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Abstract

In this note, we study a Kéhler-Ricci flow modified from the classic
version. In the non-degenerate case, strong convergence at infinite time
is achieved. The main focus should be on degenerate case, where some
partial results are presented.

1 Set-up and Motivation

Kéhler-Ricci flow, which is nothing but Ricci flow with initial metric being
Kahler, enjoys the same debut as Ricci flow in R. Hamilton’s original paper
[5]. H. D. Cao’s paper, [1], can be taken as the first work devoted to the study
of Kéahler-Ricci flow and the alternative proof of Calabi Conjecture presented
there has been bringing great interests to this object.

Though it is essentially Ricci flow, the cohomology meaning coming with
Kahler condition makes it possible to transform the metric flow to an equivalent
scalar (potential) flow !, which is much simpler-looking and more flexible to work
with. One motivation of this note is to give a flavor of this flexibility.

Let wg be any Kéahler metric over a closed manifold X with dimcX =n > 2,
and w is any smooth real closed (1, 1)-form.

Set wy = Weo + €71 (wp — Weo) and consider the following flow at the level of
metric potential for space-time

ou . (w++/—100u)"
Q

Frie log , u(0,-) =0, (1.1)

where € is a smooth volume form over X. This flow looks very much like the
flow studied in [1], which can be considered as another motivation of this work.
Let @y = wy + v/—100u and the corresponding flow at the level of metric is
as follows
a&t . o~ . —t ~
v —Ric(wy) + Ric(2) — e (wo — weo), @Wo = wo, (1.2)

IThis statement makes use of the uniqueness and short time existence results of Ricci flow.




where the meaning of the form, Ric(Q2), as in [11], is a natural generalization
from the Ricci form for a Kéahler metric, i.e.

= Q
Ric(Q2) = —v—1001og ,
VEul
where Vg, is the Euclidean volume form with respect to some choice of local
coordinates. 2

Remark 1.1. The equation (1.2) doesn’t look so natural at the first sight when
W # Weo, but it’s essentially still a Kdhler-Ricci flow, and the extra term in
comparison to the flow studied in [1], which is exponentially decaying, should in
principle not bring too much difference to the behavior.

A major motivation to study this flow is to solve the following complex
Monge-Ampere equation (with [weo]™ = fX Q)

(Woo + V—100use)™ = Q, (1.3)

using flow techniques. This has been done in the case of [ws] being Kéahler in
[1] by choosing the initial metric to be in the same Kéhler class as [weo], which
gives rise to an alternative proof of Calabi Conjecture.

One can also solve (1.3) for some degenerate [woo] (for example, semi-ample
and big) by method of continuity using other (more direct) perturbations, which
seems to be less delicate than Kéhler-Ricci flow as described in [17] and [12].

The main idea is to allow the change of cohomology class along the flow,
which is important for the consideration of [ws] not being Kéhler. The modifi-
cation of original Kéhler-Ricci flow by such a term as in (1.2) is inevitable from
simple cohomology consideration.

The main results of this note can be summarized in the following theorem.

Theorem 1.2. The modified Kihler-Ricci flow (1.1) (or (1.2) equivalently)
exists smoothly as long as the cohomology class, [wt] remains Kdhler.

1) If [weo] is Kdahler, the flow converges smoothly to the unique solution of
the corresponding complex Monge-Ampére equation (1.3).

2) If [woo| is semi-ample and big, we have degenerate metric estimates, i.e.
uniform estimates in any compact set away from the stable base locus set of
[woo] along the flow, and the volume form, @', is bounded both from above and
away from 0 for all time.

3) If [woo] is big but out of the closure of Kdhler cone (in other words, the
flow ezists up to a finite time T), and further assume |[wr] is semi-ample, we
have local convergence in C topology of the flow away from the stable base
locus set of wr] ast — T.

The definition of ”stable base locus set” will appear later. The rest part of
this note is devoted to the proof of this theorem.

2This is nothing but using the volume form € instead of the volume form for some Kihler
metric in the expression of Ricci form in sight of the classic computation in Kéhler geometry.
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2 General Facts and Basic Computations

The equation (1.1) is clearly still parabolic, and so short time existence and
uniqueness of the solution is classic. It’s also easy to see that the smooth
solution exists as long as [w;] remains Ké&hler which has already being described
in [17]. Simply speaking, when arguing locally in time, w; can be made uniform
as metric which makes life very easy to follow Cao and Yau’s argument as in [1]
and [15] to get the estimates uniform on X (but local in time). So the existence
part of Theorem 1.2 is justified.

