cowan (1984), an ensemble of equal-sized disks packed together in a 
random way. Specifically let us assume that there exists a 'full' ensemble on R2 which is 
statistically homogeneous. A disk D within the ensemble is full if there is no space on its 
circumference to accommodate an extra neighbour. (A 'neighbour' is one that touches 
D.) An ensemble is full if all disks are full. 

Cowan (1984) studies a model for the neighbourhood of a disk, D say. D has a random 
number K of neighbours and a random number G of 'gaps' on its circumference. A gap 
occurs between two adjacent neighbours of D when they do not touch each other. 
Consequently there are T = K - G touchings amongst the K neighbours of D. In a full 
ensemble the pair (K, T) can take values listed in tabular form below. The impossibility 
of K < 4 and of those cases marked with a dot arises because of thefull requirement and 
the fact that a neighbour takes up one sixth of the circumference. 

(4, 0) (4, 1) 
.. (1) (5,0) (5, 1) (5,2) (5,3) 

.. 
(6,6) 

Let u = E(K) and v = E(T). We firstly show, using 'tessellation theory', that a 
necessary condition for a full ensemble is that (i, v) lie in the region ', defined by 

(2) X1 = (u, v): 4 < < 6, 12u - 48 < 4v < 9p - 30). 
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2. The dual of the ensemble 

To prove this, consider the 'dual' tessellation (mosaic) formed by connecting the 
centres of all pairs of touching disks. Disk centres become nodes of this tessellation. Let z 
be the intensity of the point process of nodes and, for a 'typical' node, let bkt - 
P(K = k, T = t} and bk -P(K = k} = Z, bkt. Let pi be the probability that a 'typical' 
polygon of the tessellation has i sides (i = 3, 4, 5), and denote the mean number of sides 
by p. In general, there is no direct relationship between the ( p, } and (bk) } sequences, but 
their means are related: 

(3) p =1- 
p -2 

p 

where # is the expected number of angles at a typical node which equal n. In the dual of 
the circle ensemble, = O, so 

2p 
(4) p - 

pu-2 

Formula (3), and numerous other formulae associated with mosaics, are proved in 
Cowan (1978), (1980) and, by a different method, in the work of Mecke (1980). (This is 
more accessible in Stoyan and Mecke (1983) and Stoyan et al. (1987).) Interestingly, the 
definitions of parameters such as p, q and j differ in the two approaches because a 
different notion of 'typical' polygon or node is employed. Cowan defines a typical 
polygon (or node) as one sampled randomly from the finite number of such in a large 
domain, strictly speaking, the limit of this scheme as the domain expands to cover the 
plane. Convergence issues, something ignored in an earlier paper (Matschinski (1954)) 
which reported (4), are settled by ergodicity assumptions and Wiener's ergodic theorem. 
On the other hand, Mecke defines the typical polygon (or node) as one sampled by 
choosing an arbitrary point t and being 'lucky enough' to find a polygon centroid (or 
node) at t. His approach is made rigorous without the use of an ergodic assumption. 

The mosaic of interest in this paper has additional structure, because v tells us, for a 
typical node, the mean number of triangles of the mosaic that contribute an angle to the 
node. We exploit this fact as follows. 

Let B, be a circular domain of radius r centred at the origin. Within B,, let C(B,) be the 
number of nodes, Ckt(Br) the number of nodes having K = k and T = t, N(B,) the 
number of polygons and N)(B,) the number of polygons with j sides. Except for some 
effects near the edge of B,, effects which are addressed rigorously in Cowan (1978), 
(1980), we have, by simple counting, 

(5) tCkt(Br) 3N3(B,). 
k t 

Dividing throughout (5) by 7r2, the area of B,, and applying an ergodic assumption, we 
can prove that (a) edge effects in (5) become asymptotically negligible, (b) N3(B,)/N(B,) 
converges with probability 1 to a constant which provides our definition of p3, 
(c) Ck(B,)/C(B,) converges similarly to a constant which gives us our definition of bkt, 
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and (d) N(B,)/Irr2 has similar convergence to the average area of the typical polygon. The 
average area is, from the tessellation theory of Cowan and Mecke, i (j - 2). So after 
division by ir2, the left-hand side of (5) equals 

C(B,) tCkt(B,) X 

tbk= 
2~ ?s C1 7 tbkt nt 

Ir2 k - C(B,) k I 

whilst the right-hand side is 

3N3(B,) N(B,) 
2 ?P3 (L -- 2). 

