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Abstract. In the earlier joint work [3], we introduced the weak Kähler-Ricci

flow for various geometric motivations. In this current work, we take further

consideration on setting up the weak flow by allowing the initial class to be
not necessary Kähler. It’s shown that the construction is compatible with the

earlier construction in Kähler case. We also discuss the convergence as t→ 0+

which is of great interest in this topic, and provide related motivation.

1. Motivation and set-up of weak flow

The Kähler-Ricci flow, the complex version of Ricci flow, has been under intensive
study over the last twenty some years. In [18] and more recently [17], G. Tian
proposed the intriguing program of constructing globally existing (weak) Kähler-
Ricci flow with canonical (singular) limit at time infinity and applying it to the
study of algebraic manifolds (and even Kähler manifolds in general). It can be
viewed as the analytic version of the famous Minimal Model Program in algebraic
geometry.

In general, people should expect the classic smooth Kähler-Ricci flow to en-
counter singularity at some finite time which is completely decided by cohomology
information according to the optimal existence result in [20]. Just as what people
have been doing and had successes in cases for Ricci flow, surgeries for the under-
lying manifold should be expected. For the Kähler-Ricci flow, we naturally expect
the surgery to have flavours from algebraic geometry.

A simple example would be surfaces of general type. One only needs the blowing-
down of (−1)-curves when applying the general construction at the end of [3] to
push the flow through the finite time of singularities, where the measure restriction
is actually not so involved as explained later in Example 4.4. The degenerate class
at the singularity time would become Kähler for the new manifold because those
(−1)-curves causing the cohomology degeneration would eventually been crushed
to points.

Things can get significantly more complicated for higher dimension. For example,
a standard procedure called flip is introduced in the algebraic geometry context,
which is of great importance for the business about the algebraic Minimal Model
Program. Simply speaking, one needs to blow up the manifold and then perform
a different blowing-down process. Naturally, we should expect the transformation
of the degenerate class is still not Kähler. In this note, we confirm that this is not
a problem under the assumption that formally the Kähler-Ricci flow is instantly
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taking the class into the Kähler cone of the new manifold. As in [3], short time
existence is what’s all about.

Plan of This Work: for the rest of Section 1, we provide the detail of the weak
flow construction using approximation. In Section 2, we justify regularity of thus
defined weak flow away from the initial time. In Section 3, we show the construction
here is compatibale with that in [3], i.e. they give the same weak flow when the
initial class is Kähler. In Section 4, we describe the situation when t → 0+ in
various cases of geometric interest. Finally, we conclude in Section 5 with some
remarks,

In the following, we set up the weak flow following the same idea as in [3] with
a priori very little regularity in either time or space direction. To begin with, we
specify the way the problem is considered.

Let X be a closed Kähler manifold with dimCX = n > 2. We consider the
following version of Kähler-Ricci flow over X,

(1.1)
∂ω̃t
∂t

= −Ric(ω̃t)− ω̃t, ω̃0 = ω0,

More importantly, the initial data is weak as follows,

ω0 = ω +
√
−1∂∂̄v

where ω is a real, smooth, and closed (1, 1)-form with [ω] being nef. (i.e. numerically
effective, in other words, on the boundary of the Kähler cone of X), and v ∈
PSHω(X) ∩ L∞(X) where v ∈ PSHω(X) means ω +

√
−1∂∂̄v > 0 weakly (i.e. in

the sense of distribution).

Remark 1.1. This above version of Kähler-Ricci flow is simply a time-metric scaled
version of ∂ω̃t

∂t = −Ric(ω̃t), which makes no difference for our interest here. In
fact, the discussion is valid for other unconventional Kähler-Ricci type of flows as
discussed in [20] and [22].

The Main Assumption for this work is the following: suppose [ω0] = [ω] is on
the boundary of the Kähler cone of X (i.e. being nef.), which sits in the cohomology
space H1,1(X,C) ∩ H2(X,R), and the ray starting from [ω] and in the direction
towards the canonical class of X, KX , enters the Kähler cone instantly. Clearly,
there is no need for KX to be Kähler for this to be the case.

There are other motivations to study this case besides defining weak flow to
carry out Tian’s program as described before. In general, there is expectation that
the general geometric and analytic properties of the Kähler-Ricci flow should be
decided largely by the cohomology information from the formal ODE considera-
tion in H1,1(X,C) ∩ H2(X,R). The main theorem below would strengthen this
philosophic point of view.

Theorem 1.2. Under the Main Assumption above, one can define a unique
weak Kähler-Ricci flow from the Approximation Construction which becomes
smooth instantly (i.e. for t > 0) and satisfies (1.1).

