The University of Sydney
Math1003 Integral Calculus and Modelling
Semester $2 \quad$ Exercises for Week 5 2014

Assumed Knowledge: Sketching curves of simple functions. Integrals of simple functions such as x^{n} (including $\left.1 / x\right), \sin x, \cos x, e^{x}$.

Objectives:

(4a) To understand and be able to use integration by parts to evaluate definite integrals.
(4b) To understand that an indefinite integral is a function.
(4c) To understand that differentiation and (indefinite) integration are inverse processes when applied to functions.
(4d) To be able to sketch a function given its derivative.
(4e) To be able to derive a reduction formula for an integral.

Preparatory questions:

1. Find the indefinite integrals
(i) $\int \tan x d x$. Hint: Write $\tan x=\sin x / \cos x$ and choose a suitable substitution.
(ii) $\int x^{2} e^{x} d x$.

Practice Questions:

2. Evaluate the following integrals by using integration by parts.
(i) $\int_{0}^{1 / 2} x e^{2 x} d x$.
(ii) $\int_{0}^{\pi / 4} \theta \sin 4 \theta d \theta$.
(iii) $\int_{1}^{2} t^{2} \ln t d t$.
3. Define $\operatorname{Si}(x)$ as $\operatorname{Si}(x)=\int_{0}^{x} f(t) d t$, where $f(t)= \begin{cases}\frac{\sin t}{t} & t \neq 0 \\ 1 & t=0 .\end{cases}$

This function is called the sine-integral, and is useful in optics.
This is the graph of $f(t)$.

(i) What is $\mathrm{Si}^{\prime}(x)$?. (ii) What is the value of $\operatorname{Si}(0)$?
(iii) For $0 \leq x \leq 3 \pi$, use the graph of $f(t)$ to determine the values of x for which $\operatorname{Si}(x)$ is increasing, and the values of x for which it is decreasing.
(iv) For which values of x between 0 and 3π does $\operatorname{Si}(x)$ have stationary points?
(v) Use the graph of $f(t)$ to estimate $\mathrm{Si}(\pi), \mathrm{Si}(2 \pi)$ and $\operatorname{Si}(3 \pi)$.
(vi) Use the graph of $f(t)$ to determine values of x at which Si has points of inflection.
(vii) Sketch the graph of Si for $0 \leq x \leq 3 \pi$.

4. Establish the following reduction formula. [Hint: Write the integrand as $u(x) v^{\prime}(x)$ where $u=\cos ^{n-1} x$.]

$$
\int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x .
$$

Use this formula to find $\int \cos ^{2} x d x$ and $\int \cos ^{4} x d x$.

More Exercises

5. Let $g(x)=\int_{-3}^{x} f(t) d t$ where f is the odd function whose graph is shown.

(i) Evaluate $g(-3)$ and $g(3)$.
(ii) Estimate $g(-2), g(-1)$ and $g(0)$.
(iii) On what interval is g increasing?
(iv) Where does g have a maximum value?
(v) Sketch a rough graph of g.
6. Evaluate the following integrals by using integration by parts.
(i) $\int_{0}^{1}(2 x+3) e^{x} d x$.
(ii) $\int_{0}^{\pi} \theta^{2} \cos 3 \theta d \theta$.
(iii) $\int_{-\pi / 4}^{\pi / 4} t \sin t \cos t d t$.

Hint: First use an identity in (iii).
7. Let $I_{n}=\int x^{n} e^{x} d x$. Use integration by parts to establish the reduction formula

$$
I_{n}=x^{n} e^{x}-n I_{n-1} .
$$

Hence find $\int x^{3} e^{x} d x$.
8. (i) Let $I_{n}=\int x(\ln x)^{n} d x$. Use integration by parts to establish the reduction formula

$$
I_{n}=\frac{1}{2} x^{2}(\ln x)^{n}-\frac{n}{2} I_{n-1} .
$$

(ii) Starting with $I_{0}=\int x d x=\frac{1}{2} x^{2}+C$, use the reduction formula from part (i) to find I_{2}.

Answers to Preparatory Questions

1. (i) $-\ln |\cos x|+C$.
(ii) $\left(x^{2}-2 x+2\right) e^{x}+C$.
