Some solutions for the game Odds \& Evens.

by Richard Cowan.

The game

Players A and B are each dealt k cards from a pack containing $n=2 r$ cards, numbered $1,2, \ldots, n$. Player A chooses a card from those dealt to him; likewise for player B. They show their choices simultaneously. Player A wins if the sum of the two cards is odd; B wins if the sum is even.
The case $n=8, k=3$ is discussed on my website, with solution given there.
We give now a solution for other k values and for any even $n \geq 2 k$.

The chance that A wins

Suppose player B's k-card hand contains x odd cards (and $k-x$ even cards). Likewise player A is dealt y odd cards. The probability of this joint event is

$$
\begin{equation*}
p_{k}(x, y)=\frac{\binom{r}{x}\binom{r}{k-x}\binom{r-x}{y}\binom{r-k+x}{k-y}}{\binom{n}{k}\binom{n-k}{k}} \quad \text { where } r=\frac{n}{2} \tag{1}
\end{equation*}
$$

The usual conventions that apply to binomial coefficients determine the range of x and y within the largest possible range, $0 \leq x, y \leq k$.
Let $a_{k}(y)$ be the probability that A plays an even card when dealt a hand comprising y odd cards. Also let $b_{k}(x)$ be the probability that B plays an even card when dealt a hand comprising x odd cards. Obviously $a_{k}(0)=b_{k}(0)=1$ and $a_{k}(k)=b_{k}(k)=0$.
We can write the value of the game, V_{k}, namely the probability that A wins the game, as

$$
\begin{aligned}
& V_{k}=p_{k}(0,k)+p_{k}(k, 0)+\sum_{x=1}^{k-1}\left(p_{k}(x, 0)\left(1-b_{k}(x)\right)+p_{k}(x, k) b_{k}(x)\right) \\
&+\sum_{y=1}^{k-1}\left(p_{k}(0, y)\left(1-a_{k}(y)\right)+p_{k}(k, y) a_{k}(y)\right) \\
&+\sum_{x=1}^{k-1} \sum_{y=1}^{k-1} p_{k}(x, y)\left(a_{k}(y)\left(1-b_{k}(x)\right)+b_{k}(x)\left(1-a_{k}(y)\right)\right) \\
&=p_{k}(0, k)+p_{k}(k, 0)+\sum_{x=1}^{k-1} p_{k}(x, 0)+\sum_{y=1}^{k-1} p_{k}(0, y) \\
&+\sum_{x=1}^{k-1} \sum_{y=1}^{k-1} p_{k}(x, y)\left(a_{k}(y)\left(1-b_{k}(x)\right)+b_{k}(x)\left(1-a_{k}(y)\right)\right)
\end{aligned}
$$

So

$$
\begin{aligned}
V_{k}=\sum_{x=1}^{k} p_{k} & (x, 0)+\sum_{y=1}^{k} p_{k}(0, y) \\
& +\sum_{x=1}^{k-1} \sum_{y=1}^{k-1} p_{k}(x, y)\left(a_{k}(y)+b_{k}(x)-2 a_{k}(y) b_{k}(x)\right) .
\end{aligned}
$$

A turning point of V_{k}, with respect to vectors $\left(a_{k}(1), a_{k}(1), \ldots, a_{k}(k-1)\right)$ and $\left(b_{k}(1), b_{k}(1), \ldots, b_{k}(k-1)\right)$, can be found, lying in the region where $0 \leq a_{k}(y) \leq$ $1, \forall y$ and $0 \leq b_{k}(x) \leq 1, \forall x$. We find that this turning point is a saddle-point in the sense of differential calculus - and it is also the minimax saddle-point of the 'Odds and Evens' game.
The saddle-point is the unique solution of the following $2 k-2$ linear equations of full rank.

$$
\begin{array}{ll}
\sum_{y=1}^{k-1} p_{k}(x, y)\left(1-2 a_{k}(y)\right)=0 & 1 \leq x \leq k-1 \\
\sum_{x=1}^{k-1} p_{k}(x, y)\left(1-2 b_{k}(x)\right)=0 & 1 \leq y \leq k-1 \tag{3}
\end{array}
$$

Since $p_{k}(x, y)=p_{k}(y, x)$, these two systems of equations are identical and so yield equal solutions for the a_{k}-vector and b_{k}-vector. We focus therefore on just one of the systems, say (2) - which we rewrite as:

$$
\begin{equation*}
2 \sum_{y=1}^{k-1} p_{k}(x, y) a_{k}(y)=\frac{\binom{r}{x}\binom{r}{k-x}}{\binom{n}{k}}-p_{k}(x, 0)-p_{k}(x, k), \quad 1 \leq x \leq k-1 \tag{4}
\end{equation*}
$$

The tables below give the strategies (which are the solutions of (4) and the same for both players) and the game value V_{k}, for all $k \leq 8$.

