
Recurrence relationships for the mean number of faces

and vertices for random convex hulls

Richard Cowan1
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topological identity of the author is used in combination with identities of Efron and Buchta to

find the expected number of vertices of the convex hull – yielding a new recurrence formula for

all dimensions d. A recurrence for the expected number of facets and (d− 2)-faces is also found,

this analysis building on a technique of Rényi and Sulanke. Other relationships for the expected

count of i-faces (1 ≤ i < d) are found when d ≤ 5, by applying the Dehn–Sommerville identities.

A general recurrence identity (see equation (3) below) for this expected count is conjectured.
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Introduction

Consider the experiment where points P1, P2, ..., Pn, ... are placed randomly and independently

in Rd (d ≥ 1) according to a common probability law. This law is defined by the (induced)

probability measure µ defined on Bd, the Borel sets of Rd. Let the convex hull of the first n

points be denoted by Hn. The d-dimensional volume of Hn is given by Vn, whilst µn is defined

as the probability content (that is, µ-measure) of Hn.

The convex hull Hn is a convex polytope. We denote the number of i-faces of Hn by Fn,i.

When i = 0, however, we follow the practice of other authors and use the notation Nn := Fn,0,

for the number of vertices. We also introduce Fn := Fn,d−1 as the number of facets.

Combining the power of three distinct ideas – the Efron/Buchta identity ([11], [5], [17]),
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an integral technique of Rényi/Sulanke ([15],[16]) modified to suit our purpose, and an identity

involving µn that follows from recent work of the author [8] – we derive various new recurrence

identities for ENn, EFn and EFn,d−2. To be more precise, we note that these identities are only

partial recurrences as there are parity conditions on them. We do not, however, use the word

‘partial’ in further descriptions.

Mostly we focus on the case where µ gives zero probability mass to every j-dimensional

hyperplane (for all j < d) and, in particular, to any one-point set. This implies that the

polytope Hn is almost surely simplicial with dimension equal to min(d, n− 1). We refer to this

constraint on µ as the hyperplane condition; we note that it is weaker than absolute continuity

with respect to Lebesgue measure as it allows µ to have positive mass on some types of Lebesgue-

measure-zero sets. For example, when d = 2 we allow a measure which is positive on a curve no

part of which is a line-segment.

In the hyperplane-conditioned case our results are as follows. For vertices, ENn = n if

n ≤ d + 1, whilst

ENn =
n

2
+

1
2

n−1∑

j=1

(−1)j−1

(
n

j

)
ENn−j , (n− d) ≥ 3 and odd. (1)

For facets, EFn = 0 if n < d, EFd ≡ EFd,d−1 = 1, EFd+1 ≡ EFd+1,d−1 = d + 1 and

EFn =
1
2

(
n

d

)
+

1
2

n−d∑

j=1

(−1)j−1

(
n

j

)
EFn−j , (n− d) ≥ 3 and odd. (2)

Employing the Dehn–Sommerville identities ([10], [18] and [12], p145) in combination with (1)

and (2), we find a recurrence for (d−2)-faces, and a complete list of recurrences for i-faces when

i < d ≤ 5.

All of our new results have a common form, namely, for 0 ≤ i < d,

EFn,i =
1
2

(
n

i + 1

)
+

1
2

n−i−1∑

j=1

(−1)j−1

(
n

j

)
EFn−j, i (n− d) ≥ 3 and odd (3)

=
(

n

i + 1

)
n ≤ d + 1.

This suggests to us that (3) may have general validity in the case where µ satisfies the hyperplane

condition, even though we only prove it here for all d when i equals 0, d − 2 or d − 1 (and

additionally for i = 1 when d = 4, 5 and i = 2 when d = 5).
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The paper concludes with a brief discussion of the difficulties that arise when µ does not

satisfy the hyperplane condition. The discussion suggests that this condition is the most appro-

priate for the current study.

Some detail which has been omitted from the published version is available on the author’s

website (http://www.maths.usyd.edu.au/u/richardc).