Convergence, or estimate uniform for maximal existence time, is the main
concern from now on. Let’s begin with some basic computation for ¢-derivatives

of (1.1).
36u_~6&t_~@_,t~ B
g <8t> = (@, v ) =Ag, <3t> e W, Wy — Woo)-

d (0%u 0?0y 0w, 0wy 0%u
— =)= =) - | =, — <Az, | = e H g, wo — Woeo),
6t(at2> o ) ot ot )5, ST o e (@t wo — woo)
where the notation (-,-) means taking trace for the right term using the left
term which is always a metric.
As a convention, the same C might stand for different positive
constant even in the same equation.

Take summation of the above two and apply standard maximum principle

argument to get

0  Ou
2 <
il TWSE

and from this, it’s easy to see
ou <C
at ~X k)
which gives the L> measure bound for W}’ = 3t Q. This allows us to apply the
results of Kolodziej’s (as in [8] and [9]) and our generalization (as in [16]) under



respective assumptions on [wy] as in Theorem 1.2, which provides the uniform

bound for the metric potential along the flow after routine normalization for the

. . . . uf)
corresponding cases under consideration, i.e. for v = u — ff‘ s
X

lv] < C.
For the readers’ convenience, the related results are summarized below.

Theorem 2.1. Let X be a closed Kdhler manifold with dime =n > 2. Suppose
we have a holomorphic map F : X — CPY with the image F(X) of the same
dimension as X. Let wyr be any Kdhler form over some neighborhood of F(X)
in CPN. For the following equation of Monge-Ampére type:

(w+V/—=190u)™ = fQ,

where w = F*wyr, Q is a fized smooth (non-degenerate) volume form over X
and f is a nonnegative function in LP(X) for some p > 1 with the correct total
integral over X, i.e. [ fQ = [ (F*wa)", then we have the following:

(1) (A priori estimate) If u is a weak solution in PSH,(X)NL>(X) of the
equation with the normalization supxu = 0, then there is a constant C' such
that ||u||pe < C||f||}» where C only depends on F', w and p.

(2) (Ezxistence of bounded solution) There exists a bounded (weak) solution
for this equation.

(3) (Continuity and uniqueness of bounded solution) If F is locally birational,
any bounded solution is actually the unique continuous solution.

Remark 2.2. FEven in the case of [wso] being Kéhler, the result from pluripo-
tential theory as in [8] is used here for the normalized metric potential bound,
so the logic line of the argument below is not quite the same as that in [1].
It would also be interesting to see whether the original argument there can be
carried through more directly.

We also need to derive some kind of lower bound for %, i.e. the volume

form, in search for the metric bound. The following equation would be very
useful for that

& (ou du Ou -~

3 The Baby Version

Let’s start with the situation when there is no degeneration on the cohomology
classes, i.e. [weo] is Kéhler. This is Statement 1) in Theorem 1.2, which is
a natural generalization of the main result in [1] by allowing the change of
cohomology class along the flow and any choice of initial metric wy.



3.1 Uniform Estimates and Global Existence

Global existence of the flow only needs estimates local in time as illustrated
before. Now we have to go for estimates uniform for all time.

The most essential part is the C° estimates. In sight of all the estimates
listed in Section 2, there is only the lower bound for % left.

To begin with, let’s assume wy, > 0, which will not change the problem in
any essential way. We’ll remove this simplification later.

Let’s assume [ @ =1 for the simplicity of notations.
As discussed in Section 2, by the measure bound from the previous section,
we already know that
|U‘ < Ca

where v = u — fX uf). It’s clear that

ov  Ou ou ou
-7 77 70> 22
ot ot XatQ/at ¢

from the upper bound of %, and so the lower bound of % would give that for

%. In fact the converse is also true as seen below. (2.1) can be transformed to
0 (0Ou ou ov
— | = =Ag, | = = — + (W, Woo) - 1
8t(8t+v> “‘(at+v> not g T we) (3:-1)

Assuming % > —C, we can get a lower bound for %7; by applying maximum

principle as H. Tsuji did in [13] using the control of volume by the control of
trace, which is nothing but the classic algebraic-geometric mean value inequality.

Indeed, we can get the lower bound of % by a more careful maximum
principle argument following the same idea.

Consider the minimum value point, p, for %1; + v for X x [0,T] with any
fixed 0 < T < oco. Clearly, one only needs to study the case when p is not at
the initial time since the situation for the initial time is well under control. At
p, from (3.1), one has

ov wl\ " wn n
n—— 2 {0, wse) 2n- | == =n- s >0
8t /< 1y oo>/ w,tn Q%Q 9
_ 18vyn 2% ing 9U > du _ ;
and so (1 - t) eat > (C > 0. Using 5 = ot C, one arrives at
8u du

with C' — % > 0, which gives % > —C at p.

Combining with the uniform bound for v, this gives the lower bound of %
over X (and also for %) through the definition of point p.