N(B,) lrr2 

Therefore 2v = 3p3( - 2). Linking this with (4) and the fact that Z pi = 1, we have the 
complete distribution 

2v 

=3( - 2) 

94u - 4v - 30 
(6) P4 3(u - 2) 

2(12- 3u + v) 
P5 

= 
3(, - 2) 

Since each p must lie in [0, 1], we find that (i, v) must be in X,. 
The foregoing argument can be repeated to show, in general, that 

(7) 2vi =jp,(j - 2) 

where v1 is, for a typical node, the mean number of j-sided polygons that contribute an 
angle to the node. (Hence v = v3.) Interestingly, (ji, v) determines v4 and v, via (6) and (7) 
as follows: 

2(94u -4v- 30) 5(12- 3u + v)' 
v4 

, 
v5= 3 3 

This means that, for the gaps on the circumference of a disk D, we know the proportions 
which are like Figures la or lb. 

D 

Fig. la 

D 

Fig. lb 
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3. Further constraints on (p, v) 

It turns out, however, that we can improve upon X, by a very simple argument. The 
probability mass for the pair (K, T) is concentrated on the seven points of (1). For any 
given j E [4, 6], one can ask how to distribute the probability mass to maximise (or 
minimise) v. This ignores the issue of whether a given probability mass distribution is 
geometrically or topologically feasible. Nevertheless, one can easily show that (, v) 
must be in ?2 defined below: 

?2= ((p, v): v 
- 

O, /p > 4, 
5/p > 2v +18, 

6/p _ 
30 + v}. 

Thus we can say that (u, v) must lie in X, n ?2 = 2, say: 

(8) = ((, v): 4 < < 6, 6 - 24 5 2v 5 - 18). 

4. Density of disks 

As mentioned earlier, it is known from tessellation theory that E(A), the average area 
of a typical polygon, is given by 

2 
(9) E(A) = 

?r(p - 2) 

Thus E(A) depends upon r, defined earlier as the intensity of the point process of disk 
centres. Thus z measures the density of disks in the ensemble. From (9), 

2 

E(A)(p -2) 

Let E(A I j) be the conditional expectation of a typical polygon's area, given that it has j 
sides. Clearly E(A 3)= (/3/4)d2, where d is the disk diameter. Also ( 3/2)d2 < 
E(A | 4) 

_ 
d2. It can be shown that 

1.69518d2 
= 

-+ 
d2 < E(A 5) 

_ 
-- tan I- = 1.72048d2, 1.958 2(~+ 4)d<E4~- ?1) 

the upper bound corresponding to the regular pentagon whilst the lower bound corre- 
sponds to the equilateral pentagon with angles 1200, 93.560, 1200, 103.220 and 103.220 in 
order (see Figure lb). Since E(A) = Z p1E(A Ij), one can say that 

8 

(3(\ 
(-2)d2 p3+ 4 p4 + 5 tan - Ps 

(10) 
8 

- (p - 2)dZ( •p3 + 2 p4 + (2 /j + 
•i) 

p,) 

with the < being replaced by 
- 

when P4= p5 = 0. Since each p, is a function of j and v, 
(10) provides bounds on z for any given (, v). For example, j = v = 6 implies P3 = 1, so 
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both bounds and hence r equal 
2//id2 

= 1.1547/d2. This is the densest packing. A 
contender for the least dense packing is provided by the case (i, v) = (4, 0). Here p4 = 1, 
and 1/d2 < 

r < 2/\/d 2, the lower bound being realisable by the ensemble whose dual is 
a mosaic of squares. 

