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Abstract

We consider the general Kähler-Ricci flows which exist for all time.
The zeroth order control on the flow metric potential for various infinite
time singularities is the focus. The possible semi-amplness for numerically
effective classes serves as the main motivation.
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1 Introduction

X is a closed Kähler manifold with dimCX = n > 2. For a real smooth closed
(1, 1)-form L and a smooth volume form Ω over X, we consider the following
geometric evolution equation:

∂ω̃(t)

∂t
= −Ric (ω̃(t))− ω̃(t) + Ric(Ω) + L, ω̃(0) = ω0, (1.1)

where Ric(Ω) := −
√
−1∂∂̄ log

(
Ω
VE

)
with VE being the Euclidean volume form

with respect to a local holomorphic coordinate chart {z1, · · · , zn}, as a natural
generalization of the Ricci form for Kähler metric. This evolution equation was
first considered in [14] and then studied in [13]. It’s easy to see that this flow is
parabolic, just as the more classic Kähler-Ricci flow. In fact, when L = −Ric(Ω),
it becomes the following standard Kähler-Ricci flow over X,

∂ω̃(t)

∂t
= −Ric (ω̃(t))− ω̃(t), ω̃(0) = ω0. (1.2)

The flow (1.2) is studied extensively in the past decade because of the profound
relation with the Minimal Model Program, as proposed by Gang Tian in [10]. Of
course, the flow (1.1) is more flexible and has great advantages in applications,
as illustrated below.

Considering (1.1) in the cohomology spaceH1,1(X;R) := H2(X;R)∩H1,1(X;C),
we know the solution ω̃t satisfies [ω̃t] = [L] + e−t([ω0] − [L]). Thus if we set
ωt = L+e−t(ω0−L), then by ∂∂̄-Lemma, ω̃(t) = ωt+

√
−1∂∂̄u with u satisfying

∂u

∂t
= log

(ωt +
√
−1∂∂̄u)n

Ω
− u, u(·, 0) = 0. (1.3)
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By the optimal existence result in [13], the smooth metric solution exists as
long as [ωt] = [L] + e−t([ω0] − [L]) stays in the Kähler cone of X which is an
open convex cone sitting in H1,1(X;R). So if we define the time of singularity,

T := sup{t | [ωt] Kähler} ∈ [0,∞),

then the flow (1.1) has the smooth metric solution existing in [0, T ).
In this work, we focus on the case of T =∞. In this case, [L] is in the closure

of the Kähler cone of X, i.e., being numerically effective (nef. for simplicity). If
[L] is Kähler, then by the non-degenerate version of the result in [13] or more
explicitly [16], we know that for any initial Kähler metric ω0, the flow converges
smoothly to the unique solution of

−Ric (ω̃)− ω̃ + Ric(Ω) + L = 0,

greatly extending the earlier study by H. D. Cao on the classic Kähler-Ricci
flow (1.2) for [ω0] = −c1(X) being Kähler.

Now we focus on the case that [L] is on the boundary of the Kähler cone
(nef. but not Kähler). Then the flow must develop infinite time singularities
since it is impossible to converge smoothly to a Kähler metric.

In the case of L = −Ric(Ω), i.e., for the standard Kähler-Ricci flow (1.2), by
the famous Abundance Conjecture in algebraic geometry, [L] = KX is expected
to be semi-ample, i.e., base-point-free. Then for some integer m large enough,
(the global holomorphic sections of) mKX would generate a holomorphic map
F : X → CPN where N + 1 = dimCH

0(X,mKX). In general, the image is
a (singular) variety and clearly the dimension dimC F (X) 6 n, which is the
Kodaira dimension of X. If KX also big (equivalent to Kn

X > 0), then it’s
well known by algebraic geometry argument (for example, in [7]) that KX is
semi-ample. There have been very recent works [6] and [12] regarding the global
geometric behaviour of the flow in this case. Anyway, for this conjecture it is
left to deal with the (collapsed) case, i.e., Kn

X = 0.
Meanwhile, the situation can be a lot more complicated if one considers a

general nef. class [L]. In fact, as described in [1], there is the famous example
by Serre about a nef. and big integral class which is not semi-ample. This
more general flow (1.1 provides a natural way to study any nef. class, which is
the original motivation in [14]. From the differential geometry point of view, it
amounts to the analysis of infinite time singularities, and we focus on the zeroth
order behaviour in this work.