There is another way of doing the maximum principle argument which might
seems to be more direct in this case, which is also a very classic point of view
using ODE. One examines the evolution of space-direction extremal value along
the flow. This function, now only depending on time, would be (locally) Lip-
schitz simply by definition, and so it is legitimate to consider the first order
ordinary differential inequality.

This kind of argument, in principle, would be more delicate than what is
used previously, but for the differential inequality of interest here, the study
would be as rough as before. Let’s illustrate the idea below.

Define A(t) := minXX{t}(% +v). Let’s also take some z(t) where the value
A(t) is achieved, but we do not assume (or need) any regularity of z(t) with
respect to t. Using the sign of Laplacian, we can derive the following differential
inequality for the function A(t)

0A v ~

ar = Tt g (@) + (O weo) (a(1))
>-C+ (% +0) (z(t)) + Ce (T +)(0)
= C+A+Ce ™,

From this inequality, we can see that when A is sufficiently small (i.e., very
negative), %—? would be big (very positive). It won’t be hard to get a lower
bound for A from this mechanism. All the pieces from the previous argument

are also applied here, but this looks a bit more straightforward).

Remark 3.1. Clearly, in the degenerate version of mazximum principle argu-
ment as what will appear later, this point of view still works as long as the point
x(t) is always in the regular part for the discussion.

Then using classic second order estimate, we can have uniform control for
the trace of @; (i.e., Lapacian). And so, together with the volume lower bound

from the bound of %—?, we have flow metric controlled uniformly as metric, i.e.

Clwy <@ < Cwyp.

Finally, high order derivatives are also uniformly controlled using classic esti-
mates for parabolic PDEs (including Yau’s computation and parabolic Schauder
estimates). These are very standard arguments for the current situation.

Now we remove the assumption that ws, > 0 imposed at the beginning.
Instead, we always have weo ++/—100f > 0 for some smooth function f over X
as [weo] is Kéhler. Also recall that wy = weo + €7 (wog — Woo ). Now set

@t = (Woo + V—=100f) + e H(wy — (Weo + V—190f)) = wi + (1 — e~ *)v/—100,

and clearly @y = @y +/—190(u — (1 — e ) f).



Define w := u — (1 — e7*)f and we have &y = @; + v/—100w. Clearly

887“;’ = % — e~ ' f and taking t-derivative gives

9 (0w . Ow it~ 5 —t
m(&f)Awt(at)e (@4, w0 — Weo — V—100f) + e~ f.

We still need the following equation

0 (0w = _ ow ow  _
En <8t+w) =Ag, (8t —|—w> —n+ (0, weo + V— 88]‘)-&-87_’_ 3
where w is the normalization of w in the same manner as v for u.

We can now apply maximum principle for the above equation at the (local
in time) minimum value point of 4+ w. At that point (if not at time 0), w
have

n— o 2 e '+ (@ we + V=100f).
Without loss of generality, we can make sure f > 0, and so one arrives at
ow ~ _
n— ai: (@1, woo + V—100f)
>n. ((woo + \{?aaf) )A
Wy
o+ V100 \ "
S (ESE R
et ()
which gives (1 — l%) e > C > 0. As we also have 387;’ > % —C > %7; —C,
we can conclude 5
(€= Z) et >0 >0

with C — at > 0, and so at —(C' at that point. Thus 2 at > —C at that point.
It’s clear that || < C from the estimates for v before since we do not assume
Woo > 0 there. Hence we see T +w > —C globally, which gives the uniform
lower bound for %—f and so for ‘g’t‘ as they differ only by a bounded term e~*f.
The standard argument for uniform higher derivatives goes through in the

same way as before.

Remark 3.2. The main philosophy of the above argument is that a choice of
representative in a cohomology class boils down to terms like f or e tf for
a smooth function f over X which is clearly controlled along the flow and so
should not bring any trouble. This observation is also useful when trying to
apply Yau’s Laplacian estimate (as in [1]) to get second order derivative control
for our concern.

Up to now, we have got the global existence of the flow and the uniformity
of the estimates allows us to apply the classic Ascoli-Azela’s Theorem to get
convergence for sequences of metrics along the flow. Just as in Cao’s work, we
should expect convergence in a much stronger sense, which is the topic for the
next subsection.



3.2 Flow Convergence

The argument in [1] for convergence which makes use of Li-Yau’s Harnack In-
equality should be easy to get carried through here since for the equation

9 (Ou\ _ [Ou b~
& (&f) = Awt <6t> — € <Wt,(.do 7w00>a

(W4, wo—Weo) has been uniformly controlled, and so the extra term in comparison
to the equation in [1] is exponentially decreasing. Let’s illustrate some main
points when adjusting his argument to the current situation below.

