LETTER TO THE EDITOR:
 EXTENSION OF DELTHEIL'S STUDY ON RANDOM POINTS IN A CONVEX QUADRILATERAL

Richard Cowan,* University of Sydney

S. N. Chiu, ${ }^{* *}$ Hong Kong Baptist University

Deltheil's 1926 treatise [4] is sometimes cited in the context of Sylvester's famous 4 -point problem. The problem, finding the probability p_{4} that four uniformly-distributed points within a planar convex body K have a triangular convex hull, has been solved, according to the research literature of the last 40 years, only for a few bodies - triangles, ellipses, parallelograms and regular polygons. Whilst Delthiel's name is sometimes linked with these solutions and also with certain extremal issues, it has apparently been forgotten that his work gives a simple expression for p_{4} when K is a general convex quadrilateral. In this note we extend Deltheil's result and, as a pleasant side effect, draw attention to his forgotten study.

For n points, the probability p_{n} equals $\binom{n}{3} \mathbb{E}\left(A_{3}^{n-3}\right) /|K|^{n-3}$, where A_{n} is the area of the convex hull formed by n points, uniformly and independently distributed within a convex quadrilateral (see Effron [5]). We report $\mathbb{E}\left(A_{3}^{k}\right)$ and $\mathbb{E}\left(A_{n}\right)$ for some small values of n and k, extending work of Deltheil. So we focus on the affine-invariant moments $\mathbb{E}\left(A_{n}^{k}\right) /|K|^{k}$. Let K be a convex quadrilateral $A B C D$, whose diagonal $A C$ is cut by the other diagonal $B D$ into two segments of ratio $a: 1$, with $B D$ in turn being divided in the ratio $b: 1$. Using a straightforward analysis aided by symbolic calculations, we have derived the

[^0]following formulae:
\[

$$
\begin{aligned}
& \mathbb{E}\left(\frac{A_{3}}{|K|}\right)=\frac{1}{12}-\frac{a b}{9(1+a)^{2}(1+b)^{2}} ; \quad \mathbb{E}\left(\frac{A_{3}^{2}}{|K|^{2}}\right)=\frac{1}{72}-\frac{a b}{18(1+a)^{2}(1+b)^{2}} ; \\
& \mathbb{E}\left(\frac{A_{3}^{3}}{|K|^{3}}\right)=\frac{31}{9000}-\frac{a b\left(132 a b+74(a+b)(1+a b)+41\left(1+a^{2}\right)\left(1+b^{2}\right)\right)}{1500(1+a)^{4}(1+b)^{4}} ; \\
& \mathbb{E}\left(\frac{A_{3}^{4}}{|K|^{4}}\right)=\frac{1}{900}-\frac{a b\left(28 a b+20(a+b)(1+a b)+13\left(1+a^{2}\right)\left(1+b^{2}\right)\right)}{900(1+a)^{4}(1+b)^{4}}
\end{aligned}
$$
\]

Only $\mathbb{E}\left(A_{3}\right) /|K|$ was found by Deltheil (being expressed by him using a different parametrisation). Our analysis and further discussion can be found in [3].

Our (a, b)-quadrilateral collapses to a triangle when either a or b equals zero and our leading terms agree with known results for triangles, given by Reed [6]. Other special cases are $a=1$ yielding a (possibly skewed) kite, $a=b$ creating a trapezium and $a=b=1$, a parallelogram. Our results do not agree with Reed's parallelogram formula. Instead, we agree with a formula of Trott, recently reported by Weisstein [7]:

$$
\mathbb{E}\left(\frac{A_{3}^{k}}{|K|^{k}}\right)_{\text {parallelogram }}=\frac{3\left(1+(k+2) \sum_{r=1}^{k+1} r^{-1}\right)}{(1+k)(2+k)^{3}(3+k)^{2} 2^{k-3}}
$$

We have also found some results for $\mathbb{E}\left(A_{n}\right)$ when $n>3$. Buchta [1] showed that, for general $K, \mathbb{E}\left(A_{4}\right)=2 \mathbb{E}\left(A_{3}\right)$. We supplement this with:

$$
\begin{aligned}
& \mathbb{E}\left(\frac{A_{5}}{|K|}\right)=\frac{43}{180}-\frac{a b\left(108 a b+56(a+b)(1+a b)+29\left(1+a^{2}\right)\left(1+b^{2}\right)\right)}{90(1+a)^{4}(1+b)^{4}} ; \\
& \mathbb{E}\left(\frac{A_{6}}{|K|}\right)=\frac{3}{10}-\frac{a b\left(124 a b+68(a+b)(1+a b)+37\left(1+a^{2}\right)\left(1+b^{2}\right)\right)}{90(1+a)^{4}(1+b)^{4}}
\end{aligned}
$$

Using Buchta's more recent theory [2], in combination with our results, we find that N_{5}, the number of sides of the convex hull when $n=5$, takes values 3,4 or 5 with probabilities $\frac{5}{36}-\psi, \frac{5}{9}$ and $\frac{11}{36}+\psi$ respectively. Here $\psi:=5 a b /[9(1+$ $a)^{2}(1+b)^{2}$]. It is intriguing that the probability of this convex hull being 4 -sided does not depend on a or b.

Our study was supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (project no. HKBU200503).

References

[1] Buchta, C. (1986). On a conjecture of R. E. Miles about the convex hull of random points. Monatsh. Math. 102, 91-102.
[2] Buchta, C. (2005). An identity relating moments of functions of convex hulls. Discr. Comput. Geom. 33, 125-142.
[3] Cowan, R. and Chiu, S. N. (2005). Technical Report: A solution of Sylvester-like problems for convex quadrilaterals. http://www.maths.usyd.edu.au/u/richardc.
[4] Deltheil, R. (1926). Probabilités Géométriques. In Traité du calcul des probabilités et de ses applications, 2, ed E. Borel, Gauthier-Villars, Paris.
[5] Effron, B. (1965). The convex hull of a random set of points. Biometrika 52, 331-343.
[6] Reed, W. J. (1974). Random points in a simplex. Pacific J. Math. 54, 183-198.
[7] Weisstein, E. W. (2005). http://mathworld.wolfram.com/SquareTrianglePicking.html

[^0]: * Postal address: School of Mathematics and Statistics, University of Sydney, NSW, 2006, Australia
 ** Postal address: Department of Mathematics, Hong Kong Baptist University, Kowloon, Hong Kong