Let’s begin by pointing out that, in principle, infinite time singularities are
quite different from finite time singularities, with [L] being on the boundary of
the Kähler cone in the former case and on the complement of the closure of the
Kähler cone in the latter one. However, motivated by [11], we have the following
result in [18].

Proposition 1.1. Consider the Kähler-Ricci flow (1.1) and (1.3). For the time
of singularity T ∈ (0,∞], if [ωT ]n > 0, then we have ω̃(T ) = ωT +

√
−1∂∂̄u(T )

with u(T ) ∈ PSHωT
(X) and ω̃(t)→ ω̃(T ) in the weak sense as t→ T .
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Indeed, for the finite time singularity case, the general existence of a flow
weak limit is proved in [18]. Meanwhile, for the infinite time singularity case,
we show here that the converse is also true as in the following theorem.

Theorem 1.2. Consider the Kähler-Ricci flow (1.1) and (1.3). If the time
of singularity T = ∞ and u(·, t) → u(·,∞) weakly as t → ∞ with u(·,∞) ∈
PSHω∞(X), then the global volume is non-collapsed, i.e., [L]n > 0.

In the global volume collapsed case, we have the following result on the lower
control of pointwise volume collapsing rate.

Theorem 1.3. Consider the Kähler-Ricci flow (1.1) and (1.3). If the time of
singularity T =∞, then for any ϕ ∈ PSHL(X), there is C such that

∂u

∂t
+ u+ nt > ϕ+ C.

Clearly it is equivalent in Theorem 1.3 to take ϕ of minimal singularities.

Notations: C stands for a positive constant, possibly different at places. f(t) ∼
g(t) means limt→∞

f(t)
g(t) = C.

2 Infinite Time Singularities

In the following, the Laplacian ∆ is always with respect to the metric along the
flow, ω̃(t). Applying Maximum Principle directly for (1.3), we have

u 6 C.

The t-derivative of (1.3) is

∂

∂t

(
∂u

∂t

)
= ∆

(
∂u

∂t

)
− e−t〈ω̃(t), ω0 − L〉 −

∂u

∂t
. (2.1)

where 〈ω, α〉 stands for the trace of the smooth real closed (1, 1)-form α with
respect to the Kähler metric ω. Equivalently, 〈ω, α〉 = (ω, α)ω where (·, ·)ω is
the hermitian inner product with respect to ω.

Taking t-derivative for (2.1), we get

∂

∂t

(
∂2u

∂t2

)
= ∆

(
∂2u

∂t2

)
+ e−t〈ω̃(t), ω0 − L〉 −

∂2u

∂t2
− ∂ω̃(t)

∂t

2

ω̃(t)
. (2.2)

Sum up (2.1) and (2.2) to get

∂

∂t

(
∂2u

∂t2
+
∂u

∂t

)
= ∆

(
∂2u

∂t2
+
∂u

∂t

)
−
(
∂2u

∂t2
+
∂u

∂t

)
− ∂ω̃(t)

∂t

2

ω̃(t)
.

Standard Maximum Principle argument then gives

∂2u

∂t2
+
∂u

∂t
6 Ce−t, (2.3)

3



which implies the essential decreasing of volume form along the flow, i.e. ,

∂

∂t

(
∂u

∂t
+ u+ Ce−t

)
6 0.

(2.3) also tells us

∂u

∂t
6 Ce−t + Cte−t 6 Ce−

t
2 .

So u + Ce−
t
2 is decreasing along the flow. By the basic property of plurisub-

harmonic functions, as long as this term (or equivalently u) doesn’t converge to
−∞ uniformly as t→∞, u would converge to some u(·,∞) ∈ PSHω∞(X) and
L +
√
−1∂∂̄u(·,∞) is the flow limit for ω̃(t) as t → ∞ in the sense of current.