For the exponential decreasing of the oscillation of %—?7 we’ll use Cao’s argu-

ment for the following family of auxiliary functions

0 0
(57~ Aa)ém, = 0. on,(Th.) = Zo(

TOa )
over [Ty, 00) x X where Ty € [0,00). As we have already obtained the uniform
estimates for 9% and @, for all time, using Li-Yau’s Harnack Inequality as in [1],
we have

oscx o, (1) < Ce™@T0) ¢ [Ty, 00)

where the positive constants are uniform for all 7. Also, from the uniform
estimates along the flow, we have

(2 Az (a“ n Ce—t) <0,

ot ot

0 ou —t

Z a2 >0.
(315 w‘)(ﬁt Ce )/0

Meanwhile, one has the following equations from above

(% - Agt)((bTo + Ce_TO) =0,
P T
(a_ALTJt,)((bTo_Ce ):O

Comparing them and applying maximum principle, we get the decreasing of

maxx(% +Ce™t — ¢pq, — Ce™T0)

and the increasing of

minx(% —Ce™" — ¢p, + Ce™T0)

as time increases (starting from ¢t = Tp).



The values at t = Ty for both quantities are 0, and so we have for ¢ € [T}, 00),

0

o <om + CeTo - G,
ou
ot

Hence oscx% < oscx o, + Ce 1o for t € [Ty, 00). Using the result for ¢r,

stated above, we have OSCX% < Ce=(t=To) 4 Ce=To for t > Tp. Taking t = 2Ty

and noticing this is uniform for all Ty, we finally arrive at

ou
oscx — < Ce
X ot X
for all time. Here the a should differ from the previous one, but it’s still a
positive constant.
This is exactly one of the essential results needed to draw the convergence
for ¢ — oo as in [1].

Ou~n
Set ¢ = % — f’jxaiéiut Clearly its difference from % is controlled by Ce=%,

but it is more convenient for the following consideration.
We can have similar computation as in [1], for the energy,

> ¢r, — Ce 1o 4 Ce™.

ct) = [ v,

to derive a differential inequality. There are more terms coming out, but they
will all be terms controlled by Ce~! from the uniform estimates along the flow.
Notice that though the volume is also changing along the flow, the variation is
also well under control. In all, we get
M < —-CG(t) +Ce™t
dt

for large t. The reason to get only for large ¢ is that we need the smallness of
1 from the control of oscillator of %. From this differential inequality, we can
still conclude the exponential decaying of G(t). *

The final computation and argument in [1] to derive the L' convergence of
the normalized metric potential can be carried through line by line in sight of
the above controls. One can justify the exponential convergence of the flow with
little extra effort (just as what is carried out carefully in [17]).

Remark 3.3. In this situation, we now have a somewhat natural flow from
one Ricci-flat metric to another Ricci-flat metric (of course in different Kdhler
classes) when ¢1(X) = 0. One just needs to choose 2 such that Ric(Q) = 0 for
the flow (1.1).

30bviously, the exponential decaying of G' can be deduced from the decaying of the os-
cillation of %—? in a more direct manner, but the argument above applying the differential

inequality is more delicate and can easily be adjusted for higher order Sobolev estimates.



4 Main Interest: Degenerate Case

Of course, our main interest is when [weo] is degenerate as Kéhler class. In
[17], we have discussed the corresponding Monge-Ampeére equation using other
perturbations to set up method of continuity. Now we want to see whether
the modified flow (1.1) can be applied to construct a solution for (1.3) as the
limiting equation.

Now one can assume the manifold X to be projective to get into algebraic
geometry context for the notions of semi-ample and big, or one can use the
setting in [16].

So far, we have the existence of the smooth flow as long as [w:] remains
Kahler. There are two cases, i.e. the flow exists up to infinite time and up to
finite time. We discuss them separately and finish the proof of Theorem 1.2.

4.1 Infinite Time Case

We prove Statement 2) in Theorem 1.2 in this part. Let’s assume that [weo)
is semi-ample and big. We still have the L* bound of the normalized metric
potential v as before using the result non-degenerate Monge-Ampere equation
(from [2] and [16]). Now (3.1) can be modified to be

o /ou 2) A [Ou 2 v
p <8t + v — eloglo] > = Ag, <8t +v — elog|o]| ) BT (4.1)
+ (@1, woo + €/~ 100l0g|o]?)

with weo + €y/—100log|o|? > 0, where constant € > 0 can be as close to 0 as
possible, ¢ is the defining section of a holomorphic line bundle E mentioned
Lemma 4.1 below and | - | is a properly chosen Hermitian metric for this line
bundle.

Such introduction of a singular term, as far as I know, was initiated by
H. Tsuji in [13], which gives a natural and simple description of the algebraic
geometry fact listed below in the analysis of related PDEs.