The identities of Efron, Buchta and Cowan

Assuming that µ is an absolutely continuous measure (the words ‘with respect to Lebesgue

measure’ will be implicitly assumed for the rest of this paper), Efron [11] showed that Eµn =

1−ENn+1/(n+1). In the important special case where µ is uniformly distributed on a bounded

convex K ⊂ Rd, being zero outside K, then µn equals Vn divided by |K|, the volume of K. Efron’s

result is better known in this restricted context, where it becomes EVn/|K| = 1−ENn+1/(n+1).

Developing Efron’s idea, Buchta [5] showed that, provided µ = 0 for all single points in Rd,

Eµk
n = E

k∏

i=1

(
1− Nn+k

n + i

)
, n ≥ 1. (4)

We call this the Efron/Buchta identity. It is a powerful formula linking moments of µn to

moments of the number of vertices of convex hulls formed by random points. We note that

Buchta’s contribution weakened the condition on µ to one which is implied by our hyperplane

condition.

Cowan [8] (in his Theorem 2 and Corollary 1) has recently shown that, for any absolutely

continuous measure ν defined on (Rd,Bd),

νn := ν(Hn) =
1
2

n−1∑

j=1

(−1)j−1

(
n

j

)
ν

(n)
n−j , n ≥ 2, (n− d) even, (5)

where ν
(n)
j equals the average ν-measure of all

(
n
j

)
j-hulls of P1, P2, ..., Pn. Note that this identity

does not involve expectations; it is true for all realisations P1, P2, ..., Pn whose convex hull has

dimension d. We show in Appendix A that (5) remains true for any measure ν satisfying the

hyperplane condition (which is weaker than absolute continuity).

In particular, it holds when ν = µ if µ satisfies the condition – and also, as noted in [8],

if ν equals the absolutely-continuous volume measure V . So we can write the following mean-
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value identities involving µn := µ(Hn) and Vn, by applying expectations and using the obvious

identities Eµ
(n)
n−j = Eµn−j and EV

(n)
n−j = EVn−j .

Eµn =
1
2

n−1∑

j=1

(−1)j−1

(
n

j

)
Eµn−j ; (6)

EVn =
1
2

n−1∑

j=1

(−1)j−1

(
n

j

)
EVn−j . (7)

Identity (6) is new, while (7) has been known since 1990 (see [4]).

The summation ranges in (5)–(7) can be written with fewer terms, using only the range

j ≤ n − d − 1, because the other terms are zero. We resist this shortening, however, for the

convenience of formulae derived in the sequel. To obtain the first of these formulae, we now

combine the new identity (6) with the Efron/Buchta identity (4) when k = 1.

A recurrence involving ENn for general d, when µ satisfies the

hyperplane condition

The hyperplane condition on µ implies that both (4) and the (ν = µ)-version of (5) hold. It also

tells us immediately that µj = 0 for j ≤ d and ENn = n for n ≤ d + 1.

We can state from (6), and the equation (4) with k = 1, that

1− ENn+1

n + 1
= Eµn =

1
2

n−1∑

j=1

(−1)j−1

(
n

j

)
Eµn−j

=
1
2

n−1∑

j=1

(−1)j−1

(
n

j

)(
1− ENn−j+1

n− j + 1

)
,

when (n− d) is even and n ≥ 2. Rearranging, we have

1− ENn+1

n + 1
=

1
2

(
1 + (−1)n − (1− 1)n −

n−1∑

j=1

(−1)j−1

(
n

j

)
ENn−j+1

n− j + 1

)
.