I do not know if there exists a realisable full ensemble with density lower than 1/d2, 
but we can use (10) to suggest that there may be such ensembles. One can pose two 
questions. (a) For which values of (1, v)E E is the lower bound in (10) less than l/d2? 
(b) For which (j, v) E is the lower bound minimal for given d? The answer to (a) is: 
those (j, v)E such that 

2/5 - 16 + 10 tan(37r/10) u < 4 + v = 4 + 0.23206v. 
6(5 tan(3n/10)- 6) 

To answer (b) one can easily show that (p, v) = (4, 1) is optimal, whereupon p, =P2 = 
p3 = 4 and the least lower bound of (10) is 

12 0.951327 

d2(4 + /~ + 5 tan(3r/10)) d2 

To achieve this lower bound, however, an equal mix of triangles, squares and regular 
pentagons is required in the mosaic. It is easily seen that no such mosaic is realisable, 
since a node at the vertex of a regular pentagon must combine the angle 1080 with 
combinations of 600, 900 and 1080 to total 3600, an impossible task. It seems to be an 
open question whether z can in fact be less than 1/d2. We have shown that 
r > 0.951327/d2. Put another way, the proportion of space occupied by disks in a full 
ensemble must exceed 3r/(4 + / + 5 tan(3r/10))= 0.74717. 

5. Discussion 

It is necessary to make two technical remarks. First, we have utilised some examples 
where the ensemble is highly regular, deterministic in character rather than stochastic. 
By convention, we incorporate such structures into the framework of a statistically 
homogeneous process by randomly offsetting the basic repeating unit from the origin. In 
particular, one ensures that the origin is uniformly distributed within the area of the 
repeating unit. For example, the densest mosaic comprising only equilateral triangles is 
made stationary by ensuring that the origin is uniformly distributed within one of the 
triangles. Such processes are not ergodic in the sense stated in Cowan's tessellation 
theory, yet all of the conclusions of that theory remain valid for these non-ergodic 
mosaics. This follows because spatial averages in these regular mosaics tend to the same 
non-random limits as their ergodic counterparts. 

Secondly, we mention other non-ergodic cases, where it may appear that Mecke's 
method can still be used when the ergodic methods of this paper fail. There is, however, a 
'cost' in Mecke's interpretation of the basic formulae of tessellation theory in non- 
ergodic cases, as the following example shows. 

Consider an ensemble which is, with probability 1, the most dense ensemble whose 
dual is the triangular lattice and, with probability ?, the ensemble whose dual is the 
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square lattice (common d in both cases). This process is not ergodic. Given the former 
model, u = 6 and p = 3 whilst given the latter, u = 4 and p = 4. In each case, the basic 
formula (4) holds. Yet one is tempted to say that, unconditionally, u = 5 and p = 3.5. A 
consequence of this reasonable statement is a violation of (4). So, in which sense is (4) 
valid in the non-ergodic situation? 

This apparent paradox is resolved by recognising that, given one is 'lucky enough' to 
have a node at a chosen observation site t the chances that the former process was 

employed is 2/(2 + 3), due to Bayes' theorem and the higher intensity of nodes in the 
former case. Similarly, given a polygon centroid at t, the chance that the triangular 
model was employed is 4/(4 + 3). Thus the true 'Mecke' j = 4(3 + /)/(2 + 3)= 
5.0718 whilst the true 'Mecke' p = 4(3 + /)/(4 + ) )= 3.3022. Formula (4) is valid 
with these values, but at some cost to the intuition. 

Future work will study the extent to which our methods apply to full ensembles with 
more than one size of disk. Then, we expect interesting questions on both maximum and 
minimum packing density to arise. 

We conclude by noting that the (j, v) values in the 'local' models analysed in Cowan 
(1984) do not lie in I. This confirms the worries expressed in that paper that the models 
applied locally do not extend to the whole ensemble. 
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