The following lemmas are classic results in algebraic geometry (for example,
see in [6] and [7] for related discussion). Lemma 4.2 is called Kodaira’s Lemma
(as in [14]) and will be applied for the finite time case later. The way to translate
these results to the analytic setting as above is very standard fact in complex
geometry (as in [4]).

Lemma 4.1. Let L be a divisor in a projective manifold X. If L is nef. and
big, then there are an effective divisor E and a constant a > 0 such that L —eF
is Kahler for any € € (0, a).

Lemma 4.2. Let L be a divisor in a projective manifold X. If L is big, then
there are an effective divisor E and constants a,b > 0 such that L—eE is Kdhler
for e € (a,b).

10



Nef. means numerically effective, which means non-negative intersection
with curves in X, or on the boundary of the Kéhler cone for X.

Similar argument as for (3.1) would give a degenerate lower bound as

ou

— > —C + elog|o|?,

5t = glo|

where the positive constant C' below might depend on the other positive constant
€, but this won’t bring up any confusion later. Let’s briefly go through the
argument below.

One still has % > %—;‘ — C. Then by considering the minimum value point
of the term whose evolution is described by (4.1), we know %7; could not be

too small at that point using the same way to deduce a contradiction as in
Subsection 3.1. That would give the degenerate lower bound above.

Now the degenerate second and higher order estimates would be obtained
as before. More specifically, for the second order estimate, one considers the
following equation

(we + ev/—188log|o]? + V—=188(v — clogla]?))" = e 3t Q.

Applying Yau’s computation in [15] and using degenerate maximum principle
argument in the same way as in [11], we can get the degenerate Laplacian
bound #. Combining with the degenerate control for volume, we have achieved
degenerate bound for metrics along the flow, i.e. for some constant « > 0,

Clo|%we € & < Clo|™“wo.

The treatment for higher derivatives is then standard. Some detail would be
provided in the last section.

The above argument can be done for any o for such a divisor F and so the
estimates are uniform away from the intersection of all those {¢ = 0} which is
called the stable base locus set of [ws].

Remark 4.3. There is a big difference from the situation in [11] which needs
to be pointed out. The metric potential along the flow can be bounded (though in
a degenerate way) simply from the flow argument there, but we can not do that
here at this moment. The bound for (normalized) metric potential is achieved
using results from pluripotential theory. That’s why we need semi-ample (not
just nef.) for the current case.

Though our estimates are uniform for all time now, which gives sequence
convergence for the flow, there is still this big issue about convergence along
the flow which is crucial to describe the limit itself. As discussed in the baby

4In fact, one only needs the uniform upper bound of % to carry through the Laplacian

. .. . _10u .
estimate by noticing the dominance of e™ » a9t over _% when %—’t‘ is small.

11



version, the counterpart in [1] makes use of Li-Yau’s Harnack Inequality, which
can be applied for the non-degenerate case as shown in Subsection 3.2. In the
current situation, it is very different. It seems that new method needs to be
introduced for this purpose. Let’s make the following conjecture about the flow
convergence which is naturally be expected to be true.

Conjecture 4.4. For [wo] semi-ample and big, as t — oo, The solution for
(1.1) converges weakly over X and locally smoothly out of the stable base locus
set of [weo] to the unique (bounded) solution of the limiting degenerate complex
Monge-Ampére equation (1.3).

In the following, we prove the rest part of Statement 2) of Theorem 1.2, i.e.
the volume form has uniform lower bound for all time. This might be helpful
for proving the above conjecture. Moreover, it is a nice application of a similar
result for the following more canonical K&hler-Ricci flow discussed in [11].

Set &y = wy +v/—100¢. At the level of potential, consider the flow

0¢ wy
7 oot — 0.)=0 4.2
5‘t Og Q ¢7 ¢( ) ) ) ( )
whose corresponding flow at the level of metric is the following,
Oy SN . ~ ~
e —Ric(@) + Ric(Q) — &t + woo,  Wo = wp.

At this moment, we have [ws] is big and semi-ample, so as discussed in [11]
and [17], the following estimates are available ®

99

< i

| <C,
which give a lower bound for the volume form, @}* for all time and we are looking
for a similar thing for w;'.

Remark 4.5. The uniform volume lower bound is interesting because the class
[woeo] is mot Kdhler, but somehow we have that the cohomology statement, [woo]™ >
0, from semi-ample and big assumption also makes sense in a point-wise fash-
ion. Of course, method of continuity using other perturbation also indicates this
phenomenon.

Let’s recall the following equations already appeared in this note. v is the
normalization of wu.

% (‘37:) N (g:f) — (B e (w0 — wao)),

5The lower bound of g—f is in [17] and [18]. It makes use of the essential decreasing of the
volume form and the fact that for infinite time limit, the derivative of potential has to go to
0 (in the regular part).