∴ ENn+1 =
n + 1

2

(
1− (−1)n +

n−1∑

j=1

(−1)j−1

(
n

j

)
ENn−j+1

n− j + 1

)

when (n− d) is even and n ≥ 2. This is perhaps written better as

ENn =
n

2

(
1− (−1)n−1 +

n−2∑

j=1

(−1)j−1

(
n− 1

j

)
ENn−j

n− j

)
(8)
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when (n − d) is odd and n ≥ 3. The form (1) follows easily from (8); when d is odd (implying

n is even), (8) becomes

ENn = n +
1
2

n−2∑

j=1

(−1)j−1

(
n

j

)
ENn−j = n− n

2
EN1 +

1
2

n−1∑

j=1

(−1)j−1

(
n

j

)
ENn−j ,

whilst when d is even (implying n is odd), (8) becomes

ENn =
1
2

n−2∑

j=1

(−1)j−1

(
n

j

)
ENn−j =

n

2
EN1 +

1
2

n−1∑

j=1

(−1)j−1

(
n

j

)
ENn−j .

Thus (1) is valid, since N1 = 1. Note that equation (1) behaves appropriately when d = 1,

where it is known from elementary considerations that EN1 = 1 and ENj = 2 for j ≥ 2.

Example 1: Let the points be placed randomly inside a convex quadrilateral in R2 according

to the uniform distribution. The quadrilateral has vertices labelled ABCD and its shape is

characterised by two numbers a and b. These may be chosen in many ways, but we use the

style in Cowan and Chiu [9]: the diagonal AC is divided by the other diagonal BD into two

segments of ratio a : 1, with BD in turn being divided in the ratio b : 1. These authors show

that EN5 = 25
6 + 10

9 θ and EN4 = 11
3 + 4

9θ, where θ := ab/(1 + a2)(1 + b2). By applying (1), we

can check these values. When n = 5, n− d = 3, an odd number; so

EN5 =
5
2

+
1
2

[(5
1

)
EN4 −

(
5
2

)
EN3 +

(
5
3

)
EN2 −

(
5
4

)
EN1

]

=
5
2

+
1
2

[
5(11

3 + 4
9θ)− 10× 3 + 10× 2− 5× 1

]
=

25
6

+
10
9

θ.

EN6 is not known at this stage, but if it is found, then we shall obtain EN7 immediately from

(1). This illustrates the general principle when d = 2: find the result for the even cases, perhaps

with some difficulty, and get the odd cases for free.

Example 2: Let the points be uniformly distributed inside the unit ball in R3. Kingman

[13] showed, when n = 5, that EN5 = 4 + 134
143 and we know trivially that ENj = j for j ≤ 4. So,

we can compute EN6.

EN6 = 3 +
1
2

[(6
1

)
EN5 −

(
6
2

)
EN4 +

(
6
3

)
EN3 −

(
6
4

)
EN2 +

(
6
5

)
EN1

]

= 3 +
1
2

[
6(4 + 134

143)− 15× 4 + 20× 3− 15× 2 + 6× 1
]

= 5 +
116
143

.

This agrees with a result of Miles [14] calculated by other methods. Using our new identity (1),

we get this even-n answer for free!
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Remark 1: For the case where µ is assumed to have the uniform distribution within a

bounded domain K, µ is proportional to V (on sets ⊂ K). In this case, Buchta and Reitzner

[6] have combined the identity (7) – or more precisely an algebraically equivalent version due to

Affentranger and Badertscher ([1], [2])– with the Efron identity. Our theory in this section has

much greater generality.

Some ideas from Rényi and Sulanke

We now find a recurrence relationship for the expected facet-number, Fn, when µ satisfies the

hyperplane condition. Initially let d = 2 and n > 2 (whereby Nn = Fn). We commence with an

approach introduced in the ‘uniform in convex K’ case by Rényi and Sulanke ([15],[16]). Following

these authors but with modification to suit our purpose, we argue that the line segment P1P2

is a side (i.e. a 1-face) of the polygon Hn if and only if all n − 2 other points lie either in the

half-plane to the left of the line through P1P2 or in the half-plane to the right. Line direction is

defined arbitrarily as going from P1 to P2. The probability of this is, for n > 2,
∫

R2

∫

R2

(mn−2 + (1−m)n−2)µ(dP1)µ(dP2),

where m is defined as the µ-measure of the left half-plane. Thus, by considering all pairs of

points,

E(Nn) = E(Fn) =
(

n

2

)∫

R2

∫

R2

(mn−2 + (1−m)n−2)µ(dP1)µ(dP2), n > 2.