Of course, the analysis of the weak flow as t → 0+ is of great importance, and
we have some discussion in Section 4 with geometric interests.
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Formally, we see [ω̃t] = [ωt] ∈ H1,1(X,C) ∩H2(X,R) where

ωt = ω∞ + e−t(ω − ω∞)

with ω∞ = −Ric(Ω) :=
√
−1∂∂̄ log

(
Ω

(
√
−1)ndz1∧dz̄1∧···∧dzn∧dz̄n

)
in a local coordi-

nate system {z1, · · · , zn}. One has [ω∞] = −c1(X) = KX . The Main Assump-
tion above simply means

[ωt] = e−t[ω] + (1− e−t)KX

is Kähler for t ∈ (0, T ) for some T > 0. It is now routine to see that at least
formally (1.1) would be equivalent to the following evolution equation for a space-
time function u,

(1.2)
∂u

∂t
= log

(ωt +
√
−1∂∂̄u)n

Ω
− u, u(·, 0) = v

with the understanding of ω̃t = ωt+
√
−1∂∂̄u. Just as for the classic smooth Kähler-

Ricci flow, we’ll focus on defining weak version of (1.2) instead of (1.1). Their
equivalence in the category of smooth objects would make the weak version for
(1.2) naturally the weak version for (1.1) in sight of the smoothing effect described
in Theorem 1.2.

Now it’s time to describe the Approximation Construction involved in the
statement of Theorem 1.2, which is similar to what has been applied in [3] except
that now [ω] is no longer Kähler. The idea is to find approximation of the initial
data, use them as initial data to get a sequence of flows and finally take limit of
the flows. We provide the detail below for the readers’ convenience.

Take some Kähler metric ω1 over X. For any ε > 0, set ω(ε) = ω + εω1 and
ωt(ε) = ω∞ + e−t (ω(ε)− ω∞). Using the regularization result in [2], one has for
any sequence {εj} decreasing to 0 as j → ∞, a sequence of functions {vj} with

vj ∈ C∞(X) and ω(εj) +
√
−1∂∂̄vj > 0, decreasing to v accordingly. Then we

consider the Kähler-Ricci flows,

(1.3)
∂ω̃t(εj)

∂t
= −Ric (ω̃t(εj))− ω̃t(εj), ω̃0(ε) = ω(εj) +

√
−1∂∂̄vj .

At the level of metric potential, we have

(1.4)
∂uj
∂t

= log
(ωt(εj) +

√
−1∂∂̄uj)

n

Ω
− uj , uj(·, 0) = vj .

They are the classic smooth Kähler-Ricci flows. By choosing the T (before (1.2))
properly, all these flows for j � 1 (i.e. εj sufficiently small) would exist for t ∈ [0, T )
from cohomology consideration 1.

In sight of vj and ωt(εj) “decreasing” to v and ωt as j →∞, applying Maximum
Principle, one can see that uj is also decreasing as j →∞. In principle, this would
allow us to get a limit for each t ∈ [0, T ), u(·, t) ∈ PSHωt

(X), which is the desired
weak flow. For this to be true literally, one needs to make sure for each such t,
the decreasing limit of uj(·, t) won’t be −∞ uniformly over X. At the initial time,
this is obviously the case. For t ∈ (0, T ), this would be the case as seen later by
applying Kolodziej’s L∞-estimate (as in [10]) for Kähler classes 2.

1As in [3], it’s the short time existence that’s of interest, i.e. a small interval near t = 0.
2One can also achieve this using the classic PDE argument involving Moser Iteration (see [19]

for example).
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Of course, one then needs to make sure the limit, which is at this moment just
a family of positive (1, 1)-current with parameter t, is more classic, and this would
boil down to obtaining uniform estimates of uj for all j’s.

Before heading into the search for those uniform estimates, let’s justify the
uniqueness statement of Theorem 1.2, which is a straightforward application of
Maximum Principle.

To begin with, let’s observe that the decreasing convergence of vj → v can be
modified to strictly decreasing convergence without changing the limit. In fact, if
{vj} is only a decreasing sequence, then {vj + 1

j } is strictly decreasing with the

same limit. Clearly, the affect on the solution of (1.4), uj is negligible as j → ∞.
Also, the decreasing limit won’t be affected by taking subsequence.

Now we can see the choice of sequence {εj} won’t affect the limit (i.e. the
weak flow). Let’s take two strictly decreasing sequences, {vj} and {vα} in the
construction described before (1.3). Since for each j, vj > v and vα decreases to
v, by Dini’s Theorem (since all the functions involved are smooth), vα < vj for
α sufficiently large. The other direction is similar. So by taking subsequences,
denoted by {vja} and {vαb

}, we have

vj1 > vα1
> vj2 > vα2

> · · · .
Applying Maximum Principle to (1.4) (the difference of two, to be more precise),
one has

uj1 > uα1 > uj2 > uα2 > · · · ,
and so they have the same limit.