12



0 (ou ou -
5 ((’%) =A (at—i—v) —n+ (W, Weo)-

For some constant 77 > 0, multiplying the first equation with e~7* and
taking the difference of these two, we have

0 0 0 ~
& ((1 — €_T1)({;:> =A ((1 — €_T1)871: +’U> —n+ (wt,wHTl).

Using the solution for the other flow, ¢, this equation can be transformed as
follows

0

& ((1 eTl)é’;q:) =A ((1 7@7T1)% +fu¢(t+T1)> —n+ <&t,(-/\ut+T1>

with some emphasize on the time parameter. The Laplacian is still with respect
to wy. Using the principle as discussed above, we modify it to be

) N (e ) B

ot ot ot
ov  Op(t+T SN
9 % + (@, Dy g1y )-

Define B := (1—e~71) 9% +-v—¢(¢t+T1). Using the following known estimates

ov _ Ou oot +Ty) .
— > — —_— > = ¢ >
%> o C, 5 > —C, wp >CQ,
one arrives at 9B 9
u 1 du
= > - .e wat,
5 2 AB + ot C+C-e no

By maximum principle argument, one can conclude the lower bound for B,
and so for %, which gives the uniform lower bound for the volume form w}".

Remark 4.6. In this above argument, the translation of time by Ty is crucial
which makes the infinite time situation special. For example, we do not have
uniform volume lower bound for finite time case for either flows (at least at this
moment and in fact we do not expect this to happen ©).

4.2 Finite Time Limit

We now prove Statement 3) of Theorem 1.2. [wso] is now big but not in the
closure of the Kéahler cone. More specifically, the flow exists smoothly up to
some finite time T. We also require [wr], which is clearly nef. and big, to be
semi-ample. 7

6This has been justified in more recent work [19].
"This is not such a restrictive assumption as it is the case, when [weo] = Kx and [wo] is
rational, from classic algebraic geometry result.

13



The argument used in the previous subsection can be carried through for
most part. More precisely, those degenerate estimates would still be available,
though the € can’t be too small now in sight of the difference between Lemmas
4.2 and 4.1.

The advantage about finite time is that the metric potential u is (degener-
ately) bounded by itself (without normalization) from the bound for its time
derivative, %, and it also decreases after controllable normalization (by —C't)
in sight of the uniform upper bound for 4%. So as in [11], the (local) convergence
for t — T is achieved.

This local convergence would be out of the stable base locus set of [ws] as
explained in the previous subsection. Clearly, it would be more satisfying to
replace the class [woo] by [wr]. This is indeed the case as presented below. 8

The key is to introduce a virtual time.
We begin with searching for the crucial estimate for %“. Recall the following

t
two equations,

O% ) = (24 0) —nt 24 @Brwn)
at\ot V) T e\ TY) T T g T W Weols

) ) 9 9 >
(et—Tu> — As, (et—T“> +et_T871tL — e T (@, wo — W)

ot ot ot
Take the difference to get
O (0 e du N g du w o pdu
Y ((1 e )815 +U> =Agz ((1—e )(% +v)—n+ 5 ¢ o + (&g, wr).

As usual, take o for [wr] such that wr + ey/—190log|o|? > 0 for some € > o
small enough. Using this to perturb the above equation, one arrives at

9 _ i\ Ou _ 2\ _ AL _ e\ Ou _ 2\ _
oy ((1 e )825 + v — €elog|o] > = Ag, ((1 e )825 + v — elog|o| n+

ov ,_pou
¢ A
Define D := (1 — et*T)aa—qt‘ + v — elog|a|?. We have, out of {o = 0},

+ (@, wr + ev/—190log|a |?).

oD _p Ou

E}A@D—C—F(l—et )a

Now apply maximum principle argument. Recall that ¢ is in a finite interval

[0,T). At the (local in time) minimum value point of D, assuming it is not at
U

the initial time, which is clearly out of {o = 0}, we have 2% can not be too
small (negative). Thus D can not be too small there, i.e.

_19u
ot

+Ce™n

du
ot

80ne can improve the corresponding result in [11] a little bit in exactly the same way.

(1—e"T)— + v —eloglo|> > —C.

14



There is a problem coming from the fact that 1 — e!~7 would go to 0 as

t — T, which can be solved by using a ”"virtual” time 7, > T' still satisfying
wr, + €y/—100log|a|?> > 0 for some fixed ¢ > 0. Clearly, the same argument
gives

0
(1— et*Te)a—th +v — eloglo|? > —C,

in other words,

8u
87,‘

Notice that now the o is for the class [wr] in Lemma 4.2.

—C, + C.log|o|?.