Apart from our use of a more general µ, our argument differs from Rényi and Sulanke (and

some other researchers who have exploited their idea, for example Affentranger [1] and Buchta

[3]) in another important way. They defined m as the smaller µ-measure of the left and right

half-planes. This was an essential choice for the asymptotic agenda of Rényi and Sulanke, but

our choice has another use. Because any positioning of P1 and P2 is as likely as the same

configuration with subscripts interchanged, one can write, for n > 2,

E(Nn) = E(Fn) = 2
(

n

2

) ∫

R2

∫

R2

mn−2µ(dP1)µ(dP2) = 2
(

n

2

)∫

R2

∫

R2

(1−m)n−2µ(dP1)µ(dP2).

Such an identity, and the double representations based on symmetric half-spaces, extend to

d-dimensions in an obvious way. For n > d, the extended form is:

E(Fn) = 2
(

n

d

) ∫
...

∫
mn−dµ(dP1)... µ(dPd) = 2

(
n

d

) ∫
...

∫
(1−m)n−dµ(dP1)... µ(dPd). (9)
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Remark 2: We note that this double representation has also been used by Buchta and

Reitzner [7] in their study of random points inside a 3-dimensional tetrahedron. Our analysis,

shown in the next section, and that of these two authors, take different pathways from this

common form, equation (9).

General-d recurrence formulae for E(Fn) and E(Fn,d−2)

We exploit the double representation in (9), with an analysis that leads to a family of new

identities. For n > d,

E(Fn) = 2
(

n

d

) ∫

Rd

· · ·
∫

Rd

(1−m)n−d µ(dP1)µ(dP2)... µ(dPd)

= 2
(

n

d

) ∫

Rd

· · ·
∫

Rd

n−d∑

j=0

(
n− d

j

)
(−1)jmj µ(dP1)µ(dP2)... µ(dPd)

= 2
(

n

d

) n−d∑

j=0

(
n− d

j

)
(−1)j

∫

Rd

· · ·
∫

Rd

mj µ(dP1)µ(dP2)... µ(dPd)

=
(

n

d

) n−d∑

j=0

(
n−d

j

)
(
d+j
d

) (−1)j
[
2
(

d + j

d

)∫

Rd

· · ·
∫

Rd

mj µ(dP1)µ(dP2)... µ(dPd)
]

= 2
(

n

d

)
+

n−d∑

j=1

(−1)j

(
n

d + j

)
E(Fd+j). (10)

From (10), EFd+1 = 2(d + 1)− EFd+1; so EFd+1 = d + 1. When n ≥ d + 2, (10) progresses (by

substituting m := d + j) to

E(Fn) = (−1)n−dE(Fn) + 2
(

n

d

)
+

n−1∑

m=d+1

(−1)m−d

(
n

m

)
E(Fm).

Therefore if n− d is odd (and ≥ 3) this yields results agreeing with (2).

E(Fn) =
(

n

d

)
+

1
2

n−1∑

m=d+1

(−1)m−d

(
n

m

)
E(Fm)

=
(

n

d

)
+

1
2

n−d−1∑

j=1

(−1)j−1

(
n

j

)
EFn−j where j := n−m (11)

=
1
2

(
n

d

)
+

1
2

n−d∑

j=1

(−1)j−1

(
n

j

)
EFn−j because EFd = 1.

Since Hn is a simplicial d-polytope when n > d, we can relate Fn,d−2 to Fn,d−1 (which we

know as Fn). Each facet of Hn is a (d− 1)-simplex, with each of its d (d− 2)-faces pasted onto
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a (d − 2)-face of another facet. This means that dFn,d−1 = 2Fn,d−2. Thus Fn,d−2 = 1
2d Fn, for

n > d. We note that this simple counting identity is one of the Dehn-Sommerville equations

applied to the dual polytope of Hn.