Now one can take care of the general case. In the construction before (1.3), sup-
pose we have chosen different ω1’s with different strictly decreasing sequences {vj}.
Then we can recycle the argument above while also making sure the corresponding
ωt(εj)’s have the same comparison relation. Thus Maximum Principle would still
give the same kind of comparison for solutions of (1.4). Hence the limit would still
be the same and we can conclude the uniqueness.

Remark 1.3. By all means, using approximation is the only reasonable way to
come up with a weak flow, and so even without any description of the situation
as t → 0+, it is still quite natural to call this the weak flow initiating from the
current ω0 = ω +

√
−1∂∂̄v. The discussion for the situation as t→ 0+ is more for

the backwards uniqueness of the weak flow. One can find discussion on backwards
uniqueness for smooth Ricci flow in [12].

2. Estimates away from initial time

Now we begin the search for estimates uniform for all approximation flows (i.e.
ε > 0 where we have classic smooth flows). For simplicity, we’ll omit j and εj in
the notations below which would unfortunately make (1.3) and (1.4) look exactly
like (1.1) and (1.2) respectively. However this would also help us keeping in mind
about the degeneracy of the background form, and so is not such a terrible choice
considering what we are trying to do here.

Note: C below would stand for a fixed positive constant which might be different
at places. Its dependence on other constants would be clear from the context.
Moreover, Lp>1 stands for Lp for some p > 1, where the p can also be different at
places but is a fixed one at each place.
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Clearly, u 6 C by Maximum Principle for (1.4). This is uniform as long as the
flow exists. For the other estimates, the idea is trying to eliminate the affect of the
initial data as completely as possible because we don’t have control of the initial
data except for L∞-bound of the metric potential. Also recall that we only need
estimates for small time.

Notice that in (1.4), the initial value of the background form, ω, might not be
non-negative. One can actually make better use of that ω+

√
−1∂∂̄v > 0 by looking

at the following evolution at the level of metric potential for the same flow (1.3),

(2.1)
∂φ

∂t
= log

(ω̂t +
√
−1∂∂̄φ)n

Ω
− φ, φ(·, 0) = 0,

where ω̂t = ω∞+ e−t(ω+
√
−1∂∂̄v−ω∞). It’s easy to see the relation between the

solutions of (1.4) and (2.1) which is u = φ + e−t · v. We have φ 6 C from u 6 C,
which is not clear by applying Maximum Principle to (2.1) because of the lack of
uniform control for ω +

√
−1∂∂̄v as form in approximation.

The following equation is obtained by taking t-derivative of (2.1) and playing
some standard transformations,

∂

∂t

(
(et − 1)

∂φ

∂t
− φ

)
= ∆ω̃t

(
(et − 1)

∂φ

∂t
− φ

)
+ n− 〈ω̃t, ω +

√
−1∂∂̄v〉.

Since ω+
√
−1∂∂̄v > 0, applying Maximum Principle and noticing the lower bound

of the initial value and the uniform upper bound of φ, we have for t ∈ (0, T ),

∂φ

∂t
6

C

et − 1
,

which gives the following bound of ∂u
∂t since ∂u

∂t = ∂φ
∂t − e

−t · v,

∂u

∂t
6

C

et − 1
.

For any t ∈ (0, T ), we have the background form [ωt(ε)] being uniformly Kähler,
i.e. the small interval corresponding to ε is in the Kähler cone. Together with the
above upper bound for ∂u

∂t , one can apply Ko lodziej’s L∞-estimate (as in [10]) for
(1.4) in the form of

(ωt +
√
−1∂∂̄u)n = e

∂u
∂t +uΩ

to achieve the L∞-bound for u. So now we have u(·, t) > −C(t) with C(t) finite for
t ∈ (0, T ). In fact, we know by the result in [11] that u(·, t) is Hölder continuous
for these t’s 3.

Remark 2.1. The original results on L∞-estimate (as in [10], [20] and [21]) are
usually stated for Monge-Ampère equation in the form (ω +

√
−1∂∂̄u)n = f · Ω

where [ω] might be degenerate, f > 0 is in some Lp>1-space and Ω is a (non-
degenerate) smooth volume form. There are more than one ways to translate this
when applying to the above equation with eu on the right hand side.

Method I: get Lp bound for the measure f · euΩ, then one knows the normalized
u would be bounded from the original result. In other words, u only takes value
in some interval with well controlled length. Then the upper bound of u, which
usually comes from direct Maximum Principle argument, together with the upper

3The Hölder exponent will also depend on t.
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bound for f · Ω which guarantees u can not take too small value in sight of the
lower bound for the total volume, would provide the bound for u.