Up to now, we have achieved the following controls

ou
lul < C, —C.+C.logl|o|* < o S < C.
Following the exact argument in the previous subsection, one can have de-
generate estimates for &; and its derivatives away from {o = 0}, and so away
from the stable base locus set of [wr].

Finally, we can conclude the local convergence because one can consider the
potential u — C't which decreases for C' sufficiently positive. In finite time case,
|u — Ct| < C and the convergence as t — T locally in C* topology away from
the stable base locus set of [wr] using the Interpolation Inequalities as in [3].

One can also apply maximum principle argument in another flavor just as
what is done in Section 3. It has to be done in a more careful way as follows.
Recall the differential inequality for D = (1 — e’ T)?;t‘ +v — elog|o?,

oD
ot

3 \H
Q?‘QJ

ou
> Az, D—C+(1—é" )74_0
ot
In the following, we control the last two terms by functions on D with the
desirable direction.
The last term on the right can be treated with ease because

_ro0u
=T

5 "V + elog|o|* <

which gives —%“; > —D + C. But the other term makes the situation trickier
since —elog|o|? can not be bounded from above over X by any constant. We

proceed as follows.

Define H := (1 —e*"T)2% 4 v. As H > % — C, one has

0 u
(1 —et_T)a—th +Ce w9 > —C+H+Ce .

The function over H, H + Ce=n would be decreasing with respect to H
for small enough H by simple computation, and so for H small enough, i.e.

15



(1- et_T)% sufficiently small, we can change H to H := H — elog|o|? > H—C
and draw the conclusion.

Hence we have proved Statement 3) of Theorem 1.2 and finished the proof
of the theorem.

5 Appendix: Higher Order Derivatives

We provide detailed discussion on the degenerate third and higher order deriva-
tive estimates for Kéhler-Ricci flow over a closed manifold, X. It works for the
modified flow (1.1) in this note and others (as the one used in Subsection 4.1
discussed in [11]) with [ws] being big.

The flow equation on the potential level is

Ou _ o (wi + v/ —100u)™
ot~ 8 Q

—u, u(0,-)=0, (5.1)

or without the —u term on the right hand side, where w; = weo + €7 (Wo — Woo)
with wg being the initial Kéhler metric, ws being a smooth representative for
the (formal) infinite limiting class and 2 being a smooth volume form over X.
Oy = wy + V/—190u is the solution of the flow at the level of metric.

The class [weo] is big and T < oo is the time of singularity from cohomology
consideration with [wr] being nef. and big. The following estimates have been
obtained:

2 2 du ~ -1
eloglo|* — Ce <u < C, Cloglo]* —C < o <C, (wo,wr) < Clo|™,
where E = {o = 0} is a proper chosen devisor such that [wr] — eE is Kéhler, o
is a holomorphic section of the line bundle, and |- | is a proper Hermitian metric

for the line bundle. Clearly, 1|o|? is a smooth function valued in [0, C].

The higher estimates are discussed briefly to achieve the full local regularity.
We begin with the so-called third order estimate a little more carefully below.
The computation in [15] is the key for this business. As in [15], define S :=
gijﬁklﬁmﬁui[mu;kﬁ, where the covariant derivative is taken with respect to the
uniform background metric. The metric norm used below is with respect to the
flow metric. || stands for either this norm or Hermitian metric for line bundle
FE, which is not going to bring up any confusion.

If the flow metric control is uniform, then the parabolic version of Yau’s
computation gives

0
Ng, — =
Bz~ 5
as described in [1] and [17].

In order to adjust this inequality for our situation, one only needs to observe
that the flow metric has been controlled (uniformly in time and degenerate in

)S>-C-S—C
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space) as follows
lo|Pwo < @ < |o|Pwo

for some (large) constant 8 > 0. Then we know by the computation in [15] that

9
ot

with N chosen large enough to dominate all the degenerate terms.

lo)?M (Ag, — =)S = —Clo/NF.5-C

Now let’s see how the term |o|?V S is acted on by the heat operator along
the flow. The only additional part is from the action of Ag,. There are two
terms. One is clearly 2Re(V|o|?Y,VS)5,, the other one is Ag, |o|?V - S.

For the first one, V.S = V(|o |2V S-|o|72V) = |o| 2V V(|o|*N S)—N|o| 725V |o|2.
For the second one,

2
Az, o = Ag, (eNEI71) = (|o*N N (loglo]?)s):
= N?|o[*N|Vlog|o|** + Nlo|* (@, v/~ 10dlog|o|?)
> —N|o|?N (@, —v/—108log|o|?).

Out of E = {0 = 0}, —/—100log|c|? is nothing but the curvature form of
the corresponding line bundle, still denoted by E. Using the degenerate metric
bound, we have

Agt\a|2N > —N|O’|2N<L~dt,E> > —C|O’|2N_ﬁ.