By all means, we can define

v(·) := lim
t→∞

(
∂u

∂t
+ u

)
(·, t), and

u(·,∞) := lim
t→∞

u(·, t) ∈ PSHω∞(X) ∪ {virtual constant function−∞},

where v(·) is just a (generalized) function defined over X valued in [−∞,∞)
which is clearly bounded from above and (essentially) upper semi-continuous.

Notation: for a and b ∈ [−∞,∞), a 6 b and a = b are undertood in the
natural way.

The following lemma is important for our purpose.

Lemma 2.1. Using the above notations, u(·,∞) = v(·).

Proof. We already have the uniform upper bound of ∂u
∂t . Thus ∂u

∂t + u 6 u+C,
and so v(·) 6 u(·,∞) + C. Hence if u(x,∞) = −∞ at x ∈ X, so is v(x), i.e.,

{x ∈ X u(x,∞) = −∞} ⊂ {x ∈ X v(x) = −∞}.

On the other hand, if v(x) = −∞ and u(x,∞) ∈ R, then ∂u
∂t (x, t)→ −∞ as

t → ∞, contradicting u(x,∞) ∈ R by the Fundamental Theorem of Calculus.
So v(x) = −∞ also implies u(x,∞) = −∞, and

{x ∈ X v(x) = −∞} ⊂ {x ∈ X u(x,∞) = −∞}.

Thus we conclude

{x ∈ X v(x) = −∞} = {x ∈ X u(x,∞) = −∞} =: U ⊂ X,

{x ∈ X v(x) ∈ R} = {x ∈ X u(x,∞) ∈ R} = U c ⊂ X.
At any x ∈ U c, we clearly have ∂u

∂t (x, t)→ v(x)− u(x,∞) as t→∞, which
has to be 0 by the existence of u(x,∞) ∈ R. So we conclude that

u(·,∞) = v(·)

as generalized function on X valued in R ∪ {−∞} = [−∞,∞).
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2.1 The Non-collapsed Case: The Proof of Theorem 1.2

With Lemma 2.1, the proof of Theorem 1.2 becomes straightforward.
If u(·,∞) ∈ PSHω∞(X), and so not identically −∞, then neither is v. So

we have

[L]n = lim
t→∞

[ωt]
n = lim

t→∞
[ω̃t]

n = lim
t→∞

∫
X

e
∂u
∂t +uΩ =

∫
X

evΩ =

∫
X

eu(·,∞)Ω > 0.

Remark 2.2. Consider (1.1) with [L] semi-ample and big. By the discussion
in [13], [15] and [17], we know that u(·,∞) ∈ C0(X). So as t → ∞, the
convergence of u is uniform, and also is the convergence of ∂u

∂t to 0. For (1.2),
this is the case for KX nef. and big.

2.2 The Collapsed Case

We now focus on the infinite time singularities with collapsed global volume,
i.e., [L]n = 0. For them, the following are already known.

1. For (1.3), u(·, t) → −∞ and ∂u
∂t → 0 uniformly as t → ∞ over X by

Theorem 1.2.

2. [ωt]
n ∼ e−kt for some integer k ∈ {1, 2, · · · , n}.

The goal here is to control the rate in which u and ∂u
∂t + u approaches −∞.

Regarding the upper control, we have the following simple estimation. For
simplicity of notation, assuming

∫
X

Ω = 1,

e
∫
X

( ∂u
∂t +u)Ω 6

∫
X

e
∂u
∂t +uΩ =

∫
X

ω̃(t)n = [ωt]
n 6 Ce−kt, (2.4)

and so
∫
X

(∂u
∂t + u)Ω 6 −kt+ C.