Method II: get Lp bound for the measure f · Ω, then consider the equation
(ω+

√
−1∂∂̄w)n = Cf ·Ω. The idea is to apply Maximum Principle to the quotient

of these two equations. In order to control the (normalized) solution w for this
auxiliary equation, one needs to control the constant C (from above), which means
we need a lower bound for the total volume for the measure f · Ω. Again this can
be achieved from the upper bound for u.

It’s not hard to see that these two methods are merely different combinations of
the same set of information.

Since for any t ∈ [λ1, λ2] ⊂ (0, T ), [ωt] is uniformly Kähler (for any approxima-
tion flow), by properly choosing Ω (and so ω∞), one has ωt being uniform as Kähler
metric for t ∈ [λ1, λ2] 4. Clearly, (0, T ) can be exhausted by such intervals (and we
only care for the end at 0).

Now let’s translate the time, making λ1 the new initial time t = 0. From the
discussion before, we have uniform bounds from both sides for u and the uniform
upper bound for ∂u

∂t . By taking t-derivative for (1.4) and making some transforma-
tions, we have the two equations below

(2.2)
∂

∂t

(
(et − 1)

∂u

∂t

)
= ∆ω̃t

(
(et − 1)

∂u

∂t

)
− (1− e−t)〈ω̃t, ω − ω∞〉+

∂u

∂t
,

(2.3)
∂

∂t

(
(et − 1)

∂u

∂t
− u
)

= ∆ω̃t

(
(et − 1)

∂u

∂t
− u
)

+ n− 〈ω̃t, ω〉.

Notice that the ω here is indeed ωλ1 and is uniform as Kähler metric for all ap-
proximation flows.

In the small time interval [0, λ2−λ1] (after translation), we have made sure that
ωt > 0, which is

ω∞ + e−t(ω − ω∞) = ω − (1− e−t)(ω − ω∞) > 0,

so one can choose δ ∈ (0, 1) such that for such time,

δω − (1− e−t)(ω − ω∞) > 0.

Use this δ to multiply (2.3) and take difference with (2.2) to arrive at

∂

∂t

(
(1− δ)(et − 1)

∂u

∂t
+ δu

)
= ∆ω̃t

(
(1− δ)(et − 1)

∂u

∂t
+ δu

)
+ 〈ω̃t, δω − (1− e−t)(ω − ω∞)〉+

∂u

∂t
− nδ.

Consider the (local in time) minimal value point of (1− δ)(et−1)∂u∂t + δu, which
would be bounded if it’s taken at the initial time. If it is not at the (new) initial

4In fact, one only needs to take care of the case ε = 0 for this. It’s merely going to cause

difference for the evolution equations at the level of metric potential in a way similar to that
between (1.4) and (2.1).
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time, then at that point, we have

〈ω̃t, δω − (1− e−t)(ω − ω∞)〉 > n ·
(

(δω − (1− e−t)(ω − ω∞))
n

ω̃nt

) 1
n

= n ·
(

(δω − (1− e−t)(ω − ω∞))
n

e
∂u
∂t +uΩ

) 1
n

> Ce−
1
n

∂u
∂t

(2.4)

where u 6 C is applied in the last step, and so one concludes

C > Ce−
∂u
∂t +

∂u

∂t
,

which gives ∂u
∂t > −C at that point. Thus (1 − δ)(et − 1)∂u∂t + δu > −C at that

point by the known lower bound of u, and so we conclude

(1− δ)(et − 1)
∂u

∂t
+ δu > −C

for the space-time. In sight of the upper bound for u, we arrive at

∂u

∂t
> − C

et − 1
.

Although this time t has been translated in the above argument, one still achieves
lower bound for ∂u

∂t uniformly for all approximation flows away from the original
initial time.

So far, we have obtained the L∞-bounds for both u and ∂u
∂t locally away from

the initial time. Only the upper bound of u is uniform for all time.
The second and higher order estimates can be carried through as in Subsection

3.2 of [3] because the translation of time would make the background form Kähler.
Hence we conclude that the weak flow defined in Section 1 becomes smooth in-
stantly. The proof of Theorem 1.2 is thus finished.

Remark 2.2. The situation as t→ 0+, which is indeed the only ”weak” spot of the
flow, needs further consideration just as in [3]. Since most estimates achieved up
to this point are only local away from the initial time, the control of the situation
near 0 at this moment is very weak. In fact, strange things can happen for the
weak flow. For example, [ω0] might have global volume 0 (being collapsed), but the
volume would become positive instantly.

