The University of Sydney Math1003 Integral Calculus and Modelling

Semester 2	Exercises for Week 3	2014

Assumed Knowledge: Integrals of simple functions such as x^n (including 1/x), $\sin x$, $\cos x$, e^x . The simple properties of definite integrals.

Objectives:

- (2a) To be able to estimate the definite integral of a function and the error of the estimate using Riemann sums.
- (2b) To be able to estimate a sum of a series by comparing it with a definite integral.
- (2c) To understand that integration and differentiation are inverse operations, i.e. that the definite integral of the derivative of a function is equal to the difference between the function values at the end-points, $\int_a^b F'(x) dx = F(b) F(a)$.
- (2d) To understand the conditions under which the definite integral of a function exists.
- (2e) To be able to use the properties of definite integrals confidently.

Preparatory questions:

1. Let f and g be continuous functions on the interval [a, b], and let $a \le c \le b$.

(i) If
$$\int_a^b f(x)dx = 10$$
 and $\int_c^b 2f(x)dx = 5$, find $\int_a^c f(x)dx$.

(*ii*) If
$$\int_a^b f(x)dx = 12$$
 and $\int_a^b (2f(x) + 3g(x))dx = 63$, find $\int_a^b g(x)dx$.

- (iii) If $\int_{c}^{a} f(x)dx = 5$ and $\int_{b}^{c} f(x)dx = -2$, find $\int_{a}^{b} 2f(x)dx$.
- 2. A first year mathematics student used the Fundamental Theorem of Calculus to do the following calculation:

$$\int_{-1}^{1} \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_{-1}^{1} = -2.$$

Her friend said: "But $\frac{1}{x^2}$ is always positive, so its graph is above the *x*-axis, and the answer should be positive."

Was either student correct?

Practice Questions:

3. Give reasons for the answer in Question 2.

- 4. (i) Use the Fundamental Theorem to find $\int_{1}^{a} \frac{1}{x^{2}} dx$ (where a is any real number greater than 1).
 - (*ii*) What is $\lim_{a \to \infty} \int_1^a \frac{1}{x^2} dx$?
 - (*iii*) Draw a sketch of the function $\frac{1}{x^2}$ and use it to interpret your answer to part (*ii*) geometrically.
 - (*iv*) Find a lower Riemann sum for the function $\frac{1}{x^2}$ on the interval $[1, \infty)$, using sub-intervals of width 1.

(v) Use parts (ii) and (iv) to show that
$$\sum_{n=1}^{\infty} \frac{1}{n^2} < 2$$
.
(vi) Calculate $\sum_{n=1}^{7} \frac{1}{n^2}$. (vii) Deduce that $1.5 < \sum_{n=1}^{\infty} \frac{1}{n^2} < 2$.

5. (Suitable for group work and discussion) Use an appropriate integral, and Riemann sums, to find an estimate for $1 + \sqrt{2} + \sqrt{3} + \cdots + \sqrt{100}$.

More Exercises

6. Consider a partition of [0, 1.75] into 7 equal parts. Given the values of $\cos(x^2)$ tabulated below, use lower and upper Riemann sums to find lower and upper estimates for $\int_{0}^{1.75} \cos(x^2) dx$.

x	0	0.25	0.5	0.75	1	1.25	1.5	1.75
$\cos(x^2)$	1	0.998	0.969	0.846	0.54	0.008	-0.628	-0.997

Remember that x should be measured in radians.

- 7. (i) Consider the partition of [0, 1] into five equal parts. Use lower and upper Riemann sums to find lower and upper bounds for $\int_0^1 x^5 dx$.
 - (*ii*) Obtain lower and upper bounds for $\sum_{i=1}^{25} i^4$.

Answers to Preparatory Questions

- **1.** (i) 7.5 (ii) 13 (iii) -6
- **2.** Neither was correct.