So from (11), we have the following recurrence for (n− d) ≥ 3 and odd.

EFn,d−2 =
d

2
EFn =

d

2

(
n

d

)
+

d

4

n−d−1∑

j=1

(−1)j−1

(
n

j

)
2
d
EFn−j, d−2

=
1
2

(
n

d− 1

)
+

1
2

n−d+1∑

j=1

(−1)j−1

(
n

j

)
EFn−j, d−2,

using EFd−1,d−2 = 1 and EFd,d−2 = d.

It is easy to show that the results of this section, derived by the methods which exploit

the Rényi/Sulanke idea, are consistent with those for ENn derived by use of the Cowan and

Efron/Buchta identities. When d = 2, one uses the identity Nn = Fn, n > 2. Likewise when

d = 3, one employs the identities for n > 3: Fn,1 = 3
2Fn; Nn = 2 + Fn,1 − Fn = 2 + 1

2Fn.

When d = 2, 3: agreement with the earlier results for ENn

In this section, we show that these results derived by the methods which exploit the Rényi/Sulanke

idea are consistent with those for ENn derived by use of the Cowan and Efron/Buchta identities,

when d = 2, 3.

For d = 2, Nn = Fn when n ≥ 3; so, when n is odd and ≥ 5, a reduction formula for ENn is

provided by (11).

ENn =
(

n

2

)
+

1
2

n−3∑

j=1

(−1)j−1

(
n

j

)
ENn−j

=
1
2

(
n

1

)
+

1
2

n−1∑

j=1

(−1)j−1

(
n

j

)
ENn−j , because EN2 = 2 and EN1 = 1.

This latter form, which agrees with our earlier result (1) derived for all d, is also valid for n = 3.

If d = 3, we see that Fn,1 = 3
2Fn, n ≥ 4. From Euler’s identity, Nn = 2+Fn,1−Fn = 2+ 1

2Fn
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when n ≥ 4. Applying this to (2), gives, for n ≥ 6 and even:

ENn = 2 + 1
2EFn = 2 +

1
2

[1
2

(
n

3

)
+

1
2

n−3∑

j=1

(−1)j−1

(
n

j

)
EFn−j

]

= 2 +
1
2

[1
2

(
n

3

)
+

1
2

(
n

3

)
EF3 +

1
2

n−4∑

j=1

(−1)j−1

(
n

j

)
2(ENn−j − 2)

]

= 2 +
1
2

(
n

3

)
+

1
2

n−4∑

j=1

(−1)j−1

(
n

j

)
ENn−j −

n−4∑

j=1

(−1)j−1

(
n

j

)
( using EF3 = 1)

= 2 +
1
2

(
n

3

)
+

1
2

n−1∑

j=1

(−1)j−1

(
n

j

)
ENn−j −

(
n

1

)
EN1

2
+

(
n

2

)
EN2

2
−

(
n

3

)
EN3

2

−
[ n∑

j=0

(−1)j−1

(
n

j

)
+

(
n

0

)
+

(
n

n

)
−

(
n

1

)
+

(
n

2

)
−

(
n

3

)]

=
1
2

(
n

1

)
+

1
2

n−1∑

j=1

(−1)j−1

(
n

j

)
ENn−j because EN3 = 3,EN2 = 2 and EN1 = 1.

This result, which is also valid for n = 4, agrees with (1).

Other cases when d = 4, 5

In this section, we deal with some new cases where d = 4, 5 and show that the general form given

in (3) holds. Firstly let d = 4. The Euler identity states that Fn,1 = Fn,0 + Fn,2 − Fn,3 when

n ≥ 5. This becomes Fn,1 = Fn,0 + Fn,3 = Nn + Fn, using the simplicial identity, Fn,2 = 2Fn,3.