3. Revisit of Kähler case

In this section, we digress a little to the Kähler case, i.e. [ω] being Kähler,
to sort out a very natural question regarding the uniqueness of weak flow from
approximation construction. Recall that in [3], the approximation construction
makes use of a fixed background form which is Kähler. There was no good reason
at that time to use ω(ε) = ω + εω1 appearing in Section 1 here. However, the
construction in Section 1 still works for that case.

Our goal here is to see these two approximation constructions give rise to the
same weak flow when v is continuous. In the Kähler case, the continuity of v follows
from (ω +

√
−1∂∂̄v)n being Lp>1 by the result in [9], and so is a fairly reasonable

assumption.
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In [3], a sequence {φj} decreasing to v for φj ∈ C∞ ∩ PSHω(X) with ω +√
−1∂∂̄φj is used for approximation. The continuity of v implies that the decreasing

convergence is uniform by Dini’s Theorem. The background form is the same for
all j, and so by Maximum Principle, the corresponding metric potentials for the
approximation flows also uniformly converge to the weak flow with a continuous
metric potential, called ϕ. This is the observation made in [15] which is crucial.

For the construction in Section 1, the continuity of v also makes sure that the
decreasing convergence of vj to v used in Section 1 is uniform, but because the
background form changes for this approximation, we still only know the convergence
of uj is decreasing, with the weak flow u.

In fact, applying Maximum Principle between these two approximations, one
easily has u > ϕ, and the equality is what we want.

To begin with, we prove that u is continuous up to the initial time. By the
discussion in Section 2, we only need to check at the initial time, where u(·, 0) = v.
The decreasing convergence of uj to u makes sure that u is upper semi-continuous.
For any ε > 0 and p ∈ X, we have δ1 > 0 such that for (x, t) with distω1

(x, p)+t < δ1
(where ω1 is a fixed metric over X),

u(x, t) 6 u(p, 0) + ε = v(p) + ε.

We have ϕ ∈ C0 (X × [0, T )), and so there is δ2 > 0 such that for (x, t) with
distω1

(x, p) + t < δ2,

ϕ(x, t) > ϕ(0, p)− ε = v(p)− ε.

Let δ = min{δ1, δ2}. We have for (x, t) ∈ U(p) = {(x, t) | distω1
(x, p) + t < δ},

u(x, t) 6 ϕ(x, t) + 2ε.

Finitely many U(p)’s would cover X × {0}, and so for some δ(ε) > 0,

u(x, t) 6 ϕ(x, t) + 2ε, for any (x, t) ∈ X × [0, δ(ε)].

Combining with u > ϕ, one can easily conclude the continuity for u at the initial
time. So we have u ∈ C0 (X × [0, T )).

From [3] and Section 2 here, we also know u and ϕ both in C∞ (X × (0, T )) and
satisfying

∂u

∂t
= log

(ωt +
√
−1∂∂̄u)n

Ω
− u, ∂ϕ

∂t
= log

(ωt +
√
−1∂∂̄ϕ)n

Ω
− ϕ

with the same background form ωt. Moreover, they are both in C0 (X × [0, T ))
with u(·, 0) = ϕ(·, 0) = v(·). So for any ε > 0, we can have for sufficiently small
δ > 0, |u(·, δ)− ϕ(·, δ)| 6 ε. Applying Maximum Principle for

∂(u− ϕ)

∂t
= log

(
ωt +

√
−1∂∂̄ϕ+

√
−1∂∂̄(u− ϕ)

)n
(ωt +

√
−1∂∂̄ϕ)n

− (u− ϕ)

over X × [δ, T ), we have |u− ϕ| 6 ε over this region. Hence u = ϕ and we end up
with the same weak flow.
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4. Estimates up to initial time

In this part, we look to achieve some estimates uniform for small time, i.e. for
t ∈ (0, T ) without degeneration towards t = 0. So far, we only have the uniform
upper bound for u.

The first thing comes to mind could be some L∞-estimate for the metric po-
tential, u, up to t = 0. In sight of the Ko lodziej type of estimates (in [7], [21]
and [5]) and the even more elementary relation between ∂u

∂t and u, one naturally

wants to control the volume form or ∂u
∂t up to the initial time. Although one might

think that some bound of ∂u
∂t might already control u (to some extent) without the

involvement of the Ko lodziej type of estimates for degenerate case because of the
uniform control for u at some positive time from Section 2, we still need them when
constructing the approximation flows as discussed below.