Now we recycle some argument in [18] to gain some lower control. Start by
transforming (2.1) into the following form,

∂

∂t

(
∂u

∂t
+ u

)
= ∆

(
∂u

∂t
+ u

)
− n+ 〈ω̃(t), L〉. (2.5)

As [L] is on the boundary of the Kähler cone for X, there exists ϕ ∈
PSHL(X). For this fact, one could make use of the sequential limit construction
in [11] as mentioned in [18]. We prove the following theorem which is Theorem
1.3,

Theorem 2.3. For (1.3), if the singularity time T = ∞, then for any ϕ ∈
PSHL(X), there is C such that

∂u

∂t
+ u+ nt > ϕ+ C.
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To begin with, the fundamental regularization result by Demailly (Theorem
1.6 in [2]) provides us with a decreasing approximation sequence for ϕ, {ϕm}∞m=1

which satisfies:

• ϕm ∈ PSHL+ 1
mω0

(X);

• ϕm ∈ C∞(X \ Zm) with Zm ⊂ Zm+1 being analytic subvarieties of X.
Furthermore, ϕm has logarithmic poles along Zm, i.e., locally being the
logarithm of the sum of squares for finitely many holomorphic functions
vanishing along Zm.

The following equation is obtained by simple manipulation of (2.1)

∂

∂t

(
(1− et)∂u

∂t
+ u

)
= ∆

(
(1− et)∂u

∂t
+ u

)
− n+ 〈ω̃(t), ω0〉. (2.6)

Then we have the following combination of (2.5) and (2.6),

∂

∂t

(
1

m
[(1− et)∂u

∂t
+ u] + [

∂u

∂t
+ u]

)
= ∆

(
1

m
[(1− et)∂u

∂t
+ u] + [

∂u

∂t
+ u]

)
− n(1 +m)

m
+ 〈ω̃(t),

1

m
ω0 + L〉.

Using ϕm, we modify the above equation as follows:

∂

∂t

(
1

m
[(1− et)∂u

∂t
+ u] + [

∂u

∂t
+ u]− ϕm +

n(1 +m)t

m

)
= ∆

(
1

m
[(1− et)∂u

∂t
+ u] + [

∂u

∂t
+ u]− ϕm +

n(1 +m)t

m

)
+ 〈ω̃(t),

1

m
ω0 + L+

√
−1∂∂̄ϕm〉,

(2.7)

where 1
mω0 + L+

√
−1∂∂̄ϕm is smooth and positive over X \ Zm. Since ϕm ∈

C∞(X \ Zm) and has −∞ poles along Zm, the spatial minimum of

1

m
[(1− et)∂u

∂t
+ u] + [

∂u

∂t
+ u]− ϕm +

n(1 +m)t

m

is always achieved in X \ Zm, where everything is smooth. We then apply the
standard Maximum Principle argument to conclude that its global minumum
has to be obtained at the initial time, and so

1

m
[(1− et)∂u

∂t
+ u] + [

∂u

∂t
+ u]− ϕm +

n(1 +m)t

m
> −C,

which is uniform for all m’s over X × [0,∞). Here, we make use of the uniform
upper bound of ϕm’s. For any space-time point, take m→∞ and arrive at

∂u

∂t
+ u− ϕ+ nt > −C

over X × [0,∞). The theorem is proved.
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Remark 2.4. Combining with the known upper bounds for u and ∂u
∂t , we also

have the lower control, −nt + ϕ − C, for both u and ∂u
∂t . This ϕ can certainly

been chosen to be of minimal singularities, as also in [18].

A direct consequence of Theorem 1.3 is the following corollary.

Corollary 2.5. In the setting of Theorem 1.3, for any ε > 0, there is a time
sequence, {ti}∞i=1, approaching ∞ such that

max
X×{ti}

∂u

∂t
> −n− ε.

The proof is simple by contradiction since otherwise u will have an upper
bound like −(n+ ε)t+ C.

In the finite time singularity collapsed case, ∂u
∂t tends to −∞ uniformly, very

different from the situation here.

3 Further Remarks

There is a lot left to be sorted out regarding the behaviour of the flow (1.1),
especially for the collapsed case. We now describe the following special case, also
mentioned in [18], which can be viewed as the main motivation of this study.

