The University of Sydney
 Math1003 Integral Calculus and Modelling

Assumed Knowledge: Integrals of simple functions such as x^{n} (including $\left.1 / x\right), \sin x, \cos x$, e^{x}. The simple properties of definite integrals.

Objectives:

(2a) To be able to estimate the definite integral of a function and the error of the estimate using Riemann sums.
(2b) To be able to estimate a sum of a series by comparing it with a definite integral.
(2c) To understand that integration and differentiation are inverse operations, i.e. that the definite integral of the derivative of a function is equal to the difference between the function values at the end-points, $\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)$.
(2d) To understand the conditions under which the definite integral of a function exists.
(2e) To be able to use the properties of definite integrals confidently.

Preparatory questions:

1. Let f and g be continuous functions on the interval $[a, b]$, and let $a \leq c \leq b$.
(i) If $\int_{a}^{b} f(x) d x=10$ and $\int_{c}^{b} 2 f(x) d x=5$, find $\int_{a}^{c} f(x) d x$.
(ii) If $\int_{a}^{b} f(x) d x=12$ and $\int_{a}^{b}(2 f(x)+3 g(x)) d x=63$, find $\int_{a}^{b} g(x) d x$.
(iii) If $\int_{c}^{a} f(x) d x=5$ and $\int_{b}^{c} f(x) d x=-2$, find $\int_{a}^{b} 2 f(x) d x$.
2. A first year mathematics student used the Fundamental Theorem of Calculus to do the following calculation:

$$
\int_{-1}^{1} \frac{1}{x^{2}} d x=\left[-\frac{1}{x}\right]_{-1}^{1}=-2
$$

Her friend said: "But $\frac{1}{x^{2}}$ is always positive, so its graph is above the x-axis, and the answer should be positive."
Was either student correct?

Practice Questions:

3. Give reasons for the answer in Question 2.
4. (i) Use the Fundamental Theorem to find $\int_{1}^{a} \frac{1}{x^{2}} d x$ (where a is any real number greater than 1).
(ii) What is $\lim _{a \rightarrow \infty} \int_{1}^{a} \frac{1}{x^{2}} d x$?
(iii) Draw a sketch of the function $\frac{1}{x^{2}}$ and use it to interpret your answer to part (ii) geometrically.
(iv) Find a lower Riemann sum for the function $\frac{1}{x^{2}}$ on the interval $[1, \infty)$, using sub-intervals of width 1.
(v) Use parts (ii) and (iv) to show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}<2$.
(vi) Calculate $\sum_{n=1}^{7} \frac{1}{n^{2}}$.
(vii) Deduce that $1.5<\sum_{n=1}^{\infty} \frac{1}{n^{2}}<2$.
5. (Suitable for group work and discussion) Use an appropriate integral, and Riemann sums, to find an estimate for $1+\sqrt{2}+\sqrt{3}+\cdots+\sqrt{100}$.

More Exercises

6. Consider a partition of $[0,1.75]$ into 7 equal parts. Given the values of $\cos \left(x^{2}\right)$ tabulated below, use lower and upper Riemann sums to find lower and upper estimates for $\int_{0}^{1.75} \cos \left(x^{2}\right) d x$.

$$
\begin{array}{ccccccccc}
x & 0 & 0.25 & 0.5 & 0.75 & 1 & 1.25 & 1.5 & 1.75 \\
\cos \left(x^{2}\right) & 1 & 0.998 & 0.969 & 0.846 & 0.54 & 0.008 & -0.628 & -0.997
\end{array}
$$

Remember that x should be measured in radians.
7. (i) Consider the partition of $[0,1]$ into five equal parts. Use lower and upper Riemann sums to find lower and upper bounds for $\int_{0}^{1} x^{5} d x$.
(ii) Obtain lower and upper bounds for $\sum_{i=1}^{25} i^{4}$.

Answers to Preparatory Questions

1. (i) 7.5
(ii) 13
(iii) -6
2. Neither was correct.