As in [3], we often make assumption on the initial measure, ωn0 = (ω+
√
−1∂∂̄v)n,

which is closely related to the initial value of ∂u
∂t . However, if one just applies the

general regularization of the current ω0 (in [2] for example), it may not be the
case that the volume forms of the smooth approximation metrics would main-
tain the same kind of control for their Monge-Ampère measures. Fortunately, the
uniqueness of the weak flow in Theorem 1.2 allows us to make good choice of
the approximation, maintaining the measure control. More precisely, suppose the
measure (ω +

√
−1∂∂̄v)n has some kind of bound (for example, upper, lower or

Lp>1-bounds, even degenerate ones), then one can use standard process involving
partition of unity and convolution to construct a sequence of smooth volume forms,
Ωε with the same kind of bound uniformly and converges to (ω+

√
−1∂∂̄v)n as ε→ 0

in L1-space. Then we need to solve the equations (ω + εω1 +
√
−1∂∂̄vε)

n = CεΩε
where Cε is well controlled and tends to 1 by requiring

∫
X

(ω+
√
−1∂∂̄v)n > 0. We

also need to make sure that after taking normalization for vε, they would decrease
to v as ε → 0, so that they form a desirable approximation in the construction of
the weak flow.

For the existence of such vε, one needs the Ko lodziej type of results (as in [7],
[21] and [5]), and so we assume the degenerate initial class [ω0] to be big as in [7]
and [5], or in the following more intuitive but seemingly more restrictive picture:
let X be a closed Kähler manifold with dimCX = n > 2, and there is a holomorphic
map P : X → CPN with dimCF (X) = n. Let ωM be any (smooth) Kähler form

over some neighborhood of P (X) in CPN , [ω0] = [P ∗ωM ]. Moreover, we also need
the measure (ω +

√
−1∂∂̄v)n to be Lp>1 (or slightly more general as in [5]). The

decreasing of vε is clear using Ko lodziej’s stability argument as discussed in 9.6.2
of [22]. The stability result in [6] then guarantees that the limit of vε is v.

With all the above observations, we analyze the situation as t → 0+ for some
cases of interest. We are still working directly on the approximation flows, i.e. (1.3)
and (1.4), while omitting j and εj for simplicity of notations. We emphasize
that the argument is uniform for all approximation flows.

4.1. Measure upper bound. We search for the upper bound of ∂u
∂t uniform up

to the initial time under the assumption that the volume of the initial current, ωn0 ,
has some appropriate upper bound. The point is to see whether it would be enough
to imply the necessary measure bound for a small time interval. In the following,
we would provide enough motivation before stating the actual bound (4.4).
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The following equation comes from standard manipulation of (1.4),
(4.1)
∂

∂t

(
(et −A)

∂u

∂t
−Au

)
= ∆ω̃t

(
(et −A)

∂u

∂t
−Au

)
+An− 〈ω̃t, ω − (1−A)ω∞〉

for a constant A to be fixed. Since the flow is driving the class into the Kähler cone,
it would take some A > 1 to provide a definite sign for the last term on the right
hand side of this equation. Unfortunately, when applying Maximum Principle, we
would not have the proper control for the initial value of (1 − A)∂u∂t (from upper

bound for ∂u
∂t at the initial time).

So one needs to choose some constant A < 1. It would work if there is an
effective divisor (i.e. holomorphic line bundle) E with the defining section σ and a
hermitian metric | · | such that for some λ > 0,

ω + λ
√
−1∂∂̄log|σ|2 > 0,

which is the case under our assumption on [ω0] in the algebraic geometry setting,
i.e. [ω0] − λE being Kähler. This can be justified using the simple algebraic
geometry result as cited in [20]. We would assume this in general which is indeed
an assumption on the geometry of the (effective and Kähler) cones. This would be
made clear in the statement of the result. Clearly, we can also make sure that |σ|
is small over X. Now one can reformulate (4.1) as follows,

∂

∂t

(
(et −A)

∂u

∂t
−Au+ λlog|σ|2

)
= ∆ω̃t

(
(et −A)

∂u

∂t
−Au+ λlog|σ|2

)
+An

− 〈ω̃t, ω + λ
√
−1∂∂̄log|σ|2 − (1−A)ω∞〉.

By choosing A < 1 properly, one can make sure that the last term on the right has
a definite sign for the small time interval.

Recall that in this part we assume ∂u
∂t t=0 6 C, in other words, ωn0 6 C ·Ω. The

discussion at the beginning of this section guarantees that we also have this for the
approximation flows worked on directly. Maximum Principle gives

(4.2) (et −A)
∂u

∂t
−Au+ λlog|σ|2 6 maxX×{0}(1−A)

∂u

∂t
+ λ log |σ|2 + C 6 C,

using the upper bound for ∂u
∂t and lower bound for u, both at the initial time. With

the uniform upper bound for u and A < 1, one arrives at the following degenerate
upper bound,

(4.3)
∂u

∂t
6
−λlog|σ|2 + C

et −A
.