Suppose [L] is semi-ample, and so [L] gives a fibration structure of X with
general fibre of dimension 0 < k 6 n, i.e., F : X → CPN with mL = F ∗[ω

FS
]

and F (X) of dimension n− k.
In this case, u ∼ −kt, which can be seen as follows. Begin with the following

scalar potential flow

∂v

∂t
= log

(ωt +
√
−1∂∂̄v)n

Ω
− v + kt, v(·, 0) = 0.

Clearly, it still corresponds to the same metric flow (1.1) and the relation be-
tween u and v is

u = v + f(t) with
df

dt
+ f = −kt, f(0) = 0.

It’s easy to get f(t) ∼ −kt and df
dt ∼ −k. Rewrite the equation of v as follows

(ωt +
√
−1∂∂̄v)n = e−kte

∂v
∂t +vΩ

and apply the L∞ estimates in [4] and [3], we have |v| 6 C uniformly for all
time. Hence u ∼ −kt, tending to −∞ uniformly as t→∞.

In fact, by the result in [9], we know ∂u
∂t 6 C and so ∂v

∂t 6 C. In [8] and [5],
there is more discussion about the geometry of the flow in this case.

In the case of L = −Ric(Ω), predicted by Abundance Conjecture, the flow
(1.2) with infinite time singularities always behaves like this. In general, the
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situation can be more complicated as indicated by Serre’s example, i.e., nef.
(and big) might not be semi-ample. Thus, it’s meaningful to search for a precise
understanding of the lower order controls for u and ∂u

∂t without making any
assumption on the semi-amplness. Hopefully, it then provides indications on the
possible semi-amplness of class [L]. In other words, this consideration provides a
differential geometry approach of using geometric flows to tackle the Abundance
Conjecture. We have the following conjecture in this direction, based on the
understanding of the special case above.

Conjecture 3.1. Consider the Kähler-Ricci flow (1.1) with infinite time sin-
gularities (i.e., [L] nef. but not Kähler). We have, uniformly over X × [0,∞),

∂u

∂t
> −C.

Suppose k ∈ {0, · · · , n} is the smallest integer such that [L]n−k · [ω0]k 6= 0, then
for any ϕ ∈ PSHL(X), there is C such that

u > −kt− C + ϕ.

Furthermore, u + kt → Φ in some proper sense with Φ ∈ PSHL(X) of mini-
mal singularities and L +

√
−1∂∂̄Φ as the generalized Kähler-Einstein current

associated with [L].

We finish by providing some discussion of the Kähler-Ricci flow (1.1) with
extra differential geometry assumptions.

• Ric(ω̃t) > α for a real smooth (1, 1)-form α over X.

Directly by the Kähler-Ricci flow equation (1.1), we have ω̃t 6 Cω0 uni-
formly for all time. Then it is clear that ±u(·, t) ∈ PSHCω0

(X) uniformly
for all time. The standard argument using Green’s function gives

osc(u)X×{t} 6 C

uniformly for all time.

• Ric(ω̃t) 6 α for a smooth (1, 1)-form α over X.

Still by the Kähler-Ricci flow equation (1.2), we have ∂u
∂t +u ∈ PSHCω0

(X).
For simplicity, we use ”

∫
” to denote the average over X with respect to

the volume form ωn
0 . Then the standard argument using Green’s function

kicks off the following estimation.

∂u

∂t
+ u 6 C +

∫
∂u

∂t
+ u

6 C + log

∫
e

∂u
∂t +u

6 C + log

∫
X

e
∂u
∂t +uΩ

6 C + log[ωt]
n 6 C − kt.
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From this ordinary differential inequality, we easily deduce that u 6 C−kt.
In light of

∫
X
e

∂u
∂t +uΩ = [ωt]

n ∼ e−kt, we conclude

max
X×{t}

(
∂u

∂t

)
> −C,

which is stronger than the conclusion of Corollary 2.5 which is for the
general case.

With these assumptions, the controls we have on u and ∂u
∂t are still weaker

comparing with the model case of [L] being semi-ample.
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