So, using (1) and (2), we can write for n ≥ 7 and odd:

EFn,1 = ENn + EFn =
1
2

[(n

1

)
+

(
n

4

)
+

n−1∑

j=1

(−1)j−1

(
n

j

)
ENn−j +

n−4∑

j=1

(−1)j−1

(
n

j

)
EFn−j

]

=
1
2

[(n

1

)
+

(
n

4

)
+

n−5∑

j=1

(−1)j−1

(
n

j

)
EFn−j,1 +

(
n

4

)
EF4

+
(

n

4

)
EN4 −

(
n

3

)
EN3 +

(
n

2

)
EN2 −

(
n

1

)
EN1

]

=
1
2

[
2
(

n

2

)
− 3

(
n

3

)
+ 6

(
n

4

)
+

n−2∑

j=1

(−1)j−1

(
n

j

)
EFn−j,1

−
(

n

4

)
EF4,1 +

(
n

3

)
EF3,1 −

(
n

2

)
EF2,1

]

=
1
2

(
n

2

)
+

1
2

n−2∑

j=1

(−1)j−1

(
n

j

)
EFn−j,1,
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using EF4,1 = 6, EF3,1 = 3 and EF2,1 = 1. This formula, which also holds for n = 5, conforms

to (3).

The Euler and ‘simplicial’ identities in the paragraph above can also be viewed as the Dehn-

Sommerville system of equations. These equations apply to simple convex polytopes, but can

also be used for the dual of any simple polytope – which will be a simplicial polytope. In this

theory, our polytopes are simplicial, so Dehn-Sommerville equations can be applied.

When d = 5, there are three Dehn-Sommerville equations and these are sufficient to allow

expression of Fn,1, Fn,2 and Fn,3 in terms of Nn and Fn. For n ≥ 6,

Fn,1 = 3Nn + 1
2Fn − 6;

Fn,2 = 2Nn + 2Fn − 4;

Fn,3 = 5
2Fn.

It can now be shown, using the method we have employed for d = 4, that recurrence relationships

conforming to (3) hold for EFn,1 and EFn,2.

For d > 5, the Dehn-Sommerville equations do not provide enough information for a complete

set of recurrence relationships. But we might hope, given the agreement that has held in so many

cases, that (3) still holds for all i when d > 5. We leave this as an interesting conjecture, or at

least, a plausible speculation.

When µ does not satisfy the hyperplane condition

In this section, we report that a theory similar to that developed above is not possible if we

weaken the hyperplane condition.

Firstly, the Efron/Buchta identity does not hold if the weakened form of the condition allows

single-point sets to have positive probability. This identity can, however, be modified, to the form

(when k = 1) of Eµn = 1− EN
(1)
n+1/(n + 1). Here N

(1)
n equals the number of vertices containing

only one of the n random points (higher-order vertices being possible). (See the Appendix B

for notes on this generalised Efron/Buchta equation.) So, in principle the weakening of the

hyperplane condition might still allow a recurrence relationship in EN
(1)
n to be developed.

Unfortunately, however, we cannot exploit Cowan’s recurrence in νn (or µn) in these weak-
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ened circumstances. The reason, explained in Appendix A, is the potential for Hn to have

dimension less than d — and in particular for the dimension (which becomes a random variable

when µ is not hyperplane conditioned) to take both odd and even values.

Relaxing the hyperplane condition also renders the Dehn-Sommerville equations inapplicable,

as Hn is not longer a simplicial polytope. Finally, we note that our arguments based on ideas of

Rényi and Sulanke are also invalid if µ has positive values on hyperplanes.

So, for many reasons, we have been unable to extend our theory to the case of more general

µ. It seems that the hyperplane condition provides the most natural and best framework for

our theory.