This degenerate upper bound (4.3) gets better for large t. Obviously, the as-
sumption on the initial value can be weakened to

(4.4)
∂u

∂t
t=0 6

−λ log |σ|2 + C

1−A

and of course we still require ωn0 to be Lp>1, which is preserved by the approximation
flows as discussed before. (4.3) is uniform for the approximation flows, and so is
true for the weak flow for t > 0 by the local smooth convergence in Section 2. Hence
we conclude the following result.
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Proposition 4.1. In the setting of Theorem 1.2, if ω0 has Lp>1-measure satisfying
(4.4) and represents a big class, then the weak flow defined in Theorem 1.2 would
satisfy (4.3).

The degenerate upper bound of ∂u∂t , namely (4.3), means that locally out of {σ =

0} 5, u is decreasing up to a term like −Ct as t ↗. More precisely, u+ C log |σ|2t
is decreasing as t↗.

Using the notations in Section 1, because this is uniform for the approximation
flow uj , we have uj+C log |σ|2t increases to vj as t↘ 0, while vj decreases to v and
uj decreases to u as j → ∞. Notice that we also know that for the genuine weak
flow, u + C log |σ|2t increases as t ↘ 0 because of the smooth convergence away
from the initial time in Section 2. So we can have the following over X \ {σ = 0},

v(·) = lim
j→∞

vj(·) = inf
j
vj(·)

= inf
j

sup
t
{uj(·, t) + C log |σ|2t}

> sup
t

inf
j
{uj(·, t) + C log |σ|2t}

= sup
t
{u(·, t) + C log |σ|2t}

= lim
t→0+

(
u(·, t) + C log |σ|2t

)
= lim
t→0+

u(·, t).

(4.5)

This leads to a key issue for the weak flow as t → 0+ as discussed below. We
define v̂(·) = limt→0+ u(·, t) out of {σ = 0}. Locally out of {σ = 0}, there is
certainly a lower bound for v̂ because of the increasing of u(·, t) + C log |σ|2t as
t ↘ 0 and the L∞ bound for u away from the initial time. The uniform upper
bound is also available. So we can extend v̂ to {σ = 0} in an upper semi-continuous
way so that v̂ ∈ PSHω(X) (as in [4] for instance). Moreover, we have

(4.6) C > v̂ > −Cε + ε log |σ|2

for any (small) ε > 0. In general, we have v > v̂. The equality is expected.

Set ω̂0 = ω +
√
−1∂∂̄v̂. By the classic result on weak convergence (in [1] or as

summarized in [10]), for the weak flow,

ω̃jt → ω̂j0 weakly over X \ {σ = 0} as t→ 0+, j = 1, · · · , n.
In fact, one can conclude the weak convergence over X for Monge-Ampère mea-

sure with the additional assumption that v̂ ∈ L∞(X)6. This would be the case
if the positive quantity λ

1−A in (4.3) can be small enough, because the uniform

Lp>1-bound for the measure e
∂u
∂t Ω is then available in sight of (4.4). This leads to

the uniform L∞ bound for the metric potential uj for the approximation flows by
the Ko lodziej type of L∞-estimate.

To see the weak convergence over X, select a sequence of strictly increasing sets
exhausting X \ {σ = 0}, {Uk} with non-negative smooth functions {ρk} supported
on Uk+1 and equal to 1 over Uk. Because of the obvious convergence from the
global cohomology data∫

X

ω̃jt · ω
n−j
1 →

∫
X

ω̂j0 · ω
n−j
1 as t→ 0+, j = 1, · · · , n

5This can be improved to be the stable base locus set of [ω].
6This is not so surprising as {σ = 0} is a pluripolar set.
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for any Kähler metric ω1, one only needs to consider non-negative (n−j, n−j)-forms
as test form. For any one of those, called G over X, we have

lim
t→0+

∫
X

ρk ·G · ω̃jt =

∫
X

ρk ·G · ω̂j0

from the local weak convergence over X \ {σ = 0}. We then take supremum of the
above convergence to get

sup
k

(
lim
t→0+

∫
X

ρk ·G · ω̃jt
)

= sup
k

(∫
X

ρk ·G · ω̂j0
)

=

∫
X

G · ω̂j0.

Meanwhile, we also have,

limt→0+

∫
X

G · ω̃jt = limt→0+ sup
k

(∫
X

ρk ·G · ω̃jt
)

> sup
k

(
lim
t→0+

∫
X

ρk ·G · ω̃jt
)
.

So we arrive at

limt→0+

∫
X

G · ω̃jt >
∫
X

G · ω̂j0.

The equality has to hold for G being a proper (wedge) power of any Kähler metric
(from cohomology consideration), and so it is also true for any test form G. It is
easier for limt→0+ since limt→0+ > limt→0+ . Finally, we conclude

ω̃jt → ω̂j0 weakly over X as t→ 0+, j = 1, · · · , n.

