The University of Sydney Math1003 Integral Calculus and Modelling

Semester 2	Exercises for Week 5	2014

Assumed Knowledge: Sketching curves of simple functions. Integrals of simple functions such as x^n (including 1/x), $\sin x$, $\cos x$, e^x .

Objectives:

- (4a) To understand and be able to use integration by parts to evaluate definite integrals.
- (4b) To understand that an indefinite integral is a function.
- (4c) To understand that differentiation and (indefinite) integration are inverse processes when applied to functions.
- (4d) To be able to sketch a function given its derivative.
- (4e) To be able to derive a reduction formula for an integral.

Preparatory questions:

1. Find the indefinite integrals

(i)
$$\int \tan x \, dx$$
. Hint: Write $\tan x = \sin x / \cos x$ and choose a suitable substitution
(ii) $\int x^2 e^x \, dx$.

Practice Questions:

3.

2. Evaluate the following integrals by using integration by parts.

(i)
$$\int_{0}^{1/2} x e^{2x} dx.$$
 (ii) $\int_{0}^{\pi/4} \theta \sin 4\theta \, d\theta.$ (iii) $\int_{1}^{2} t^{2} \ln t \, dt$
Define Si(x) as Si(x) = $\int_{0}^{x} f(t) \, dt$, where $f(t) = \begin{cases} \frac{\sin t}{t} & t \neq 0\\ 1 & t = 0 \end{cases}$.

This function is called the *sine-integral*, and is useful in optics. This is the graph of f(t).

4. Establish the following reduction formula. [Hint: Write the integrand as u(x)v'(x) where $u = \cos^{n-1} x$.]

$$\int \cos^n x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx \, .$$

Use this formula to find $\int \cos^2 x \, dx$ and $\int \cos^4 x \, dx$.

More Exercises

5. Let $g(x) = \int_{-3}^{x} f(t) dt$ where f is the odd function whose graph is shown.

- (i) Evaluate g(-3) and g(3).
- (*ii*) Estimate g(-2), g(-1) and g(0).
- (iii) On what interval is g increasing?
- (iv) Where does g have a maximum value?
- (v) Sketch a rough graph of g.
- 6. Evaluate the following integrals by using integration by parts.

(i)
$$\int_0^1 (2x+3)e^x dx.$$
 (ii) $\int_0^\pi \theta^2 \cos 3\theta \, d\theta.$ (iii) $\int_{-\pi/4}^{\pi/4} t \sin t \cos t \, dt.$

Hint: First use an identity in (*iii*).

7. Let $I_n = \int x^n e^x dx$. Use integration by parts to establish the reduction formula

$$I_n = x^n e^x - n I_{n-1} \,.$$

Hence find $\int x^3 e^x dx$.

8. (i) Let $I_n = \int x(\ln x)^n dx$. Use integration by parts to establish the reduction formula

$$I_n = \frac{1}{2}x^2(\ln x)^n - \frac{n}{2}I_{n-1}$$

(*ii*) Starting with $I_0 = \int x \, dx = \frac{1}{2}x^2 + C$, use the reduction formula from part (*i*) to find I_2 .

Answers to Preparatory Questions

1. (i) $-\ln|\cos x| + C$. (ii) $(x^2 - 2x + 2)e^x + C$.