Remark 5.1. If we are in semi-ample case, with proper choice of the Hermitian
metric for the bundle (the | - | above), we can make sure that ® —eE > 0
(since the corresponding cohomology class is Kahler) where @ is the pullback of
a Kahler metric from the image of the holomorphic map which is constructed
from the semi-ample class [wr]. In this case, we also have better 0-th order
bound. Moreover, for the flow in [11], using parabolic Schwarz estimates as in
[10] (or [18]), we can have (@, @) < C, and so

Az |o*N = =N|o[*™ (@, E) > ~Clo|*N (@, @) > ~Clo]*™,

which is better. But it not going to make too much difference in the discussion
below.

Now we do computation as follows

(85, - 5)(oPN8) > ~CloPNF -5 -

+ 2Re (V|0|2N7 lo| "2V (|o|*N S) — N\a|_QSV|U\2)
= —Clo[* 7S — C + 2Re (V(log|o|*N), V(|o|*N S))
_ N2|0'|2N_4S|V|0"2|2.
~C|oPN727P8 — C + 2Re (V(log|o|*M), V(|o[*N'9)) . ,

Wt

Wt

Wi

WV
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where |V|o|?|? < C|o|?~# is applied for the last step.

Also as in [15], we consider the {w; e, ;) acted by the heat operator where
Wt is the perturbation for the background form w;.
Had the metric control been uniform, we would have

0 ~
(A‘:’t - a)“wt,eth» >C-S-C.

For our case, similar to S, we have the following inequality instead

0 ~
lo?N (Mg, — a)(@t,e,wt)) > Clo|?NTPs - C.

Exactly the same computation as already done for S gives us

(85, — Sl w1, 5))
> Clo*N TP .8 — C — Clo*N P (wi.e,@r)
+2Re (Vo] o] 2V V(|0 *N (wie, 51)) = Nlo| ™2 wi.e, &) Vo)
> Clo|*MtFS — C + 2Re (V(log|o|*N), V(| |*N (wi,e, @¢)))

- C|U|2N727ﬁ<wt,sa ajt>

Wt

W

Properly choosing large constants Ny > No > 0 and C’s, we have

0 ~
(A, = 5) (10PN + Clof™ (wi,c,T1))

> Clo|*M 1.8 — C = Clo|*™ 2P (wy ., @) + 2Re (V(log|o|* M), V(|o 21 S))
+ 2Re (V(log|o[*"2), V(Clo[*™ (wr,c, 1)) )

Wi

I

For the choice of N7 and Na, we only need 2Ny — 2 — 3 > 2Ny + [ at this
moment, but they will be fixed later to be large in principle.

Now apply maximum principle argument. At the (local in time) maximum
value point, for |o|?N1S + C|o|?N2(w; ¢, @), which clearly exists out of {o =0}
and is assumed not to be at the initial time, one has

V(o1 8) = —V(C|o|*M2 (wy.c,@1)),

0> Clo*N*P .5 — C = Clo|M2 72wy, )

+2Re (V(loglo ™), V(o1 S)). +2Re (V(loglo]*2), V(Clo]N (wr e 3))

=Clo|?NtP .5 — C — Clo 2727wy e, )
+ 2Re (= V(log|o[*M) + V(log|o|*N2), V(C|o P (wy,e, )
> Clo*M 16 .5 —C —C| (V(loglo|*), V(o PN (wye, @r)))

wt

5|
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For the last term above, we have
| (V(log|o]?), V(o™ (wr,e, &r))) 5, |
= | (lo]7*Vlo|?, Na|o |22V |o|*(wr,e, 0r) + 0|2V {wr,e, 1)) 5, |
< (lo]72V o, Nelo Y272V o [ (wie, 1)) 5, |+ | (Io] 72V o], o2 Viwre, @) 5, |
< Clo P22 200 4 o P22V [0 2] - [V wh,e, )|
< CloN27228 4 CloPN2 215 L [V g, By)]-
Now one observes that

V{wre, @) = [V(F + Ay, w)| < [VF|+ VA, (w)] < |o| 7 + Clo| 5%

with F' being a well controlled function. Combining all this, we have at that
maximum point,

0> CloPN2HB .5 — O — CloPN272720 _ Clg[PN27170 — C|g?Nam 1% . 55,
For large enough N>, we have
0> |o2N2t7. 5 — C(|oN40 . 5)2 - C,

and so |o|?V2 8. 5 < C.
For N even larger, we have uniform upper bound for || S+C|a|?V2 (wy ., 0r)
at that point, and so it is true globally which provides the desirable bound

S < Clo|~2M,

So far, we have achieved C?“ bound for the scalar potential flow solution.
Standard parabolic version of Schauder estimates can then be carried though to
provide all the local higher order derivative estimates by considering the space
derivative of (5.1).
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