Remark 4.2. This weak convergence for all wedge powers is in principle stronger
than merely the weak convergence of the metric itself, i.e. j = 1. Meanwhile, for
j = 1, the weak convergence over X is true without requiring v̂ to be bounded
because the bound (4.6) for v̂ guarantees ω̂0 would not charge the set {σ = 0} (see
similar discussion in Section 8 of [13]).

4.2. Measure lower bound. The consideration on the lower bound of flow metric
measure for small time might seem a little bit strange at first, but it gets what we
want in a more direct way. There is also an interesting application described at the
end.

Suppose the initial measure has a positive lower bound, i.e.

∂u

∂t
t=0 > −C.

This lower bound can be preserved for the approximation as discussed at the be-
ginning of this section. Let’s recall the equation (4.2) appeared before

∂

∂t

(
(et −A)

∂u

∂t
−Au

)
= ∆ω̃t

(
(et −A)

∂u

∂t
−Au

)
+An− 〈ω̃t, ω − (1−A)ω∞〉.

Now one chooses a proper constant A > 1 so that the last term

〈ω̃t, ω − (1−A)ω∞〉 > 0.

which can be done from the cohomology picture, after choosing ω∞ (i.e. Ω) properly.
Maximum Principle then gives

(et −A)
∂u

∂t
−Au 6 maxX×{0}(1−A)

∂u

∂t
+ C 6 C
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in sight of the lower bound of ∂u
∂t at the initial time. Using the upper bound for u,

we arrive at

(et −A)
∂u

∂t
6 C.

Hence for small time such that et −A 6 −C < 0, we have

∂u

∂t
>

C

et −A
> −C.

This automatically gives a lower bound of u for small time, and also the weak
convergence of ω̃jt → ωj0 over X as t → 0+ for j = 1, · · · , n from the monotonicity
of u + Ct, using the classic result in [1]. Here we do not have the inequality as in
(4.5) because there is now only ”inf” and no ”sup” involved.

Proposition 4.3. In the setting of Theorem 1.2, if ω0 has Lp>1-measure with
a positive lower bound and represents a big class, then the metric potential is
uniformly bounded for a small time interval and

ω̃jt → ωj0 weakly over X as t→ 0+, j = 1, · · · , n.

One can also come up with the degenerate version just as in Subsection 4.1

using a weaker assumption ∂u
∂t t=0 > ε log |σ|2

A−1 −C, i.e. (1−A)∂u∂t + ε log |σ|2 6 C at

the initial time and making sure that the Kähler form ω − (1 − A)ω∞ dominates
the additional ε

√
−1∂∂̄ log |σ|2. However we prefer this version in the proposition

because the situation actually occurs very naturally in the following example.

Example 4.4. Consider the classic smooth Kähler-Ricci flow. In finite time sin-
gularity case, in sight of the semi-ample results in [8], we can easily have examples
when the singular class [ωT ] is semi-ample and big. By Parabolic Schwarz Lemma
(as in [14]), we have 〈ω̃t, ωT 〉 6 C, and so ω̃nt > CωnT . Here the semi-ample [ωT ]

generates a map P : X → CPN and up to a multiple, ωT = P ∗ω
FS

with the stan-
dard Fubini-Study metric ω

FS
. [ωT ] being big means P (X) is of the same complex

dimension as X. If P (X) is smooth, then the push-forward of ω̃T would be in the
setting of Proposition 4.3, and so the weak flow over P (X) would weakly converge
back to the push-forward current.

This shows that sometimes, we do have singular metrics with volume forms
bounded away from 0 coming up naturally. It already makes the picture on the
global weak flow over complex surfaces of general type quite satisfying, with weak
convergences (for all wedge powers) from both sides of the singularity time.

5. Final remarks

We now state the following conjecture on the situation as t → 0+ for the weak
flow in the general setting of Section 1.

Definition 5.1. In the setting of Theorem 1.2, as t → 0+, one always has the
following convergences in the weak sense:

u(·, t)→ v(·), ω̃jt → ωj0, j = 1, · · · , n.

Besides the importance in carrying out Tian’s Program, this topic of analytic
flavour naturally requires the combination of techniques and ideas from differential
geometry and pluripotential theory, as indicated from the discussion in this note.
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Remark 5.2. The recent work by J. Song and G. Tian, [15], considers the weak
Kähler-Ricci flow with more involvement of algebraic geometry background, and
the results are of different flavours. Simply speaking, the initial positive current
is only of bounded potential in Sections 1 and 2. We would also like to point out
that the more recent work by J. Song and B. Weinkove, [16], has achieved Gromov-
Hausdorff convergence for the example described above, certainly providing more
geometric intuition for the picture.
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