Second moments: potential for research

We conclude our paper with one further comment. Because the recurrence relationship (5) is

for all point configurations, we can find the variance of µn by simply taking the variance of the

right-hand side of (5). Thus

Var(µn) =
1
4
Var

(n−1∑

j=1

(−1)j−1

(
n

j

)
µ

(n)
n−j

)

=
1
4

n−1∑

j=1

(
n

j

)2

Var(µ(n)
n−j) +

1
2

n−2∑

j=1

n−1∑

i=j+1

(−1)i+j

(
n

j

)(
n

i

)
Cov(µ(n)

n−j , µ
(n)
n−i),

when (n − d) is even and n ≥ 2. This can then be combined with the (k = 2)-version of the

Efron-Buchta identity:

Var(µn) = E
2∏

i=1

(
1− Nn+2

n + i

)
−

(
1− ENn+1

n + 1

)2
.

We see that covariance issues severely complicate this line of argument. In principle, these

complications can be resolved and further research (beyond the scope of this paper) is in progress.

APPENDIX A: Discussion of the identity (5)

Cowan’s Theorem 2 [8], stated below in slightly variant form, is a topological result for arbitrarily

placed points.

11



Cowan’s Topological Theorem: P1, P2, ..., Pn, n ≥ d + 1, are points in Rd whose convex

hull has dimension d. For any reference point P ∈ Hn, define cj(P ) as the number of sub-

collections of j points taken from {P1, P2, ..., Pn} whose convex hull contains P . Then,

Ψ(P ) := c1(P )− c2(P ) + ... + (−1)n−1cn(P ) = (−1)d for almost all P ∈
◦
Hn, (12)

= 0 P ∈ ∂Hn,

where ∂Hn and
◦
Hn denote the boundary and interior respectively of Hn.

Remark 3: Cowan conjectures that the words ‘almost all’ in his Topological Theorem can

be replaced by ‘all’. In [8], he proves this conjecture when d ≤ 2.

Remark 4: He also notes ([8], Remark 4) that the set of positions for P ∈
◦
Hn not encom-

passed within his proof of the Topological Theorem is of dimension (d − 2). Denote this set

of exceptional positions for P by E . We make the important observation here, based on the

proofs and remarks in [8], that E is a union of subsets of hyperplanes – each hyperplane being

of dimension ≤ d− 2.

Remark 5: If the n points placed in Rd have convex hull of dimension h less than d, we

reduce d in the Theorem so that it equals h (and identify the hyperplane containing Hn with

Rh). We call this a reduced-dimension version of the Theorem.

Proof of (5) when ν satisfies the hyperplane condition. In [8], this result was proved

when ν was any absolutely continuous measure on (Rd,Bd) – or on (Rh,Bh) if a reduced-

dimension version is required – but we now prove it under the weaker hyperplane condition.

The argument, similar to that in [8] (but not marred by the author’s typographical omission of
(
n
j

)
in formulae (5) and (7) of that paper and a substantive inaccuracy within his Corollary 1)

runs as follows.

For P ∈ Rd and H ⊂ Rd let IH(·) be defined as the indicator function of the domain H,

namely IH(P ) = 1 if P ∈ H, being zero otherwise. Clearly,
∫

Rd

IH(P ) ν(dP ) = ν(H).

The entity cj in Cowan’s Topological Theorem is the sum of indicator functions of the j-subset

convex hulls. So ∫

Rd

cj(P ) ν(dP ) =
(

n

j

)
ν

(n)
j .

12



Therefore, from integration of (12), we have the following. With n ≥ d + 1,
∫

Rd

Ψ(P )ν(dP ) =
∫
◦
Hn

(−1)dν(dP ). (13)

This is true because ν(E) = 0 (see Remark 4 above). Therefore
(

n

1

)
ν

(n)
1 −

(
n

2

)
ν

(n)
2 + ... + (−1)n−1

(
n

n

)
ν(n)

n = (−1)dν(
◦
Hn).