k	$y=1$	$y=2$	$y=3$	$y=4$	$y=5$	$y=6$
2	$\frac{1}{2}$					
3	$\frac{1}{r-1}$	$\frac{r-2}{r-1}$				
4	$\frac{r+2}{4(r-1)}$	$\frac{1}{2}$	$\frac{3(r-2)}{4(r-1)}$			
5	$\frac{2}{r-1}$	$\frac{11-6 r+r^{2}}{(r-2)(r-1)}$	$\frac{3(r-3)}{(r-2)(r-1)}$	$\frac{r-3}{r-1}$		
6	$\frac{r+9}{6(r-1)}$	$\frac{2\left(9-5 r+r^{2}\right)}{3(r-2)(r-1)}$	$\frac{1}{2}$	$\frac{(r-3)(r+4)}{3(r-2)(r-1)}$	$\frac{5(r-3)}{6(r-1)}$	
7	$\frac{3}{r-1}$	$\frac{22-8 r+r^{2}}{(r-2)(r-1)}$	$\frac{6\left(17-8 r+r^{2}\right)}{(r-1)(r-2)(r-1)}$	$\frac{\left.(r-4)(7)(r+8) r^{2}\right)}{(r-3)(r-2)(r-1)}$	$\frac{5(r-4)}{(r-2)(r-1)}$	$\frac{r-4}{r-1}$

k	$y=1$	$y=2$	$y=3$	4	$y=5$	$y=6$	$y=7$
8	$\frac{r+20}{8(r-1)}$	$\frac{3\left(20-7 r+r^{2}\right)}{4(r-2)(r-1)}$	$\frac{3\left(104-34 r-r^{2}+r^{3}\right)}{8(r-3)(r-2)(r-1)}$	$\frac{1}{2}$	$\frac{5(r-4)\left(18-5 r+r^{2}\right)}{8(r-3)(r-2)(r-1)}$	$\frac{(r-4)(r+13)}{4(r-2)(r-1)}$	$\frac{7(r-4)}{8(r-1)}$

Table 1: Values of $a_{k}(y)$ for $2 \leq k \leq 8$ and relevant y. Here $r=n / 2$.

k	V_{k}
1 or 2	$\frac{n}{2(n-1)}$
3 or 4	$\frac{n\left(11-6+n^{2}\right)}{2(n-3)(n-2)(n-1)}$
5 or 6	$\frac{n\left(274-225 n+85 n^{2}-15 n^{3}+n^{4}\right)}{2(n-5)(n-4)(n-3)(n-2)(n-1)}$
7 or 8	$\frac{n\left(13068-1332 n+6769 n^{2}-1960 n^{2}+32 n^{4}-28 n^{5}+n^{6}\right)}{2(n-7)(n-6)(n-5)(n-4)(n-3)(n-2)(n-1)}$

Table 2: The chance V_{k} that A wins.

It is interesting that $V_{k}=V_{k-1}$ when k is even. An insight into why this is so comes from the $a_{k}(\cdot)$ values when k is even. It turns out that A's optimal strategy when k is even can be achieved by ignoring the last card dealt to $\mathrm{A}-$ and then applying the $(k-1)$-strategic rules to the other cards. Likewise for B.
For example, consider the situation when $k=8$ and the cards dealt to A have $y=2$ (i.e. $2 \mathrm{O}+6 \mathrm{E}$). I assert that he can ignore the 8 th card dealt to him. With probability $\frac{1}{4}$ the last card will be O leaving a residual of $\mathrm{O}+6 \mathrm{E}$ - and with probability $\frac{3}{4}$ it will be E leaving $2 \mathrm{O}+5 \mathrm{E}$. In the former case, his strategy uses $a_{7}(1)$ whilst in the latter his play is based on $a_{7}(2)$. Thus, by playing in this ‘ignore-the-last-card' way,

$$
a_{8}(2)=\frac{1}{4} a_{7}(1)+\frac{3}{4} a_{7}(2)=\frac{1}{4} \frac{3}{r-1}+\frac{3}{4} \frac{22-8 r+r^{2}}{(r-2)(r-1)}=\frac{3\left(20-7 r+r^{2}\right)}{4(r-2)(r-1)} .
$$

So we see that the optimal strategy for $k=8$ is achieved by this reduction of cards to 7 . In general, it seems from my computational experience that, when k is even,

$$
\begin{equation*}
a_{k}(y)=\frac{y}{k} a_{k-1}(y-1)+\frac{k-y}{k} a_{k-1}(y) . \tag{5}
\end{equation*}
$$

Therefore, assuming (5) is true, it suffices to solve the problem for k odd; the even strategy and game-value follows.
Another relationship observed is:

$$
\begin{equation*}
a_{k}(y)=1-a_{k}(k-y), \tag{6}
\end{equation*}
$$

true for all k. When k is even, this implies that $a_{k}(k / 2)=\frac{1}{2}$. Given that the case k even has effectively been dealt with, it is the application to the case k odd which is important. In this context, we also note the following.

$$
\begin{align*}
& a_{k}(k-1)=\frac{2 r-k-1}{2(r-1)} \quad \text { odd } k \geq 1 \tag{7}\\
& a_{k}(k-2)=\frac{(k-2)(2 r-k-1)}{2(r-2)(r-1)} \quad \text { odd } k \geq 3 \tag{8}\\
& a_{k}(k-3)=\frac{(2 r-k-1)\left(6-4 k+k^{2}-(k+1) r+r^{2}\right)}{2(r-3)(r-2)(r-1)} \quad \text { odd } k \geq 3 \tag{9}\\
& a_{k}(k-4)=\frac{(k-4)(2 r-k-1)\left(6-3 k+k^{2}-2(k+1) r+2 r^{2}\right)}{2(r-4)(r-3)(r-2)(r-1)} \quad \text { odd } k \geq 5 \tag{10}
\end{align*}
$$

Further computations of special cases to $k=19$ are consistent with all of these empirically-observed identities. It does not seem likely, however, that a general expression for $a_{k}(y)$ will emerge from recognising such patterns. Similarly, a general form for V_{k} will be difficult to find.