We note that ν
(n)
n = ν(Hn) and, because ∂Hn comprises facets which lie in hyperplanes, ν(∂Hn) =

0. So ν(
◦
Hn) = ν(Hn) and

n−1∑

j=1

(−1)j−1

(
n

j

)
ν

(n)
j = [(−1)d − (−1)n−1]ν(Hn)

= 2(−1)nν(Hn), when (n− d) is even (14)

= 0 when (n− d) is odd. (15)

Division throughout (14) by (−1)n and rearrangement of the summation yields (5).

Consider now the random experiment with n ≥ d+1. If realisations yield an Hn of dimension

d with probability 1, as is the case when µ satisfies the hyperplane condition, then (14) holds

for almost all outcomes P1, P2, ..., Pn. Thus (5) holds. In particular it holds when ν = µ, if µ is

hyperplane conditioned. When n < d + 1, (5) holds trivially since both sides equal zero when ν

is hyperplane conditioned.

For more general ν. Contrary to an inaccurate statement in the author’s previous paper

([8], Corollary 1), the equation (13) above will only be true if ν(E) = 0, and when d > 2 this

may not be the case for general ν. This qualification was overlooked in [8]. If the conjecture in

Remark 3 is resolved positively, of course, then E = ∅ and ν(E) = 0; so (13) will hold for all ν,

including those which do not satisfy the hyperplane condition.

If ν(E) = 0, the arguments following (13) progress (as in [8]) to yield a generalisation of (14)

and (15), namely:
n−1∑

j=1

(−1)j−1

(
n

j

)
ν

(n)
n−j = 2ν(

◦
Hn) + ν(∂Hn) = 2ν(Hn)− ν(∂Hn) when (n− d) is even (16)

= ν(∂Hn) when (n− d) is odd. (17)

Equation (16) implies the following generalisation of (5):

νn := ν(Hn) =
1
2

n−1∑

j=1

(−1)j−1

(
n

j

)
ν

(n)
n−j +

1
2
ν(∂Hn), n ≥ 2, (n− d) even, (18)
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An example illustrates the situation.

Example 3: Consider the random experiment where d = 2, n is a fixed even number and µ

has as support the sides of a given convex polygon K. Clearly µ does not satisfy the hyperplane

condition, but, because d = 2, E = ∅. Thus ν(E) = 0 and the (ν = µ)-version of (18) holds for

all realisations P1, P2, ..., Pn whose convex hull Hn has dimension 2 (where we note that n − d

is even). It is easy to calculate µ(∂Hn) as the µ-measure of those sides of Hn which lie within

sides of K.

The reader will note that, for some realisations in this example, Hn will have dimension 1; all

points will by chance lie on one side of K. This does not stop us using the Topological Theorem;

we can still use it in a reduced-dimension version with h := dim(Hn) = 1 (see Remark 5). But

n− h is odd in these cases, so (18) is not usable – and the opposite–parity equation (17) is not

helpful as it contains no information about ν(Hn). This means that no overall formula can be

obtained for µn, nor for Eµn.

We note that similar difficulties, resulting from mixed odd-even parity issues, arise in all

cases where µ does not satisfy the hyperplane condition.

APPENDIX B: The Efron-Buchta identity for general µ and

small k.

It is not difficult, in principle, to modify Buchta’s argument (in [5]) to cover the case where µ

may give positive weight to single points. Expressions would then be written in terms of the

random variables N
(r)
n , defined as the number of vertices of Hn which have multiplicity r.

When k = 1, the modification is a trivial exercise, yielding

Eµn = 1− EN
(1)
n+1

n + 1
,

and the k = 2, 3 cases are also relatively easy:

Eµ2
n = E

2∏

i=1

(
1− N

(1)
n+2

n + i

)
− 2EN

(2)
n+2

(n + 2)(n + 1)
;

Eµ3
n = E

3∏

i=1

(
1− N

(1)
n+3

n + i

)
− 6(EN

(3)
n+3 + E(N (2)

n+3(n + 1−N
(1)
n+3)))

(n + 3)(n + 2)(n + 1)
.
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Expressions for k > 3 are more complicated and efforts to date at finding a general form have

not been successful.
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